文档库 最新最全的文档下载
当前位置:文档库 › 八年级数学全等三角形经典例题练习及解析

八年级数学全等三角形经典例题练习及解析

八年级数学全等三角形经典例题练习及解析
八年级数学全等三角形经典例题练习及解析

全等三角形单元预习测试题

一、选择题(每小题3分,共30分)

1.下列说法错误的是()

A.全等三角形的对应边相等B.全等三角形的对应角相等

C.全等三角形的周长相等D.全等三角形的高相等

2.如图,△ABC≌△CDA,并且BC=DA,那么下列结论错误的是()A.∠1=∠2 B.AC=CA C.AB=AD D.∠B=∠D

第2题第3题第5题第7题

3.如图,AB∥DE,AC∥DF,AC=DF,下列条件中不能判断△ABC≌△DEF的是()A.AB=DE B.∠B=∠E C.EF=BC D.EF∥BC 4.长为3cm,4cm,6cm,8cm的木条各两根,小明与小刚分别取了3cm和4cm的两根,要使两人所拿的三根木条组成的两个三角形全等,则他俩取的第三根木条应为()

A.一个人取6cm的木条,一个人取8cm的木条B.两人都取6cm的木条

C.两人都取8cm的木条D.B、C两种取法都可以

5.△ABC中,AB=AC,三条高AD,BE,CF相交于O,那么图中全等的三角形有()A.5对B. 6对C. 7对D. 8对

6.下列说法中,正确的有()

①三角对应相等的两个三角形全等;②三边对应相等的两个三角形全等;③两角、一

边相等的两个三角形全等;④两边、一角对应相等的两个三角形全等.

A.1个B. 2个C. 3个D. 4个

7.如图,已知△ABC中,∠ABC=45°,AC=4,H是高AD和BE的交点,则线段BH的长度为()

A.B. 4 C.D. 5

8.如图,ABC中,AD是它的角平分线,AB=4,AC=3,那么△ABD与△ADC的面积比是()

A.1:1 B. 3:4 C. 4:3 D.不能确定

第8题第9题第12题

9.如图,△ABC中,∠C=90°,AC=BC,AD是∠CAB的平分线,DE⊥AB于E.已知AC=6cm,则BD+DE的和为()

A.5cm B. 6cm C. 7cm D. 8cm 10.已知P是∠AOB平分线上一点,CD⊥OP于F,并分别交OA、OB于CD,则CD_____P点到∠AOB两边距离之和.( )

A.小于B.大于C.等于D.不能确定

二、填空题(每小题3分,共24分)

11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.

12.如图,∠1=∠2,CD=BD,可证△ABD≌△ACD,则依据是_________。

13.如图所示,在四边形ABCD中,CB=CD,∠ABC=∠ADC=90°,∠BAC=35°,则∠BCD 的度数为度.

14.如图,已知△ACF≌△DBE,∠E=∠F,AD=9cm,BC=5cm,AB的长为cm.

15.如图△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,给出下列结论:①DC=DE;

②DA平分∠CDE;③DE平分∠ADB;④BE+AC=AB;⑤∠BAC=∠BDE.其中正确

的是(写序号)

16.如图,△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于D.给出下列结论:①∠AFC=∠C;②DF=CF;③BC=DE+DF;④∠BFD=∠CAF.其中正确的结论是(填写所有正确结论的序号).

中,AB=AC,AD⊥BC于D点,E、F分别为DB、DC的中点,则图17.如图,在ABC

中共有全等三角形_______对.

第13题第14题第15题第16题

18.如图,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是.

第17题

三、解答题(本大题共66分)

19.如图,AB=AE,AC=AD,BD=CE.求证:∠CAB=∠DAE.(9分)

20.如图,在△ABC与△ABD中,BC=BD,∠ABC=∠ABD.点E为BC中点,点F为BD 中点,连接AE,AF。求证:△ABE≌△ABF.(9分)

21.已知△ABC中,∠C=90°,CA=CB,∠BAC的平分线交BC于点D,DE⊥AB于点E.求证:AB=AC+CD.(9分)

第19题第20题第21题第22题22.如图,AC=AD,∠BAC=∠BAD,点E在AB上,证明:∠BCE=∠BDE(9分)

23.如图,在平面直角坐标系中,O为坐标原点.A、B两点的坐标分别为A(m,0)、B(0,n),且,点P从A出发,以每秒1个单位的速度沿射线AO匀速运动,设点P运动时间为t秒.(15分)

(1)求OA、OB的长;

(2)连接PB,若△POB的面积不大于3且不等于0,求t的范围;

(3)过P作直线AB的垂线,垂足为D,直线PD与y轴交于点E,在点P运动的过程中,是否存在这样的点P,使△EOP≌△AOB?若存在,请求出t的值;若不存在,请说明理由.

24.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(15分)(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA 上由C点向A点运动.

①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;

②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?

