文档库 最新最全的文档下载
当前位置:文档库 › 断路器失灵保护组成

断路器失灵保护组成

断路器失灵保护组成

断路器失灵保护组成

断路器失灵保护是指故障电气设备的继电保护动作发出跳闸命令而断路器拒动时,利用故障设备的保护动作信息与拒动断路器的电流信息构成对断路器失灵的判别,能够以较短的时限切除同一厂站内其他有关的断路器,使停电范围限制在最小,从而保证整个电网的稳定运行,避免造成发电机、变压器等故障元件的严重烧损和电网的崩溃瓦解事故。

断路器失灵保护组成

(1)起动回路:由该组母线上所有出线的保护装置的出口继电器和判别故障是否消除的鉴别元件低电压继电器构成。它只有在同时满足:故障线路(设备)的保护装置出口继电器动作后不返回和在保护范围内仍然存在故障这两个条件时,才能允许失灵保护动作。

(2)时间元件:在该组母线上的保护动作后才开始计时,其动作时限不需与其它保护配合,仅需躲过断路器跳闸时间与保护返回时间之和(0.3S)。

220kV线路与主变失灵保护的区别

220kV 线路与主变失灵保护的区别 针对值班员在学习失灵保护时,经常把220kV 线路与主变220kV 侧开关失灵保护的启动回路混淆,为了便于大家学习和熟练掌握,以运村变失灵保护经过认真分析,下面从几个方面详细说说两者启动回路的区别. 一、 何为失灵保护 开关失灵保护为线路或主变发生故障保护动作而开关拒动不能切除故障时,经延时去跳开该故障元件所在母线上全部开关的保护装置。短延时(0.3S )跳开母联开关,长延时(0.6S)跳开开关所在母线上所有开关。 二、失灵保护启动回路原理图 +24V - PSL631A 电源 跳B 至失灵重跳 跳A 至失灵重跳 跳C 至失灵重跳 三跳 至失灵重跳 PSL602 RCS-931 CZX-12R PSL631A 装置 LP7 LP8 LP9 LP9 LP10 LP11 TJA TJB TJC TJA TJB TJC LJA LJB LJC LJ3 QSLJ 11TJR 12TJR 11TJQ 12TJQ 220kV 母差电源 -

图一220kV 线路失灵保护启动回路原理图 (以 220kV 运鹅4581开关为例) RCS-974保护装置 图二 主变220kV 侧开关失灵保护启动回路原理图 +24V 失灵启动 解除复压 QSLJ 1 QSLJ 2 8LP21 8LP22 (BP-2B 电源) 220KV 母差装置 1G 2G I 母失灵出口 II 母失灵出口 LP52 LP75 解除失灵保护复压 RCS-974保护装置 +24V - 第一套978保护出口 第二套978保护出口 TJR1 TJR2 LJ1 LJ2 LJ0 QSLJ 1LP19 2LP19 RCS-978E

110kV失灵保护操作及运行注意事项

110kV失灵保护操作及运行注意事项 前言 失灵保护作为一种重要的近后备保护,在电力系统中发挥着重要作用,不仅在高压和超高压系统中得到广泛应用,在重要的110kV系统中也得到应用。失灵保护作为断路器的后备保护,能有选择地切除与失灵断路器相邻的断路器,既保证了在尽可能短的时间内切除故障,又能有效避免事故进一步扩大,有利于电网的安全、稳定、可靠地运行,在电力系统中具有很重要的作用。 第一讲:失灵保护的定义 第二讲:失灵保护的基本原理 第三讲:失灵保护操作及运行注意事项 第四讲:失灵保护动作现象及处理步骤 第一讲:失灵保护的定义 断路器失灵保护是指当系统发生故障,故障设备的保护装置动作后,断路器因操作失灵而拒绝跳闸时,通过故障元件的保护动作信息与拒动断路器的电流信息构成的对断路器跳闸失灵的判别元件,以较短的时限作用于本变电站相邻断路器跳闸的一种保护装置。 第二讲:失灵保护的基本原理 根据失灵保护的定义,失灵保护最核心的逻辑,是由能够判断设备故障的保护动作信息和能够判断断路器仍在合闸状态的信息构成“与”的逻辑,去启动失灵保护,失灵保护经过延时,有选择性的切除与失灵断路器相邻的断路器。图1为断路器保护失灵回路原理示意图。110 kV断路器失灵起动判别采用“相电流Iφ或零序电流I0或负序电流I2”元件动作,配合“保护动作”和“断路器合闸位置”三个条件组成的“与门”逻辑,去启动失灵保护的执行元件,经延时T后,失灵保护动作出口,切除拒动断路器相邻的开关。图中的“保护动作接点”为线路能快速返回的电气量保护出口继电器接点。显然,主变压器瓦斯保护、释压阀动作等非电量保护是不符合上述条件的,不起动此出口继电器,因为其动作后不能迅速返回,即使故障已经切除,保护还是处于动作状态,不能真实地反映故障情况。 2.1失灵保护动作原理: 失灵保护的具体实现与变电站的主接线密切相关,下面针对110kV系统中广泛采用的单母线分段和双母线两种主接线形式,分别介绍失灵保护的动作过程 2.1.1单母线接线失灵保护动作过程: 110kV线路发生故障时,本线路保护装置动作,但断路器拒动,故障点没有被切除。此时失灵保护启动元件中相电流Iφ、零序电流I0或负序电流I2中至少有一个电流值超过继电保护整定值而动作,同时故障线

断路器失灵保护

断路器失灵保护的作用及组成断路器失灵保护是连接在同一母线上的电气设备故障时,当故障元件的保护动作出口,而且断路器跳闸失灵时,通过故障元件的保护判别启动相关逻辑,将说在母线上的其他断路器跳闸的一种保护装置。 失灵保护主要是馈线故障情况保护动作,而断路器拒动时的保护,其动作行为与母线差动保护相似,因此在变电站中,其出口回路有两种形式,一个是失灵保护有自己单独的出口跳断路器,另一种形式是失灵保护与母线差动保护共用一套出口回路接跳断路器。应该特别注意的是,失灵保护动作跳闸的现象与母线差动保护动作跳闸的很像,但它们的性质不同,所反映的故障范围,即失灵保护和母差保护的保护范围也是不同的,应该加以区别。 保护失灵必须具备两个条件,缺一不可: (1)对应断路器保护动作出口 (2)断路器任一相存在故障电流(指示断路器未跳闸) 2. 失灵保护动作的现象: (1)警铃响,喇叭叫,对应母线所接断路器跳闸,同时有拒跳断路器仍保持在合闸位置,但其表计指示应为零 (2)查保护屏,有失灵保护动作指示灯亮或相应信号继电器掉牌;同时有线路、主变压器或其他保护动作信号。 (3)伴随断路器拒动的故障或异常现象,如“分闸闭锁”“压力异常”“控制回路断线”等光字牌或其他异常情况。 3. 失灵保护跳闸的可能原因。

