文档库 最新最全的文档下载
当前位置:文档库 › 水泥熟料烧成热耗

水泥熟料烧成热耗

水泥熟料烧成热耗

现以20℃为计算温度基准。生成1kg熟料需要理论生料量约为1.55kg。在一般原料的情况下,根据物料在反应过程中的化学反应热和物理热,可计算出生成1kg普通硅酸盐水泥熟料的理论热耗如下表:

水泥熟料设计与烧成实验

武汉理工大学 材料科学与工程学院水泥熟料设计与烧成实验 姓名: 班级: 组别: 实验时间:

一、前言 生产中会有许多工业废弃物,比如钢渣等,如果不能充分利用这些工业废弃物,则不仅给环境带来巨大压力,也会影响生产的可持续发展,因此需要多这些工业废弃物进行有效的利用。当今的水泥生产,作为铁质原料提供铁的主要是铁矿石,考虑到铁矿石是不可再生的资源,因此需要找到一种铁质原料进行有效替代。结合工业废弃物的利用与水泥工业的发展,我们提出可以采用工业废弃物中的钢渣作为铁质原料应用于水泥的工业生产。 二、实验方法 (1)方案设计 配料设计原材料化学分析 通过这些数据对水泥的配比进行设计,按一定的升温速率进行熟料烧成实验,分别对所得的水泥熟料测定游离氧化钙的含量和进行岩相分析,分析烧成制度对水泥的性能影响以及用钢渣代替铁矿石后对水泥性能的影响等,可与实际生产联系,判断其是否符合要求。

(2)制样 ①原材料的选取:实验室用石灰石、页岩、砂岩、矿渣粉。 ②破碎与粉磨:实验所以的原料以经过初步粉磨,为达到所需的细度,同时保证原料的成分,在取样之前还需要多原料进一步人工粉磨。分别将一定量的石灰石、页岩、砂岩、矿渣粉放入不同的研磨盘里,用研磨棒进行研磨,之后过0.08mm 筛,分别收集筛下料。 ③均化:研磨结束后,分别称取大约640g石灰石、160g页岩、80g砂岩,进行装袋,钢渣需要多少取多少。每份原料总重800g,共需准备两。之后按配料计算值准确称取石灰石、页岩、砂岩及钢渣(按铁矿石设计的配料,铁矿石的含量用钢渣代替),初步进行均化,然后每份试样分为300g、300g、200g放入球磨机中,打开球磨机,磨4min。磨后的原料进行装袋,等待压片。 ④压片:每次称取20~25g原料,放于压片所用的小罐子里,在液压机下进行压片。 (3)熟料烧成 每组生料片再细分为两组,分别进行1400℃和1450℃烧成。 硅酸盐水泥熟料煅烧化学过程 ①水分蒸发100--150℃ ②粘土矿物脱水层间吸附水约100℃以上 晶体配位水500-600℃ ③碳酸盐分解600℃开始: 600℃:MgCO3→MgO+CO2 900℃: CaCO3→CaO+CO2 ④固相反应(放热反应) --800℃开始形成CA、C2F与C2S; 800--900℃开始形成C12A7; 900--1100℃C2AS形成并分解,开始形成C3A与 C4AF,CaCO3全部分解,f-CaO 含量达最大值 1100--1200℃大量形成C3A和C4AF,C2S含量达 最大值。

余热发电指标和熟料电耗指标分析

分析生产安全处【2013】中国厂余热发电指标和熟料电耗指标分析 余热发电吨熟料发电量指标下降分析: 2013年7月份制造分厂一线、三线窑长时间停窑检修(一线两台锅炉全月运行时间只有9天多,三线两台锅炉全月运行也只有10天时间),中国厂发电机组为六炉一机系统(24MW),当三线窑检修期间一、二线四台锅炉运行期间发电负荷只能达到11000 KW,主要原因为余热发电系统整体管道长、系统热损大,同时PH1锅炉运行期间为了确保煤磨、原料磨用风,旁路常开80%到100%,故PH1锅炉负荷难以发挥,另外AQC2锅炉运行期间为确保入窑头电收尘温度较高和窑头负压旁路也要常开20%,故直接影响锅炉负荷,当一、三线窑系统检修期间发电系统负荷只能维持在在8000KW—8500KW左右,每天的发电量只能维持在198000 kw/h左右,窑产量按照5500T计算吨熟料发电量能达到37kwh/t左右,我公司发电机组在两条5000t/d窑运行期间的发电负荷能达到18000KW—20000KW,每天发电量在456000 kw/h左右,两条窑熟料产量在11300t左右时候的吨熟料发电量为40kwh/t左右;发电系统的运行是负荷越高热损越小,相对的热效率也就越高,发电负荷就越高,反之越低。 熟料电耗指标上升原因分析: 2013年7月份一线和三线系统由于计划检修,熟料电耗指标不具有代表性。本月熟料电耗主要以二线系统运行过程的控制

等进行分析。二线生料工序电耗、熟料工序电耗、熟料综合电耗,较6月份都出现大幅上升的状况。在正常运行,没有检修计划的状况下,电耗上升较多,增加了公司经济成本,经过对比各项指标和相关数据,现将电耗上升的原因分析如下: 一、主要经济指标完成情况 从上表中可以看出,7月份熟料和生料产量虽然较6月均有所增加,但是7月份生料工序电耗上升了1.02kwh/t,熟料工序电耗上升了0.81kwh/t,熟料综合电耗上升了2.70kwh/t。窑磨系统台时产量提升过程中,电量消耗控制较差,经济指标的综合控制力较差,没有做到全面管控,造成经济成本增加。 二、大型设备电量消耗情况 通过对6、7月份电量消耗统计对比,主要是在618风机、原料磨主电机、506高温风机和窑主电机这四台大型设备上,电量消耗上升较多,618风机上升了12.46万度,原料磨主电机上升了17.06万度,506风机上升了6.43万度,窑主电机上升了2.65万度。其中618风机和磨主电机电流较6月份电耗上涨突出。 三、主要原因分析 1、7月份二线原料磨运行较差,例检1次,避峰1次,非计划停磨达到5次。在23日因窑二段篦冷机故障停窑停磨1次。非停主要原因有: 6日因磨机液压涨紧站油泵电机烧坏停磨;8