(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?

参考答案

一、选择题(每小题3分,共30分)

(1)AB=DE,则△ABC和△DEF中,,∴△ABC≌△DEF,故A选项错误;

(2)∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故B选项错误;

(3)EF=BC,无法证明△ABC≌△DEF(ASS);故C选项正确;

(4)∵EF∥BC,AB∥DE,∴∠B=∠E,则△ABC和△DEF中,,∴△ABC≌△DEF,故D选项错误;

4、解:若两人所拿的三角形全等,那么两人所拿的第三根木条长度相同,故排除A;

若取8cm的木条,那么3+4<8,不能构成三角形,所以只能取6cm的木条,故排除C、D;

∵∠AHE+∠DAC=90°,∠DAC+∠C=90°,

∴∠AHE=∠BHD=∠C,

∴△ADC≌△BDH,

∴BH=AC=4.

故选B.

8、解:如图,过D分别作DE⊥AB于E,DF⊥AC于F,

∵AD是它的角平分线,

∴DE=DF,

而S△ABD:S△ADC=AB?DE:AC?DF

=AB:AC

=4:3.

故选C.

∴m+n>b+c.

故选A.

二、填空题(每小题3分,共15分)

11、解:∵这两个三角形全等,两个三角形中都有2

∴长度为2的是对应边,x应是另一个三角形中的边6.同理可得y=5 ∴x+y=11.

∴AB=2(cm).

故填2.

14、解:∵∠C=90°,AD平分∠BAC,DE⊥AB,

∴DC=DE,故①正确;

在Rt△ACD和Rt△AED中,,

∴Rt△ACD≌Rt△AED(HL),

∴∠ADC=∠ADE,AC=AE,

∴DA平分∠CDE,故②正确;

BE+AC=BE+AE=AB,故④正确;

∵∠BAC+∠B=90°,

16、解:当有1点D时,有1对全等三角形;

当有2点D、E时,有3对全等三角形;

当有3点D、E、F时,有6对全等三角形;

当有4点时,有10个全等三角形;

当有n个点时,图中有个全等三角形.故答案为:.

三、解答题(本大题共8小题,共72分)

17、证明:∵BD=CE

∴CD+BC=CD+DE

∴BC=DE

在△ABC和△AED中,

∴BE=DE,

AB=AE+BE=AC+CD.

20、解:△CAB≌△DAB,理由如下:

∵在△CAB和△DAB中

∴△CAB≌△DAB(SAS).

21、解:AE=CF.

理由:过E作EH∥CF交BC于H,

∴∠3=∠C,

∵∠BAC=90°,AD⊥BC,

∴∠ABC+∠C=90°,∠ABD+∠BAD=90°,

∵∠C=90°,∠B=30°,

∴∠CAB=60°,

∵AD为∠BAC的角平分线,

∴∠BAD=∠CAD=∠CAB=30°,

∴CD=AD,AC=ADcos30°=AD,

∴AC=CD,且S△ACD=×AC×CD;

∵∠DAE=30°,且∠DEA=90°

∴AD=2DE,

∴DE=CD,可证△ACD≌△AED,

同理△ACD≌△BED,

S△ADE=×AE×DE=S△BDE=×BE×DE=S△ACD,

∴0<9﹣t≤3,

解得:4≤t<6;

AP=t,PO=t﹣6,∴△BOP的面积S=×(t﹣6)×3=t﹣9,∵若△POB的面积不大于3且不等于0,

∴0<t﹣9≤3,

解得:6<t≤8;

即t的范围是4≤t≤8且t≠6;

即存在这样的点P,使△EOP≌△AOB,t的值是3或9.

24、解:(1)①∵t=1s,

∴BP=CQ=3×1=3cm,

∴cm/s;

(2)设经过x秒后点P与点Q第一次相遇,由题意,得x=3x+2×10,

解得.

∴点P共运动了×3=80cm.

△ABC周长为:10+10+8=28cm,

若是运动了三圈即为:28×3=84cm,

∵84﹣80=4cm<AB的长度,

∴点P、点Q在AB边上相遇,

∴经过s点P与点Q第一次在边AB上相遇.

全等三角形证明经典题(含答案)

全等三角形证明经典题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,111749AD 是整数,求AD 解:延长AD 到E,使AD=DE ∵D 是BC 中点∴BD=DC 在△ACD 和△BDE 中 AD=DE ∠BDE=∠ADCBD=DC ∴△ACD ≌△BDE ∴AC=BE=2∵在△ABE 中AB-BE <AE <AB+BE ∵AB=4即 4-2<2AD <4+21<AD <3∴AD=2 2. 已知:D 是AB 中点,∠ACB=90°,求证:12 CD AB 延长CD 与P ,使D 为CP 中点。连接AP,BP ∵DP=DC,DA=DB ∴ACBP 为平行四边形又∠ACB=90∴平行四边形ACBP 为矩形 ∴AB=CP=1/2AB 3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 4. 5. 证明:连接BF 和EF ∵BC=ED,CF=DF,∠BCF=∠EDF ∴三角形BCF 全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF 连接BE 在三 角形BEF 中,BF=EF ∴∠EBF=∠BEF 。 ∵∠ABC=∠AED 。∴∠ABE=∠AEB 。∴AB=AE 。在三角形ABF 和三角形AEF 中 AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF ∴三角形ABF 和三角形AEF 全等。∴∠BAF=∠ EAF(∠1=∠2)。 6. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC A D B C

