文档库 最新最全的文档下载
当前位置:文档库 › 概率论与数理统计第三章课后习题答案

概率论与数理统计第三章课后习题答案

概率论与数理统计第三章课后习题答案
概率论与数理统计第三章课后习题答案

习题三

1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与

出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.

2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律.

3.设二维随机变量(X ,Y )的联合分布函数为

F (x ,y )=?????≤

≤≤≤.,

020,20,sin sin 其他ππy x y x

求二维随机变量(X ,Y )在长方形域?

??

?

??≤<≤<36,40πππy x 内的概率. 【解】如图πππ

{0,}(3.2)463

P X Y <≤

<≤公式 ππππππ(,)(,)(0,)(0,)434636

F F F F --+

ππππππsin sin sin sin sin 0sin sin 0sin

434636

2(31).4

=--+=-g g g g

题3图

说明:也可先求出密度函数,再求概率。 4.设随机变量(X ,Y )的分布密度

f (x ,y )=???>>+-.,

0,

0,0,)43(其他y x A y x e

求:(1) 常数A ;

(2) 随机变量(X ,Y )的分布函数; (3) P {0≤X <1,0≤Y <2}. 【解】(1) 由

-(34)0

(,)d d e d d 112

x y A

f x y x y A x y +∞+∞

+∞

+∞

+-∞

-∞

==

=??

?

?

得 A =12 (2) 由定义,有 (,)(,)d d y x

F x y f u v u v -∞-∞

=

??

(34)340012e

d d (1

e )(1e )0,0,

0,0,

y y

u v x y u v y x -+--??-->>?==??

?????其他

(3) {01,02}P X Y ≤<≤<

1

2

(34)3800

{01,02}

12e d d (1e )(1e )0.9499.

x y P X Y x y -+--=<≤<≤==--≈?

?

5.设随机变量(X ,Y )的概率密度为

f (x ,y )=?

?

?<<<<--.,0,

42,20),6(其他y x y x k

(1) 确定常数k ;

(2) 求P {X <1,Y <3}; (3) 求P {X <}; (4) 求P {X +Y ≤4}. 【解】(1) 由性质有

2

4

2

(,)d d (6)d d 81,f x y x y k x y y x k +∞+∞

-∞

-∞

=--==??

?

?

故 1

8

R =

(2) 13

{1,3}(,)d d P X Y f x y y x -∞-∞

<<=

??

1

3

0213

(6)d d 88

k x y y x =

--=?? (3) 1

1.5

{ 1.5}(,)d d a (,)d d x D P X f x y x y f x y x y <<=??

??如图

1.5

4

2127d (6)d .832

x x y y =

--=?

?

(4) 2

4

{4}(,)d d (,)d d X Y D P X Y f x y x y f x y x y +≤+≤=??

??如图b

2

40

2

12d (6)d .83

x

x x y y -=

--=?

?

题5图

6.设X 和Y 是两个相互独立的随机变量,X 在(0,)上服从均匀分布,Y 的密度函数为

f Y (y )=???>-.,

0,

0,55其他y y e

求:(1) X 与Y 的联合分布密度;(2) P {Y ≤X }. 题6图

【解】(1) 因X 在(0,)上服从均匀分布,所以X 的密度函数为

1

,00.2,

()0.2

0,

.X x f x ?<

55e ,0,()0,.y Y y f y -?>=??

其他

所以

(,),()()X Y f x y X Y f x f y g 独立

5515e

25e ,00.20,0.20,0,

y

y x y --???<<>?==??

???且其他. (2) 5()(,)d d 25e

d d y

y x

D

P Y X f x y x y x y -≤≤=

????如图

0.2

0.2

-550

-1d 25e d (5e 5)d =e 0.3679.

x

y x x y x -==-+≈???

7.设二维随机变量(X ,Y )的联合分布函数为

F (x ,y )=???>>----.,

0,

0,0),1)(1(24其他y x y x e e

求(X ,Y )的联合分布密度.

【解】(42)28e ,0,0,

(,)(,)0,

x y x y F x y f x y x y -+?>>?==?

???其他. 8.设二维随机变量(X ,Y )的概率密度为

f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤???

其他

求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞

=?

x

204.8(2)d 2.4(2),01,

=0,.0,

y x y x x x ??--≤≤?=??

????其他 ()(,)d Y f y f x y x +∞

-∞

=

?

12y 4.8(2)d 2.4(34),01,

=0,.0,

y x x y y y y ?-?-+≤≤?

=??????其他

题8图 题9图

9.设二维随机变量(X ,Y )的概率密度为

f (x ,y )=???<<-.,

0,

0,其他e y x y

求边缘概率密度. 【解】()(,)d X f x f x y y +∞

-∞

=

?

e d e ,0,

=0,.0,

y x x y x +∞

--??>?=??

????其他 ()(,)d Y f y f x y x +∞

-∞

=?

0e d e ,0,

=0,.0,

y

y x x y y --??>?=??

????其他 题10图

10.设二维随机变量(X ,Y )的概率密度为

f (x ,y )=???≤≤.,

0,

1,22其他y x y cx

(1) 试确定常数c ;

(2) 求边缘概率密度. 【解】(1)

(,)d d (,)d d D

f x y x y f x y x y +∞+∞

-∞

-∞

??

??如图

21

1

2-1

4

=

d d 1.21

x

x cx y y c =

=?

? 得

214

c =

. (2) ()(,)d X f x f x y y +∞

-∞

=

?

2124

22121(1),11,

d 84

0,0,

.x x x x x y y ??--≤≤??==???????其他 ()(,)d Y f y f x y x +∞-∞

=?

52

27d ,01,

4

20,0,

.y y x y x y y -??≤≤??==??????其他 11.设随机变量(X ,Y )的概率密度为

f (x ,y )=??

?<<<.

,

0,

10,,1其他x x y

求条件概率密度f Y |X (y |x ),f X |Y (x |y ).

题11图 【解】()(,)d X f x f x y y +∞

-∞

=

?

1d 2,01,

0,

.x x y x x -?=<

11

1d 1,10,

()(,)d 1d 1,01,0,

.y Y y x y y f y f x y x x y y -+∞

-∞

?=+-<

???

??

?其他

所以

|1

,||1,

(,)(|)2()0,

.Y X X y x f x y f y x x

f x ?<

?其他

|1

, 1,1(,)1

(|),1,()10,.X Y Y y x y f x y f x y y x f y y

?<

?=

=-<

其他 12.袋中有五个号码1,2,3,4,5,从中任取三个,记这三个号码中最小的号码为X ,最大

的号码为Y .

(1) 求X 与Y 的联合概率分布; (2) X 与Y 是否相互独立? 【解】(1) X 与Y 的联合分布律如下表

3 4 5

{}i P X x =

1

3

511C 10

= 3

522C 10= 3

533C 10

= 610 2

35

11C 10= 3522

C 10= 310 3 0

2511C 10

= 110

{}i P Y y =

1

10 310 610

(2) 因6161{1}{3}{1,3},101010010

P X P Y P X Y ===

?=≠===g 故X 与Y 不独立

2 5 8

(2) X 与Y 是否相互独立? 2 5 8 P {Y=y i }

{}i P X x =

Y

X

X

Y

X

Y

(2) 因{2}{0.4}0.20.8P X P Y ===?g 0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立.

14.设X 和Y 是两个相互独立的随机变量,X 在(0,1)上服从均匀分布,Y 的概率密度为

f Y (y )=?????>-.

,

0,0,

2

12/其他y y e

(1)求X 和Y 的联合概率密度; (2) 设含有a 的二次方程为a 2

+2Xa +Y =0,试求a 有实根的概率.

【解】(1) 因1,01,()0,X x f x <

1e ,1,

()20,y

Y y f y -?>?==???

其他.

故/2

1e

01,0,(,),()()2

0,

.

y X Y x y f x y X Y f x f y -?<<>?=???g 独立其他

题14图

(2) 方程2

20a Xa Y ++=有实根的条件是

2(2)40X Y ?=-≥

故 X 2

≥Y , 从而方程有实根的概率为:

22{}(,)d d x y

P X Y f x y x y ≥≥=

??

