文档库 最新最全的文档下载
当前位置:文档库 › 恒参信道对信号传输地影响

恒参信道对信号传输地影响

恒参信道对信号传输地影响
恒参信道对信号传输地影响

通信原理仿真实验报告

实验名称:恒参信道对信号传输的影响姓名:

专业:

年级:

学号:

201X年X 月X日

1. 恒参信道对信号传输的影响

信道响应函数为()()|()|j f H f H f e φ-=,输入信号为()()n s n

x t a g t nT =-∑,其中

1,01,()0,s

s t T T g t else ≤

?

,用matlab 画出如下情况时的信道输出信号,()H f 自定义为如下

● 无失真信道,如2()j f H f e π-= ● 幅度失真信道,如sin ()j f

f H f e f

πππ-=

● 相位失真信道,如(1)

(1),2

(),2

j f j f Fs e f H f Fs e f ππ---+?≤??=??>??

一、程序代码

clear all

N=10; %码元个数 Ts=1; %持续时间

Fs=100;dt=1/Fs; %采样频率与间隔

a=randi(N,1,N*Ts/dt); %生成0到10随机均匀分布数组

x=zeros(1,N*Ts/dt); for i=1:length(x)

x(i)=a(ceil(i/Ts*dt)); %生成输入时域信号 end

ft=2048; %fft 点数 Xw=fft(x,ft); %输入信号频域 f=0:Fs/ft:Fs -Fs/ft; %频率离散 %无失真信道

Hw1=exp(-j*f*2*pi); %无失真信道频域 Yw1=Hw1.*Xw; %无失真信道输出频域信号 yt1=ifft(Yw1,ft); %无失真信道输出时域信号 figure(1); subplot(2,1,1);

plot(abs(Hw1));title('无失真信道幅频特性'); axis([1 400 0 1.2]); subplot(2,1,2);

plot(angle(Hw1));title('无失真信道相频特性');

axis([1 100 -5 5]);

figure(2);

subplot(2,1,1);plot(x);title('输入信号');

axis([1 1100 0 12]);

subplot(2,1,2);plot(abs(yt1));title('无失真信道输出信号'); axis([1 1100 0 12]);

%幅度失真信道

Hw2=(sin(f*pi)./(f*pi)).*(exp(-j*f*pi));%幅度失真信道

Yw2=Hw2.*Xw; %幅度失真信道输出频域信号

Yw2(1)=0; %零点添加定义

yt2=ifft(Yw2,ft);

figure(3);

subplot(2,1,1);

plot(abs(Hw2));title('幅度失真信道幅频特性');

axis([1 400 0 1.2]);

subplot(2,1,2);

plot(angle(Hw2));title('幅度失真信道相频特性');

axis([1 100 -5 5]);

figure(4);

subplot(2,1,1);plot(x);title('输入信号');

axis([1 1100 0 12]);

subplot(2,1,2);plot(abs(yt2));title('幅度失真信道输出信号'); axis([1 1100 0 12]);

%相位失真信道

Hw3(1:ft/2)=exp(-j*(pi*f(1:ft/2)-pi));

Hw3(ft/2+1:ft)=exp(-j*(pi*f(ft/2+1:ft)+pi));%相位失真信道Yw3=Hw3.*Xw; %相位失真信道输出信号

yt3=ifft(Yw3,ft);

figure(5);

subplot(2,1,1);

plot(abs(Hw3));title('相位失真信道幅频特性');

axis([1 400 0 1.2]);

subplot(2,1,2);

plot(angle(Hw3));title('相位失真信道相频特性');

axis([1 100 -5 5]);

figure(6);

subplot(2,1,1);plot(x);title('输入信号');

axis([1 1100 0 12]);

subplot(2,1,2);plot(abs(yt3));title('相位失真信道输出信号'); axis([1 1100 0 12]);

二、实验结果与分析

(1)无失真信道—2()j f

H f

e π-=

1、无失真信道的幅频、相频响应

由图知,无失真信道2()j f

H f e

π-=是一个全通网络,增益为1,相位做周

期性变化。由表达式知相位延时应为1s 。

2、无失真信道输入输出

分析:比较输入输出信号可知,该信道对信号的幅度没有影响,只是改变了信号的相位,根据无失真传输条件0()()o i f t Kf t t =-,此信道K=1,01t s =,

符合信道2()j f

H f e

π-=。

(2)幅度失真信道—sin ()j f

f H f e f

πππ-=

1、幅度失真信道幅频、相频响应

由图知,幅度失真信道sin ()j f

f H f e

f

πππ-=

是一个低通网络,相位变化为0~π。由表达式知相位延时应为0.5s 。

2、幅度失真信道输入输出

分析:比较输入输出波形,发现信号幅度失真较为严重,波形更为平滑,说明高频分量(即时域的跳变沿)被低通滤波器滤除,波形平滑也使时域相位延时不易被观察(理论延时0.5s )。

(3)相位失真信道—(1)

(1),2(),2

j f j f Fs e f H f Fs e f ππ---+?≤??=?