过C 作CG ∥EF 交AD 的延长线于点GCG ∥EF ,可得,∠EFD =CGD DE =DC ∠FDE =∠GDC (对顶角)∴△EFD ≌△CGD EF =CG ∠CGD =∠EFD 又EF ∥AB ∴∠EFD =∠1∠1=∠2 ∴∠CGD =∠2∴△AGC 为等腰三角形,AC =CG 又EF =CG ∴EF =AC 7. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠ C 证明:延长AB 取点E ,使AE =AC ,连接DE ∵AD 平分∠BAC ∴∠EAD =∠CAD ∵AE =AC ,AD =AD ∴△AED ≌△ACD (SAS ) ∴∠E =∠C ∵AC =AB+BD ∴AE =AB+BD ∵AE =AB+BE ∴BD =BE ∴∠BDE =∠E ∵∠ABC =∠E+∠BDE ∴∠ABC =2∠E ∴∠ABC =2∠C 8. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF ∵CE ⊥AB ∴∠CEB =∠CEF =90° ∵EB =EF ,CE =CE ,∴△CEB ≌△CEF ∴∠B =∠CFE ∵∠B +∠D =180°,∠CFE +∠CFA =180° ∴∠D =∠CFA ∵AC 平分∠BAD ∴∠DAC =∠FAC ∵AC =AC ∴△ADC ≌△AFC (SAS ) ∴AD =AF ∴AE =AF +FE =AD +BE 9. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 在BC 上截取BF=AB ,连接EF ∵BE 平分∠ABC ∴∠ABE=∠FBE 又∵BE=BE ∴⊿ABE ≌⊿FBE (SAS ) ∴∠A=∠BFE ∵AB//CD ∴∠A+∠D=180o ∵∠BFE+∠CFE=180o ∴∠D=∠CFE 又∵∠DCE=∠FCECE 平分∠BCDCE=CE ∴⊿DCE ≌⊿FCE (AAS )∴CD=CF ∴BC=BF+CF=AB+CD 10. 已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB ‖ED ,得:∠EAB+∠AED=∠BDE+∠ABD=180度, ∵∠EAB=∠BDE , B A C D F 2 1 E D C B A F E A

全等三角形练习题很经典

第十二章 全等三角形 第Ⅰ卷(选择题 共30 分) 一、选择题(每小题3分,共30分) 1.下列说确的是( ) A.形状相同的两个三角形全等 B.面积相等的两个三角形全等 C.完全重合的两个三角形全等 D.所有的等边三角形全等 2. 如图所示,a,b,c 分别表示△ABC 的三边长,则下面与△ABC 一定全等的三角形是( ) 3.如图所示,已知△ABE≌△ACD ,∠1=∠2, ∠B=∠C, 下列不正确的等式是( ) A.AB=AC B.∠BAE=∠CAD C.BE=DC D.AD=DE 4. 在△ABC 和△A /B /C /中,AB=A /B /,∠B=∠B /,补充条件后仍不一定能保证△ABC≌△A /B /C /,则补充的这个条 第3题图 第5题图 第2题图 A B C D

件是( ) A .BC= B / C / B .∠A=∠A / C .AC=A /C / D .∠C=∠C / 5.如图所示,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,则下列结论不一定成立的是( ) A.△ACE≌△BCD B.△BGC≌△AFC C.△DCG≌△ECF D.△ADB≌△CEA 6. 要测量河两岸相对的两点A,B 的距离,先在AB 的垂 线BF 上取两点C,D ,使CD=BC ,再作出BF 的垂线DE ,使A,C,E 在一条直线上(如图所示),可以说明△EDC≌△ABC,得ED=AB ,因此测得ED 的长就是AB 的长,判定△EDC≌△ABC 最恰当的理由是( ) A.边角边 B.角边角 C.边边边 D.边边角 7.已知:如图所示,AC=CD ,∠B=∠E=90°,AC⊥CD,则不正确的结论是( ) A .∠A 与∠D 互为余角 B .∠A=∠2 C .△ABC≌△CE D D.∠1=∠2 8. 在△ABC 和△FED 中,已知∠C=∠D,∠B=∠E,要判定这两个三角形全等,还需要条件( ) A.AB=ED B.AB=FD C.AC=FD D.∠A=∠F 9.如图所示,在△ABC 中,AB=AC ,∠ABC、∠ACB 的平分 第9题图 第7题图 第6题图