水泥熟料的形成过程

第一章回转窑及预分解技术 第一节水泥熟料的形成 水泥是重要的建筑材料之一,它的煅烧方法从立窑生产到现代干法生产经过了180年的历史。而水泥熟料是水泥生产的半成品,其形成过程是水泥生产的一个重要的环节,它决定着水泥产品的产量、质量、消耗三大指标。本节将主要阐述熟料的形成过程和水泥熟料形成热的计算方法。 一、水泥熟料煅烧方法及窑型的演变 (一)水泥熟料的煅烧方法 从水泥熟料的生产方法分为干法生产、湿法生产以及半干法生产。干法生产是指干生料粉进入窑内进行煅烧;湿法生产是将原料加水粉磨,黏土用淘泥机制成泥浆,然后将含水量为32-40%的生料浆搅拌均匀后入窑煅烧;半干法生产是将生料粉加入12-14%的水分成球后,再入窑进行煅烧。 (二)水泥窑型的演变 自发明水泥以来,水泥窑型发生了巨大的变化,经历了立窑、干法中空回转窑、湿法窑、立波尔窑、悬浮预热器窑至窑外分解窑的变化。其规模从!) 世纪的日产几吨,发展到目前日产1万吨,增加了1000倍以上。 在这些变化中有几次重大技术突破,第一次是%# 世纪初湿法回转窑的出现并得到全面推广,提高了水泥的产量和质量,奠定了水泥工业作为现代化工业的基础;第二次是20世纪50-70年代悬浮预热和预分解技术的出现(即新型干法水泥生产技术),大大提高了水泥窑的热效率和单机生产能力,促进了水泥工业向大型化、现代化的进一步发展;第三次是20世纪80年代以后计算机信息化和网络化技术在水泥工业中得到了广泛应用,使得水泥工业真正进入了现代化阶段。 1824年,世界上第一台立窑在英国诞生,这是人类最早的用来煅烧水泥熟料窑型。它是一个竖直放置的静止的圆筒,窑内自然通风,生料制成块状,与燃料块交替分层加入窑内,采用间歇的人工加料和出料操作。立窑的产生

汽耗与热耗计算(经典)

1、 汽轮发电机组热耗率 汽轮发电机组热耗率是指汽轮发电机组每发一千瓦时电量耗用的热量,单位为“千焦/千瓦时”。它反映汽轮发电机组热力循环的完善轮程度。汽轮发电机组的热耗率不仅受汽轮机的内效率、发电机效率、汽轮发电机组的机械效率的影响,而且受循环效率、蒸汽初、终参数的影响。 汽轮发电机组热耗率的计算公式如下: 1)无再热凝汽轮机组的热耗率 () ()()给水焓主汽焓汽耗率千瓦时千焦无再热热耗率 -?=/ 汽耗率(千克/千瓦时)=发电机的发电量汽轮机耗用的主蒸汽量 式中,主蒸汽焓指汽轮机入口主蒸汽焓。 给水焓指末级高压加热器出口联承阀后给水焓。 2)次中间再热汽轮机的热耗率 () ()?? ?? ??-?+???? ??-?+?-?=水焓减温蒸汽焓再热减温水耗率再热器中喷水用的排汽焓高压缸蒸汽焓再热 计算的汽耗率以高压缸排汽量 给水焓 给水率主蒸汽焓汽耗率千瓦时千焦再热热耗率 / 式中,减温水耗率单位为“千克/千瓦时”。 3)背压式汽轮机的热耗率 ()?? ?? ??-?=蒸汽焓背压汽焓主蒸汽耗率千瓦时千焦热耗率 / 4)单抽式汽轮发电机组热耗率 ()发电量 抽汽焓蒸汽焓汽机进口抽汽量给水焓蒸汽焓汽机进口抽汽量汽耗量热耗率? ? ? ? ?? -?+???? ??-?-= 5)双抽式汽轮机的热耗率 ()给水焓给水率主蒸汽焓汽耗率双抽热耗率 ?-?= — 发电量混合水用的汽量 高压抽汽加热返回 热系统的用汽量高压抽汽供回抽汽量高压?--10

???? ? ?-?水焓与补充水混合后的混合回水高压热用户用抽汽的返抽汽焓高压 — 发电量混合水用的抽汽量低压抽汽加热返回热系统的用汽量低压抽汽供回抽汽量低压 ?-- 10 ???? ??-?水焓与补充水混合后的混合回水低压热用户用抽汽的返抽汽焓低压 式中,汽量以“吨”,电量以“万千瓦时”,给水率以“千克/千瓦时”为单位。 2、 汽轮机的汽耗率 汽轮机汽耗率是指在发电机端每产生一千瓦时的电量,汽轮机所需要的蒸汽量。计算公式为: ()发电机发出的电量 汽轮机的总进汽量千瓦时千克汽耗率=/

水泥熟料形成热的计算方法

水泥熟料形成热的计算方法 熟料形成热的计算方法很多,有理论计算方法,也有经验公式计算方法。 现介绍我国《水泥回转窑热平衡、热效率综合能耗计算通则》中所采用的方法。首先是按照熟料成分、煤灰成分与煤灰掺入量直接计算出煅烧1kg 熟料的干物料消耗量, 然后再计算形成lkg 熟料的理论热消耗量。 若采用普通原料(石灰石、粘土、铁粉)配料,以煤粉为燃料,其具体计算方法如下: 首先确定计算基准,一般物料取1kg 熟料,温度取0℃,并给出如下已知数据:(1)熟料的化学成分;(2)煤的工业分析及煤灰的化学成分*(*若采用矿渣或粉煤灰配料还应给出矿渣或粉煤灰的化学成分及配比);(3)熟料单位煤耗,对于设计计算要根据生产条件确定,对于热工标定计算通过测定而得。 (一)生成lkg 熟料干物料消耗量的计算 1.煤灰的掺入量 A m =1 100 r ar m A α (1-1) 式中 A m ──生成lkg 熟料,煤灰的掺入量(kg /kg-ck); r m —每熟料的耗煤量(kg /kg-ck) A ar ──煤灰分的应用基含量(%) α── 煤灰掺入的百分比(%)。 2.生料中碳酸钙的消耗量 CaO CaCO A A K r CaCO M M m CaO CaO m 33 100? -= (1-2)ar 式中 m r CaCO3,──生成lkg 熟料碳酸钙的消耗量(kg /kg —ck); CaO k ──熟料中氧化钙的含量(%); CaO A ──煤灰中氧化钙的含量(%); M caCO3、M CaO ──分别为碳酸钙、氧化钙的分子量; A m ──同(1-1)式