?>?? 1、相位失真信道的幅频、相频响应

由图知,相位失真信道是全通网络,幅度增益为1。由表达式知其相位延时为0.5s 。对比相位失真相频特性与幅度失真和无失真相位特性,可知相位失真相频响应有初始相

位π,相位变化为~ππ-,且0~

2s F 初始相位为-π,~2

s s F

F 初始相位为π。由表达式知,信道的有延时0.5s 。

2、相位失真信道的输入输出

分析:输出信号的振幅未发生变化,证明是全通网络,增益为1,信号对初始相位不敏感,但是存在0.5s 的延时,说明信号对相位失真不敏感。

过孔对信号的影响

过孔对信号的影响 过孔对信号的影响一、过孔的寄生电容 过孔本身存在着对地的寄生电容,如果已知过孔在铺地层上的隔离孔直径为D2,过孔焊盘的直径为D1,PCB板的厚度为T,板基材介电常数为ε,则过孔的寄生电容大小近似于:C=1.41εTD1/(D2-D1)过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度。举例来说,对于一块厚度为50Mil的PCB板,如果使用内径为10Mil,焊盘直径为20Mil的过孔,焊盘与地铺铜区的距离为32Mil,则我们可以通过上面的公式近似算出过孔的寄生电容大致是:C=1.41x4.4x0.050x0.020/(0.032-0.020)=0.517pF,这部分电容引起的上升时间变化量为:T10-90=2.2C(Z0/2)=2.2x0.517x(55/2)=31.28ps。从这些数值可以看出,尽管单个过孔的寄生电容引起的上升延变缓的效用不是很明显,但是如果走线中多次使用过孔进行层间的切换,设计者还是要慎重考虑的。 二、过孔的寄生电感 同样,过孔存在寄生电容的同时也存在着寄生电感,在高速数字电路的设计中,过孔的寄生电感带来的危害往往大于寄生电容的影响。它的寄生串联电感会削弱旁路电容的贡献,减弱整个电源系统的滤波效用。我们可以用下面的公式来简单地计算一个过孔近似的寄生电感:L=5.08h[ln(4h/d)+1]其中L指过孔的电感,h是过孔的长度,d是中心钻孔的直径。从式中可以看出,过孔的直径对电感的影响较小,而对电感影响最大的是过孔的长度。仍然采用上面的例子,可以计算出过孔的电感为:L=5.08x0.050[ln(4x0.050/0.010)+1]=1.015nH。如果信号的上升时间是1ns,那么其等效阻抗大小为:XL=πL/T10-90=3.19Ω。这样的阻抗在有高频电流的通过已经不能够被忽略,特别要注意,旁路电容在连接电源层和地层的时候需要通过两个过孔,这样过孔的寄生电感就会成倍增加。 三、高速PCB中的过孔设计 通过上面对过孔寄生特性的分析,我们可以看到,在高速PCB设计中,看似简单的过孔往往也会给电路的设计带来很大的负面效应。为了减小过孔的寄生效应带来的不利影响,

无线信道传播特性分析总结

无线信道传播特性分析总结 班级学号姓名 随着科学技术的发展,无线通信已经渗透到我们生活的各个方面,对我们的生活工作有着巨大的影响。在无线通信系统中,无线通信的信道的特性对整个系统有着巨大的影响。 1、无线信道的概念 要想搞明白无线信道具有哪些特性,就要先了解什么是无线信道。信道是对无线通信中发送端和接收端之间的通路的一种形象比喻,对于无线电波而言,它从发送端传送到接收端,其间并没有一个有形的连接,它的传播路径也有可能不只一条,但是我们为了形象地描述发送端与接收端之间的工作,我们想象两者之间有一个看不见的道路衔接,把这条衔接通路称为信道。信道具有一定的频率带宽,正如公路有一定的宽度一样。 与其它通信信道相比,无线信道是最为复杂的一种,其衰落特性取决于无线电波传播环境。不同的环境,其传播特性也不尽相同。无线信道可能是很简单的直线传播,也可能会被许多不同的因素所干扰,例如:信号经过建筑物,山丘,或者树木所有反射而产生的多径效应,使信号放大或衰落。在无线信道中,信号衰落是经常发生的,衰落深度可达30。对于数字传输来说,衰落使比特误码率大大增加。这种衰落现象严重恶化接收信号的质量,影响通信可靠性。移动信道与非移动点对点无线信道相比,信号传输的误比特率前者比后者高106倍。 另外,在陆地移动系统中,移动台处于城市建筑群之中或处于地形复杂的区域,其天线将接收从多条路径传来的信号,再加移动台本身的运动,使得信号产生多普勒效应,并且信道的特性也随时间变化而变化,增加了信号的不确定性,使得移动台和基站之间的无线信道多变且难以控制。所以,与传统模型相比,无线信道多径数目增多,时延扩展加大,衰落加快。 2、无线信道的特性 信号从发射天线到接收天线的传输过程中,会经历各种复杂的传播路径,包括直射路径、反射路径、衍射路径、散射路径以及这些路径的随机组合。同时,电波在各条路径的传播过程中,有用信号会受到各种噪声的污染,包括加性噪声

信道是指以传输媒质为基础的信号通道11页

第4章信道 信道是指以传输媒质为基础的信号通道,是将信号从发送端传送到接收端的通道。 如果信道仅是指信号的传输媒质,这种信道称为狭义信道。如果信道不仅是传输媒质,而且包括通信系统中的一些转换装置,这些装置可以是发送设备、接收设备、馈线与天线、调制器、解调器等。这种信道称为广义信道。 无线信道利用电磁波在空间的传播来传播信号;有线信道利用导线、波导、光纤等媒质来传播信号。常把广义信道简称为信道。 4.1 无线信道 信道是对无线通信中发送端和接收端之间通路的一种形象比喻。 对于无线电波而言,它从发送端传送到接收端,其间并没有一个有形的连接,它的传播路径也有可能不只一条,但是我们为了形象地描述发送端与接收端之间的工作,想象两者之间有一个看不见的道路衔接,把这条衔接通路称为信道。 信道具有一定的频率带宽,正如公路有一定的宽度一样。 电磁波传播主要分为地波、天波和视线传播三种。 地波:频率在2MHz以下,电磁波沿大地与空气的分界面传播。传播时无线电波可随地球表面的弯曲而改变传播方向。在传播途中的衰减大致与距离成正比。地波的传播比较稳定,不受昼夜变化的影响,所以长波、中波和中短波可用来进行无线电广播。 根据波的衍射特性,当波长大于或相当于障碍物的尺寸时,波才能明显地绕到障碍物的后面。地面上的障碍物一般不太大,长波可以很好地绕过它们。中波和中短波也能较好地绕过,短波和微波由于波长过短,绕过障碍物的本领很差。 由于地波在传播过程中要不断损失能量,而且频率越高,损失越大,因此中波和中短波的传播距离不大,一般在几百千米范围内,收音机在这两个波段一般只能收听到本地或邻近省市的电台。长波沿地面传播的距离要远得多,但发射长波的设备庞大,造价高,所以长波很少用于无线电广播,多用于超远程无线电通信和导航等。 天波:天波是靠电磁波在地面和电离层之间来回反射而传播的,频率范围在 2~30MHz。天波是短波的主要传播途径。短波信号由天线发出后,经电离层反射回地

过孔与电流的关系

1、10mil的孔20mil的pad对应20mil的线过0.5A电流,20mil的孔40mil的焊盘对应40mil的线过1A电流,0.5oz。 2、过孔电感的计算公式为: L=5.08h[ln(4h/d)+1] L:通孔的电感 h:通孔的长度 d:通孔的直径 其实孔的大小对其感抗影响不是很大,倒是它的长度影响大些, 感抗大,其上面的压降就大些。 对于电流,应该与它的载流截面积有关,截面积越大,载流能力越大。孔越大,截面积越大,孔壁铜层越厚,截面积越大。 3、1,金属化过孔镀层厚度只有20几到几微米,经不起大电流!因此电源线、地线、有大电流的线非得通过过孔到另一面时可在此处多加几个过孔,或通过一个穿过两面的原件。2,脚较粗且多的器件如CD 型插座,应尽可能少从原件面出线。如非出不可有条件可在器件脚边加一过孔。固为多个插脚同时插下时容易破坏孔中的金属化镀层。 4、过孔的直径至少应为线宽的1/3 5、在走线的Via孔附近加接地Via 孔的作用及原理是什么?