(1)线路故障或断路器所接其他保护动作,断路器拒动。断路器拒分的原因有多种多样,最常见的是液压力异常闭锁,分闸电源异常,控制回路断线,直流系统异常等。 (2)失灵保护整定有误,或失灵保护装置异常造成误动。(3)误碰。误操作造成保护动作。 4. 失灵保护动作跳闸的处理。 (1)失灵保护动作后,应立即检查相应一次设备状态,记录信号,并及时将检查及保护动作情况汇报调度 (2)当确认某断路器保护动作出口,而断路器拒分,失灵保护动作将改母线上其他断路器跳闸,此时应立即断开该断路器,并拉开隔离开关,隔离故障点,检查母线确无故障后依据调度指令逐个恢复其他断路器的正常运行。 (3)如果失灵保护动作将两条母线上的所有断路器全部跳闸,则表明失灵保护无选择性动作,此时应该申请调度将失灵保护停用,由专业人员检查,同时断开该断路器,并拉开两侧隔离开关,检查母线确无故障后依据调度指令逐个恢复其他断路器的正常运行。 (4)母联差动保护动作,同时失灵保护动作将各断路器跳闸,表明母联断路器拒分,此时应该详细检查母线设备,在位查出故障原因或故障未消除之前,严禁向母线送电。 (5)无任何断路器保护动作而失灵保护动作,应根据系统有无故障象征综合分析动作行为,如果确认失灵保护务动,应汇报调度将失灵保护停用,然后逐一恢复各断路器的正常运行,由专业人员处理

开关柜中断路器保护知识大讲解

开关柜中断路器保护知识大讲解 在开关柜的生产中会经常用到断路器。断路器也是开关柜中不可缺少的主元器件之一。它给开关柜和相关设备起着保护作用。断路器保护主要包括:断路器失灵保护、自动重合闸、充电保护、死区保护、三相不一致保护和瞬时跟跳。下面主要讨论3/2接线方式下的断路器保护。 一、断路器保护装置的配置 一般在双母线、单母线接线方式中,输电线路保护要发跳闸命令时只跳线路本端的一个断路器,重合闸自然也只重合这一个断路器,所以重合闸按保护配置是合理的。 在3/2接线方式中把失灵保护、自动重合闸、三相不一致保护、死区保护和充电保护做在一个装置内,这个装置即称为断路器保护。 二、断路器失灵保护 断路器失灵保护是指故障电气设备的继电保护动作发出跳闸命令而断路器拒动时,利用故障设备的保护动作信息与拒动断路器的电流信息构成对断路器失灵的判别,能够以较短的时限切除同一厂站内其他有关的断路器,使停电范围限制在最小,从而保证整个电网的稳定运行,避免造成发电机、变压器等故障元件的严重烧损和电网的崩溃瓦解事故。 一般在220kV及以上断路器上配置断路器失灵保护功能,部分重要的110kV断路器也会配置失灵功能。以下详细分析:3/2接线方式下的断路器失灵保护。 如图1所示,在3/2接线方式下,如果在线路2发生短路,线路保护跳开5021和5022断路器。假如5021断路器失灵,为了短路点的熄弧,5021断路器的失灵保护应将500kVⅠ母上所有的断路器(图中5011、5031断路器)都跳开。

图1 500kV变电站3/2接线方式简图 如果在500kVⅠ母上发生短路,母线保护动作跳母线上所有断路器。假如5021断路器失灵,5021断路器的失灵保护应将5022断路器跳开,并发远方跳闸命令跳线路2对侧的断路器。(如连接元件是变压器,则跳开变压器各侧断路器)所以边断路器的失灵保护动作后应该跳开边断路器所在母线上的所有断路器和中断路器并启动远方跳闸功能跳与边断路器相连的线路对侧断路器(或跳变压器各侧断路器)。 如果在线路2上发生短路,线路保护跳5011和5021两个断路器。假如5022断路器失灵,5022断路器的失灵保护应将5023断路器跳开,并发远方跳闸命令跳2号主变各侧断路器,这样短路点才能熄弧。 所以中断路器的失灵保护动作后应该跳开它两侧的两个边断路器,并启动远方跳闸功能跳与中断路器相连的线路对侧断路器(或跳变压器各侧断路器)。

断路器失灵保护二次详解

失灵汇总 一.500kV 开关失灵 以第三串为例,开关的失灵保护是在开关保护RCS -921里实现的,线路保护RCS -931和RCS -902的分相跳闸命令及来自操作箱的三相跳闸命令TJR 开入至RCS -921,921经内部逻辑判断――过流判据(失灵高定值0.6A ,失灵低定值0.4A ),满足失灵条件时经第一时限0.13s 跳本开关,0.2s 跳相邻开关即SLJ 触点闭合。 Fig.1 失灵启动开入 对5031边开关来说,两个SLJ 触点跳相邻中开关;两个SLJ 触点启动母差失灵;另有四个SLJ 触点开入至FOX-41Ⅰ和Ⅱ启动远跳。 Fig.2 5031边开关失灵出口 对5033边开关来说,两个SLJ 触点跳相邻中开关;两个SLJ 触点启动母差失灵;另有一个SLJ 触点开入至主变保护C 屏,借助RCS-974的压力释放跳闸继电器J8联跳主变三侧。 Fig.3 5033边开关失灵出口 对5032中开关来说,两个SLJ 触点跳相邻5031边开关;两个SLJ 触点跳相邻5033边开关;一个SLJ 触点与5033的SLJ 触点并联开入至主变保护C 屏,实现联跳主变三侧;另有四个SLJ 触点开入至FOX-41Ⅰ和Ⅱ启动远跳。 5032 断路器保护 5031 操作箱 压板名称 3LP8 5032开关跳闸Ⅰ 3LP17启动光纤接口二命令8发信Ⅱ 3LP9 5032开关跳闸Ⅱ 3LP14启动光纤接口一命令7发信Ⅰ 3LP15启动光纤接口一命令8发信Ⅰ 3LP16启动光纤接口二命令7发信Ⅱ 3LP10 5033开关跳闸Ⅰ 3LP11 5033开关跳闸Ⅱ 3LP12 失灵联跳主变三侧 Fig.4 5032中开关失灵出口 二.220kV 开关失灵 1.线路开关失灵 线路开关的失灵保护是由线路保护、开关保护、失灵保护共同实现的,线路保护RCS -931和RCS -902的分相跳闸命令及来自操作箱的三相跳闸命令TJR 和TJQ 与开关辅助保护RCS-923过流判据(失灵电流定值0.9 A )串联,开入至失灵保护屏BP-2B ,经失灵出口短延时0.35s 跳母联/分段开关,失灵长延时0.5s 跳该母线上所连接的所有开关。 Fig.5 220kV 线路开关失灵启动回路 2.母联/分段开关失灵