3.生料中碳酸镁的消耗量 m r MgCO3= MgO MgCO A A K M M m MgO MgO 3 100? - (1-3) 式中 m r MgCO3──生成lkg 熟料碳酸镁的消耗量(kg /kg —ck) MgO A ──煤灰中氧化镁的含量(%); MgO K ──熟料中氧化镁的含量(%); M MgCO3、M MgO ──分别为碳酸镁、氧化镁的分子量; A m ──同(1-1)式。 4.生料中高岭土的消耗量 2 2H AS r m =3 2221003232O Al H AS A A K M M m O Al O Al ? - (1-4) 式中 22H AS r m ——生料中高岭土的含量(kg /kg —ck); Al 2O 3k ──熟料中三氧化二铝的含量(%); Al 2O 3A ──煤灰中三氧化二铝的含量(%); 22H AS M 32O Al M ──分别为高岭土和三氧化二铝的分子量; A m ──同(1-1)式。 5.生料中CO 2的消耗量 2 CO r m =3 23 CaCO CO CaCO r M M m +3 23 MgCO CO MgCO r M M m (1-5) 式中 2CO r m ──生成lkg 熟料CO :的消耗量(kg /kg —ck); 3MgCO r m 3CaCO r m ──同(1-3)、(1-2)式 2CO M 3CaCO M ──二氧化碳的分子量; 3MgCO M 3CaCO M ──分别为碳酸镁及碳酸钙的分子量。 6.生料中化合水的消耗量 2 222 222H AS O H H AS O H r M M m m = (1-6) 式中 O H r m 2──生料中化合水的含量(kg /kg —ck);

水泥熟料的烧成

?水泥熟料的烧成 ?第一节水泥熟料的形成过程 ?一、干燥与脱水 ?1.干燥 ?入窑物料当温度升高到100~150℃时,生料中的自由水全部被排除,特别是湿法生产,料浆中含水量为32~40%,此过程较为重要。而干法生产中生料的含水率一般不超过1.0%。?2.脱水 ?当入窑物料的温度升高到450℃,粘土中的主要组成高岭土(Al2O3·2SiO2·2H2O )发生脱水反应,脱去其中的化学结合水。此过程是吸热过程。 ?Al2O3·2SiO2·2H2O Al2O3 + 2SiO2 + 2H2O ?(无定形) (无定形) ?脱水后变成无定形的三氧化三铝和二氧化硅,这些无定形物具有较高的活性。 ?二、碳酸盐分解 ?当物料温度升高到600℃时,石灰石中的碳酸钙和原料中夹杂的碳酸镁进行分解,在CO2分压为一个大气压下,碳酸镁和碳酸钙的剧烈分解温度分别是750℃和900℃。 ?MgCO3MgO+CO2 ?CaCO3CaO+CO2 ?碳酸钙分解反应的特点 ?碳酸钙的分解过程是一个强吸热过程(1645 kJ/kg ),是熟料形成过程中消耗热量最多的一个工艺过程;该过程的烧失量大,在分解过程中放出大量的CO2气体,使CaO疏松多孔,强化固相反应。 ?三、固相反应 ?1.反应过程 ?从原料分解开始,物料中便出现了性质活泼的游离氧化钙,它与生料中的SiO2、Al2O3、Fe2O3进行固相反应,形成熟料矿物。 ?2.影响固相反应的主要因素 ?⑴生料细度及其均匀程度; ?⑵温度对固相反应的影响; ?四、熟料烧结 ?水泥熟料主要矿物硅酸三钙的形成需在液相中进行,液相量一般在22~26%。 ?2 CaO· SiO2+ CaO 3 CaO· SiO2

影响汽轮机组热耗率

影响汽轮机组热耗率(效率)的因素有哪些? 影响汽轮机组热效率(效率)的因素的主要由汽轮机通流部分效率与蒸汽动力循环热效率俩部分效率与蒸汽动力循环热效率俩部分构成,汽轮机通流部分效率和蒸汽动力循环热效率高,则汽轮机热耗率低(效率高)。 汽轮机通流部分效率取决于汽轮机的设计、制造、安装水平,蒸汽动力循环热效率取决于循环形式与循环初终参数。 (1)汽轮机通流部分效率取决于汽轮机高压缸、中压缸、低压缸效率以及高压配汽机构的节流损失。 (2)蒸汽初参数 蒸汽初参数主要是指汽轮机主蒸汽门前的主蒸汽压力、主蒸汽温度。 主蒸汽压力、主蒸汽温度低于设计值对汽轮机热耗率的影响通过两个方面来体现: 1、循环热效率低,汽轮机热耗率上升; 2、造成汽轮机内部蒸汽膨胀也流动状态偏离设计值,缸效率下降,汽轮机组热耗率上升。 所以在汽轮机运行调整过程中,保持蒸汽初参数在运行规程规定范围内是保证汽轮机安全、经济运行的重要措施之一。 对于大容量机组,随着机组负荷的变化有定、滑压运行两种方式,机组定、滑压运行的经济性取决于汽轮机高压缸效率、高压配汽机机构的节流损失以及给水泵能耗的综合作用。 (3)蒸汽终参数 蒸汽终参数是指汽轮机低压缸排气压力。一般情况下,排汽压力低,则汽轮机热耗率越低。通常排汽压力通过测量真空和大气压力计算得到,排汽压力等于大气压力减去凝气器真空度,现场分析排汽压力对机组的影响时习惯上采用真空。 凝汽器真空度对汽轮机热耗率的影响通过两个方面来体现: 1、凝气器真空度低于设计值,热力循环冷源参数高于设计值,汽轮机冷源损失增加、循环热效率降低,热耗率上升。 2、凝汽器真空度降低,汽轮机低压缸内部末几级蒸汽膨胀发生变化:有效焓降降低、反动度增大,极效率降低;当凝汽器真空度剧烈变化时,反动度的变化可能引起轴向推力的变化,引起推力轴承负荷增加。所以在汽轮机运行调整过程中,保持较高的凝汽器真空度参数是保证汽轮机安全、经济运行的重要措施之一。 事实上,凝汽器真空度升高,在机组负荷、环境温度、真空严密性等条件不变的前提下必须依靠增加循环冷却水流量。而循环冷却水流量增大是以循环水泵耗电量增加为代价的,所以在实际运行工作中就有一个汽轮机最有利真空的控制。 4、在热循环 对于某一给定的蒸汽循环而言,在热蒸汽循环对汽轮机组热耗率的影响主要通过再热蒸汽温度、再热器减温水流量以及再热器压损来体现。 (1)在热蒸汽温度低于设计值。一是循环热效率降低,汽轮机组热耗率上升。二是汽轮机中压缸内部蒸汽膨胀与流动状态偏离设计值,造成汽轮机中压缸效率下降,汽轮机组热耗率上升。 (2)再热器减温水流量。再热器喷水减温的过程,是一个非再热的中参数循环,与主循环相比其热经济性要低许多。 (3)再热器压损,再热器压损增大,一方面按等级效焓降理论,蒸汽的作功能能力降低;另一方面再热器压力降低,中压缸内部蒸汽膨胀与流动状态偏离设计值,造成汽轮机中压缸效率下降,汽轮机组热效率上升。 (5)给水回热循环 给水回热循环对汽轮机热耗率的影响主要是通过给水回热循环的效果体现。