答:pcb板的过孔,按其作用分类,可以分为以下几种: 1、信号过孔(过孔结构要求对信号影响最小) 2、电源、地过孔(过孔结构要求过孔的分布电感最小) 3、散热过孔(过孔结构要求过孔的热阻最小) 上面所说的过孔属于接地类型的过孔,在走线的Via孔附近加接地Via孔的作用是给信号提供一个最短的回流路径。注意:信号在换层的过孔,就是一个阻抗的不连续点,信号的回流路径将从这里断开,为了减小信号的回流路径所包围的面积,必须在信号过孔的周围打一些地过孔提供最短的信号回流路径,减小信号的emi 辐射。这种辐射随之信号频率的提高而明显增加。 请问在哪些情况下应该多打地孔?有一种说法:多打地孔,会破坏地层的连续和完整。效果反而适得其反。 答:首先,如果多打过孔,造成了电源层、地层的连续和完整,这种情况使用坚决避免的。这些过孔将影响到电源完整性,从而导致信号完整性问题,危害很大。打地孔,通常发生在如下的三种情况: 1、打地孔用于散热; 2、打地孔用于连接多层板的地层; 3、打地孔用于高速信号的换层的过孔的位置; 但所有的这些情况,应该是在保证电源完整性的情况下进行的。那就是说,只要控制好地孔的间隔,多打地孔是允许的吗?在五分之一的波长为间隔打地孔没有问题吗? 假如我为了保证多层板的地的连接,多打地孔,虽然没有隔断,那会

过孔基础知识与差分过孔设计

过孔基础知识与差分过孔设计 导读:在一个高速印刷电路板 (PCB) 中,通孔在降低信号完整性性能方面一直饱受诟病。然而,过孔的使用是不可避免的。幸运的是,可设计出一种透明的过孔来最大限度地减少对性能的影响。 在一个高速印刷电路板 (PCB) 中,通孔在降低信号完整性性能方面一直饱受诟病。然而,过孔的使用是不可避免的。在标准的电路板上,元器件被放置在顶层,而差分对的走线在内层。内层的电磁辐射和对与对之间的串扰较低。必须使用过孔将电路板平面上的组件与内层相连。幸运的是,可设计出一种透明的过孔来最大限度地减少对性能的影响。 1. 过孔结构的基础知识 让我们从检查简单过孔中将顶部传输线与内层相连的元件开始。图1是显示过孔结构的3D图。有四个基本元件:信号过孔、过孔残桩、过孔焊盘和隔离盘。 过孔是镀在电路板顶层与底层之间的通孔外的金属圆柱体。信号过孔连接不同层上的传输线。过孔残桩是过孔上未使用的部分。过孔焊盘是圆环状垫片,它们将过孔连接至顶部或内部传输线。隔离盘是每个电源或接地层内的环形空隙,以防止到电源和接地层的短路。 图1:单个过孔的3D图 2. 过孔元件的电气属性 如表格1所示,我们来仔细看一看每个过孔元件的电气属性。

表1:图1中显示的过孔元件的电气属性 一个简单过孔是一系列的π型网络,它由两个相邻层内构成的电容-电感-电容 (C-L-C) 元件组成。表格2显示的是过孔尺寸的影响。 表2:过孔尺寸的直观影响

通过平衡电感与寄生电容的大小,可以设计出与传输线具有相同特性阻抗的过孔,从而变得不会对电路板运行产生特别的影响。还没有简单的公式可以在过孔尺寸与C和L元件之间进行转换。3D电磁 (EM) 场解算程序可以根据PCB布局布线中使用的尺寸来预测结构阻抗。通过重复调整结构尺寸和运行3D仿真,可优化过孔尺寸,来实现所需阻抗和带宽要求。 3. 设计一个透明的差分过孔 在实现差分对时,线路A与线路B之间必须高度对称。这些对在同一层内走线,如果需要一个过孔,必须在两条线路的临近位置上打孔。由于差分对的两个过孔距离很近,两个过孔共用的一个椭圆形隔离盘能够减少寄生电容,而不是使用两个单独的隔离盘。接地过孔也被放置在每个过孔的旁边,这样的话,它们就能够为A和B过孔提供接地返回路径。 图2显示的是一个地-信号-信号-地 (GSSG) 差分过孔结构示例。两个相邻过孔间的距离被称为过孔间距。过孔间距越小,互耦合电容越多。 图2:使用背面钻孔的GSSG差分过孔 不要忘记,在传输速率超过10Gbps时,过孔残桩会严重影响高速信号完整性。幸运的是,有一种背面钻孔PCB制造工艺,此工艺可以在未使用的过孔圆柱上钻孔。根据制造工艺公差的不同,背面钻孔去除了未使用的过孔金属,并最大限度地将过孔残桩减少到10mil以下。 3D EM仿真器用来根据所需的阻抗和带宽来设计差分过孔。这是一个反复的过程。此过程重复地调整过孔尺寸,并运行EM仿真,直到实现所需的阻抗和带宽。 4. 如何验证性能 图2中显示的差分过孔设计已构建完毕并经测试。测试样片包括顶层的一对差分线,之后是到内部差分线的差分过孔,然后第二对差分过孔再次连接至顶层的球状引脚栅格阵列封装 (BGA) 接地焊盘。信号路径的总长度大约为1330mil。我用差分时域反射仪 (TDR) 测得其差分阻抗,用网络分析仪测得了带宽,并用高速示波器测量了数据眼图来了解其对信号的影响。图3,4,5分别显示了阻抗、带宽和眼图。左图是使用背面钻孔时的测试结果,而右图是无背面钻孔的测试结果。在图5中的带宽波特图中,我们可以很清楚地看到背面钻孔对于在数据速率大于10Gbps 的情况下实现高性能是必不可少的。