2

1

/2001d e d 2

12[(1)(0)]0.1445.

x y x y

π-==-Φ-Φ=??

15.设X 和Y 分别表示两个不同电子器件的寿命(以小时计),并设X 和Y 相互独立,且服从

同一分布,其概率密度为

f (x )=?????>.,

0,

1000,10002其他x x

求Z =X /Y 的概率密度.

【解】如图,Z 的分布函数(){}{

}Z X

F z P Z z P z Y

=≤=≤ (1) 当z ≤0时,()0Z F z =

(2) 当0

1000

z

)(如图a) 336

6

102222101010()d d d d yz Z z

x

y z

F z x y y x x y x y +∞≥

=

=??

?? 33610231010=d 2z z

y y

zy +∞

??-= ????

题15图 (3) 当z ≥1时,(这时当y =103时,x =103

z )(如图b )

336

6

222210101010()d d d d zy Z x

y z

F z x y y x x y

x y +∞≥

=

=??

?? 336231010101

=d 12y y

zy z +∞

??-=- ????

即 11,1,2(),01,20,

.Z z z z

f z z ?

-≥???=<

???其他

故 21

,1,21

(),01,20,

.Z z z f z z ?≥???=<

???

其他

16.设某种型号的电子管的寿命(以小时计)近似地服从N (160,202

)分布.随机地选取4 只,

求其中没有一只寿命小于180的概率.

【解】设这四只寿命为X i (i =1,2,3,4),则X i ~N (160,202

),

从而

123412{min(,,,)180}{180}{180}i P X X X X X P X P X ≥≥≥g 之间独立

34{180}{180}P X P X ≥≥g

1234[1{180}][1{180}][1{180}][1{180}]P X P X P X P X =-<-<-<-

g g

4

4144180160[1{180}]120[1(1)](0.158)0.00063.

P X ?-?

??=-<=-Φ ??????

?=-Φ== 17.设X ,Y 是相互独立的随机变量,其分布律分别为

P {X =k }=p (k ),k =0,1,2,…, P {Y =r }=q (r ),r =0,1,2,….

证明随机变量Z =X +Y 的分布律为

P {Z =i }=∑=-i

k k i q k p 0

)()(,i =0,1,2,….

【证明】因X 和Y 所有可能值都是非负整数,

所以 {}{}Z i X Y i ==+=

{0,}{1,1}{,0}X Y i X Y i X i Y =====-==U UL U 于是

0{}{,},i k P Z i P X k Y i k X Y =====-∑相互独立0

{}{}i

k P X k P Y i k ===-∑g

()()i

k p k q i k ==

-∑

18.设X ,Y 是相互独立的随机变量,它们都服从参数为n ,p 的二项分布.证明Z =X +Y 服从参

数为2n ,p 的二项分布.

【证明】方法一:X +Y 可能取值为0,1,2,…,2n .

{}{,}k

i P X Y k P X i Y k i =+====-∑

00202(){}

2k

i k

i n i k i n k i

i k k n k

i k n k P X i P Y k i n n p q p q

i k i n n p q

i k i n p q k =---+=-=-===-????= ? ?-????

????= ???-??????

= ???

∑∑∑g 方法二:设μ1,μ2,…,μn ;μ1′,μ2′,…,μn ′均服从两点分布(参数为p ),则

X =μ1+μ2+…+μn ,Y =μ1′+μ2′+…+μn ′, X +Y =μ1+μ2+…+μn +μ1′+μ2′+…+μn ′,

所以,X +Y 服从参数为(2n ,p )的二项分布.

(1) 求{=2|=2},{=3|=0}; (2) 求V =max (X ,Y )的分布律; (3) 求U =min (X ,Y )的分布律; (4) 求W =X +Y 的分布律. 【解】(1){2,2}

{2|2}{2}

P X Y P X Y P Y =====

=

5

{2,2}

0.051

,0.252

{,2}

i P X Y P X i Y ====

=

===∑ {3,0}

{3|0}{0}P Y X P Y X P X =====

=

3

{0,3}

0.011

;0.033

{0,}

j P X Y P X Y j ====

=

===∑ (2){}{max(,)}{,}{,}P V i P X Y i P X i Y i P X i Y i =====<+≤=

10

{,}{,},i i

k k P X i Y k P X k Y i -===

==+==∑∑ 0,1,2,3,4,5i =

(3) {}{min(,)}P U i P X Y i ===

3

5

1

{,}{,}

{,}{,}

k i

k i P X i Y i P X i Y i P X i Y k P X k Y i ==+==≥+>====+

==∑∑

0,1,2,3,i =

20.雷达的圆形屏幕半径为,设目标出现点(,)在屏幕上服从均匀分布. (1) 求P {Y >0|Y >X };

(2) 设M =max{X ,Y },求P {M >0}.

题20图

【解】因(X ,Y )的联合概率密度为

22221,,

(,)π0,

.x y R f x y R

?+≤?=???其他 (1){0,}

{0|}{}

P Y Y X P Y Y X P Y X >>>>=

>

0(,)d (,)d y y x

y x

f x y f x y σσ

>>>=

????

π

2π/405π42π/401

d d π1

d d πR

R r r

R r r R θθ=??

??

3/83

;1/24

==

(2) {0}{max(,)0}1{max(,)0}P M P X Y P X Y >=>=-≤

00

131{0,0}1(,)d 1.44

x y P X Y f x y σ≤≤=-≤≤=-

=-

=??

21.设平面区域D 由曲线y =1/x 及直线y =0,x =1,x=e 2

所围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求(X ,Y )关于X 的边缘概率密度在x =2处的值为多少?

题21图 【解】区域D 的面积为 2

2e e 01

1

1

d ln 2.S x x x

=

==?

(X ,Y )的联合密度函数为

2

11,1e ,0,

(,)20,.

x y f x y x ?≤≤<≤?=???其他

(X ,Y )关于X 的边缘密度函数为

1/20

11d ,1e ,()220,

.x X y x f x x

?=≤≤?=????其他 所以1

(2).4

X f =

22.设随机变量X 和Y 相互独立,下表列出了二维随机变量(X ,Y )联合分布律及关于X 和

【解】因2

1

{}{,}j j i

j

i P Y y P P X x Y y ====

==∑,

故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824

P X x Y y ===

-= 而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====g ,

从而11111{}{,}.624P X x P X x Y y =?

==== 即:1111

{}/.2464

P X x ===

又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==

即1,3111{},4248

P X x Y y =++== 从而131

{,}.12P X x Y y ===

同理21{},2P Y y == 223

{,}8

P X x Y y ===

3

1

{}1j j P Y y ===∑,故3

111

{}1623P Y y ==--=. 同理23

{}.4

P X x == 从而

23313111

{,}{}{,}.3124

P X x Y y P Y y P X x Y y ====-===-=

23.设某班车起点站上客人数X 服从参数为λ(λ>0)的泊松分布,每位乘客在中途下车的概

率为p (0

【解】(1) {|}C (1),0,0,1,2,m m n m

n P Y m X n p p m n n -===-≤≤=L .

(2) {,}{}{|}P X n Y m P X n P Y m X n ======g

e C (1)

,,0,1,2,.!

m m n m

n

n

p p n m n n n λλ--=-≤≤=g L 24.设随机变量X 和Y 独立,其中X 的概率分布为X ~?

??

?

??7.03.021

,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).

【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为

(){}0.3{|1}0.7{|2}G u P X Y u P X Y u X P X Y u X =+≤=+≤=++≤=

0.3{1|1}0.7{2|2}P Y u X P Y u X =≤-=+≤-=

由于X 和Y 独立,可见

()0.3{1}0.7{2}G u P Y u P Y u =≤-+≤-

0.3(1)0.7(2).F u F u =-+-

由此,得U 的概率密度为

()()0.3(1)0.7(2)g u G u F u F u '''==-+-

0.3(1)0.7(2).f u f u =-+-

25. 25. 设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}.