降低水泥熟料热耗的原理及途经

降低水泥熟料热耗的原理及途经 本文将从一个新的新角度探讨降低热耗方法,目的在于帮助各水泥厂分析熟料热耗的高低,并能提出有效、可行的降热措施,使热耗降至720kcal/kg熟料以下。 一、降低热耗——空间大、效益高 通常情况下悬浮预热窑外分解窑煤炭消耗约占熟料生产成本33%。但近年来由于煤矿重大安全事故频繁发生,国家对小煤窑采取彻底关闭政策,煤炭供应紧张,加之2007年物价通胀,煤价2006年的400元/吨上涨到2008年的680元/吨,最高时高达900元/吨;另一方面,由于新的水泥生产线相继投产,水泥总产能急剧提高,水泥产量总体供大于求导致水泥价格低迷。二者综合,目前煤耗成本占到悬浮预热窑外分解窑整个熟料生产成本50%以上,热耗已经成了决定水泥厂竞争力的关键因素。 根据有关报道以及本人所在的某公司统计数据,熟料热耗分别如下: 需要说明的是前两家是两年前的发布的,而我公司的数据是2008年的实际数据。通过上表你会发现,即便同是新型干法窑热耗差别很大,按此计算同是

2500t/d的窑型热耗差距接近400kcal/kg熟料,煤按5500kcal/kg的发热量,600元一吨,其熟料成本提高43元/t熟料以上,潜力何其大。 据本人多年工作经验分析,不少厂家统计热耗的方式有多种,有的厂家甚至不统计(根本谈不上煤耗管理),在此分析一下统计方式。 多年来我认为判断一个水泥企业管理经营好与坏,关键要看企业以下指标:熟料热耗,体现生产工艺管理水平;熟料煤耗,体现采购水平和成本管理水平; 设备运转率,体现机械设备管理的水平; 熟料电耗,体现生产管理; 熟料热耗的月统计主要有以下方法: 喂煤秤的量/生料量计算的生料量; 喂煤秤下煤量/月底盘点的熟料量; (进厂煤的月进厂量-本月库存+上月库存)/(销售数量-上月库存+本月库存) (进厂煤的月进厂量-本月库存+上月库存-化验水分+允许水分)/(销售数量-上月库存+本月库存) 以上1-2条我认为是不可取的,由于对计量的管理不一定做到标准,所以可信程度非常小。而对于3-4条是比较准确的,尤其是第四条,是反映了比较真实的熟料热耗。 二、热耗现象——令人困惑 2006年我厂的实际煤耗以上边第三条统计如下:

计算水泥用量

因为配制1升水泥净浆所需的干水泥重量为:(水泥的密度*水的密度)/(水的密度+水灰比*水泥密度);水泥密度一般取3.15。该公式简明易算。所以,当水灰比为1,1立方水泥浆需干水泥重量为:1000*(3.15*1)/(1+1*3.15)=759kg 当水灰比为0.8,1立方水泥浆需干水泥重量为:1000*(3.15*1)/(1+0.8*3.15)=895kg 所以,配合比0.8—1时,配制1方净浆所需干水泥在759kg—895kg 之间。另外,我最近研究了——新型高水固结灌浆材料。该材料具有以下特点:(1) 新型高水固结灌浆材料具有高水灰比特性。优化配方采用的水灰比为1.5,比普通水泥浆液采用的水灰比有大幅度的提高,增加了浆液的流动性能,使浆体流动度达33cm以上;高水灰比降低了浆液的浓度,减少了粒状浆材以多粒的形式同时进入孔隙或裂隙导致孔隙被堵塞的几率,更容易达到良好的灌注效果;同时,也减少因浆液的流动性能不足而引起的堵管等给施工造成的延误。(2)新型高水固结灌浆材料具高水灰比条件下的较高强度特性。浆材能及时固结,使岩土体具有足够的强度,在水灰比高达1.5的条件下,其优化配方的3d最低抗压强度为6MPa,最高抗压强度可达12MPa;28d最低抗压强度为13MPa,最高可达24MPa。相对于目前其他高水灰比浆材,其抗压强度已有很大的提高,这是本材料的一大亮点。(3)新型高水固结灌浆材料具有良好的凝结时间可调特性。该材料应用虽有高水灰比特点,但仍然能在短时间内凝结硬化,其凝结时间可以根据施工需要进行调整。通过调整优化配方浆液初凝时间可控制在15min到1h 内,终凝时间可控制在50min到5h内,这种高水灰比条件下的性能调控方法具有创新特点。(当然也可以调至数秒钟就凝结)(4)新型高水固结灌浆材料具有良好的温度适应性。在实际灌注中,普通水泥浆液在低温条件下会长时间不凝结,而新型高水固结灌浆材料在乙料选择适当的情况下,能克服低温给浆液凝结时间带来的障碍,具有良好的抗低温性能。在*****地质钻探施工堵漏中的成功应用就证明了这一点。(5)新型高水固结灌浆材料具有良好的综合性能,能在不同灌浆工程中使用。在实际使用时,可根据具体工程对浆液的性能要求,通过调整材料甲、乙料的配比,实现其综合性能满足工程的要求。这克服了传统的水泥浆液在高水比条件下长时间不凝结且强度很低的缺陷,有效地解决了灌浆过程中浆液流动性要求和灌浆结束后强度要求的矛盾问题,具有新颖性。但该材料还需改进的是:(1)进一步提高浆液结石体在高水灰比的条件下的抗压强度。虽然材料结石体28d抗压强度能达到24 ,但与低水灰比条件下的水泥浆液结石体抗压强度相比还有一定差异,如能到达较高标号的水泥结石体抗压强度,就更为理想。(2)进一步提高新型高水固结灌浆材料浆液的稳定性。实践表明,浆液在长时间静置时稳定性会变差,这对保证灌浆质量是不利的。应研究高水灰比条件下添加稳定剂,改善浆液性能同时又能保障结石体强度的技术方法。综上所述,新型高水固结灌浆材料的性能易于调整,且具有良好的综合性能,如果再进一步提高结石体在高水灰比条件下的抗压强度和提高浆液稳定性而不降低其结石体抗压强度,新型高水固结灌浆材料将具有更为广阔的应用前景,将能更好的服务于地质灾害治理及工程建设领域。