信道特性

恒参信道: 有线电信道(明线,同轴电缆,双绞线电缆),光纤信道,无线电视距中继,卫星中继信道。 ? 由于恒参信道对信号传输的影响是固定不变的或者是变化极为缓慢的,因而可以等效为一个非时变的线性网络。 从理论上讲,只要得到这个网络的传输特性,则利用信号通过线性系统的分析方法, 就可求得已调信号通过恒参信道后的变化规律。 网络的相位-频率特性还经常采用群迟延-频率特性 来衡量,要满足不失真传输条件,等同于要求群迟延-频率特性应是一条水平直线. 随参信道: 短波电离层反射信道,超速波及微波对流层散射信道,超短波电离层散射信道,超短波超视距绕射信道。 属于随参的传输媒质主要以电离层反射、对流层散射等为代表。 ? 随参信道的特性比恒参信道要复杂得多,其根本原因在于它包含一个复杂的传输媒质。 ? 虽然,随参信道中包含着除媒质外的其它转换 器,但是,从对信号传输影响来看,传输媒质的影响是主要的,转换器特性的影响可以忽略不计。在此,仅讨论随参信道的传输媒质所具有的一般特性以及它对信号传输的影响。 随参信道图: 共同特点是:1.对信号的损耗随时间变化而变化,2,传输时延随时间变化而变化,3由发射点出发的电波可能经多条路径到达接收点,也就是所谓的多径传播。 多径传播后的接收信号将是衰减和时延随时间变化的各路径信号的合成。 —— 由第i 条路径的随机相位; ————由第i 条路径到达的接收信号振幅 _______ 由第i 条路径达到的信号的时延; 都是随机变化的 (1) 从波形上看,多径传播的结果使确定的载频信号变成了包络和相位都随机变化的窄带信号,这种信号称为衰落信号; (2)从频谱上看,多径传播引起了频率弥散(色散),即由单个频率变成了一个窄带频谱。 通常将由于电离层浓度变化等因素所引起的信号衰落称为慢衰落;而把由于多径效应引起的信号衰落称为快衰落。 ) ()(0t t i i τω?-=)(t i μ)(t i τ) (),(),(t t t i i i ?τμω ω?ω τd d )()(=

PCB过孔对信号传输的影响

PCB过孔对信号传输的影响 -----Maxconn整理 https://www.wendangku.net/doc/d639645.html,/blog/maxconn/3796/message.aspx 一.过孔的基本概念 过孔(via)是多层PCB的重要组成部分之一,钻孔的费用通常占PCB制板费用的30%到40%。简单的说来,PCB上的每一个孔都可以称之为过孔。从作用上看,过孔可以分成两类:一是用作各层间的电气连接;二是用作器件的固定或定位。如果从工艺制程上来说,这些过孔一般又分为三类,即盲孔(blind via)、埋孔(buried via)和通孔(through via)。盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的连接,孔的深度通常不超过一定的比率(孔径)。埋孔是指位于印刷线路板内层的连接孔,它不会延伸到线路板的表面。上述两类孔都位于线路板的内层,层压前利用通孔成型工艺完成,在过孔形成过程中可能还会重叠做好几个内层。第三种称为通孔,这种孔穿过整个线路板,可用于实现内部互连或作为元件的安装定位孔。由于通孔在工艺上更易于实现,成本较低,所以绝大部分印刷电路板均使用它,而不用另外两种过孔。以下所说的过孔,没有特殊说明的,均作为通孔考虑。 从设计的角度来看,一个过孔主要由两个部分组成,一是中间的钻孔(drill hole),二是钻孔周围的焊盘区。这两部分的尺寸大小决定了过孔的大小。很显然,在高速,高密度的PCB设计时,设计者总是希望过孔越小越好,这样板上可以留有更多的布线空间,此外,过孔越小,其自身的寄生电容也越小,更适合用于高速电路。但孔尺寸的减小同时带来了成本的增加,而且过孔的尺寸不可能无限制的减小,它受到钻孔(drill)和电镀(plating)等工艺技术的限制:孔越小,钻孔需花费的时间越长,也越容易偏离中心位置;且当孔的深度超过钻孔直径的6倍时,就无法保证孔壁能均匀镀铜。比如,如果一块正常的6层PCB板的厚度(通孔深度)为50Mil,那么,一般条件下PCB厂家能提供的钻孔直径最小只能达到8Mil。随着激光钻孔技术的发展,钻孔的尺寸也可以越来越小,一般直径小于等于6Mils的过孔,我们就称为微孔。在HDI(高密度互连结构)设计中经常使用到微孔,微孔技术可以允许过孔直接打在焊盘上(Via-in-pad),这大大提高了电路性能,节约了布线空间。 过孔在传输线上表现为阻抗不连续的断点,会造成信号的反射。一般过孔的等效阻抗比传输线低12%左右,比如50欧姆的传输线在经过过孔时阻抗会减小6欧姆(具体和过孔的尺寸,板厚也有关,不是绝对减小)。但过孔因为阻抗不连续而造成的反射其实是微乎其微的,其反射系数仅为:(44-50)/(44+50)=0.06,过孔产生的问题更多的集中于寄生电容和电感的影响。 二、过孔的寄生电容和电感 过孔本身存在着寄生的杂散电容,如果已知过孔在铺地层上的阻焊区直径为D2,过孔焊盘的直径为D1,PCB板的厚度为T,板基材介电常数为ε,则过孔的寄生电容大小近似于: C="1".41εTD1/(D2-D1) 过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度。举例来说,对于一块厚度为50Mil的PCB板,如果使用的过孔焊盘直径为20Mil(钻孔直径为10Mils),阻焊区直径为40Mil,则我们可以通过上面的公式近似算出过孔的寄生电容大致是: C="1".41x4.4x0.050x0.020/(0.040-0.020)=0.31pF