解:因为随即变量服从[0,3]上的均匀分布,于是有

1, 03,()3

0, 0,3;x f x x x ?≤≤?=??<>? 1, 03,

()30, 0, 3.

y f y y y ?≤≤?=??<>? 因为X ,Y 相互独立,所以

1

, 03,03,

(,)9

0, 0,0,3, 3.

x y f x y x y x y ?≤≤≤≤?=??<<>>? 推得 1{max{,}1}9

P X Y ≤=

. 26. 设二维随机变量(X ,Y )的概率分布为

1 0 1

1

0 1 a 0

b 0 0.1 c

其中a ,b ,c 为常数,且X 的数学期望E (X )=,P {Y ≤0|X ≤0}=,记Z =X +Y .求: (1) a ,b ,c 的值; (2) Z 的概率分布; (3) P {X =Z }.

解 (1) 由概率分布的性质知,

a+b+c +=1 即 a+b+c = .

由()0.2E X =-,可得

0.1a c -+=-.

再由 {0,0}0.1

{00}0.5{0}0.5

P X Y a b P Y X P X a b ≤≤++≤≤=

==≤++,

得 0.3a b +=.

解以上关于a ,b ,c 的三个方程得

0.2,0.1,0.1a b c ===.

(2) Z 的可能取值为2,1,0,1,2,

{2}{1,1}0.2P Z P X Y =-==-=-=,

{1}{1,0}{0,1}0.1P Z P X Y P X Y =-==-=+==-=,

{0}{1,1}{0,0}{1,1}0.3P Z P X Y P X Y P X Y ===-=+==+==-=,

{1}{1,0}{0,1}0.3P Z P X Y P X Y ====+===,

{2}{1,1}0.1P Z P X Y =====,

X Y

即Z 的概率分布为

2 1 0 1 2

(3) {}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.

习题四

1.设随机变量X 的分布律为

1 0 1 2

求E (),(),(2+3). 【解】(1) 11111

()(1)012;8

2842

E X =-?+?

+?+?= (2) 22

22211115()(1)012;82844

E X =-?+?+?+?=

(3) 1

(23)2()32342

E X E X +=+=?+=

2.已知100个产品中有10个次品,求任意取出的5个产品中的次品数的数学期望、方差.

故 ()0.58300.34010.07020.00730405E X =?+?+?+?+?+? 0.501,= 5

2

()[()]i

i

i D X x E X P ==

-∑

222(00.501)0.583(10.501)0.340(50.501)0

0.432.

=-?+-?++-?=L

3. 1 0 1 且已知E ()=,()=,求1,2,3.

【解】因1231P P P ++=……①,

又12331()(1)010.1E X P P P P P =-++=-=g g ……②,

222

212313()(1)010.9E X P P P P P =-++=+=g g g ……③

由①②③联立解得1230.4,0.1,0.5.P P P ===

4.袋中有N 只球,其中的白球数X 为一随机变量,已知E (X )=n ,问从袋中任取1球为白球的概率是多少?

【解】记A ={从袋中任取1球为白球},则

(){|}{}N

k P A P A X k P X k ===∑g 全概率公式

00

1{}{}

1().N

N

k k k P X k kP X k N N n E X N N

========∑∑g

5.设随机变量X 的概率密度为

f (x )=??

?

??≤≤-<≤.,0,21,2,

10,其他x x x x

求E (X ),D (X ). 【解】12

20

1

()()d d (2)d E X xf x x x x x x x +∞

-∞

=

=+-?

??

2

1

3

32011 1.33x x x ??

??=+-=???????

?

12

22320

1

7

()()d d (2)d 6

E X x f x x x x x x x +∞

-∞

==+-=

?

?? 故 2

2

1()()[()].6

D X

E X E X =-=

6.设随机变量X ,Y ,Z 相互独立,且E (X )=5,E (Y )=11,E (Z )=8,求下列随机变量的数学期望.

(1) U =2X +3Y +1; (2) V =YZ 4X . 【解】(1) [](231)2()3()1E U E X Y E X E Y =++=++ 25311144.=?+?+=

(2) [][4][]4()E V E YZ X E YZ E X =-=- ,()()4()Y Z E Y E Z E X -g 因独立

1184568.=?-?=

7.设随机变量X ,Y 相互独立,且E (X )=E (Y )=3,D (X )=12,D (Y )=16,求E (3X

2Y ),

D (2X 3Y ). 【解】(1) (32)3()2()3323 3.

E X Y E X E Y -=-=?-?=

(2) 2

2

(23)2()(3)412916192.D X Y D X DY -=+-=?+?= 8.设随机变量(X ,Y )的概率密度为

f (x ,y )=??

?<<<<.,

0,

0,10,其他x y x k

试确定常数k ,并求E (XY ). 【解】因

1

001

(,)d d d d 1,2

x

f x y x y x k y k +∞+∞

-∞

-∞

===??

??故k =2

10

()(,)d d d 2d 0.25x

E XY xyf x y x y x x y y +∞

+∞

-∞

-∞

===?

?

??.

9.设X ,Y 是相互独立的随机变量,其概率密度分别为

f X (x )=???≤≤;,0,

10,2其他x x f Y (y )=(5)e ,5,

0,

.

y y --?>?

?其他 求E (XY ).

【解】方法一:先求X 与Y 的均值 1

2

()2d ,3

E X x x x ==?g 5

(5)5

()e d 5e d e d 51 6.z y y z z E Y y y

z z z +∞

+∞+∞

=-----=

+=+=?

??

由X 与Y 的独立性,得

2

()()()6 4.3

E XY E X E Y ==?=g

方法二:利用随机变量函数的均值公式.因X 与Y 独立,故联合密度为

(5)2e ,01,5,

(,)()()0,

,y X Y x x y f x y f x f y --?≤≤>==??g 其他

于是

1

1

(5)

2

(5)5

5

2

()2e

d d 2d

e d 6 4.3

y y E XY xy x x y x x y y +∞

+∞

----===?=?

?

??

g g

10.设随机变量X ,Y 的概率密度分别为

f X (x )=???≤>-;0,0,0,22x x x e f Y (y )=??

?≤>-.

0,

0,

0,

44y y y e 求(1) E (X +Y );(2) E (2X 3Y 2

).

【解】22-200

()()d 2e

d [

e ]

e d x

x x X X xf x x x x x x +∞

+∞

+∞

--+∞

-∞

=

=-?

?

?

g

201

e d .2x x +∞

-==?

40

1

()()d 4e dy .4

y Y E Y yf y y y +∞

+∞--∞

=

=?

?

g

2

2242021()()d 4e d .48

y Y E Y y f y y y y +∞

+∞

--∞=

==

=??

g 从而(1)113

()()().244

E X Y E X E Y +=+=+=

(2)22

115(23)2()3()23288

E X Y E X E Y -=-=?-?=

11.设随机变量X 的概率密度为

f (x )=????

?<≥-.

0,

0,0,2

2x x cx x

k

e

求(1) 系数c ;(2) E (X );(3) D (X ). 【解】(1) 由

22

2

()d e d 12k x c f x x cx x k

+∞

+∞

--∞

==

=?

?得2

2c k =. (2) 22

20

()()d()2e d k x E X xf x x x k x x +∞

+∞

--∞

=

=?

?

g 22

2

20

π2e d .k x k

x x +∞

-==

?

(3) 22

2

22220

1()()d()2e .k

x

E X x f x x x k x k

+∞

+∞--∞

=

=?

?

g 故 2

22

221π4π()()[()].24D X E X E X k k k

?-=-=-= ?? 12.袋中有12个零件,其中9个合格品,3个废品.安装机器时,从袋中一个一个地取出(取

出后不放回),设在取出合格品之前已取出的废品数为随机变量X ,求E (X )和D (X ). 【解】设随机变量X 表示在取得合格品以前已取出的废品数,则X 的可能取值为0,1,2,

3.为求其分布律,下面求取这些可能值的概率,易知

9{0}0.750,12P X ==

= 39

{1}0.204,1211P X ==?= 329{2}0.041,121110P X ==??= 3219

{3}0.005.1211109

P X ==???=

于是,得到X 的概率分布表如下:

X

0 1 2 3 P

由此可得()00.75010.20420.04130.0050.301.E X =?+?+?+?=

222222

2

2

()075010.20420.04130.0050.413()()[()]0.413(0.301)0.322.