水泥熟料烧成系统发展史

水泥熟料烧成系统发展史 1.引言 水泥的历史最早可追溯到古罗马人在建筑中使用的石灰与火山灰的混合物,这种混合物与现代的石灰火山灰水泥很相似。用它胶结碎石制成的混凝土,硬化后不但强度较高,而且还能抵抗淡水或含盐水的侵蚀。长期以来,它作为一种重要的胶凝材料,广泛应用于建筑工程。但水泥是一种高污染、高能耗、高排放的产品,因此,人们总是试图改善它的烧成系统以达到生产处满足要求的水泥并尽量减少能耗以及对环境的污染。自1824年10月21日,J. Aspdin获英国5022号专利权(即波特兰水泥)以来,水泥窑的发展经历了立窑—回转窑—悬浮预热器窑—流化床煅烧的发展历程,在这些发展过程中,水泥烧成系统越来越优化,为社会的发展做出了巨大的贡献。 2.水泥窑的发展过程 仓窑 仓窑:1824年波特兰水泥发明时的煅烧设备为瓶窑,48年后的1872年在瓶窑基础上发明专门用于水泥烧制的仓窑,成为第一代水泥窑窑型,造就了水泥生产的仓窑时代。 立窑 立窑:1884年Dietzsch发明立窑并取得专利权。其与仓窑的最大不同是将烧成过程由沿水平运动变为垂直方向。 我国目前使用的立窑有两种类型:普通立窑和机械立窑。我国经历了人工间歇作业的普通立窑向机械化连续生产的机立窑的发展过程,带来了劳动强度降低、产量提高和质量改善的变化。 普通立窑是人工加料和人工卸料或机械加料,人工卸料;机械立窑是机械加料和机械卸料。机械立窑是连续操作的,它的产、质量及劳动生产率都比普通立窑高。根据建材技术政策要求,小型水泥厂应用机械化立窑,逐步取代普通立窑。 干法回转窑 从干法中空回转窑起步,并由此发展出余热锅炉窑、干法长窑和立波尔窑等。干法将生料制成生料干粉,水分一般小于1%,因此它比湿法减少了蒸发水分所需的热量。中空式窑由于废气温度高,所以热耗不低。干法生产将生料制成干粉,其流动性比泥浆差。所以原料混合不好,成分不均匀。 中空回转窑:英国人Cramton于1877取得英国专利;1895年美国人Hurry和Seaman获得煅烧水泥成功并取得专利; 余热锅炉窑:1897年德国人发明,解决了干法中空回转窑窑尾废气温度高、热效率低的问题。该窑型流传时间长但热效率较低,不是普遍的水泥烧成设备。

水泥砂浆用量计算

一、这个问题是多少年来(从土建到装修)是个永远也弄不准的问题(绝对准)。从理论上讲是不难算的(简单的很)。但有众多的未知数,有些未知数是可以弄准的(如地面的水平误差,只要不怕麻烦)。有些就没办法弄明白了。(如:购砂的数量,配比的准确程度。)其中购砂的数量,购买的砂多少年来就没有足数的,缺量是肯定了。但是缺多少(买的方式不同,足不足数也不同)又是一个问题。 砂的粒径大小,左右了水泥的用量(砂越细越是费水泥)。 二、地砖的大小不同,砂浆的用量宜有差别。这是瓦工操作上必要的要求。大地砖砂浆的量要大些。砂浆的厚度太薄,瓦工无法操作(水平无法调整),小面积局部,地面最高处面积不能太大,极限不能小于 25MM。不能再薄了。正常的厚度应在30—40MM左右(但原地面水平误差过大,有时竟达六到八公分的也是时有发生。看看,砂、水泥还能算准吗?)。600MM地砖相应薄些,不太大。达到易操作,40MM厚是最好了。(另:地砖的砂浆是座在原地面的,不是靠干砂浆的结合的。砂浆薄了易造成空鼓。注意。) 经验计算方法: 沙先按40MMX地面面积计算,水泥按每平0.2袋计算。

最后再补齐。 注:最大的误差是原地面的水平误差。有时间最好先抄一下平,看看什么情况,取个平均值。 装修铺地砖砂、水泥用量的计算: 一、这个问题是多少年来(从土建到装修)是个永远也弄不准的问题(绝对准)。固你要有所思想准备。 从理论上讲是不难算的(简单的很)。但有众多的未知数,有些未知数是可以弄准的(如地面的水平误差,只要不怕麻烦)。有些就没办法弄明白了。(如:购砂的数量,配比的准确程度。)其中购砂的数量,购买的砂多少年来就没有足数的,缺量是肯定了。但是缺多少(买的方式不同,足不足数也不同)又是一个问题。砂的粒径大小,左右了水泥的用量(砂越细越是费水泥)。 二、地砖的大小不同,砂浆的用量宜有差别。这是瓦工操作上必要的要求。大地砖砂浆的量要大些。砂浆的厚度太薄,瓦工无法操作(水平无法调整),小面积(局部,地面最高处(面积不能太大,极限不能小于25MM。不能再薄了。正常的厚度应在30—40左右(但原地面水平误差过大,有时竟达六到八公分的也是时有发生。看看,砂、水泥还能算准吗?)。600地砖相应薄些,不太大。达到易操作,40厚是最好了。(另:地砖的砂浆是座在原地面的,不是靠干砂浆的结合的。固砂浆薄了易造成空鼓。注意。) 经验计算方法: 砂先按40厚X地面面积计算,水泥按每平0。2代计算。最后再补齐。 注:最大的误差是原地面的水平误差。有时间最好先抄一下平,看看什么情况,取个平均值 地面找平沙子水泥比例为1:3 铺地砖沙子水泥比例也为1:3 贴墙砖沙子水泥比例为1:2 地面找平和铺地砖大概需要0.5袋/㎡ 贴墙砖大概需要0.3袋/㎡ 根据你家里的所需要找平铺地砖贴墙砖的面积即可大概估算出来