过孔对信号传输的影响

过孔对信号传输的影响 一.过孔的基本概念 过孔(via)是多层PCB的重要组成部分之一,钻孔的费用通常占PCB制板费用的30%到40%。简单的说来,PCB上的每一个孔都可以称之为过孔。从作用上看,过孔可以分成两类:一是用作各层间的电气连接;二是用作器件的固定或定位。如果从工艺制程上来说,这些过孔一般又分为三类,即盲孔(blind via)、埋孔(buried via)和通孔(through via)。盲孔位于印刷线路板的顶层和底层表面,具有一定深度,用于表层线路和下面的内层线路的连接,孔的深度通常不超过一定的比率(孔径)。埋孔是指位于印刷线路板内层的连接孔,它不会延伸到线路板的表面。上述两类孔都位于线路板的内层,层压前利用通孔成型工艺完成,在过孔形成过程中可能还会重叠做好几个内层。第三种称为通孔,这种孔穿过整个线路板,可用于实现内部互连或作为元件的安装定位孔。由于通孔在工艺上更易于实现,成本较低,所以绝大部分印刷电路板均使用它,而不用另外两种过孔。以下所说的过孔,没有特殊说明的,均作为通孔考虑。 从设计的角度来看,一个过孔主要由两个部分组成,一是中间的钻孔(drill hole),二是钻孔周围的焊盘区。这两部分的尺寸大小决定了过孔的大小。很显然,在高速,高密度的PCB设计时,设计者总是希望过孔越小越好,这样板上可以留有更多的布线空间,此外,过孔越小,其自身的寄生电容也越小,更适合用于高速电路。但孔尺寸的减小同时带来了成本的增加,而且过孔的尺寸不可能无限制的减小,它受到钻孔(drill)和电镀(plating)等工艺技术的限制:孔越小,钻孔需花费的时间越长,也越容易偏离中心位置;且当孔的深度超过钻孔直径的6倍时,就无法保证孔壁能均匀镀铜。比如,如果一块正常的6层PCB板的厚度(通孔深度)为50Mil,那么,一般条件下PCB厂家能提供的钻孔直径最小只能达到8Mil。随着激光钻孔技术的发展,钻孔的尺寸也可以越来越小,一般直径小于等于6Mils的过孔,我们就称为微孔。在HDI(高密度互连结构)设计中经常使用到微孔,微孔技术可以允许过孔直接打在焊盘上(Via-in-pad),这大大提高了电路性能,节约了布线空间。 过孔在传输线上表现为阻抗不连续的断点,会造成信号的反射。一般过孔的等效阻抗比传输线低12%左右,比如50欧姆的传输线在经过过孔时阻抗会减小6欧姆(具体和过孔的尺寸,板厚也有关,不是绝对减小)。但过孔因为阻抗不连续而造成的反射其实是微乎其微的,其反射系数仅为:(44-50)/(44+50)=0.06,过孔产生的问题更多的集中于寄生电容和电感的影响。 二、过孔的寄生电容和电感 过孔本身存在着寄生的杂散电容,如果已知过孔在铺地层上的阻焊区直径为D2,过孔焊盘的直径为D1,PCB板的厚度为T,板基材介电常数为ε,则过孔的寄生电容大小近似于:C=1.41εTD1/(D2-D1) 过孔的寄生电容会给电路造成的主要影响是延长了信号的上升时间,降低了电路的速度。举例来说,对于一块厚度为50Mil的PCB板,如果使用的过孔焊盘直径为20Mil(钻孔直径为10Mils),阻焊区直径为40Mil,则我们可以通过上面的公式近似算出过孔的寄生电容大致是: C=1.41x4.4x0.050x0.020/(0.040-0.020)=0.31pF 这部分电容引起的上升时间变化量大致为: T10-90=2.2C(Z0/2)=2.2x0.31x(50/2)=17.05ps 从这些数值可以看出,尽管单个过孔的寄生电容引起的上升延变缓的效用不是很明显,但是如果走线中多次使用过孔进行层间的切换,就会用到多个过孔,设计时就要慎重考虑。实际设计中可以通过增大过孔和铺铜区的距离(Anti-pad)或者减小焊盘的直径来减小寄生电容。 过孔存在寄生电容的同时也存在着寄生电感,在高速数字电路的设计中,过孔的寄生电感带来的危害往往大于寄生电容的影响。它的寄生串联电感会削弱旁路电容的贡献,减弱整个电源系统的滤波效用。我们可以用下面的经验公式来简单地计算一个过孔近似的寄生电感: L=5.08h[ln(4h/d)+1]

无线信道传播特性分析总结

无线信道传播特性分析总结 姓名随着科学技术的发展,无线通信已经渗透到我们生活的各个方面,对我们的生活工作有着巨大的影响。在无线通信系统中,无线通信的信道的特性对整个系统有着巨大的影响。 1、无线信道的概念要想搞明白无线信道具有哪些特性,就要先了解什么是无线信道。信道是对无线通信中发送端和接收端之间的通路的一种形象比喻,对于无线电波而言,它从发送端传送到接收端,其间并没有一个有形的连接,它的传播路径也有可能不只一条,但是我们为了形象地描述发送端与接收端之间的工作,我们想象两者之间有一个看不见的道路衔接,把这条衔接通路称为信道。信道具有一定的频率带宽,正如公路有一定的宽度一样。与其它通信信道相比,无线信道是最为复杂的一种,其衰落特性取决于无线电波传播环境。不同的环境,其传播特性也不尽相同。无线信道可能是很简单的直线传播,也可能会被许多不同的因素所干扰,例如:信号经过建筑物,山丘,或者树木所有反射而产生的多径效应,使信号放大或衰落。在无线信道中,信号衰落是经常发生的,衰落深度可达30 ?B。对于数字传输来说,衰落使比特误码率大大增加。这种衰落现象严重恶化接收信号的质量,影响通信可靠性。移动信道与非移动点对点无线信道相比,信号传输的误比特率前者比后者高106倍。另外,在陆地移动系统中,移动台处于城市建筑群之中或处于地形复杂的区域,其天线将接收从多条路径

传来的信号,再加移动台本身的运动,使得信号产生多普勒效应,并且信道的特性也随时间变化而变化,增加了信号的不确定性,使得移动台和基站之间的无线信道多变且难以控制。所以,与传统模型相比,无线信道多径数目增多,时延扩展加大,衰落加快。 2、无线信道的特性信号从发射天线到接收天线的传输过程中,会经历各种复杂的传播路径,包括直射路径、反射路径、衍射路径、散射路径以及这些路径的随机组合。同时,电波在各条路径的传播过程中,有用信号会受到各种噪声的污染,包括加性噪声(如高斯白噪声)、乘性噪声的污染,因而会出现不同情形的损伤,严重时,会使有用信号难以恢复。无线信号在传播时,不仅存在自由空间固有的传输损耗,还会受到由于建筑物、地形等的阻挡而引起信号功率的衰减,这种衰减还会由于移动台的运动和信道环境的改变出现随机的变化。下面将对无线信道的一些特性来进行分析。 2、1 大尺度衰落通常情况下,当接收机和发射机之间的相对位置在1-lOm的范围内变化时,接收信号功率的平均值基本保持不变。但当它们的相对位置的改变远超过上述范围时,接收信号的平均功率将会有几个数量级的变化。大尺度衰落正是用来描述接收机和发射机之间的距离有大尺度变化时,接收信号平均功率值的变化规律。在自由空间传播条件下,接收机接收的平均功率Pr可由下式给出:

信号在PCB走线中传输时延

信号在PCB走线中传输时延 摘要:信号在媒质中传播时,其传播速度受信号载体以及周围媒质属性决定。在PCB(印刷电路板)中信号的传输速度就与板材DK(介电常数),信号模式,信号线与信号线间耦合以及绕线方式等有关。随着PCB走线信号速率越来越高,对时序要求较高的源同步信号的时序裕量越来越少,因此在PCB设计阶段准确知道PCB走线对信号时延的影响变的尤为重要。本文基于仿真分析DK,串扰,过孔,蛇形绕线等因素对信号时延的影响。 关键词:传输时延, 有效介电常数,串扰DDR 奇偶模式 1.引言 信号要能正常工作都必须满足一定的时序要求,随着信号速率升高,数字信号的发展经历了从共同步时钟到源同步时钟以及串行(serdes)信号。在当今的消费类电子,通信服务器等行业,源同步和串行信号占据了很大的比重。串行信号比如常见PCIE,SAS,SATA,QPI,SFP+,XUAI,10GBASE-KR等信号,源同步信号比如DDR信号。 串行信号在发送端将数据信号和时钟(CLK)信号通过编码方式一起发送,在接收端通过时钟数据恢复(CDR)得到数据信号和时钟信号。由于时钟数据在同一个通道传播,串行信号对和对之间在PCB上传输延时要求较低,主要依靠锁相环(PLL)和芯片的时钟数据恢复功能。 源同步时钟主要是DDR信号,在DDR设计中,DQ(数据)信号参考DQS(数据选通)信号,CMD(命令)信号和CTL(控制)信号参考CLK(时钟)信号,由于DQ的速率是CMD&CTL信号速率2倍,所以DQ 信号和DQS信号之间的传输延时要求比CMD&CTL和CLK之间的要求更高。目前市场上主流的为DDR1/ DDR2/ DDR3。DDR4预计在2015年将成为消费类电子的主要设计,随着DDR信号速率的不断提高,在DDR4设计中特别是DQ和DQS之间传输时延对设计者提出更高的挑战。 在PCB设计的时候为了时序的要求需要对源同步信号做一些等长,一些设计工程师忽略了这个信号等长其实是一个时延等长,或者说是一个‘时间等长’。 2.传输时延简介 Time delay又叫时延(TD),通常是指电磁信号或者光信号通过整个传输介质所用的时间。在传输线上的时延就是指信号通过整个传输线所用的时间。 Propagation delay又叫传播延迟(PD),通常是指电磁信号或者光信号在单位长度的传输介质中传输的时间延迟,与“传播速度”成反比例(倒数)关系,单位为“Ps/inch”或“s/m”。

差分对:与过孔有关的四件事

差分对:与过孔有关的四件事 在一个高速印刷电路板(P C B)中,通孔在降低信号完整性性能方面一直饱受诟病。然而,过孔的使用是不可避免的。在标准的电路板上,元器件被放置在顶层,而差分对的走线在内层。内层的电磁辐射和对与对之间的串扰较低。必须使用过孔将电路板平面上的组件与内层相连。 幸运的是,可设计出一种透明的过孔来最大限度地减少对性能的影响。在这篇博客中,我将讨论以下内容: 1.过孔的基本元件 2.过孔的电气属性 3.一个构建透明过孔的方法 4.差分过孔结构的测试结果 1.过孔结构的基础知识 让我们从检查简单过孔中将顶部传输线与内层相连的元件开始。图1是显示过孔结构的3D图。有四个基本元件:信号过孔、过孔残桩、过孔焊盘和隔离盘。 过孔是镀在电路板顶层与底层之间的通孔外的金属圆柱体。信号过孔连接不同层上的传输线。过孔残桩是过孔上未使用的部分。过孔焊盘是圆环状垫片,它们将过孔连接至顶部或内部传输线。隔离盘是每个电源或接地层内的环形空隙,以防止到电源和接地层的短路。 图1:单个过孔的3D图

2.过孔元件的电气属性 如表格1所示,我们来仔细看一看每个过孔元件的电气属性。 层过孔元件电气属性 层1(顶层)过孔焊盘过孔焊盘在焊盘和下方的接地层之间引入 寄生电容。 1-2层(过孔)信号过孔过孔是一个电感器。 层2(平面层)隔离盘隔离盘在金属圆柱表面和附近的过孔周围 接地层之间产生边缘电容。 2-3层(过孔)信号过孔电感。 层3(信号)过孔焊盘焊盘与其上下的接地层之间的寄生电容。3-4层(过孔)过孔残桩过孔的未使用部分形成电容短截线效应。层4(平面层)隔离盘电容。 4-5层(过孔)过孔残桩过孔的未使用部分形成电容短截线效应。层5(底层)过孔焊盘电容。 表1:图1中显示的过孔元件的电气属性 一个简单过孔是一系列的π型网络,它由两个相邻层内构成的电容-电感-电容(C-L-C)元件组成。表格2显示的是过孔尺寸的影响。 相关尺寸电气属性对电容阻抗(Z o)的影 响 过孔焊盘小焊盘直径C↓Z o↑ 过孔大小小孔直径L↑Z o↑ 隔离盘大隔离盘直径C↓Z o↑ 过孔长度更长的过孔长度L↑Z o↑ 电源/接地层更多平面层C↑Z o↓ 过孔残桩更长的过孔残桩C↑Z o↓ 过孔间距更小的过孔间距C↑Z o↓ 表2:过孔尺寸的直观影响 通过平衡电感与寄生电容的大小,可以设计出与传输线具有相同特性阻抗的过孔,从而变得不会对电路板运行产生特别的影响。还没有简单的公式可以在过孔尺寸与C和L元件之间进行转换。3D电磁(E M)场解