E X D X E X E X =?+?+?+?==-=-=

13.一工厂生产某种设备的寿命X (以年计)服从指数分布,概率密度为

f (x )=???

??≤>-.0,

0,0,414x x x

e

为确保消费者的利益,工厂规定出售的设备若在一年内损坏可以调换.若售出一台设备,

工厂获利100元,而调换一台则损失200元,试求工厂出售一台设备赢利的数学期望. 【解】厂方出售一台设备净盈利Y 只有两个值:100元和200元 /4

1/41

1{100}{1}e d e 4

x P Y P X x +∞

--==≥=

=?

1/4

{200}{1}1e

.P Y P X -=-=<=-

故1/4

1/41/4()100e

(200)(1e )300e 20033.64E Y ---=?+-?-=-= (元).

14.设X 1,X 2,…,X n 是相互独立的随机变量,且有E (X i )=μ,D (X i )=σ2

,i =1,2,…,

n ,记

∑==n i i S X n X 12

,1,S 2=∑=--n i i X X n 1

2)(11. (1) 验证)(X E =μ,)(X D =

n

2

σ;

(2) 验证S 2

=

)(111

22

∑=--n

i i X n X n ; (3) 验证E (S 2)=σ2

.

【证】(1) 11111

11()()().n n

n i i i i i i E X E X E X E X nu u n n n n ===??===== ???

∑∑∑g

2211111

1()()n n

n i i i i i i i D X D X D X X DX n n

n ===??== ???∑∑∑g 之间相互独立 22

21.n n n

σσ==

g (2) 因

2

2

2

2

21

1

1

1

()(2)2n

n

n

n

i

i

i i

i i i i i X

X X X X X X nX X X ====-=+-=+-∑∑∑∑

2

2

221

1

2n

n

i

i i i X nX X nX X nX ===

+-=-∑∑g

故22

21

1

()1n

i i S X nX n ==

--∑.

(3) 因2(),()i i E X u D X σ==,故2222

()()().i i i E X D X EX u σ=+=+

同理因2

(),()E X u D X n

σ==,故2

2

2()E X u n

σ=

+.

从而

222

22

1111()()[()()]11n n

i i i i E s E X nX E X nE X n n ==??=-=-??--??∑∑

221

222221[()()]11().

1n

i i E X nE X n n u n u n n σσσ==--????=+-+=?? ?-????

∑g g

15.对随机变量X 和Y ,已知D (X )=2,D (Y )=3,Cov(X ,Y )=

1,

计算:Cov (3X 2Y +1,X +4Y 3).

【解】Cov(321,43)3()10Cov(,)8()X Y X Y D X X Y D Y -++-=+- 3210(1)8328=?+?--?=- (因常数与任一随机变量独立,故Cov(X ,3)=Cov(Y ,3)=0,其余类似). 16.设二维随机变量(X ,Y )的概率密度为

f (x ,y )=22

1,1,

π0,

.x y ?+≤????其他

试验证X 和Y 是不相关的,但X 和Y 不是相互独立的. 【解】设2

2

{(,)|1}D x y x y =+≤.

221

1

()(,)d d d d πx y E X xf x y x y x x y +∞

+∞

-∞

-∞

+≤==

?

?

?? 2π1

00

1=cos d d 0.πr r r θθ=??g

同理E (Y )=0. 而 Cov(,)[()][()](,)d d X Y x E x y E Y f x y x y +∞+∞

-∞

-∞

=--?

?

g

222π12

001

11d d sin cos d d 0ππx y xy x y r r r θθθ+

≤===????, 由此得0XY ρ=,故X 与Y 不相关.

概率论与数理统计期末复习资料(学生)

概率论与数理统计期末复习资料 一 填空 1.设A ,B 为两个随机事件,若A 发生必然导致B 发生,且P (A )=0.6,则P (AB ) =______. 2.设随机事件A 与B 相互独立,且P (A )=0.7,P (A -B )=0.3,则P (B ) = ______. 3.己知10件产品中有2件次品,从该产品中任意取3件,则恰好取到一件次品的概率等于______. 4.已知某地区的人群吸烟的概率是0.2,不吸烟的概率是0.8,若吸烟使人患某种疾病的概率为0.008,不吸烟使人患该种疾病的概率是0.001,则该人群患这种疾病的概率等于______. 5.设连续型随机变量X 的概率密度为? ??≤≤=,,0; 10,1)(其他x x f 则当10≤≤x 时,X 的分布函数F (x )= ______. 6.设随机变量X ~N (1,32 ),则P{-2≤ X ≤4}=______.(附:)1(Φ=0.8413) 7.设二维随机变量(X ,Y )的分布律为 则P {X <1,Y 2≤}=______. 8.设随机变量X 的期望E (X )=2,方差D (X )=4,随机变量Y 的期望E (Y )=4,方差D (Y )=9,又E (XY )=10,则X ,Y 的相关系数ρ= ______. 9.设随机变量X 服从二项分布)3 1,3(B ,则E (X 2 )= ______. 10.中心极限定理证明了在很一般条件下,无论随机变量Xi 服从什么分布,当n →∞时,∑=n i i X 1 的极限分布是 _________________ 11.设总体X ~N (1,4),x 1,x 2,…,x 10为来自该总体的样本,∑== 10 110 1 i i x x ,则)(x D = ______.· 12.设总体X ~N (0,1),x 1,x 2,…,x 5为来自该总体的样本,则 ∑=5 1 2i i x 服从自由度为______ 的2χ分布. 15.对假设检验问题H 0:μ=μ0,H 1:μ≠μ0,若给定显著水平0.05,则该检验犯第一类错误的概率为______. 16.设A ,B 为两个随机事件,且A 与B 相互独立,P (A )=0.3,P (B )=0.4,则P (A B )=__________. 17.盒中有4个棋子,其中2个白子,2个黑子,今有1人随机地从盒中取出2个棋子,则这2个棋子颜色相同的 概率为_________. 18.设随机变量X 的概率密度?? ???≤≤=,,0; 10 ,A )(2其他x x x f 则常数A=_________.

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

操作系统第三章课后答案

第三章处理机调度与死锁 1. 高级调度与低级调度的主要任务是什么为什么要引入中级调度 高级调度的主要任务:用于决定把外存上处于后备队列中的哪些作业调入内存,并为它 们创建进程,分配必要的资源,然后,再将新创建的进程插入就 绪队列上,准备执行。 低级调度的主要任务:用于决定就绪队列中的哪个进程应获得处理机,然后再由分派程 序执行将处理机分配给该进程的具体操作。 引入中级调度的主要目的:是为了提高系统资源的利用率和系统吞吐量。 10. 试比较FCFS和SPF两种进程调度算法 相同点:两种调度算法都是既可用于作业调度,也可用于进程调度; 不同点:FCFS调度算法每次调度都是从后备队列中选择一个或是多个最先进入该队列的作业,将它们调入内存,为它们分配资源,创建进程,然后插入到就绪队 列中。该算法有利于长作业/进程,不利于短作业/进程。 SPF调度算法每次调度都是从后备队列中选择一个或若干个估计运行时间最 短的作业,将它们调入内存中运行。该算法有利于短作业/进程,不利于长作 业/进程。 15. 按调度方式可将实时调度算法分为哪几种 】 按调度方式不同,可分为非抢占调度算法和抢占调度算法两种。 18. 何谓死锁产生死锁的原因和必要条件是什么 a.死锁是指多个进程因竞争资源而造成的一种僵局,若无外力作用,这些进程都将永远不 能再向前推进; b.产生死锁的原因有二,一是竞争资源,二是进程推进顺序非法; c.必要条件是: 互斥条件,请求和保持条件,不剥夺条件和环路等待条件。 19.在解决死锁问题的几个方法中,哪种方法最易于实现哪种方法是资源利用率最高解决/处理死锁的方法有预防死锁、避免死锁、检测和解除死锁,其中预防死锁方法最容易实现,但由于所施加的限制条件过于严格,会导致系统资源利用率和系统吞吐量降低;而检测和解除死锁方法可是系统获得较好的资源利用率和系统吞吐量。 20. 请详细说明可通过哪些途径预防死锁 a.摒弃"请求和保持"条件:系统规定所有进程开始运行之前,都必须一次性地申请其在整 个运行过程所需的全部资源,但在分配资源时,只要有一种资源不能满足某进程的要求,即使其它所需的各资源都空闲,也不分配给该进程,而让该进程等待; b.摒弃"不剥夺"条件:系统规定,进程是逐个地提出对资源的要求的。当一个已经保持了 某些资源的进程,再提出新的资源请求而不能立即得到满足时,必须释放它已经保持了的所有资源,待以后需要时再重新申请; , c.摒弃"环路等待"条件:系统将所有资源按类型进行线性排序,并赋予不同的序号,且所 有进程对资源的请求必须严格按序号递增的次序提出,这样,在所形成的资源分配图中,不可能再出现环路,因而摒弃了"环路等待"条件。 22. 在银行家算法中,若出现下述资源分配情:

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

现代汉语课后习题答案(全)

第一章绪论”习题答案 “绪论”思考和练习一 一、什么是现代汉民族共同语?它是怎样形成的? 现代汉民族的共同语就是“以北京语音为标准音,以北方话为基础方言,以典范的现代白话文著作为语法规范的普通话”。 现代汉民族共同语是在北方话基础上形成的。在形成的过程中,北京话占有特殊的地位。早在唐代,北京已是北方军事要镇。北京是辽、金、元、明、清各代的都城。近千年来,北京一直是我国政治、经济、文化的中心,北京话的影响越来越大。一方面,它作为官府的通用语言传播到了全国各地,发展成为“官话”,另一方面,白话文学作品更多地接受了北京话的影响。 本世纪初,特别是“五四”运动以后,掀起了“白话文运动”,动摇了文言文的统治地位;另一方面,“国语运动”的开展促使北京语音成为全民族共同语的标准音。两个运动互相推动和影响,这就使得书面语和口语接近起来,形成了现代汉民族共同语。 二、共同语和方言的关系是怎样的? 方言是一种民族语言的地方分支或变体,是局部地区的人们所使用的语言。一民族语言的共同语,则是通用于这个民族全体成员的语言。对于各地方言来说,规范化的共同语是民族语言的高级形式,它比任何方言都富有表现力。共同语形成后,对于方言的语音、词汇、语法都有一定的影响。它的词语经常传播到各方言中去。规范化的共同语,往往促使地域方言向它靠拢,对方言的发展起一种制约的作用。与此同时,共同语也要从方言中吸收种种语言成分,以丰富和发展自己。但是,地域方言间差异的缩小,以至于消失,则须经过一个长期而复杂的过程。 “第二章语音”习题答案 “语音”思考和练习一 四、语音具有物理属性、生理属性、社会属性。 “语音”思考和练习二 二、普通话声母的发音部位和发音方法各包括哪几种?请画成一个总表把声母填上。 普通话声母的发音部位包括双唇、唇齿、舌尖前、舌尖中、舌尖后、舌面、舌根七种。发音方法,从阻碍的方式看,包括塞音、擦音、塞擦音、鼻音、边音五种;从声带是否颤动看,包括清音、浊音两种;从气流的强弱看,包括送气音、不送气音两种。声母总表(略)。 三、根据所提供的发音部位和发音方法,在下面横杠上填上相应的声母。 1.双唇送气清塞音是p。

基础工程-第3章课后习题答案

1.试述桩的分类。 (一)按承台位置分类。可分为高桩承台基础和低桩承台基础,简称高桩承台和低桩承台。 (二)按施工方法分类。可分为沉桩(预制桩)、灌注桩、管桩基础、钻埋空心桩。 (三)按设置效应分类。可分为挤土桩、部分挤土桩和非挤土桩。 (四)按桩土相互作用特点分类。可分为竖向受荷桩(摩擦桩、端承桩或柱桩)、横向受荷桩(主动桩、被动桩、竖直桩和斜桩)、桩墩(端承桩墩、摩擦 桩墩)。 (五)按桩身材料分类。可分为木桩(包括竹桩)、混凝土桩(含钢筋和混凝土桩和预应力钢筋混凝土桩)、钢桩和组合桩。 2.桩基设计原则是什么? 桩基设计·应力求做到安全适用、经济合理、主要包括收集资料和设计两部分。 1.收集资料 (1)进行调查研究,了解结构的平面布置、上部荷载大小及使用要求等; (2)工程地质勘探资料的收集和阅读,了解勘探孔的间距、钻孔深度以及 土层性质、桩基确定持力层; (3)掌握施工条件和施工方法,如材料、设备及施工人员等; 2.设计步骤 (1)确定桩的类型和外形尺寸,确定承台埋深; (2)确定单桩竖向承载力特征值和水平承载力特征值; (3)初步拟定桩的数量和平面布置; ( 4 )确定单桩上的竖向和水平承载力,确定群桩承载力; ( 5 )必要时验算地基沉降; ( 6 )承台结构设计; ( 7 )绘制桩和承台的结构及施工图; 3.设计要求

《建筑地基基础设计规范》(GB 50007 —2011)第8.5.2条指出,桩基设计应符合下列规范: (1)所有桩基均应进行承载力和桩身强度计算。对预制桩,尚应进行运输、吊装和锤击等中的强度和抗裂验算。 (2)桩基沉降量验算应符合规范第8.5.15条规定。 (3)桩基的抗震承载力验算应符合现行国家标准《建筑抗震设计规范》 (GB 50011—2010)的相关规定。 (4)桩基宜选用中、低压缩性土层作为桩端持力层。 (5)同一结构单元内的桩基,不宜选用压缩性差异较大的土层作为桩端持力层,不宜采用部分摩擦桩和部分端承桩。 (6)由于欠固结软土、湿陷性土和场地填土的固结,场地大面积堆载、降低 地下水位等原因,引起桩周土的沉降大于柱的沉降时,应考虑桩侧负摩阻力对 桩基承载力和沉降的影响。 (7)对位于坡地、岸边的桩基,应进行桩基的整体稳定性验算。桩基应与边 坡工程统一规划,同步设计。 (8)岩溶地区的桩基,当岩溶上覆土层的稳定性有保证,且桩端持力层承载 力及厚度满足要求,可利用覆土层作为桩端持力层。当必须采用嵌岩桩时,应 对岩溶进行施工勘探。 (9)应考虑桩基施工中挤土效应对桩基及周边环境的影响;在深厚饱和软土 中不宜采用大片密集有挤土效应的桩基。 (10)应考虑深基坑开挖中,坑底土回弹隆起对桩受力及桩承载力的影响。 (11)桩基设计时,应结合地区经验考虑桩、土、承台的共同作用。 (12)在承台及地下室周围的回填土中,应满足填土密实度要求。 3.什么是单桩?说明桩侧极限摩阻力的影响因素是什么。 单桩: 即采用一根桩(通常为大直径桩)以承受和传递上部结构(通长为柱)荷载的独立基础。 极限摩阻力的影响因素:(1)桩周土的性质; (2)桩、土相对位移; (3)桩的直径的影响; (4)桩-土界面条件的影响;

概率论与数理统计期末总结

第1章 概率论的基本概念 1.1 随机试验 称满足以下三个条件的试验为随机试验: (1)在相同条件下可以重复进行; (2)每次试验的结果不止一个,并且能事先明确所有的可能结果; (3)进行试验之前,不能确定哪个结果出现。 1.2 样本点 样本空间 随机事件 随机试验的每一个可能结果称为一个样本点,也称为基本事件。 样本点的全体所构成的集合称为样本空间,也称为必然事件。必然事件在每次试验中必然发生。 随机试验的样本空间不一定唯一。在同一试验中,试验的目的不同时,样本 空间往往是不同的。所以应从试验的目的出发确定样本空间。 样本空间的子集称为随机事件,简称事件。 在每次试验中必不发生的事件为不可能事件。 1.3 事件的关系及运算 (1)包含关系 B A ?,即事件A 发生,导致事件B 发生; (2)相等关系 B A =,即B A ?且A B ?; (3)和事件(也叫并事件) B A C ?=,即事件A 与事件B 至少有一个发生; (4)积事件(也叫交事件) B A AB C ?==,即事件A 与事件B 同时发生; (5)差事件 AB A B A C -=-=,即事件A 发生,同时,事件B 不发生; (6)互斥事件(也叫互不相容事件) A 、 B 满足φ=AB ,即事件A 与事件B 不同时发生; (7)对立事件(也叫逆事件) A A -Ω=,即φ=Ω=?A A A A ,。