全等三角形经典题型50题带答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE∴⊿ADC≌⊿GDE (AAS )∴EG=AC∵EF//AB∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE∴EF=E G ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB , ∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE⊥AB 所以∠CEB=∠CEF=90° 因为EB =EF ,CE =CE , 所以△CEB≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE+∠CFA=180° 所以∠D=∠CFA 因为AC 平分∠BAD 所以∠DAC=∠FAC 又因为AC =AC 所以△ADC≌△AFC(SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD, 则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F= C D B D E A B A C D F 2 1 E

八年级上数学_全等三角形典型例题(一)

全等三角形典型例题: 例1:把两个含有45°角的直角三角板如图1放置,点D 在BC 上,连结BE ,AD ,AD 的延长线交BE 于点F .求 证:AF ⊥BE . 练习1:如图,在△ABC 中,∠BAC=90°,AB=AC , AE 是过点A 的直线,BD ⊥AE ,CE ⊥AE , 如果CE=3,BD=7,请你求出DE 的长度。 例2: △DAC, △EBC 均是等边三角形,AE,BD 分别与CD,CE 交于点M,N, 求证:(1)AE=BD ; (2)CM=CN ; (3) △CMN 为等边三角形;(4)MN ∥BC 。 例3:(10分)已知,△ABC 中,∠BAC = 90°,AB = AC ,过A 任作一直线l ,作BD ⊥l 于D ,CE ⊥l 于E ,观察三条线段BD ,CE ,DE 之间的数量关系. ⑴如图1,当l 经过BC 中点时,DE = (1分),此时BD CE (1分). ⑵如图2,当l 不与线段BC 相交时,BD ,CE ,DE 三者的数量关系为 ,并证明你的结论.(3分) ⑶如图3,当l 与线段BC 相交,交点靠近B 点时,BD ,CE ,DE 三者的数量关系为 . 证明你的结论(4分),并画图直接写出交点靠近C 点时,BD ,CE ,DE 三者的数量关系为 .(1分) 图1 图2 图3 C B A l B C A B C D E l A B C l E D

练习1:以直角三角形ABC的两直角边AB、BC为一边,分别向外作等边三角形△ABE和等边△BCF,连结EF、EC。试说明:(1)EF=EC;(2)EB⊥CF B A F E 练习2: 如图(1)A、E、F、C在同一直线上,AE=CF,过E、F分别作DE⊥AC,BF⊥AC若AB=CD,G是EF的中点吗?请证明你的结论。 若将⊿ABC的边EC经AC方向移动变为图(2)时,其余条件不变,上述结论还成立吗?为什么?

全等三角形经典题型50题含答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB , AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°, 求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF , CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则 ⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. 13.已知:AB//ED ,∠EAB=∠BDE ,AF=CD ,EF=BC ,求证:∠F=∠C AB//ED,AE//BD 推出AE=BD, C D B D C B A F E A B A C D F 2 1 E

七年级数学上册期末复习典型例题讲析(人教版)

七年级数学上册典型例题 例1. 已知方程2x m-3+3x=5是一元一次方程,则m= . 解:由一元一次方程的定义可知m-3=1,解得m=4.或m-3=0,解得m=3 所以m=4或m=3 警示:很多同学做到这种题型时就想到指数是1,从而写成m=1,这里一定要注意x的指数是(m-3). 例2. 已知2 x=-是方程ax2-(2a-3)x+5=0的解,求a的值. 解:∵x=-2是方程ax2-(2a-3)x+5=0的解 ∴将x=-2代入方程, 得a·(-2)2-(2a-3)·(-2)+5=0 化简,得4a+4a-6+5=0 ∴ a=8 1 点拨:要想解决这道题目,应该从方程的解的定义入手,方程的解就是使方程左右两边值相等的未知数的值,这样把x=-2代入方程,然后再解关于a的一元一次方程就可以了. 例3. 解方程2(x+1)-3(4x-3)=9(1-x). 解:去括号,得2x+2-12x+9=9-9x, 移项,得2+9-9=12x-2x-9x. 合并同类项,得2=x,即x=2. 点拨:此题的一般解法是去括号后将所有的未知项移到方程的左边,已知项移到方程的右边,其实,我们在去括号后发现所有的未知项移到方程的左边合并同类项后系数不为正,为了减少计算的难度,我们可以根据等式的对称性,把所有的未知项移到右边去,已知项移到方程的左边,最后再写成x=a的形式. 例4. 解方程 1 7 5 3 2 1 4 1 6 1 8 1 = ? ? ? ? ? ? + ? ? ? ? ? ? + ? ? ? ? ? + - x . 解析:方程两边乘以8,再移项合并同类项,得111 351 642 x ?-? ?? ++= ? ?? ?? ?? 同样,方程两边乘以6,再移项合并同类项,得11 31 42 x- ?? += ? ??