信道习题讲解

1信号分别通过图所示的两个电路,试讨论输出信号有没有群迟延畸变? 2设某恒参信道的传递函数d t j e k H ωω?=0)(,0K 和d t 都是常数。试确定信号s(t)通过该信 道后的输出信号的时域表达式,并讨论信号有无失真? 3某恒参信道的传输函数为d t j e T H ωωω?+=)cos 1()(0,其中,和为常数,试确定信号通过后的输出信号表示式,并讨论有无失真。 4假设某随参信道的二径时延差τ为1ms ,试问在该信道哪些频率上传输衰耗最大?选用哪 些频率传输信号最有利(即增益最大,衰耗最小)? 5已知高斯信道的带宽为4kHz ,信号与噪声的功率比为63,试确定这种理想通信系统的极 限传输速率。 6已知有线电话信道的传输带宽为3.4KHz : (1)试求信道输出信噪比为30dB 时的信道容量; (2)若要求在该信道中传输33.6kb/s 的数据,试求接收端要求的最小信噪比为多少? 7具有6.5MHz 带宽的某高斯信道,若信道中信号功率与噪声功率谱密度之比为45.5MHz , 试求其信道容量。 8某待传输图片有6 1025.2×个像素,每个像素有12个亮度电平,各电平独立地以等概率 出现;试计算用3分钟传送该图片所需的信道带宽(设要求接收图像信噪比达到30dB )。 9计算机终端通过电话信道传输数据,电话信道带宽为3.2kHz ,信道信噪比为30dB,终端采 用N=256进制,且各符号相互独立等概出现,求:信道容量?无误码传输的最高符号速率? 10假设在一个信道中,采用二进制传输数据,码元传输速率为2000B ,信道带宽为4000Hz , 设信道输出信噪比为S/N≥31,试分析该系统能否实现数据传输(估计系统潜力)? 11已知某信道无差错传输的最大信息速率为max b R ,信道的带宽为2/max b R B =,设信道中 的噪声为高斯噪声,单边功率谱密度为0n ,试求此时系统中信号的平均功率。 12已知电话信道的带宽为3.4kHz ,试求: (1)接收端信噪比为30db 时的信道容量; (2)若要求信道能传输4800b/s 的数据,则接收端要求的最小信噪比为多少? 13黑白电视图像每幅含有5103×个像素,每个像素有16个等概率出现的亮度等级。要求每 秒钟传送30帧图像。若信号输出S/N=30db ,计算传输该黑白电视图像所要求的信道的最小 带宽。 14设某恒参信道为如图示意的线性二端网络。试求它的传输函数)(ωH ,并说明信号通过该信道时会产生哪些失真。

无线传输信道的特性

通信工程专业研究方法论无线传输信道的特性 学院:电子信息工程学院 专业:通信工程 班级: 学号: 学生: 指导教师:毕红军 2014年8月

目录 一、引言: (2) 二、无线电波传播频段及途径 (3) 2.1无线电波频段划分 (3) 2.2无线电波的极化方式 (4) 2.3传播途径 (4) 三、无线信号的传播方式 (5) 3.1直线传播及自由空间损耗 (5) 3.2 反射和透射 (6) 3.2.1斯涅尔(Snell)定律 (6) d 功率定律 (7) 3.2.2 4 3.2.3断点模型 (8) 3.3绕射 (9) 3.3.1单屏或楔形绕射 (9) 3.3.2多屏绕射 (10) 3.4散射 (12) 四、窄带信道的统计描述 (14) 4.1不含主导分量的小尺度衰落 (14) 4.2含主导分量的小尺度衰落 (16) 4.3多普勒谱 (16) 4.4大尺度衰落 (17) 五、宽带信道的特性 (18)

5.1多径效应对宽带信道的影响 (18) 5.2多普勒频移对宽带信道的影响 (21) 六、总结 (22) 七、参考文献 (23) 一、引言: 各类无线信号从发射端发送出去以后,在到达接收端之前经历的所有路径统称为信道。如果传输的无线信号,则电磁波所经历的路径,我们称之为无线信道。信号从发射天线到接收天线的传输过程中,会经历各种复杂的传播路径,包括直射路径、反射路径、衍射路径、散射路径以及这些路径的随机结合。同时,电波在各种路径的传播过程中,有用信号会受到各种噪声的污染,因而会出现不同情形的损伤,严重时会使信号难以恢复。无线信号在传播时,不仅存在自由空间固有的传输损耗,还会受到建筑物、地形等的阻挡而引起信号功率的衰减和相位的失真,这种衰减还会由于移动台的运动和信道环境的改变出现随机的变化。下面将讨论无线传输信道的主要特性。 二、无线电波传播频段及途径 2.1无线电波频段划分

差分对与PCB过孔的关系

差分对:你需要了解的与过孔有关的四件事 在一个高速印刷电路板(PCB)中,通孔在降低信号完整性性能方面一直饱受诟病。然而,过孔的使用是不可避免的。在标准的电路板上,元器件被放置在顶层,而差分对的走线在内层。内层的电磁辐射和对与对之间的串扰较低。必须使用过孔将电路板平面上的组件与内层相连。 幸运的是,可设计出一种透明的过孔来最大限度地减少对性能的影响。 1. 过孔结构的基础知识 让我们从检查简单过孔中将顶部传输线与内层相连的元件开始。图1是显示过孔结构的3D图。有四个基本元件:信号过孔、过孔残桩、过孔焊盘和隔离盘。 过孔是镀在电路板顶层与底层之间的通孔外的金属圆柱体。信号过孔连接不同层上的传输线。过孔残桩是过孔上未使用的部分。过孔焊盘是圆环状垫片,它们将过孔连接至顶部或内部传输线。隔离盘是每个电源或接地层内的环形空隙,以防止到电源和接地层的短路。 图1:单个过孔的3D图 2. 过孔元件的电气属性 如表格1所示,我们来仔细看一看每个过孔元件的电气属性。

表1:图1中显示的过孔元件的电气属性 一个简单过孔是一系列的π型网络,它由两个相邻层内构成的电容-电感-电容(C-L-C)元件组成。表格2显示的是过孔尺寸的影响。 表2:过孔尺寸的直观影响 通过平衡电感与寄生电容的大小,可以设计出与传输线具有相同特性阻抗的过孔,从而变得不会对电路板运行产生特别的影响。还没有简单的公式可以在过孔尺寸与C和L元件之间进行转换。3D电磁(EM)场解算程序可以根据PCB布局布线中使用的尺寸来预测结构阻抗。通过重复调整结构尺寸和运行3D仿真,可优化过孔尺寸,来实现所需阻抗和带宽要求。

3. 设计一个透明的差分过孔 我们曾在之前的帖子中讨论过,在实现差分对时,线路A与线路B之间必须高度对称。这些对在同一层内走线,如果需要一个过孔,必须在两条线路的临近位置上打孔。由于差分对的两个过孔距离很近,两个过孔共用的一个椭圆形隔离盘能够减少寄生电容,而不是使用两个单独的隔离盘。接地过孔也被放置在每个过孔的旁边,这样的话,它们就能够为A和B 过孔提供接地返回路径。 图2显示的是一个地-信号-信号-地(GSSG)差分过孔结构示例。两个相邻过孔间的距离被称为过孔间距。过孔间距越小,互耦合电容越多。 图2:使用背面钻孔的GSSG差分过孔 不要忘记,在传输速率超过10Gbps时,过孔残桩会严重影响高速信号完整性。幸运的是,有一种背面钻孔PCB制造工艺,此工艺可以在未使用的过孔圆柱上钻孔。根据制造工艺公差的不同,背面钻孔去除了未使用的过孔金属,并最大限度地将过孔残桩减少到10mil 以下。 3D EM仿真器用来根据所需的阻抗和带宽来设计差分过孔。这是一个反复的过程。此过程重复地调整过孔尺寸,并运行EM仿真,直到实现所需的阻抗和带宽。 4. 如何验证性能 图2中显示的差分过孔设计已构建完毕并经测试。测试样片包括顶层的一对差分线,之后是到内部差分线的差分过孔,然后第二对差分过孔再次连接至顶层的球状引脚栅格阵列封装(BGA)接地焊盘。信号路径的总长度大约为1330mil。我用差分时域反射仪(TDR)测得其差分阻抗,用网络分析仪测得了带宽,并用高速示波器测量了数据眼图来了解其对信号的影响。图3,4,5分别显示了阻抗、带宽和眼图。左图是使用背面钻孔时的测试结果,而右图是无背面钻孔的测试结果。在图5中的带宽波特图中,我们可以很清楚地看到背面钻孔对于在数据速率大于10Gbps 的情况下实现高性能是必不可少的。 使用背面钻孔,ZDIFF大约为85? 无背面钻孔,ZDIFF大约为58?