水泥熟料烧成系统发展史

水泥熟料烧成系统发展史 自1824年10月21日,J. Aspdin获波特兰水泥发明专利以来,水泥窑的发展经历了立窑—回转窑—悬浮预热器窑—流化床煅烧的发展历程,在这些发展过程中,水泥烧成系统越来越优化,为社会的发展做出了巨大的贡献。 1.仓窑 仓窑:1824年波特兰水泥发明时的煅烧设备为瓶窑,48年后的1872年在瓶窑基础上发明专门用于水泥烧制的仓窑,成为第一代水泥窑窑型。 2.立窑 立窑:1884年Dietzsch发明立窑并取得专利权。其与仓窑的最大不同是将烧成过程由沿水平运动变为垂直方向。1910年立窑生产实现了机械化连续作业。我国目前使用的立窑有两种类型:普通立窑和机械立窑。我国经历了人工间歇作业的普通立窑向机械化连续生产的机立窑的发展过程,带来了劳动强度降低、产量提高和质量改善的变化。但是,那时能源问题还没有现在这样严重,其热耗低的优势亦不足以完全代替湿法回转窑,而湿法回转窑的产品质量明显优于机械化立窑。根据建材技术政策要求,小型水泥厂应用机械化立窑,逐步取代普通立窑。 3.湿法回转窑 二十世纪初,液态均化技术研究成功,催生了水泥制造技术的革命,1903年出现了第一条湿法水泥生产线,湿法生产是将生料制成含水为32%~40%的料浆。由于制备成具有流动性的泥浆,液态均化技术的应用,提高了水泥制造过程对非均质原料的适应性,奠定了产品质量稳定的基础,这是湿法生产的主要优点。因而湿法水泥生产线制造技术被普遍推广加上对产能的追求,湿法回转窑不断朝着大型化方向发展。该类窑包括普通湿法窑、料浆蒸发机湿法窑、湿法长窑等。 4. 立波尔窑 严格意义上讲,早期的窑外预热技术的代表作应属于立波尔窑。1928年德国的理利坡博士和普利休斯公司发明了设有生料成球和煅烧炉篦子机组的立波尔型回转窑水泥制造技术。该技术继承了旋窑发热能力大的优势,吸取了机立窑透过式传热的合理内核,在窑尾增设了煅烧炉篦,以窑尾废气为热源,预热煅烧生料球,这就成功地将原料预热、部份硅酸盐分解移至窑外进行,使窑的容积产量比湿法窑提高150%,热能消耗下降35%,窑体长度减少50%,五十年代间

汽耗与热耗计算经典

汽耗与热耗计算经典 Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8

1、 汽轮发电机组热耗率 汽轮发电机组热耗率是指汽轮发电机组每发一千瓦时电量耗用的热量,单位为“千焦/千瓦时”。它反映汽轮发电机组热力循环的完善轮程度。汽轮发电机组的热耗率不仅受汽轮机的内效率、发电机效率、汽轮发电机组的机械效率的影响,而且受循环效率、蒸汽初、终参数的影响。 汽轮发电机组热耗率的计算公式如下: 1)无再热凝汽轮机组的热耗率 () ()()给水焓主汽焓汽耗率千瓦时千焦无再热 热耗率-?=/ 汽耗率(千克/千瓦时)=发电机的发电量汽轮机耗用的主蒸汽量 式中,主蒸汽焓指汽轮机入口主蒸汽焓。 给水焓指末级高压加热器出口联承阀后给水焓。 2)次中间再热汽轮机的热耗率 () ()??? ? ??-?+???? ??-?+?-?=水焓减温蒸汽焓再热减温水耗率再热器中喷水用的排汽焓高压缸蒸汽焓再热 计算的汽耗率以高压缸排汽量 给水焓 给水率主蒸汽焓汽耗率千瓦时千焦再热热耗率 / 式中,减温水耗率单位为“千克/千瓦时”。 3)背压式汽轮机的热耗率 ()???? ??-?=蒸汽焓背压汽焓主蒸汽耗率千瓦时千焦热耗率 / 4)单抽式汽轮发电机组热耗率 ()发电量 抽汽焓 蒸汽焓汽机进口抽汽量给水焓蒸汽焓汽机进口 抽汽量汽耗量热耗率? ? ? ? ??-?+???? ??-?-= 5)双抽式汽轮机的热耗率 ()给水焓给水率主蒸汽焓汽耗率双抽热耗率 ?-?= — 发电量混合水用的汽量 高压抽汽加热返回 热系统的用汽量高压抽汽供回抽汽量高压?--10

水泥量计算

水泥量计算 (V1+V2) Q=---------------- V3 Q---水泥总袋数 V1---封固段环容 V2---水泥塞容积 V3---一袋水泥配 制浆体积 水泥浆密度 Qc+Qw Dds= —————— Vc+Vw Ds---水泥浆密度 Qc---水泥质量 Qw---水的质量 Vc---水泥体积 Vw---水体积 1m3水泥浆需水泥量 dc(ds—dw) Qc= ----------------- dc---dw Qc---需用水泥质量 dc---水泥密度 dw---水的密度 1m3水泥浆需用水泥袋数 Q袋= 29.3x(ds—dw) 29.3= 一袋水泥体积x1.85 50 一袋水泥体积= --------- 3.15

1m3水配1.85密度, 水泥浆用水泥 ds.水量---水量 Qc= --------------------------- dw—ds.0.3185 水泥单位体积--0.3185g/cm3 一袋水泥用水量 50 50--(-----)ds dc V= -------------------- ds---1 已知m,1m3浆用水泥 dc Qc= ------------- 1+mdc Qc---水泥质量 m---水灰比 已知水灰比m, 求水泥浆密度 dc.dw(1+m) ds=----------------- dw+m.dc