人教版八年级上全等三角形经典例题整理

全等三角形的典型习题 一、全等在特殊图形中的运用 1、如图,等边△ABC 中,D 、E 分别是AB 、CA 上的动点,AD =CE ,试求∠DFB 的度数. 2、如下图所示,等边△ABC 中,D 、E 、F 是AB 、BC 、CA 上动点,AD =BE =CF ,试判 断△DEF 的形状. 3、如下图所示,△ABC 和△ADE 都是等边三角形,且点B 、A 、D 在同一直线上,AC 、BE 相交于点G ,AE 、CD 相交于点F ,试说明△AGF 是等边三角形. Ex 、如图,四边形ABCD 与BEFG 都是正方形,AG 、CE 相交于点O ,AG 、BC 相交于点M ,BG 、CE 相交于点N ,请你猜测AG 与CE 的关系(数量关系和位置关系)并说明理由. 4、△ABC 是等腰直角三角形,AB =AC ,∠BAC =90°,∠B =∠C =45°,D 是底边BC 的中点,DE ⊥DF ,试说明BE 、CF 、EF 为边长的三角形是直角三角形。 A B A A

m 二.证明全等常用方法(截长法或补短法) 5、如图所示,在△ABC 中,∠ABC =2∠C ,∠BAC 的平分线交BC 于点D .请你试说明AB +BD =AC . Ex1,∠C +∠D =180°,∠1=∠2,∠3=∠4.试用截长法说明AD +BC =AB . Ex2、五边形ABCDE 中,AB =AE,∠BAC +∠DAE =∠CAD,∠ABC +∠AED =180°,连结AC ,AD .请你用补短法说明BC +DE =CD .(也可用截长法,自己考虑) 6、如图,正方形ABCD 中,E 是AB 上的点,F 是BC 上的点,且∠EDF =45°.请你试用 补短法说明AE +CF =EF . Ex1.、如图所示,在△ABC 中,边BC 在直线m 上,△ABC 外的四边形ACDE 和四边形ABFG 均为正方形,DN ⊥m 于N ,FM ⊥m 于M .请你说明BC =FM +DN 的理由.(分别用截长法和补短法) (连结GE ,你能说明S △ABC =S △AGE 吗?) B B C F C A B

初一下册数学经典题型

1. 如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的关联方程. 例如:方程260x =- 的解为3x= ,不等式组205x x ->????-??-+<-? , 的关联方程是 ;(填序号) (2)若不等式组1144275 x x x ? -?? ?++?<, >-的一个关联方程的根是整数,则这个关联方程可以是 ;(写 出一个即可) (3)若方程21+2x x -=, 1322x x ? ?+=+ ???都是关于x 的不等式组22x x m x m -?? -?<,≤的关联方程,求m 的取值范围.

2. 对于平面直角坐标系xOy中的点A,给出如下定义:若存在点B(不与点A重合,且直线AB不与坐标轴平行或重合),过点A作直线m∥x轴,过点B作直线n∥y轴,直线m,n相交于点C.当线段AC,BC的长度相等时,称点B为点A的等距点,称三角形ABC的面积为点A的 等距面积. 例如:如图,点A(2,1),点B(5,4),因为AC= BC=3,所以B 为点A的等距点,此时点A的等距面积为9 2. (1)点A的坐标是(0,1),在点B1(-1,0),B2(2,3),B3(-1,-1)中,点A的等距点为. (2)点A的坐标是(-3,1),点A的等距点B在第三象限, ①若点B的坐标是 ? ? ? ? ? 2 1 2 9 ,- - ,求此时点A的等距面积; ② ②若点A的等距面积不小于9 8,求此时点B的横坐标t的取值范围. 备用图

全等三角形经典题型题带标准答案

全等三角形经典题型题带答案

————————————————————————————————作者:————————————————————————————————日期:

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C 证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 6. 已知:AC 平分∠BAD ,CE ⊥ AB ,∠B+∠D=180°,求证:AE=AD+BE 证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE 12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 证明:在BC 上截取BF=BA,连接EF.∠ABE=∠FBE,BE=BE,则⊿ABE ≌ΔFBE(SAS),∠EFB=∠A;AB 平行于CD,则:∠A+∠D=180°;又∠EFB+∠EFC=180°,则∠EFC=∠D;又∠FCE=∠DCE,CE=CE,故⊿FCE ≌ΔDCE(AAS),FC=CD.所以,BC=BF+FC=AB+CD. C D B A B A C D F 2 1 E

全等三角形经典题型50题带答案知识讲解

全等三角形经典题型50题带答案

全等三角形证明经典50题(含答案) 1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 延长AD 到E,使DE=AD, 则三角形ADC 全等于三角形EBD 即BE=AC=2 在三角形ABE 中,AB-BE