谈谈失灵保护(原创)

本文是我在工作中总结出来的,绝对原创,欢迎大家指导和交流。考虑到为同仁们省点银子,我就将文章全部贴出来了。 1. 失灵保护的条件 失灵保护的条件:动作接点+过流判据。 对于失灵保护,我们可以分为:1)母差区外故障时开关失灵。2)母差区内故障时开关失灵。 2. 主变相关故障分析 2.1. 母差区外故障 对于故障2,为母差区外故障,对应主变间隔高压侧的开关如果能顺利切除,将不起动失灵保护;如果对应间隔的开关不能顺利切除,则启动失灵保护。 失灵保护判据可在母差内部实现,也可以在母差外部实现。 失灵保护的判据为相电流、负序电流和零序电流的“与”。失灵解闭锁的电流判据可以只判负序电流和零序电流(河北南网)。 失灵启动“动作”接点的提供:一般为电量保护的动作接点,主变保护只有三跳接点,主变保护不允许单相跳闸。非电量保护不起动失灵,因为一般在保护动作切除故障后,故障返回,此时不应起动失灵;但非电量保护即使切除故障后,因为本体发生故障,所以本体保护的开入也不会返回。 2.2. 母差区内故障 对于故障1,为母差区内故障,对应主变间隔高压侧的开关如果能顺利切除,将不

起动失灵保护;如果对应间隔的开关不能顺利切除,则应完成跳主变中低压侧开关的功能。 实现方案:1)提供启失灵接点;2)提供失灵联跳接点。详见《高压保护标准化设计须知》 失灵启动“动作”接点的提供:一般为母差保护的动作接点,对于2B采用自启动方式。 失灵保护的判据同上。 3. 线路相关故障分析 3.1. 母差区外故障 对于故障2,为母差区外故障,对应的开关如果能顺利切除,将不起动失灵保护;如果对应间隔的开关不能顺利切除,则启动失灵保护。 失灵保护判据可在母差内部实现,也可以在母差外部实现。 失灵保护的判据为相电流,亦可相电流“与”负序电流(或零序电流)。 失灵启动“动作”接点的提供:一般为线路保护的分相动作接点;如果有线路电抗器,线路电抗器提供三跳接点。三相不一致作为断路器的一种异常运行状态,非电力系统的一种故障类型,而失灵保护属于近后备保护范畴,三相不一致应不启动失灵保护。 3.2. 母差区内故障

什么是断路器失灵保护_断路器失灵保护原理

什么是断路器失灵保护_断路器失灵保护原理 断路器失灵保护的定义什么是断路器失灵保护?其实断路器失灵保护就是指故障电气设备的继电保护动作发出跳闸命令而断路器拒动时,利用故障设备的保护动作信息与拒动断路器的电流信息构成对断路器失灵的判别,能够以较短的时限切除同一厂站内其他有关的断路器,使停电范围限制在最小,从而保证整个电网的稳定运行,避免造成发电机、变压器等故障元件的严重烧损和电网的崩溃瓦解事故。 在110kV及以上电压等级的发电厂和变电所中,当输电线路、变压器或母线发生短路,在保护装置动作于切除故障时,肯能伴随故障元件的断路器拒动,也即发生了断路器的失灵故障。产生断路器失灵故障的原因是多方面的,如断路器跳闸线圈短线,断路器的操动机构失灵等。高压电网的断路器和保护装置,都应具有一定的后备作用,以便在断路器或保护装置失灵时,仍能有效切除故障。相邻元件的远后备保护方案是最简单合理的后备方式,既是保护据动的后备,又是断路器拒动的后备。但是在高压电网中,由于各电源支路的助增作用,实现上述后备方式往往有较大困难(灵敏度不够),而且由于动作时间较长,易造成事故范围的扩大,甚至引起系统失稳而瓦解。有鉴于此,电网中枢地区重要的220kV 及以上主干线路,系统稳定要求必须装设全线速动保护时,通常可装饰两套独立的全线速动主保护(即保护的双重化),以防保护装置的拒动;对于断路器的拒动,则专门装设断路器失灵保护。 断路器失灵保护原理断路器拒动是电网故障情况下又叠加断路器操作失灵的双重故障,允许适当降低其保护要求,但必须以最终能切除故障为原则。在现代高压和超高压电网中,断路器失灵保护作为一种近后备保护方式得到了普遍采用。 失灵保护由电压闭锁元件、保护动作与电流判别构成的启动回路、时间元件及跳闸出口回路组成。 启动回路是保证整套保护正确工作的关键之一,必须安全可靠,应实现双重判别,防止单一条件判断断路器失灵,以及因保护触点卡涩不返回或误碰、误通电等造成的误启动。启动回路包括启动元件和判别元件;2个元件构成与逻辑。启动元件通常利用断路器自动跳

220kV失灵保护及回路原理

220kV失灵保护及回路原理 本帖最后由 dormity 于 2010-10-26 20:32 编辑 刚接触继保不久,主要从原理上说明下220kV失灵保护及回路原理,希望大家热列讨论, 共同进步! 220kV失灵保护主要包括220kV线路(或主变220kV侧)开关失灵保护、母联(分段)失灵保护、母线差动保护的失灵出口。这些保护的装置种类有很多种,但是其基本原理确是大 同小异。 1)线路(或主变220kV侧)开关的失灵保护由线路保护(对于主变220kV侧开关失灵保护则由主变电气量保护或220kV母线差动保护)跳闸出口启动,经失灵保护相应的电流继电器判别(电流是否大于失灵启动电流定值),若相应电流继电器同时动作,则判断为开关动作失灵,失灵保护随即动作,用于启动母线差动保护的失灵出口(或直接出口跳主变其他 侧开关)。 以PSL631线路保护为例,一般线路开关的失灵启动逻辑如图1所示: 图1 线路开关失灵保护启动逻辑 为了增加启动失灵的可靠性,失灵保护装置还会采用一些其他措施。如PSL631就加入了零序启动元件和突变量启动元件作为失灵启动的条件之一。 2)线路(或主变)失灵启动母差失灵出口回路,母差失灵出口回路会根据相应开关母线闸刀所在位置自动判别开关所在母线,再经相应母线的复合电压闭锁,第一延时跳母联开关,第二延时跳相应母线上所有设备。只是对于主变220kV侧开关,失灵启动开入的同时,往