已知水灰比m: 求:1m3水泥浆用水 m.dc Vw= ------------ 1+m.dc Vw---水泥浆用水量,m3 每袋水泥配成密度, 为ds的水泥浆体积 50(dc—dw) Vs= ---------------------- dc(ds—dw) Vs---每袋水泥配成的 水泥浆体积 密度ds提高到密度ds’ 1m3 ds’水泥浆用加重剂量 ds’--ds W= ------------ dg-- ds’ W---加重剂用量 dg---加重剂密度 ds---原水泥浆密度 ds1--加重后的水泥浆密度 加入密度为dg加重剂后的干 水泥及加重剂混合物的密度 Qt dm=-------------------- Qc Qg ---- -- --- dc dg dm---混合物(干水泥+加重剂)密度,Qt---混合物总质量(Qc+Qg) Qc---干水泥质量 Qg---加重剂质量

钢渣用于水泥熟料烧成

汇报人:赵青林 甘万贵 2 汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究 目 录 1 项目研究目的和意义 2 国内外研究现状 3 研究内容 4 研究采取的措施 5 生产工艺流程 6 主要技术难点和问题 7 创新点 8 研究基础 9 研究进展计划 汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究 钢渣年排放量0.8亿吨 水泥年产量20.6亿吨 废弃物 资源 汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究 汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究 中国美国日本德国 40% 40%钢渣年产量(万吨)钢渣利用率(%) 4580万吨 9150万吨 11870万吨98~100%98~100% 98~100% 50200万吨6 汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究 钢渣综合利用方式

汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究 钢渣综合利用方式 汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究 汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究 汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究 汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究 汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究

汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究 汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究 汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究 汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究 汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究 汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究

汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究 汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究 汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究 汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究 汇报人:赵青林 钢渣用于水泥熟料烧成的应用研究

-热电厂主要能耗指标计算

一、热电厂主要能耗指标计算 一、热电厂能耗计算公式符号说明 二、能耗热值单位换算 1、吉焦、千卡、千瓦时(GJ、kcal、kwh)

1kcal=4.1868KJ=4.1868×10-3MJ=4.1868×10-6GJ 1kwh=3600KJ=3.6MJ=3.6×10-3GJ 2、标准煤、原煤与低位热值: 1kg原煤完全燃烧产生热量扣去生成水份带走热量,即为原煤低位热值。 Q y=5000kcal/kg=20934KJ/kg 1kg标准煤热值Q y=7000kcal/kg=29.3×103KJ=0.0293GJ/kg 当原煤热值为5000大卡时,1T原煤=0.714吨标煤,则1T标煤=1.4T原煤 3、每GJ蒸汽需要多少标煤: b r=B/Q=1/Q yη=1/0.0293η=34.12/η 其中:η=ηW×ηg=锅炉效率×管道效率 当ηW=0.89,ηg=0.958时,供热蒸汽标煤耗率b r=34.12/0.89×0.958=40kg/GJ 当ηW=0.80,ηg=0.994时,供热蒸汽标煤耗率b r=34.12/0.80×0.994=42.9kg/GJ 二、热电厂热电比和总热效率计算 绍兴热电专委会骆稽坤 一、热电比(R): 1、根据DB33《热电联产能效能耗限额及计算方法》2.2定义:热电比为“统计期内供热量与供电量所表征的热量之比”。 R=供热量/供电量×100% 2、根据热、能单位换算表: 1kwh=3600KJ(千焦) 1万kwh=3600×104KJ=36GJ(吉焦) 3、统一计量单位后的热电比计算公式为: R=(Q r/E g×36)×100% 式中: Q r——供热量GJ E g——供电量万kwh 4、示例:

水泥熟料烧成的变化过程

水泥熟料烧成的变化过程 一、干燥与脱水 1.干燥 入窑物料当温度升高到100~150℃时,生料中的自由水全部被排除,特别是湿法生产,料浆中含水量为32~40%,此过程较为重要。而干法生产中生料的含水率一般不超过1.0%。 2.脱水 当入窑物料的温度升高到450℃,粘土中的主要组成高岭土(Al2O3·2SiO2·2H2O )发生脱水反应,脱去其中的化学结合水。此过程是吸热过程。 Al2O3·2SiO2·2H2O== Al2O3 (无定形) + 2SiO2 (无定形) + 2H2O 脱水后变成无定形的三氧化三铝和二氧化硅,这些无定形物具有较高的活性。 二、碳酸盐分解 当物料温度升高到600℃时,石灰石中的碳酸钙和原料中夹杂的碳酸镁进行分解,在CO2分压为一个大气压下,碳酸镁和碳酸钙的剧烈分解温度分别是750℃和900℃。 MgCO3=MgO+CO2 CaCO3=CaO+CO2 碳酸钙分解反应的特点 碳酸钙的分解过程是一个强吸热过程(1645 kJ/kg ),是熟料形成过程中消耗热量最多的一个工艺过程;该过程的烧失量大,在分解过程中放出大量的CO2气体,使CaO疏松多孔,强化固相反应。 三、固相反应 1.反应过程 从原料分解开始,物料中便出现了性质活泼的游离氧化钙,它与生料中的SiO2、Al2O3、Fe2O3进行固相反应,形成熟料矿物。 2.影响固相反应的主要因素 ⑴生料细度及其均匀程度; ⑵温度对固相反应的影响; 四、熟料烧结 水泥熟料主要矿物硅酸三钙的形成需在液相中进行,液相量一般在22~26%。 2 CaO·SiO2 + CaO= 3 CaO·SiO2 该反应称为烧结反应,它是在1300~1450~1300℃范围进行,故称该温度范围为烧成温度范围;在1450℃时反应迅速,故称该温度为烧成温度。为使反应完全,还需有一定的时间,一般为15~25分钟。 五、熟料冷却 熟料冷却时需急速冷却,其目的和作用是: 1、为了防止C3S在1250℃分解出现二次游离氧化钙(对水泥安定性没大影响),降低熟料的强度; 2、为了防止C2S在500℃时发生晶型转变,产生“粉化”现象; 3、防止C3S晶体长大而强度降低且难以粉磨; 4、减少MgO晶体析出,使其凝结于玻璃体中,避免造成水泥安定性不良; 5、减少C3A晶体析出,不使水泥出现快凝现象,并提高水泥的抗硫酸盐性能;