1.4 事件的运算律 (1)交换律 BA AB A B B A =?=?,; (2)结合律 ()()()()C AB BC A C B A C B A =??=??,; (3)分配律 ()()()()()()C A B A BC A AC AB C B A ??=??=?,; (4)幂等律 A AA A A A ==?, ; (5)差化积 B A AB A B A =-=-; (6)反演律(也叫德·摩根律)B A AB B A B A B A B A ?==?=?=?,。 1.5 概率的公理化定义 设E 是随机试验,Ω为样本空间,对于Ω中的每一个事件A ,赋予一个实数P (A ),称之为A 的概率,P (A )满足: (1)1)(0≤≤A P ; (2)1)(=ΩP ; (3)若事件 ,,, ,n A A A 21两两互不相容,则有 () ++++=????)()()(2121n n A P A P A P A A A P 。 1.6 概率的性质 (1)0)(=φP ; (2)若事件n A A A ,, , 21两两不互相容,则())()()(2121n n A P A P A P A A A P +++=??? ; (3))(1)(A P A P -=; (4))()()(AB P B P A B P -=-。 特别地,若B A ?,则)()(),()()(B P A P A P B P A B P ≤-=-; (5))()()()(AB P B P A P B A P -+=?。

概率论与数理统计课后习题答案

习题1.1解答 1. 将一枚均匀的硬币抛两次,事件C B A ,,分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件C B A ,,中的样本点。 解:{=Ω(正,正),(正,反),(反,正),(反,反)} {=A (正,正),(正,反)};{=B (正,正),(反,反)} {=C (正,正),(正,反),(反,正)} 2. 在掷两颗骰子的试验中,事件D C B A ,,,分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件D C B A BC C A B A AB ---+,,,,中的样本点。 解:{})6,6(,),2,6(),1,6(,),6,2(,),2,2(),1,2(),6,1(,),2,1(),1,1( =Ω; {})1,3(),2,2(),3,1(),1,1(=AB ; {})1,2(),2,1(),6,6(),4,6(),2,6(,),5,1(),3,1(),1,1( =+B A ; Φ=C A ;{})2,2(),1,1(=BC ; {})4,6(),2,6(),1,5(),6,4(),2,4(),6,2(),4,2(),5,1(=---D C B A 3. 以C B A ,,分别表示某城市居民订阅日报、晚报和体育报。试用C B A ,,表示以下事件: (1)只订阅日报; (2)只订日报和晚报; (3)只订一种报; (4)正好订两种报; (5)至少订阅一种报; (6)不订阅任何报; (7)至多订阅一种报; (8)三种报纸都订阅; (9)三种报纸不全订阅。 解:(1)C B A ; (2)C AB ; (3)C B A C B A C B A ++; (4)BC A C B A C AB ++; (5)C B A ++; (6)C B A ; (7)C B A C B A C B A C B A +++或C B C A B A ++ (8)ABC ; (9)C B A ++ 4. 甲、乙、丙三人各射击一次,事件321,,A A A 分别表示甲、乙、丙射中。试说明下列事件所表示的结果:2A , 32A A +, 21A A , 21A A +, 321A A A , 313221A A A A A A ++. 解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人击中。 5. 设事件C B A ,,满足Φ≠ABC ,试把下列事件表示为一些互不相容的事件的和:C B A ++,C AB +,AC B -. 解:如图:

(完整word版)概率论与数理统计期末试卷及答案

一、选 择 题 (本大题分5小题, 每小题4分, 共20分) (1)设A 、B 互不相容,且P(A)>0,P(B)>0,则必有( ) (A)0)(>A B P (B))()(A P B A P = (C)0)(=B A P (D))()()(B P A P AB P = (2)将3粒黄豆随机地放入4个杯子,则杯子中盛黄豆最多为一粒的概率为( ) 3311() () () ()32 8 168 A B C D (3)),4,(~2 μN X ),5,(~2 μN Y }5{},4{21+≥=-≤=μμY P p X P p ,则( ) (A)对任意实数21,p p =μ (B )对任意实数21,p p <μ (C)只对μ的个别值,才有21p p = (D )对任意实数μ,都有21p p > (4)设随机变量X 的密度函数为)(x f ,且),()(x f x f =-)(x F 是X 的分布函数,则对任意 实数a 成立的是( ) (A )? - =-a dx x f a F 0 )(1)( (B )?-= -a dx x f a F 0 )(21)( (C ))()(a F a F =- (D )1)(2)(-=-a F a F (5)已知1250,,,X X X L 为来自总体()2,4X N :的样本,记50 11,50i i X X ==∑ 则 50 21 1()4i i X X =-∑服从分布为( ) (A )4(2, )50N (B) 2 (,4)50 N (C )()250χ (D) ()249χ 二、填 空 题 (本大题5小题, 每小题4分, 共20分) (1) 4.0)(=A P ,3.0)(=B P ,4.0)(=?B A P ,则___________)(=B A P (2) 设随机变量X 有密度? ??<<=其它01 0,4)(3x x x f , 则使)()(a X P a X P <=> 的常数a = (3) 设随机变量),2(~2 σN X ,若3.0}40{=<