往会开放母差保护的复合电压闭锁。其逻辑(以BP-2B母差保护为例)如图2所示: 图2 母差失灵出口逻辑 3)对于主变开关(220kV侧)失灵保护,除主变电气量保护动作启动外,还有母线差动保护动作启动,经主变220kV侧失灵电流继电器判别,第一延时跳本开关,以避免测试时的不慎引起误动而导致相邻开关的误跳,第二延时则是失灵出口启动,此时又可分两种情况:若为主变电气量保护启动,则失灵将启动母差失灵出口回路(同线路开关的失灵逻辑),若为母线差动保护动作启动的,则直接启动跳主变其他侧开关。该逻辑关系如图3所示: 图3 主变220kV侧开关失灵保护启动逻辑 同样为了增加启动失灵的可靠性,如图3所示主变220kV侧开关失灵出口可以增加零序电 流作为判据。 4)对于母联(分段)开关的失灵保护,由母线差动保护或充电保护启动,经母联失灵电流判别,延时封母联TA,继而母差保护动作跳相应母线上所有设备。以BP-2B母线差动保护 为例,其逻辑如图4所示:

失灵保护问题

丰润热电断路器失灵保护问题统计 1.变压器(含启备变、主变)高压侧开关失灵启动回路及解除复压 闭锁回路是否应该由主保护I提供一组启动失灵及解除复压闭锁回和主保护II提供一组启动失灵及解除复压闭锁回路给母差保护装置? 2.《华北电网继电保护标准化设计》对220kV启动失灵回路要求要 求如下: 请问其中第二条要求是否可以理解为如果断路器失灵保护在母差保护装置内实现,变压器失灵电流判别元件必须由母差保护中的失灵保护的电流判别元件实现?而不能再由其他保护装置的失灵保护实现?第四条是否可以理解为可以增加失灵启动装置,但是失灵电流判别不能在失灵启动装置内实现? 3.启备变保护A屏采用的RS-974的非全相及失灵逻辑如下: 非全相逻辑

失灵逻辑

设计院设计提供的开入量如下:“备变跳闸启动失灵”、“断路器合闸位置启动失灵”, 4.启备变B屏(许继802A)开入量如下:“断路器位置不对应”、“断 路器位置接点”、“保护动作接点” 失灵启动保护判别逻辑框图 1.1.在发电机变压器组的断路器出现非全相运行时,首先应采取发

电机降出力措施,然后由经快速返回的“负序或零序电流元件”闭锁的“断路器非全相判别元件”,以独立的时间元件以第一时限,启动独立的跳闸回路重跳本断路器一次,并发出“断路器三相位置不一致”的动作信号。若此时断路器故障仍然存在,可采用以下措施: 1)以“零序或负序电流”任何一个元件动作、“断路器三相位置 不一致”和“保护动作”三个条件组成的“与逻辑”,通过独 立的时间元件以第二时限去解除断路器失灵保护的复合电压 闭锁,并发出告警信号, 2)同时经“零序或负序电流”元件任何一个元件动作以及三个相 电流元件任何一个元件动作的“或逻辑”,与“断路器三相位 置不一致”,“保护动作”三个条件组成的“与逻辑”动作后, 经由独立的时间元件以第三时限去启动断路器失灵保护并发 出“断路器失灵保护启动的信号”。 1.2.为解决变压器断路器失灵保护因保护灵敏度不足而不能投运的问题,对变压器和发电机变压器组的断路器失灵保护可采取以下措施: 1)采用“零序或负序电流”动作,配合“保护动作”和“断路器 合闸位置”三个条件组成的与逻辑,经第一时限去解除断路器 失灵保护的复合电压闭锁回路。 2)同时再采用“相电流”、“零序或负序电流”动作,配合“断 路器合闸位置”两个条件组成的与逻辑经第二时限去启动断路

断路器失灵保护若干问题分析

2.对于变压器失灵保护,可用“电流判别+保护出口+复合电压闭锁触点”相串联构成与门的方式解锁。电流判别元件可采用零序电流和相电流并联的方式(或门)构成;保护出口为跳高压侧开关的出口;复合电压闭锁触点应为低压侧的复合电压触点,电压触点动作后应延时返回。电压闭锁触点中包括低压侧电压,主要是防止低压侧故障时高压侧复合电压元件没有灵敏度而不能开放失灵保护;而延时返回主要是考虑如果变压器差动保护动作低压开关跳开后,低压母线的电压可能会立即恢复正常(例如变压器低压侧有小电源或变压器低压侧并列运行),从而没有起到开放闭锁的作用。延时的时间应保证即使是发生低压侧区内故障,差动保护或低压侧后备保护能有足够的时向启动失灵保护跳开故障变压器所在母线上的所有元件,即延时时间应大于低压侧保护出口后跳低压开关与跳三侧开关的整定时间之差(一般为0.3 s~0. 5 s),加上失灵保护启动后跳开故障变压器母线上所有元件时间(一般为0.5s),考虑留有一定的裕度,一般取3s即可。采用上述方式保证了误传动时有电压把关,而区外故障电压开放时有“电流判别”和“保护出口”把关。该方法的优点是在高压开关三相失灵时也能解锁。此外,变压器低压开关检修时,低压母线可能失去电压,此时解锁回路中的电压闭锁将开放,因此,还可在解锁回路中串人压板,以备断开该解锁回路。 3.电流判别元件灵敏度低的问题 断路器失灵保护的电流判别元件应满足在系统正常运行及故障线路开关断开后不动作,同时在线路末端发生各种故障时有足够的灵敏

度,这样才能使电流判别元件起到出口把关的作用。可以采取以下2种方法: 1)用电流突变量启动元件对3个相电流元件从逻辑上进行闭锁; 2)用电流突变量启动元件控制失灵启动电流继电器动作的正电源。 这样,系统正常运行时,由于电流突变量启动元件不动作,开关失灵电流判别元件不会动作;系统发生故障时,电流突变量启动元件动作后展宽一个时间(大于后备保护的时间,例如7s)开放电流判别回路。电流突变量启动元件(由正序和负序电流组成)应能保证本线路末端发生故障时有足够的灵敏度,能可靠启动。按上述方法构成的失灵保护电流判别回路,在正常运行时由电流突变量元件保证其不会动作,在开关断开后由相电流元件保证其不会动作,从而提高了系统正常运行时失灵保护的安全性。 当断路器失灵时,用于判别该断路器失灵的电流判别元件必须可靠动作才能保证失灵保护动作出口。对于发电机、变压器,当发生内部匝间短路故障时,尽管差动保护可以动作出口,但高压侧断路器处的电流测量元件感受到的故障电流不太大,达不到断路器失灵的“有流”电流判别元件动作值。这样,就无法保证高压侧断路器失灵时失灵保护正确动作。由于发电机、变压器内部匝间短路故障时,高压侧断路器处的电流测量元件感受到的故障电流大小很不确定,与短路匝数的关系很大。因此,不太可能使“有流”判别方式的电流判别元件能灵敏地反应这种故障并区别有故障与无故障。