证明:连接BF 和EF 。因为 BC=ED,CF=DF,∠BCF=∠EDF 。所以 三角形BCF 全等于三角形EDF(边角边)。所以 BF=EF,∠CBF=∠DEF 。连接BE 。在三角形BEF 中,BF=EF 。所以 ∠EBF=∠BEF 。又因为 ∠ABC=∠AED 。所以 ∠ABE=∠AEB 。所以 AB=AE 。在三角形ABF 和三角形AEF 中, AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。所以 三角形ABF 和三角形AEF 全等。所以 ∠BAF=∠EAF (∠1=∠2)。 4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C C D B A B A C D F 2 1 E

全等三角形经典例题(含答案)

全等三角形证明题精选 一.解答题(共30小题) 1.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF; (2)若AC与BD相交于点O,求证:AO=CO. 2.如图,已知点B,E,C,F在一条直线上,AB=DF,AC=DE,∠A=∠D.(1)求证:AC∥DE; (2)若BF=13,EC=5,求BC的长.

3.如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD. 4.如图,点O是线段AB和线段CD的中点. (1)求证:△AOD≌△BOC; (2)求证:AD∥BC.

5.如图:点C是AE的中点,∠A=∠ECD,AB=CD,求证:∠B=∠D. 6.如图,已知△ABC和△DAE,D是AC上一点,AD=AB,DE∥AB,DE=AC.求证:AE=BC.

7.如图,AB∥CD,E是CD上一点,BE交AD于点F,EF=BF.求证:AF=DF. 8.如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE. 9.如图,点D是AB上一点,DF交AC于点E,DE=FE,FC∥AB 求证:AE=CE.

10.如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.

11.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB. 12.已知△ABN和△ACM位置如图所示,AB=AC,AD=AE,∠1=∠2. (1)求证:BD=CE; (2)求证:∠M=∠N.

(完整版)中考数学必考经典题型

中考数学必考经典题型 题型一 先化简再求值 命题趋势 由河南近几年的中考题型可知,分式的化简求值是每年的考查重点,几乎都以解答题的形式出现,其中以除法和减法形式为主,要求对分式化简的运算法则及分式有意义的条件熟练掌握。 例:先化简,再求值:,1 2)1111( 22+--÷-++x x x x x x 其中.12-=x 分析:原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将x 的值带入计算即可求值。 题型二 阴影部分面积的相关计算 命题趋势 近年来的中考有关阴影面积的题目几乎每年都会考查到,而且不断翻新,精彩纷呈.这类问题往往与变换、函数、相似等知识结合,涉及到转化、整体等数学思想方法,具有很强的综合性。 例 如图17,记抛物线y =-x 2+1的图象与x 正半轴的交点为A ,将线段OA 分成n 等份.设分点分别为P 1,P 2,…,P n -1,过每个分点作x 轴的垂线,分别与抛物线交于点Q 1,Q 2,…,Q n -1,再记直角三角形OP 1Q 1,P 1P 2Q 2,…的面积分别为 S 1,S 2,…,这样就有S 1=2312n n -,S 2=23 4 2n n -…;记W=S 1+S 2+…+S n -1,当n 越来越大时,你猜想W 最接近的常数是( ) (A)23 (B)12 (C)13 (D)14 分析 如图17,抛物线y =-x 2+1的图象与x 正半轴的交点为 A(1,0),与y 轴的交点为8(0,1). 设抛物线与y 轴及x 正半轴所围成的面积为S ,M(x ,y )在图示 抛物线上,则 222OM x y =+

最新全等三角形题型归纳(经典完整)

一,证明边或角相等 方法:证明两条线段相等或角相等,如果这两条线段或角在两个三角形内,就证明这两个三角形全等; 如果这两条线段或角在同一个三角形内,就证明这个三角形是等腰三角形;如果看图时两条线段既不在同一个三角形内,也不在两个全等三角形内,那么就利用辅助线进行等量代换,同样如果角不在同一个三角形内,也不在两个全等三角形内,也是用等量代换(方法是:(1)同角(等角)的余角相等(2) 同角(等角)的补角相等,此类型问题一般不单独作一大题,往往是通过得出角相等后用来证明三角 形全等,而且一般是在双垂直的图形中) 1.已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。求证:BE =CD 。 2.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6. 3.已知:如图△ABC 中,AB=AC ,BD ⊥AC ,CE ⊥AB ,BD 、CE 交于H 。 求证:HB=HC 。 2、如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF . A E D C B 654 32 1E D C B A F G E D C B A F B C A M N E 1234