课后作业答案

1-2理发吹风器的结构示意图如附图所示,风道的流通面积,进入吹风器的空气压力,温度℃。要求吹风器出口的空气温度℃,试确定流过吹风器的空气的质量流量以及吹风器出口的空气平均速度。电加热器的功率为1500W 。 解: 1-3淋浴器的喷头正常工作时的供水量一般为每分钟。冷水通过电热器从15℃被加热到43℃。试问电热器的加热功率是多少?为了节省能源,有人提出可以将用过后的热水(温度为38℃)送入一个换热器去加热进入淋浴器的冷水。如果该换热器能将冷水加热到27℃,试计算采用余热回收换热器后洗澡15min 可以节省多少能源? 解:电热器的加热功率: kW W t cm Q P 95.16.195060 ) 1543(101000101018.4633==-?????=?==-ττ 15分钟可节省的能量: kJ J t cm Q 4.752752400)1527(15101000101018.46 33==-??????=?=- 1-10 一炉子的炉墙厚13cm ,总面积为20,平均导热系 数为,内外壁温分别是520℃及50℃。试计算通过炉墙 的热损失。如果所燃用的煤的发热量是×104kJ/kg ,问 每天因热损失要用掉多少千克煤? 解:根据傅利叶公式 每天用煤 1-11 夏天,阳光照耀在一厚度为40mm 的用层压板制成 的木门外表面上,用热流计测得木门内表面热流密度为 15W/m 2。外变面温度为40℃,内表面温度为30℃。试估 算此木门在厚度方向上的导热系数。 解: , 1-12 在一次测定空气横向流过单根圆管的对流换热实 验中,得到下列数据:管壁平均温度t w =69℃,空气温 度t f =20℃,管子外径 d=14mm ,加热段长 80mm ,输入 加热段的功率,如果全部热量通过对流换热传给空气, 试问此时的对流换热表面传热系数多大? 解:根据牛顿冷却公式 所以 = 1-18 宇宙空间可近似地看成为0K 的真空空间。一航天 器在太空中飞行,其外表面平均温度为250℃,表面发 射率为,试计算航天器单位表面上的换热量。 解:= 1-19 在1-14题目中,如果把芯片及底板置于一个封闭 的机壳内,机壳的平均温度为20℃,芯片的表面黑度为, 其余条件不变,试确定芯片的最大允许功率。 解: P = 1-20 半径为 m 的球状航天器在太空中飞行,其表面发 射率为。航天器内电子元件的散热总共为175W 。假设航 天器没有从宇宙空间接受任何辐射能量,试估算其表面的平均温度。 解:电子原件的发热量=航天器的辐射散热量即: =187K 热阻分析 1-21 有一台气体冷却器,气侧表面传热系数=95W/,壁面厚=,水侧表面传热系数W/。设传热壁可以看成平壁,试计算各个环节单位面积的热阻及从气到水的总传热系数。你能否指出,为了强化这一传热过程,应首先从哪一环节着手? 解: 则=,应强化气体侧表面传热。 1-34.一台R22的空调器的冷凝器如附图所示。温度为313K 的氟利昂22的饱和蒸气在管子内流动,温度为283K 的空气进入冷凝器冷却氟利昂蒸气使其凝结。该冷凝器的迎风面积为,迎面风速为。氟利昂蒸气的流量为,从凝结氟利昂蒸气到空气的总传热系数为,试确定该冷凝器所需的传热面积。提示:以空气进、出口温度的平 均值作为计算传热温差的空气温度。所谓迎风面积是指 空气进入冷凝器之前的流动面积。 2-11提高燃气进口温度是提高航空发动机效率的有效 方法。为了是发动机的叶片能承受更高的温度而不至于损坏,叶片均用耐高温的合金制成,同时还提出了在叶 片与高温燃气接触的表面上涂以陶瓷材料薄层的方法, 如附图所示,叶片内部通道则由从压气机来的空气予以 冷却。陶瓷层的导热系数为(m ·K ),耐高温合金能承 受的最高温度为1250K ,其导热系数为25W/(m ·K)。在 耐高温合金与陶瓷层之间有一薄层粘结材料,其造成的 接触热阻为10-4 ㎡·K/W 。如果燃气的平均温度为1700K , 与陶瓷层的表面传热系数为1000W/(㎡·K),冷却空气 的平均温度为400K ,与内壁间的表面传热系数为 500W/(㎡·K),试分析此时耐高温合金是否可以安全地工作? 2-13 在附图所示的平板导热系数测定装置中,试件厚度远小于直径d 。由于安装制造不好,试件与冷热表面之间平均存在着一层厚为的空气隙。设热表面温度℃,冷表面温度℃,空气隙的导热系数可分别按查取。试计算空气隙的存在给导热系数测定带来的误差。通过空气隙的辐射换热可以略而不计。 解:查附表8得℃, ℃, 无空气时 有空气隙时 得 所以相对误差为 圆筒体 2-16 一根直径为3mm 的铜导线,每米长的电阻为。导 线外包有厚为1mm 导热系数为的绝缘层。限定绝缘层的 最高温度为65℃,最低温度为0℃。试确定在这种条件 下导线中允许通过的最大电流。 解:根据题意有: 解得:

概率论与数理统计课后习题答案

习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出 现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A = ‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量, A =‘通过汽车不足5台’, B =‘通过的汽车不 少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’1,2,,6i =L , 135{,,}A e e e =。 (2) {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 (3) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5)S = (4) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5) {0,1,2,},{0,1,2,3,4},{3,4,} S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用 ,,A B C 表示下列事件: (1)仅A 发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 解 (1)ABC (2)AB AC BC U U 或 ABC ABC ABC ABC U U U ; (3)A B C U U 或 ABC ABC ABC ABC ABC ABC ABC U U U U U U ; (4)ABC ABC ABC U U ; (5)AB AC BC U U 或 ABC ABC ABC ABC U U U ; 3.一个工人生产了三件产品,以(1,2,3)i A i =表示第i 件产品是正品,试用i A 表示下列事件:(1)没有一件产品是次品;(2)至少有一件产品是次品;(3)恰有一件产品是次品;(4)至少有两件产品不是次品。 解 (1)123A A A ;(2)123A A A U U ;(3) 123123123A A A A A A A A A U U ;(4)121323A A A A A A U U 。 4.在电话号码中任取一个电话号码,求后面四个数字全不相同的概率。 解 设A =‘任取一电话号码后四个数字全不相同’,则 5.一批晶体管共40只,其中3只是坏的,今从中任取5只,求 (1)5只全是好的的概率; (2)5只中有两只坏的的概率。 解 (1)设A =‘5只全是好的’,则 537540 ()0.662C P A C =B ;

高等数学第三章课后习题答案

1 / 10 第三章 中值定理与导数的应用 1. 验证拉格朗日中值定理对函数x x f ln )(=在区间[]e ,1上的正确性。 解:函数()ln f x x =在区间[1,]e 上连续,在区间(1,)e 内可导,故()f x 在[1,]e 上满足 拉格朗日中值定理的条件。又x x f 1 )(= ',解方程,111,1)1()()(-=--= 'e e f e f f ξξ即得),1(1e e ∈-=ξ。因此,拉格朗日中值定理对函数()ln f x x =在区间[1,]e 上是正确的。 2.不求函数)4)(3)(2)(1()(----=x x x x x f 的导数,说明方程0)(' =x f 有几个实根,并指出它们所在的区间。 解:函数上连续,分别在区间[3,4][2,3],2],,1[)(x f 上在区间(3,4)(2,3),2),,1(可导, 且(1)(2)(3)(4)0f f f f ====。由罗尔定理知,至少存在),2,1(1∈ξ),3,2(2∈ξ ),4,3(3∈ξ使),3,2,1( 0)(=='i f i ξ即方程'()0f x =有至少三个实根。又因方程 '()0f x =为三次方程,故它至多有三个实根。因此,方程'()0f x =有且只有三个实根, 分别位于区间(1,2),(2,3),(3,4)内。 3.若方程 011 10=+++--x a x a x a n n n Λ有一个正根,0x 证明: 方程0)1(1211 0=++-+---n n n a x n a nx a Λ必有一个小于0x 的正根。 解:取函数()1 011n n n f x a x a x a x --=+++L 。0()[0,]f x x 在上连续,在0(0,)x 内可导, 且0(0)()0,f f x ==由罗尔定理知至少存在一点()00,x ξ∈使'()0,f ξ=即方程 12011(1)0n n n a nx a n x a ---+-++=L 必有一个小于0x 的正根。 4.设,11<<<-b a 求证不等式: .arcsin arcsin b a b a -≥-

概率论与数理统计期末考试卷答案

《概率论与数理统计》 试卷A (考试时间:90分钟; 考试形式:闭卷) (注意:请将答案填写在答题专用纸上,并注明题号。答案填写在试卷和草稿纸上无效) 一、单项选择题(本大题共20小题,每小题2分,共40分) 1、A ,B 为二事件,则A B = U () A 、A B B 、A B C 、A B D 、A B U 2、设A ,B ,C 表示三个事件,则A B C 表示( ) A 、A , B , C 中有一个发生 B 、A ,B ,C 中恰有两个发生 C 、A ,B ,C 中不多于一个发生 D 、A ,B ,C 都不发生 3、A 、B 为两事件,若()0.8P A B =U ,()0.2P A =,()0.4P B =, 则( )成立 A 、()0.32P A B = B 、()0.2P A B = C 、()0.4P B A -= D 、()0.48P B A = 4、设A ,B 为任二事件,则( ) A 、()()()P A B P A P B -=- B 、()()()P A B P A P B =+U C 、()()()P AB P A P B = D 、()()()P A P AB P AB =+ 5、设事件A 与B 相互独立,则下列说法错误的是() A 、A 与 B 独立 B 、A 与B 独立 C 、()()()P AB P A P B = D 、A 与B 一定互斥 6、设离散型随机变量X 的分布列为 其分布函数为()F x ,则(3)F =() A 、0 B 、0.3 C 、0.8 D 、1 7、设离散型随机变量X 的密度函数为4,[0,1] ()0, cx x f x ?∈=??其它 ,则常数c = () A 、 15 B 、1 4 C 、4 D 、5