220kV失灵保护及回路讲解

220kV失灵保护及回路讲解 220kV失灵保护主要包括220kV线路(或主变220kV侧)开关失灵保护、母联(分段)失灵保护、母线差动保护的失灵出口。这些保护的装置种类有很多种,但是其基本原理确是大同小异。 1)线路(或主变220kV侧)开关的失灵保护由线路保护(对于主变220kV侧开关失灵保护则由主变电气量保护或220kV母线差动保护)跳闸出口启动,经失灵保护相应的电流继电器判别(电流是否大于失灵启动电流定值),若相应电流继电器同时动作,则判断为开关动作失灵,失灵保护随即动作,用于启动母线差动保护的失灵出口(或直接出口跳主变其他侧开关)。 以PSL631线路保护为例,一般线路开关的失灵启动逻辑如图1所示: 图1 线路开关失灵保护启动逻辑 为了增加启动失灵的可靠性,失灵保护装置还会采用一些其他措施。如PSL631就加入了零序启动元件和突变量启动元件作为失灵启动的条件之一。 2)线路(或主变)失灵启动母差失灵出口回路,母差失灵出口回路会根据相应开关母线闸刀所在位置自动判别开关所在母线,再经相应母线的复合电压闭锁,第一延时跳母联开关,第二延时跳相应母线上所有设备。只是对于主变220kV侧开关,失灵启动开入的同时,往往会开放母差保护的复合电压闭锁。其逻辑(以BP2B母差保护为例)如图2所示:

图2 母差失灵出口逻辑 3)对于主变开关(220kV侧)失灵保护,除主变电气量保护动作启动外,还有母线差动保护动作启动,经主变220kV侧失灵电流继电器判别,第一延时跳本开关,以避免测试时的不慎引起误动而导致相邻开关的误跳,第二延时则是失灵出口启动,此时又可分两种情况:若为主变电气量保护启动,则失灵将启动母差失灵出口回路(同线路开关的失灵逻辑),若为母线差动保护动作启动的,则直接启动跳主变其他侧开关。该逻辑关系如图3所示: 图3 主变220kV侧开关失灵保护启动逻辑 同样为了增加启动失灵的可靠性,如图3所示主变220kV侧开关失灵出口可以增加零序电流作为判据。 4)对于母联(分段)开关的失灵保护,由母线差动保护或充电保护启动,经母联失灵电流判别,延时封母联TA,继而母差保护动作跳相应母线上所有设备。以BP-2B母线查动保护为例,其逻辑如图4所示: 图4 母联(分段)开关失灵逻辑 若故障点发生在母联开关和母联CT之间(死区故障),母差保护动作跳开相应母线不能达到切除故障的目的,故障电流会依然存在,此种情况保护会根据母联开关的分开位置,延时50ms,封母联TA,令母差保护再次动作跳开另外一条母线以切除故障点。 5)220kV不启用失灵保护装置的失灵重跳功能。 线路开关失灵回路图

断路器失灵保护存在的问题分析及改进(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 断路器失灵保护存在的问题分析 及改进(标准版)

断路器失灵保护存在的问题分析及改进(标 准版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 0前言 珠海发电厂第一期工程为2台700MW燃煤机组。日本三菱公司为总承包商,美国雷神公司为电气部分的分包商,负责电气设备的供货、设计和安装调试。220kV系统共有11回开关间隔,6回出线间隔。每回220kV线路配置了2套南京自动化设备厂生产的CSL101A,CSL102A 型微机保护装置。断路器失灵保护采用GEC ALSTHOM公司设备。由于雷神公司对我国线路保护的设计不理解,设计的线路断路器失灵保护不能与线路保护正确配合,如线路保护和断路器失灵保护都配置了失灵电流启动元件(重复设置);断路器失灵保护的重跳回路设计不当,造成线路的重合闸装置不能重合等。线路开关在正常的停电操作过程中发生了线路断路器失灵保护误动作现象。2000年2月9日,海三乙线路C相瞬时性故障,线路保护动作跳开C相,由于启动了线路断路器失灵保护的重跳继电器,跳开了海三乙线路三相开关,重合闸装置

断路器失灵保护与三相不一致保护有什么区别

断路器失灵保护与三相不一致保护有什么区别 断路器失灵保护。 (1)对带有母联断路器或分断断路器的母线要求断路器失灵保护应首先动作于断开母联断路器或分段断路器,然后动作于断开与拒动断路器连接在同一母线上的所有电源支路的断路器,同时还应考虑运行方式来选定跳闸方式。 (2)断路器失灵保护由故障元件的继电保护启动,手动跳开断路器时不可启动失灵保护 (3)在启动失灵保护的回路中,除故障元件保护的触点外还应包括断路器失灵判别元件的触点,利用失灵分相判别元件来检测断路器失灵故障的存在。 (4)为从时间上判别断路器失灵故障的存在,失灵保护的动作时间应大于故障元件断路器跳闸时间和继电保护返回时间之和。 (5)为防止失灵保护误动作,失灵保护回路中任一触点闭合时,应使失灵保护不被误启动或引起误跳闸。 (6) 断路器失灵保护应有负序、零序和低电压闭锁元件。对于变压器,发电机—变压器组采用分相操作的断路器,允许考虑单相拒动,应用零序电流代替相电流判别元件和电压闭锁元件。' (7) 当变压器发生故障或不采用母线重合闸时失灵保护动作后应闭锁各连接元件的重合闸回路,以防止对故障元件进行重合。 (8) 当以旁路断路器代替某一连接元件的断路器时,失灵保护的启动回路可作相应的切换。 (9) 当某一连接元件退出运行时,它的启动失灵保护的回路应同时退出工作,以防止试验时引起失灵保护的误动作 (10) 失灵保护动作应有专用信号表示。 3.1.8 线路断路器三相不一致保护不启动失灵保护 原因:三相不一致时间比较长(不管是接操作箱的TWJ、HWJ还是开关本体的接点),,失灵延时比三相不一致延时短;当线路一相跳开三相不一致保护其实就已启动,但它延时比较长所以还没出口;如果接入失灵回路,在三相不一致启动期间,它会提供一个失灵装置的一个出口接点TJR(不一致跳三相),若这时线路负荷很大,达到过流值,失灵保护就有可能动作,动作出口就扩大事故范围。 主变非电量保护动作后是否要启动断路器失灵保护? 我的理解是:断路器失灵出口一般要具备几个条件,一是要有其他保护的动作接点来启动作为先决条件,二是要达到失灵动作电流(一般来说,该值的灵敏度较高),其他再加上一些闭锁元件的动作(如经零序电流开放等)。而非电量保护动作的接点返回较慢,有的甚至不返回。也就是说非电量保护动作后可能会造成一直启动断路器的失灵装置,有可能会在断路器正常断开后,失灵保护误动作。 失灵保护还有闭锁条件,而且,现在对非电量保护只要求重瓦斯保护投跳闸出口。非电量出口启动失灵,失灵保护还有众多条件制约,失灵的误动也是很难的。个人意见。 母差、失灵保护动作后对侧是否跳闸 220KV变电站I母故障,母差保护动作跳开I母所有开关,请问I母上线路对侧关是否会跳