E D C B A 二.证明线段和差问题 (形如:AB+BC=CD,AB=AD - CD) 证明两条线段和等于另一条线段,常常使用截长补短法。①截长法即为在这三条最长的线段截取一段使它等于较短线段中的一条,然后证明剩下的一段等于另一条较短的线段。②补短法即为在较短的一条线段上延长一段,使它们等于最长的线段,然后证明延长的这一线段等于另一条较短的线段。 证明两条线段差等于另一条线段,只需把差化成和来解决即可。 1.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求 证:AD +BC =AB . 2、如图,已知:△ABC 中,∠BAC =90, AB =AC ,AE 是过A 一直线,且点B 、C 在AE 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E . 求证:BD =DE +CE ; 3、如图,AB ∥CD ,DE 平分∠ADC ,AE 平分∠BAD ,求证:AB=AD - CD P E D C B A

(word完整版)初一数学经典题型解析

初一数学经典题型解析 1、如图,将一个含30°角的三角板的直角顶点放在直尺的一边上,如果∠1=115°, 那么∠2的度数是() A。95°B。85°C。75°D。65° 考点:平行线的性质;三角形的外角性质. 专题:计算题. 分析:根据题画出图形,由直尺的两对边AB与CD平行,利用两直线平 行,同位角相等可得∠1=∠3,由∠1的度数得出∠3的度数,又∠3为三角形 EFG的外角,根据外角性质:三角形的外角等于与它不相邻的两内角之和得到 ∠3=∠E+∠2,把∠3和∠E的度数代入即可求出∠2的度数. 解答:已知:AB∥CD,∠1=115°,∠E=30°, 求:∠2的度数? 解:∵AB∥CD(已知),且∠1=115°, ∴∠3=∠1=115°(两直线平行,同位角相等), 又∠3为△EFG的外角,且∠E=30°, ∴∠3=∠2+∠E, 则∠2=∠3﹣∠E=115°﹣30°=85°. 故选B. 点评:此题考查了平行线的性质,以及三角形的外角性质,利用了转化的数学思想,其中平行线的性质有:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟练掌握性质是解本题的关键. 2、如图,AB∥CD,DE交AB于点F,且CF⊥DE于点F,若∠EFB=125°, 则∠C=35°. 考点:平行线的性质. 专题:计算题 分析:根据对顶角相等,得出∠AFD=∠EFB,由∠EFB的度数求出∠AFD的 度数,再根据垂直的定义得到∠CFD=90°,利用∠AFD﹣∠CFD得出∠AFC的度数,最后由两直线平行内错角相等,即可得到所求的角的度数. 解答: 解:∵∠EFB=125°(已知), ∴∠AFD=∠EFB=125°(对顶角相等), 又∵CF⊥DE(已知), ∴∠CFD=90°(垂直定义), ∴∠AFC=∠AFD﹣∠CFD=125°﹣90°=35°, ∵AB∥CD(已知), ∴∠C=∠AFC=35°(两直线平行内错角相等). 故答案为:35

全等三角形经典题型50题(含答案)

全等三角形证明经典50题(含答案) 1.已知:AB=4 , AC=2 , D 是BC 中点,AD 是整数,求AD 延长AD 至U E,使DE=AD, 则三角形ADC 全等于三角形EBD 即 BE=AC=2 在三角形 ABE 中,AB-BE

形AEF 全等。所以Z BAF=Z EAF ( Z 1= Z 2)。

4.已知:/ 1= / 2, CD=DE , EF//AB,求证:EF=AC 证明:过E点,作EG//AC ,交AD延长线于G则 / DEG=Z DCA / DGE=/2 又;CD=DEU AD3" GDE ( AAS ) ??? EG=ACv EF//AB /-Z DFE=Z 1 v/ 1= / 2:丄 DFE=Z DG E A EF=EG:EF=AC 5.已知:AD 平分Z BAC, AC=AB+BD,求证:Z B=2 / C 证明:在AC上截取AE=AB,连接 ED ?/ AD 平分 Z BACA Z EAD=Z BAD又 ?/ AE=AB , AD=AD :?" AEM" ABD ( SAS) ?:Z AED=ZB , DE=DB ?/ AC=AB+BD AC=AE+CE ?: CE=DE:Z C=Z ED C vZ AED=Z C+Z EDC=2Z C: Z B=2ZC 6.已知:AC平分Z BAD ,CE丄AB, Z B+ Z D=180 °,求证:AE=AD+BE 证明:在AE上取F,使EF = EB,连接CF因为CE丄AB 所以Z CEB=Z CEF= 90 °因 为EB = EF,CE = CE,所以△ CEB^A CEF 所以Z B=Z CFE 因为Z B+Z D= 180 Z CFE+Z CFA= 180 ° 所以Z D=Z CFA 因为AC 平分Z BAD 所以Z DAC=Z FAC 又因 为AC = AC 所以△ ADC^A AFC ( SAS) 所以AD = AF 所以AE = AF + FE = AD + BE 12.如图,四边形ABCD中,AB // DC,BE、CE分别平分Z ABC、Z BCD,且点E在AD 上。求证: BC=AB+DC。 B D A