多径信道对信号影响的仿真和分析

课程设计名称:通信原理课程设计 专业班级: 学生姓名: 学号: 指导教师: 课程设计时间: 1 需求分析 给定单频信号,使其经过多径信道,观察信号的变化,分析多经信道对传播信号的影响。 本次课程设计要求分析多径信道对信号的影响,信号选用单频信号,选中20条衰减相同,时延的大小随时间变化的路径。 任务要求如下: 1.用MATLAB产生一个幅度为1、频率为10Hz的单频信号,使其经过20条路径传输,设这20条路径的衰减相同,但时延的大小随时间变化,每径时延的变化规律为正弦型,变化的频率从0-2Hz随机均匀抽取。仿真其输出波形及频谱。 2.分析多径信道对传输信号的影响。

2 概要设计 ↓ ↓ ↓ 此次课程设计是关于信号经过多径传输后变化的分析,所用的仿真软件是matlab,多径传播对信号的影响称为多径效应,会对信号传输质量造成很大的影响。本次课程设计是考察多径信号对单频正弦信号产生频域弥散的验证。 所使用的主要函数如下: 1.si=a0*cos(2*pi*f0*t)。此函数是用来产生单频信号。 2.r=rand(1,20)*2。此函数用来产生随机的时延。 3.sf=fft(s)。此函数用来把时域变换到频域。 4.for end。此函数用来产生循环,计算多次时延。 5.abs(n)。此函数用来得出绝对值。 3 运行环境 硬件环境:win7/windows xp/ 软件系统:Matlab软件 4 开发工具和编程语言 开发工具:MATLAB 7.1 软件语言:Matlab编程语言 5 详细设计

多径效应指电波传播信道中的多径传输现象所引起的干涉延时效应。在实际的包含所有频率的无线电波传播信道中,常有许多时延不同的传输路径。各条传播路径会随时间变化,参与干涉的各分量场之间的相互关系也就随时间而变化。由此引起合成波场的随机变化。从而形成总的接收场的衰落。因此多径效应是衰落的重要原因。在此对多径效应对单频信号的影响进行仿真分析。 设计的思想原理比较简单,首先需要产生一个单频信号,然后经由多径信道时延传输,得出传输后结果,最后对结果进行分析。 发送的单频信号为si=a0*cos(2*pi*f0*t) 振幅衰减为0.8,时延v=abs(sin(2*pi*r(i)*t)) 信道m20 s0=a1*cos(2*pi*f0*(t-v)) 接收信号s=sum(s) 函数1. r=rand(1,20) 此函数用来产生随机的时延 函数2. si=a0*cos(2*pi*f0*t) 此函数用来产生单频信号 函数3. sf=fft(s) 此函数用来使用傅立叶变换将信号变换到频域 函数4. for i=1:m v=abs(sin(2*pi*r(i)*t)); s0=a1*cos(2*pi*f0*(t-v)); s=s+s0 end 此函数用来计算20次延时后的信号。 其中for 函数用来产生20次循环。 v=abs(sin(2*pi*r(i)*t)),v为时延的绝对值,abs函数用来取绝对值。

过孔与电流的关系

过孔与电流的关系 Modified by JEEP on December 26th, 2020.

1、10mil的孔20mil的pad对应20mil的线过电流,20mil的孔40mil的焊盘对应40mil的线过1A电流,。 2、过孔电感的计算公式为: L=[ln(4h/d)+1] L:通孔的电感 h:通孔的长度 d:通孔的直径 其实孔的大小对其感抗影响不是很大,倒是它的长度影响大些, 感抗大,其上面的压降就大些。 对于电流,应该与它的载流截面积有关,截面积越大,载流能力越大。 孔越大,截面积越大,孔壁铜层越厚,截面积越大。 3、1,金属化过孔镀层厚度只有20几到几微米,经不起大电流!因此电源线、地线、有大电流的线非得通过过孔到另一面时可在此处多加几个过孔,或通过一个穿过两面的原件。2,脚较粗且多的器件如CD型插座,应尽可能少从原件面出线。如非出不可有条件可在器件脚边加一过孔。固为多个插脚同时插下时容易破坏孔中的金属化镀层。 4、过孔的直径至少应为线宽的1/3 5、在走线的Via孔附近加接地Via孔的作用及原理是什么

答:pcb板的过孔,按其作用分类,可以分为以下几种: 1、信号过孔(过孔结构要求对信号影响最小) 2、电源、地过孔(过孔结构要求过孔的分布电感最小) 3、散热过孔(过孔结构要求过孔的热阻最小) 上面所说的过孔属于接地类型的过孔,在走线的Via孔附近加接地Via孔的作用是给信号提供一个最短的回流路径。注意:信号在换层的过孔,就是一个阻抗的不连续点,信号的回流路径将从这里断开,为了减小信号的回流路径所包围的面积,必须在信号过孔的周围打一些地过孔提供最短的信号回流路径,减小信号的emi 辐射。这种辐射随之信号频率的提高而明显增加。 请问在哪些情况下应该多打地孔有一种说法:多打地孔,会破坏地层的连续和完整。效果反而适得其反。 答:首先,如果多打过孔,造成了电源层、地层的连续和完整,这种情况使用坚决避免的。这些过孔将影响到电源完整性,从而导致信号完整性问题,危害很大。打地孔,通常发生在如下的三种情况: 1、打地孔用于散热; 2、打地孔用于连接多层板的地层; 3、打地孔用于高速信号的换层的过孔的位置; 但所有的这些情况,应该是在保证电源完整性的情况下进行的。那就是说,只要控制好地孔的间隔,多打地孔是允许的吗在五分之一的波长为间隔打地孔没有问题吗

相关文档
相关文档 最新文档