断路器失灵保护二次详解

失灵汇总 一.500kV开关失灵 以第三串为例,开关的失灵保护是在开关保护RCS-921里实现的,线路保护RCS-931和RCS-902的分相跳闸命令及来自操作箱的三相跳闸命令TJR开入至RCS-921,921经内部逻辑判断――过流判据(失灵高定值0.6A,失灵低定值0.4A),满足失灵条件时经第一时限0.13s跳本开关,0.2s跳相邻开关即SLJ触点闭合。 931 902 1LP9 启动5011开关A相失灵 及重合闸 1LP10 启动5011开关B相失灵 及重合闸 1LP11 启动5011开关C相失灵 及重合闸 1LP9 启动5011开关A相失灵 及重合闸 1LP10 启动5011开关B相失灵 及重合闸 1LP11 启动5011开关C相失灵 及重合闸 压板名称 操作箱 Fig.1 失灵启动开入 对5031边开关来说,两个SLJ触点跳相邻中开关;两个SLJ触点启动母差失灵;另有四个SLJ触点开入至FOX-41Ⅰ和Ⅱ启动远跳。

5031 断路器保护 5032 操作箱 压板名称 3LP8 5032开关跳闸Ⅰ 3LP17启动光纤接口二命令8发信Ⅱ 3LP9 5032开关跳闸Ⅱ 3LP10 启动1M 母差Ⅰ失灵 3LP11 启动1M 母差Ⅱ失灵 3LP14启动光纤接口一命令7发信Ⅰ 3LP15启动光纤接口一命令8发信Ⅰ 3LP16启动光纤接口二命令7发信Ⅱ Fig.2 5031边开关失灵出口 对5033边开关来说,两个SLJ 触点跳相邻中开关;两个SLJ 触点启动母差失灵;另有一个SLJ 触点开入至主变保护C 屏,借助RCS-974的压力释放跳闸继电器J8联跳主变三侧。 5033 断路器保护 5032 操作箱 压板名称 3LP8 5032开关跳闸Ⅰ 3LP9 5032开关跳闸Ⅱ 3LP10 启动2M 母差Ⅰ失灵 3LP11 启动2M 母差Ⅱ失灵 3LP12 失灵联跳主变三侧 Fig.3 5033边开关失灵出口 对5032中开关来说,两个SLJ 触点跳相邻5031边开关;两个SLJ 触点跳相邻5033边开关;一个SLJ 触点与5033的SLJ 触点并联开入至主变保护C 屏,实现联跳主变三侧;另有四个SLJ 触点开入至FOX-41Ⅰ和Ⅱ启动远跳。

断路器失灵保护详解

断路器失灵保护详解 一.500kV开关失灵 以第三串为例,开关的失灵保护是在开关保护RCS-921里实现的,线路保护RCS-931和RCS-902的分相跳闸命令及来自操作箱的三相跳闸命令TJR开入至RCS-921,921经内部逻辑判断――过流判据(失灵高定值0.6A,失灵低定值0.4A),满足失灵条件时经第一时限0.13s跳本开关,0.2s跳相邻开关即SLJ触点闭合。 931 902 1LP9 启动5011开关A相失灵 及重合闸 1LP10 启动5011开关B相失灵 及重合闸 1LP11 启动5011开关C相失灵 及重合闸 1LP9 启动5011开关A相失灵 及重合闸 1LP10 启动5011开关B相失灵 及重合闸 1LP11 启动5011开关C相失灵 及重合闸 压板名称 操作箱 Fig.1 失灵启动开入 对5031边开关来说,两个SLJ触点跳相邻中开关;两个SLJ触点启动母差失灵;另有四个SLJ触点开入至FOX-41Ⅰ和Ⅱ启动远跳。

5031 断路器保护 5032 操作箱 压板名称 3LP8 5032开关跳闸Ⅰ 3LP17启动光纤接口二命令8发信Ⅱ 3LP9 5032开关跳闸Ⅱ 3LP10 启动1M 母差Ⅰ失灵 3LP11 启动1M 母差Ⅱ失灵 3LP14启动光纤接口一命令7发信Ⅰ 3LP15启动光纤接口一命令8发信Ⅰ 3LP16启动光纤接口二命令7发信Ⅱ Fig.2 5031边开关失灵出口 对5033边开关来说,两个SLJ 触点跳相邻中开关;两个SLJ 触点启动母差失灵;另有一个SLJ 触点开入至主变保护C 屏,借助RCS-974的压力释放跳闸继电器J8联跳主变三侧。 5033 断路器保护 5032 操作箱 压板名称 3LP8 5032开关跳闸Ⅰ 3LP9 5032开关跳闸Ⅱ 3LP10 启动2M 母差Ⅰ失灵 3LP11 启动2M 母差Ⅱ失灵 3LP12 失灵联跳主变三侧 Fig.3 5033边开关失灵出口 对5032中开关来说,两个SLJ 触点跳相邻5031边开关;两个SLJ 触点跳相邻5033边开关;一个SLJ 触点与5033的SLJ 触点并联开入至主变保护C 屏,实现联跳主变三侧;另有四个SLJ 触点开入至FOX-41Ⅰ和Ⅱ启动远跳。

开关柜中断路器保护知识大讲解

图1 500kV变电站3/2接线方式简图 如果在500kVⅠ母上发生短路,母线保护动作跳母线上所有断路器。假如5021断路器失灵,5021断路器的失灵保护应将5022断路器跳开,并发远方跳闸命令跳线路2对侧的断路器。(如连接元件是变压器,则跳开变压器各侧断路器)所以边断路器的失灵保护动作后应该跳开边断路器所在母线上的所有断路器和中断路器并启动远方跳闸功能跳与边断路器相连的线路对侧断路器(或跳变压器各侧断路器)。 如果在线路2上发生短路,线路保护跳5011和5021两个断路器。假如5022断路器失灵,5022断路器的失灵保护应将5023断路器跳开,并发远方跳闸命令跳2号主变各侧断路器,这样短路点才能熄弧。 所以中断路器的失灵保护动作后应该跳开它两侧的两个边断路器,并启动远方跳闸功能跳与中断路器相连的线路对侧断路器(或跳变压器各侧断路器)。