课后作业及答案

【课后作业】:某棒球拍公司目前有300万的债务,利率为12%。该公司希望为一个400万的扩张项目融资,有三种方案: 方案一:按14%的利率增发债务; 方案二:发行股利率为12%的优先股; 方案三:按每股16元出售普通股。 公司目前有80万股普通股流通在外,使用的税率为40%。 (1)如果息税前收益目前是150万元,假设营业利润没有立即增加,三种方案的每股收益各是多少? (2)为三种方案画出无差异图。三种方案的无差异点大致是多少?用数学方法确定债务方案和普通方案间的无差异点,检查前面的判断。三种方案下横轴的截距各是多少? (3)为每种方案计算EBIT 的期望值150万的财务杠杆系数。 (4)你希望选择哪种方案?请说明理由。 【解答】:(1) 三种筹资方案每股收益比较 单位:千元 (2)【无差异点】: 债务方案一与普通股方案三:EBIT=2712(千元); 优先股方案二与普通股方案三:EBIT=3720(千元); 按相同的EPS 增量债务方案始终优于优先股方案,这两种融资方案之间不存在无差别点。 从数学上看,债务方案一和普通股方案三之间的无差别点为: 同理,优先股方案二和普通股方案三之间的无差别点为: 1 920 000=(360 000+560 000);3 000 000×12%=360 000(元);4 000 000×14%=560 000(元); 2 480 000=4 000 000×12% 3 80(万股)+400(万元)÷16元/股=105(万股) (千元)2712050 ,10 %)401)(360(8000%)401)(920(3,13,13,1=---=---EBIT EBIT EBIT (千元) 3720050,10%)401)(360(800480%)401)(360(3,23,23,2=---= ---EBIT EBIT EBIT

统计学第三章课后作业参考答案

统计学第三章课后作业参考答案 1、统计整理在统计研究中的地位如何? 答:统计整理在统计研究中的地位:统计整理实现了从个别单位标志值向说明总体数量特征的指标过度,是人们对社会经济现象从感性认识上升到理性认识的过度阶段,为统计分析提供基础,因而,它在统计研究中起了承前启后的作用。 2、什么是统计分组?为会么说统计分组的关键在于分组标志的选择? 答:1)统计分组是根据统计研究任务的要求和现象总体的内在特点,把统计总体按照某一标志划分为若干性质不同而又有联系的几个部分。 2)因为分组标志作为现象总体划分为各处不同性质的给的标准或根据,选择得正确与否,关系到能否正确地反映总体的性质特征、实现统计研究的目的的任务。分组标志一经选取定,必然突出了现象总体在此标志下的性质差异,而掩盖了总体在其它标志下差异。缺乏科学根据的分组不但无法显示现象的根本特征,甚至会把不同性质的事物混淆在一起,歪曲了社会经济的实际情况。所以统计分组的关键在于分组的标志选取择。 3、统计分组可以进行哪些分类? 答:统计分组可以进行以下分类 1)按其任务和作用的不同分为:类型分组、结构分组、分析分组 2)按分组标志的多少分为:简单分组、复合分组 3)按分组标志性质分为:品质分组、变量分组 5单项式分组和组距式分组分别在什么条件下运用? 答:单项式分组运用条件:变量值变动范围小的离散变量可采取单项式分组 组距式分组运用条件:变量值变动很大、变量值的项数又多的离散变量和连续变量可采取组距式分组 8、什么是统计分布?它包括哪两个要素? 答:1)在分组的基础上把总体的所有单位按组归并排列,形成总体中各个单位在各组分布,称为统计分布,是统计整理结果的重要表现形式。 2)统计分布的要素:一、是总体按某一标志分的组, 二、是各组所占有的单位数——次数 10、频数和频率在分配数列中的作用如何? 答:频数和频率的大小表示相应的标志值对总体的作用程度,即频数或频率越大则该组标志值对全体标志水平所起作用越大,反之,频数或频率越小则该组标志值对全体标志水平所起作用越小 11、社会经济现象次数分布有哪些主要类型?分布特征?

概率论与数理统计课后习题答案

第一章 随机事件及概率 第一节 样本空间与随机事件 1.试写出下列的样本空间。 {}{} ()()()()()()()()(){}(){} ()(){} 2 2(1)0100,(2)1,(3)(5,0)5,15,25,35,40,51,52,53,54,5(4),02,,5,212,,0,1,2,3,4,5,6s x x x R s x x x z s s x y x y x y R s x y x y x y =≤≤∈=≥∈== ≤+≤∈=≤+≤= 2.化简下列各式: ()()1() 2A Ω整个样本空间 3.设A,B,C 为三个事件,用A,B,C 的运算关系表示下列事件: ()()()()()()()()1234567ABC A B C ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC ABC 第二节 随机事件的概率 1. ()()()()1121341c a b c b c a c ---+--+ 2. P(A ∪B ∪C) =P(A)+P(B)+P(C)-P(AB)-P(BC)-P(CA)+P(ABC) =1/4+1/4+/4-0-0-1/8+0 =5/8

{}{}()()()()()() ()()( )() ()293101831012=053 10310 1 15331 11(+-) 10101514 115 A B C P A C P B C P AB C p A p AB P A B P A B P A P A B P A B P AB === = == ===-=-===-= 设含含 4. ()()()()()1311011372102321013 10 27 15 1 15 C P A C C C P B C C P C C == == == 设这个球是黑球为事件A 设刚好一个白球一个黑球为事件B ,两个球全是黑球为事件C. 5. ()2 21232 1523 35C C P A C ==设这两件商品来自同一场地为事件A 。 6. ()()()()500 412 411013641=0.746 3652=10.427 12 p A A p A ?? =- ???-=设至少有一个人的生日是月 日为事件A 。设至少有两个人的生日是同一个月的为事件A 。

第三章课后题答案

《微观经济学》(高鸿业第四版)第三章练习题参考答案 1、已知一件衬衫的价格为 80元,一份肯德鸡快餐的价格为 20 元,在某 消费者关于这两种商品的效用最大化的均衡点上, 一份肯德 鸡快餐对衬衫的边际替代率 MRS 是多少? 解:按照两商品的边际替代率 MRS 的定义公式,可以将一份肯德 鸡快餐对衬衫的边际替代率写成:MRS XY 其中:X 表示肯德鸡快餐的份数;Y 表示衬衫的件数;MRS 表示 在该消费者实现关于这两件商品的效用最大化时,在均衡点上 有 MRS xy =P x /P y 即有 MRS =20/80=0.25 它表明:在效用最大化的均衡点上,消费者关于一份肯德鸡快 餐对衬衫的边际替代率 MRS 为0.25。 2假设某消费者的均衡如图 1-9所示。其中,横轴OX 1和纵轴 0X 2,分别表示商品1和商品2的数量,线段AB 为消费者的预算线, 曲线U 为消费者的无差异曲线,E 点为效用最大化的均衡点。已知商 品1的价格R=2元。 在维持效用水平不变的前提下 要放弃的衬衫消费数量。 消费者增加一份肯德鸡快餐时所需

(1)求消费者的收入; (2)求商品的价格P2; ⑶写出预算线的方程; (4) 求预算线的斜率; X1 (5) 求E点的MRS12的值 解:(1)图中的横截距表示消费者的收入全部购买商品1的数量 为30单位,且已知P1=2元,所以,消费者的收入M=2元X 30=60。 (2)图中的纵截距表示消费者的收入全部购买商品2的数量为20单位,且由(1)已知收入M=60元,所以,商品2的价格P2斜率二—P1/P2二— 2/3,得F2=M/20=3 元 (3)由于预算线的一般形式为: P1X+PX2二M 所以,由(1)、(2)可将预算线方程具体写为2X+3X=60。 (4)将(3)中的预算线方程进一步整理为X2=-2/3 X 1+20。很清楚, 预算线的斜率为—2/3。 (5)在消费者效用最大化的均衡点E上,有MRS二=MRS二P1/P2, 即无差异曲线的斜率的绝对值即MR勞于预算线的斜率绝对值P1/P2。因此, 在MRS二P/P2 = 2/3。 3请画出以下各位消费者对两种商品(咖啡和热茶)的无差异曲 线,同时请对(2)和(3)分别写出消费者B和消费者C的效用函数。

相关文档
相关文档 最新文档