全等三角形——经典试题汇编 含答案

北京中考/一模之全等三角形试题精编 北京中考 16.已知:如图,点E A C ,,在同一条直线上,AB CD ∥,AB CE AC CD ==,. 求证:BC ED =. 16、△BAC ≌△BCD (SAS ) 所以,BC =ED 海淀一模 15. 如图,AC //FE , 点F 、C 在BD 上,AC=DF , BC=EF . 求证:AB=DE . 15.证明:∵ AC //EF , ∴ ACB DFE ∠=∠. ………………………………………1分 在△ABC 和△DEF 中, ?? ? ??=∠=∠=,,, EF BC DFE ACB DF AC ∴ △ABC ≌△DEF . ………………………………4分 ∴ AB=DE . ……………………5分 东城一模 16. 如图,点B C F E 、、、在同一直线上,12∠=∠,BF EC =,要使ABC ?≌DEF ?, 还需添加的一个条件是 (只需写出一个即可),并加以证明. A B C D E F A B C D E F

16.(本小题满分5分) 解:可添加的条件为:AC DF B E A D =∠=∠∠=∠或或(写出其中一个即可). …1分 证明:∵ BF EC =, ∴ BF CF EC CF -=-. 即 BC EF = . -------2分 在△ABC 和△DEF 中, , 12,,AC DF BC EF =?? ∠=∠??=? ∴ △ABC ≌△DEF . --------5分 西城一模 15.如图,在△ABC 中,AB=CB ,∠ABC=90o,D 为AB 延长线 上一点,点E 在BC 边上,且BE=BD ,连结AE 、DE 、DC . (1) 求证:△ABE ≌△CBD ; (2) 若∠CAE=30o,求∠BCD 的度数. 15.(1)证明:如图1. ∵ ∠ABC=90o,D 为AB 延长线上一点, ∴ ∠A BE=∠CBD=90o . …………………………………………………1分 在△ABE 和△CBD 中, ?? ? ??=∠=∠=,,,BD BE CBD ABE CB AB ∴ △ABE ≌△CBD. …………………… 2分 (2)解:∵ AB=CB ,∠ABC=90o, ∴ ∠CAB =45°. …….…………………… 3分 又∵ ∠CAE=30o, ∴ ∠BAE =15°. ……………………………………………………………4分 ∵ △ABE ≌△CBD , ∴ ∠BCD =∠BAE =15°. ……………………………………………………5分 图1

全等三角形经典培优题型(含答案)

三角形培优练习题 1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD 2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2 3已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 4已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C C D B A B C D E F 2 1 A D B C A B A C D F 2 1 E

5已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 6 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。 7已知:AB=CD ,∠A=∠D ,求证:∠B=∠C 8.P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB

9已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC 10.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB . 11如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B 12如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。 求证:AM 是△ABC 的中线。 F A E D C B P E D C B A D C B A M F E C B A

初中数学最值问题典型例题(含答案分析)

中考数学最值问题总结 考查知识点:1、“两点之间线段最短”,“垂线段最短”,“点关于线对称”,“线段的平移”。 (2、代数计算最值问题 3、二次函数中最值问题) 问题原型:饮马问题 造桥选址问题 (完全平方公式 配方求多项式取值 二次函数顶点) 出题背景变式:角、三角形、菱形、矩形、正方形、梯形、圆、坐标轴、抛物线等。 解题总思路:找点关于线的对称点实现“折”转“直” 几何基本模型: 条件:如下左图,A 、B 是直线l 同旁的两个定点. 问题:在直线l 上确定一点P ,使PA PB +的值最小. 方法:作点A 关于直线l 的对称点A ',连结A B '交l 于 点P ,则PA PB A B '+=的值最小 例1、如图,四边形ABCD 是正方形,△ABE 是等边三 角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM . (1)求证:△AMB ≌△ENB ; (2)①当M 点在何处时,AM+CM 的值最小; ②当M 点在何处时,AM+BM+CM 的值最小,并说明理由; (3)当AM+BM+CM 的最小值为 时,求正方形的边长。 例2、如图13,抛物线y=ax 2+bx +c(a≠0)的顶点为(1,4),交x 轴于A 、B ,交y 轴于D ,其中B 点的坐标为(3,0) (1)求抛物线的解析式 (2)如图14,过点A 的直线与抛物线交于点E ,交y 轴于点F ,其中E 点的横坐标为2,若直线PQ 为抛物线的对称轴,点G 为PQ 上一动点,则x 轴上是否存在一点H ,使D 、G 、F 、H 四点围成的四边形周长最小.若存在,求出这个最小值及G 、H 的坐标;若不存在,请说明理由. (3)如图15,抛物线上是否存在一点T ,过点T 作x 的垂线,垂足为M ,过点M 作直线M N ∥BD ,交线段AD 于点N ,连接MD ,使△DNM ∽△BMD ,若存在,求出点T 的坐标;若不存在,说明理由. A B A ' ′ P l

相关文档
相关文档 最新文档