如果先合边断路器5021,也重合于永久性故障上,线路保护再去跳5021断路器。万一此时5021断路器失灵,5021断路器失灵保护跳开Ⅰ母上所有边断路器,并发送远跳跳开线路2的对侧的断路器,线路2的连接元件或其他元件工不受影响。 所以,当线路保护跳开两个断路器后,应先合边断路器,等边断路器重合成功后,再合中断路器,此时中断路器肯定合于完好线路。如果边断路器重合不成功,合于故障线路,保护再次将边断路器跳开,此时中断路器就不再重合。 2、重合闸的启动及方式整定 重合闸有两种方式启动:位置不对应启动和外部跳闸启动。外部跳闸启动指的是线路保护动作发跳闸命令同时启动重合闸。 o 位置不对应启动分为:单相偷跳启动和三相偷跳启动。 o 保护跳闸启动分为:单相跳闸启动和三相跳闸启动。 关于重合闸的整定方式,可根据需要选用:单相重合闸、三相重合闸、综合重合闸和重合闸停用四种方式中的一种。既可用屏上的切换开关也可用定值单中的控制字来选择重合闸方式。 3、重合闸检查方式 重合闸检查方式:当线路三相跳闸需要三相重合时可采用下面三种方法。 § ?检同期方式:线路,同期电压都大于40V,再满足线路电压和同期电压中的同名相电压的相位差在定值整定的范围内。 §检无压方式:检查线路或同期电压小于30V,同时相应的TV没有断线。 §无检定方式:不作任何检查,时间到了就发合闸命令。 4、关于先合和后合重合闸 先合断路器合于故障,后合断路器不再合闸。在3/2接线方式下对于边断路器和中断路器的重合闸存在先合和后合的问题。我们在前面谈到失灵问题时,已经提到过。下面作简要说明: 先合重合闸可经较短延时发出一次合闸脉冲。在先合重合闸启动时,输出的开关量接点作为后合重合闸的“闭锁先合”的开关量输入。 当后合重合闸接收到“闭锁先合”输入接点闭合的信息后,它的重合闸将经较长延时发合闸脉冲。后合重合闸只有在“闭锁先合”开入量有输入时才真正以较长延时发合闸脉冲。

220kV失灵保护及回路原理

刚接触继保不久,主要从原理上说明下220kV失灵保护及回路原理,希望大家热列讨论, 共同进步! 220kV失灵保护主要包括220kV线路(或主变220kV侧)开关失灵保护、母联(分段)失灵保护、母线差动保护的失灵出口。这些保护的装置种类有很多种,但是其基本原理确是大 同小异。 1)线路(或主变220kV侧)开关的失灵保护由线路保护(对于主变220kV侧开关失灵保护则由主变电气量保护或220kV母线差动保护)跳闸出口启动,经失灵保护相应的电流继电器判别(电流是否大于失灵启动电流定值),若相应电流继电器同时动作,则判断为开关动作失灵,失灵保护随即动作,用于启动母线差动保护的失灵出口(或直接出口跳主变其他 侧开关)。 以PSL631线路保护为例,一般线路开关的失灵启动逻辑如图1所示: 图1 线路开关失灵保护启动逻辑 为了增加启动失灵的可靠性,失灵保护装置还会采用一些其他措施。如PSL631就加入了零序启动元件和突变量启动元件作为失灵启动的条件之一。 2)线路(或主变)失灵启动母差失灵出口回路,母差失灵出口回路会根据相应开关母线闸刀所在位置自动判别开关所在母线,再经相应母线的复合电压闭锁,第一延时跳母联开关,第二延时跳相应母线上所有设备。只是对于主变220kV侧开关,失灵启动开入的同时,往往会开放母差保护的复合电压闭锁。其逻辑(以BP-2B母差保护为例)如图2所示:

图2 母差失灵出口逻辑 3)对于主变开关(220kV侧)失灵保护,除主变电气量保护动作启动外,还有母线差动保护动作启动,经主变220kV侧失灵电流继电器判别,第一延时跳本开关,以避免测试时的不慎引起误动而导致相邻开关的误跳,第二延时则是失灵出口启动,此时又可分两种情况:若为主变电气量保护启动,则失灵将启动母差失灵出口回路(同线路开关的失灵逻辑),若为母线差动保护动作启动的,则直接启动跳主变其他侧开关。该逻辑关系如图3所示: 图3 主变220kV侧开关失灵保护启动逻辑 同样为了增加启动失灵的可靠性,如图3所示主变220kV侧开关失灵出口可以增加零序电 流作为判据。 4)对于母联(分段)开关的失灵保护,由母线差动保护或充电保护启动,经母联失灵电流判别,延时封母联TA,继而母差保护动作跳相应母线上所有设备。以BP-2B母线差动保护 为例,其逻辑如图4所示: 图4 母联(分段)开关失灵逻辑

断路器失灵保护实现

失灵保护实现 一、失灵保护: 断路器失灵保护是指故障电气设备的继电保护动作发出跳闸命令而断路器拒动时,利用故障设备的保护动作信息与拒动断路器的电流信息构成对断路器失灵的判别,能够以较短的时限切除同一厂站内其他有关的断路器,使停电范围限制在最小,从而保证整个电网的稳定运行,避免造成发电机、变压器等故障元件的严重烧损和电网的崩溃瓦解事故。断路器拒动是电网故障情况下又叠加断路器操作失灵的双重故障,允许适当降低其保护要求,但必须以最终能切除故障为原则。在现代高压和超高压电网中,断路器失灵保护作为一种近后备保护方式得到了普遍采用。 3、保护原理:断路器失灵保护由保护跳闸不返回且断路器仍流过故障电流,再经其它条件(如复合电压闭锁等)启动,经延时出口,即由保护动作与电流判别、电压闭锁元件、构成的启动回路、时间元件及跳闸出口回路组成。 失灵保护分为故障相失灵、非故障相失灵和发、变三跳起动失灵及充电保护启动失灵。1)故障相失灵:按相对应的线路保护跳闸接点和失灵过流高定值都动作; 2)非故障相失灵:由三相跳闸输入接点保持失灵过流高定值动作元件,并且失灵过流低定值动作元件连续动作; 3)发、变三跳起动失灵:由发、变三跳起动的失灵保护可分别经低功率因素、负序过流和零序过流三个辅助判据开放(三个辅助判据均可由整定控制字投退)。输出的动作逻辑先经“失灵跳本开关时间”延时发三相跳闸命令跳本断路器,再经“失灵动作时间”延时跳开相邻断路器。 4)充电保护起动失灵:当充电保护动作时,如果失灵保护投入,则经“失灵动作时间”延时跳开相邻断路器。 二、我站失灵保护实现 1、500kV断路器失灵保护实现 1)500kV断路器失灵保护通过RCS921A在收到保护跳闸开入时判断过流,启动经延时出口。 失灵回路如下: 在主保护中取分相跳闸接点TJ,若921A的分相过流接点SL接通,则启动失灵;或在操作箱取三跳接点TJR,若921A的三相过流接点SL2接通,则启动失灵。失灵启动后经延时0.2S(0.13S跳本开关)出口跳相邻开关、发远跳信号(与过电压及远跳装置远跳信号并接)、出线为变压器时联跳变压器三侧开关,边开关失灵时还通过母差BP-2B出口跳本母

关于断路器失灵保护的分析

关于断路器失灵保护的分析 发表时间:2018-06-19T10:51:02.797Z 来源:《电力设备》2018年第4期作者:冯照发温博程笑涵[导读] 摘要:本文介绍了双母接线和3/2接线方式下断路器失灵保护的配置原则,以及不同的逻辑原理、基本构成和装置时间定值的整定。 (邢台供电公司河北邢台 054001)摘要:本文介绍了双母接线和3/2接线方式下断路器失灵保护的配置原则,以及不同的逻辑原理、基本构成和装置时间定值的整定。介绍了应用断路器失灵保护改进的一些措施。 关键词:失灵保护;断路器;继电保护引言:当输电线路、变压器或母线或其他电气设备发生短路时,保护装置动作发出跳闸命令,但故障设备的断路器可能由于断路器跳闸线圈断线,直流电源消失及操作回路出现问题,导致断路器拒动,断路器失灵保护利用故障设备的保护动作信息与拒动断路器的电流信息构成对断路器失灵的判别,能够以较短的时限切除变电站内其他相关的断路器,使停电范围限制在最小,从而保证整个电网的稳定运 行。 1、断路器失灵保护工作原理 1.1、断路器失灵的定义: 当系统发生故障,相应的保护装置保护动作而其断路器操作失灵拒绝跳闸时,通过相应保护装置的作用于本变电站相邻断路器跳闸,称为断路器失灵保护。断路器失灵保护是近后备中防止断路器拒动的一项有效措施。 1.2、判断断路器失灵应有两个主要条件: ①有保护对断路器发过跳闸命令; ②该断路器在一段时间里一直有电流。 断路器失灵保护起动元件就是基于上述原理构成。 2、断路器失灵保护的配置原则 2.1 220kv双母或单母分段接线方式中,将失灵保护做在母差保护装置中,某线路断路器失灵,失灵保护应跳开失灵断路器所在母线上的所有断路器,其跳闸对象与母差保护跳闸对象完全一致,所以将失灵保护与母线保护做在同一套装置里面。这样做的另外一好处就是节省二次电缆。 2.2 3/2接线中,失灵保护按断路器设计,失灵保护包含在断路器保护装置里面,3/2接线中如果边断路器失灵,失灵保护除需要跳开边断路器所在母线的断路器外,还需要跳开本串中断路器,并起动远方跳闸装置跳开对侧断路器。如果中断路器失灵,失灵保护要求跳同一串上相邻的两个边断路器,并分别起动远方跳闸装置跳开两条线路对侧断路器,因此,3/2接线中失灵保护不做在母差保护装置中,与重合闸一起做成一套断路器保护随断路器设计。 3、断路器失灵保护的逻辑分析 3.1 双母接线的断路器失灵保护由失灵起动元件、延时元件、运行方式识别元件和复合电压闭锁元件四部分构成。 失灵起动元件:检查保护对该断路器发过跳闸命令,并且该断路器还一直有电流,这两个条件构成“与”的逻辑。 延时元件:断路器失灵保护的延时用以确认在这段时间里该断路器中一直有电流,以确认该断路器中还存在电流确实是由于断路器失灵造成的 母线运行方式识别元件:主要是确定失灵断路器接在哪条母线上,从而决定失灵保护去切除哪条母线。 复合电压闭锁元件:作用是防止失灵保护出口继电器误动而造成误跳断路器的措施(小于相电压、大于零序或负序电压的整定值将减除闭锁)。 3.1 3/2接线的断路器失灵保护分三种情况 ①故障相失灵 线路保护的分相跳闸接点一直动作起动失灵保护加之同名相的失灵保护过流高定值元件动作且失灵保护的零序过流元件动作,说明是故障相断路器失灵。先经“失灵跳本断路器时间”的延时发三相跳闸命令跳本断路器,再经“失灵动作时间”延时动作时间发三相跳闸命令跳开其他各断路器。 ②非故障相失灵 外部三相跳闸输入接点“发变三跳”、“线路三跳”一直动作起动失灵保护,并且失灵保护过流低定值元件一直动作(非故障相上过流元件),与此同时失灵过流高定值元件曾动作过20ms,(故障相上过流元件),说明是非故障相断路器失灵 ③变压器三跳起动失灵 外部三相跳闸输入接点“发变三跳”一直动作起动失灵保护,而且低功率因数元件、负序过流元件动作及零序过流元件动作。三个辅助元件有一个动作后先经“失灵跳本断路器时间”的延时发三相跳闸命令跳本断路器,再经“失灵动作时间”延时动作时间发三相跳闸命令跳开其他各断路器。 4、失灵保护的动作时限分析 基于断路器失灵几乎都不是瞬时性故障的事实,失灵保护的一系列动作行为在切除相应的断路器时,都应闭锁其自动重合闸。 4.1失灵跟跳时间的整定 对于失灵跟跳时间(t1)的整定,gb14285-93《继电保护和安全自动装置技术规程》(以下简称《规程》)的要求是“宜无时限再次动作于本断路器跳闸”。按照我们的理解,对于投入自动重合闸的情形,不能把失灵跟跳时间整为零,应按躲过断路器动作时间(t跳)与保护返回时间(t返)之和整定,即 t1=t11=k1(t跳+t返+△t)(1)其中,k1为可靠系数,△t为抖动时间。对于不需要自动重合闸又没有设置保护跟跳功能的情况下,可把失灵跟跳改作保护跟跳以提高跳闸可靠性,则可按躲过可能存在的接点抖动时间整定。 t1=t12=k1△t(2)

相关文档
相关文档 最新文档