水泥熟料的高温烧成

水泥熟料的高温烧成 一、目的意义 水泥主要是由水泥熟料和部分混合材、少量石膏一起粉磨而成的。因此水泥的质量主要取决于水泥熟料的质量,而熟料的质量除水泥生料的质量(原料的配料、均匀性)的影响外,主要取决于煅烧设备和熟料的煅烧质量。因此在水泥研究与生产中往往通过实验来了解和研究熟料的煅烧过程,为优质、高产、低消耗提供依据。 本实验的目的: ①掌握实验室常用高温实验设备、仪器的使用方法; ②按照确定的配方和所用原料的化学成分进行配料计算; ③掌握水泥烧成实验方法,了解水泥熟料烧成过程; ④通过本实验,了解升温速率、保温时间、冷却制度对不同配料熟料煅烧的影响; ⑤通过本实验,进一步理解KH 、IM 、SM 对水泥熟料煅烧及性能的影响,提高分析问题和解决问题的能力。 二、基本原理 硅酸盐水泥高温制备的实质,是使以一定化学组成经磨细、混合均匀的水泥生料在从常温到高温的煅烧过程中,随着温度的升高,经过原料水分蒸发、粘土矿物脱水、碳酸盐分解、固相反应等过程。当到达最低共熔温度(约1300℃)后,物料开始出现(主要由铝酸钙和铁铝酸钙组成)液相,进入熟料烧成阶段。随着温度继续升高,液相量增加,粘度降低,物料经过一系列物理、化学、物理化学的变化后,最终生成以硅酸盐矿物(C 3S 、C 2S )为主的熟料。 在煅烧过程中出现液相后,贝里特(β-C 2S )和游离石灰都开始溶于液相中,并以Ca +与4- 4SiO 的状态进行扩散。通过离子扩散与碰撞一部分 Ca +与4-4SiO 参入贝里特的再结晶,另一部分 Ca +与4- 4SiO 则参与贝里特吸收游离石灰形成阿里特: 在1300~1450℃的升温过程中,阿里特晶核形成、晶体长大,并伴随熟料结粒。阿里特的形成受游离石灰的溶解过程所控制。 在1450~1300℃的冷却过程中,阿里特晶体还将继续长大和完善。随着温度的降低,熟料相继进行液相的凝结与矿物的相变。因此,在冷却过程中要根据熟料的组成与性能的关系决定熟料的冷却制度。为了保证熟料的质量,多采用稳定剂和适当快冷的办法来防止阿里特的分解和β-C 2S 向γ-C 2S 的转变。 三、实验器材 ①天平(感量0.001g ); ②高温电阻炉(最高温度≥1500℃); ③球磨罐(或研钵); ④成型模具; ⑤高铝匣钵、垫砂(刚玉砂); ⑥坩埚钳、石棉手套、长钳、护目镜等。 四、实验步骤 1.试样制备 ①可采纯化学试剂,也可用已知化学成分的工业原料配料。 ②确定水泥的品种、熟料的组成和选用的原料。 23C S(+CaO(C S( 液)液)固)

水泥熟料生产线熟料煅烧的基本知识

熟料生产线热工设备基础知识 1.1新型干法水泥回转窑系统概述 水泥是一种细磨材料,它加入适量水后,成为塑性浆体,这种浆体是既能在空气中硬化,又能在水中硬化(硬化后要达到一定的强度),并能把砂、石等材料牢固地胶结在一起的而且具有其他一些性能的水硬性胶凝材料。 水泥生产要经过“二磨一烧”(即生料磨、水泥窑和水泥磨),其中,水泥窑系统是将水泥生料在高温下烧成为水泥熟料的热工设备,是水泥生产中一个极为重要的关键环节。 新型干法水泥回转窑系统是以悬浮预热技术和窑外分解技术为核心,以NSP窑(或称:PC窑)为主导的水泥熟料烧成系统。 没有分解炉的新型干法水泥回转窑系统叫做SP窑,有分解炉的新型干法水泥回转窑系统叫做NSP窑,在一些欧美国家也将NSP窑称为PC窑,即预分解窑。 窑外分解窑的工作原理为:(分别从料、煤、风的角度论述) 第一,生料粉从第1级旋风筒和第2级旋风筒之间的联接管道加入,加入的生料进入联接管道内后马上被分散在上升气流中,从而被携带到第1级旋风筒(简称C1)内,在旋风筒内利用离心力的作用进行气固分离后,废气被排走,而生料粉被再一次加到C2和C3之间的联接管道内,然后再一次被携带到C2内进行气固分离。 这样依次类推,生料粉依次通过各级旋风筒及其联接管道。生料

粉每与上升的气流接触一次,就经过一次剧烈的热交换,从而生料粉被一次一次地预热升温,废气则被一次一次地冷却降温,从而达到回收废气余热来预热生料。当生料达到一定温度,会发生一定程度的碳酸盐分解(小部分分解,因为废气的热焓不足以使其发生大量分解)。 出C4的预热生料进入分解炉,在分解炉内完成大部分碳酸钙的分解,分解反应所需热量来自于分解炉内的燃料燃烧。分解后的生料与废气再一起进入C5内,经C5完成气固分离后,生料入回转窑内煅烧,再经过一系列物理化学反应后,最终烧成为水泥熟料。出窑后熟料再经过冷却机冷却后被送到熟料库内。熟料、石膏、混合材按一定比例在水泥磨内混合粉磨后就成为水泥。 第二,来自煤磨的煤粉被分成二部分,小部分煤粉(大约45%-30%)被送到窑头喷入回转窑内燃烧,燃烧后产生的高温烟气供给回转窑内煅烧水泥熟料所用;大部分煤粉(大约55%-70%)被气力输送到分解炉内燃烧,以供给预热生料中碳酸钙分解所需的大量热量。 第三,燃料燃烧所需的助燃空气被分成三部分,第一部分来自窑头的鼓风机,称为一次风。一次风主要作用是:携带从窑头煤粉仓下来的煤粉经喷煤管高速喷入回转窑内高效燃烧来保持喷出火焰有一 定的“刚度”(平、顺、直);另外两个部分助燃空气来自熟料冷却机内的预热空气,分别称为二次风和三次风。二次风从窑头进入回转窑内成为窑头煤粉燃烧的主要助燃空气(另外少量的助燃空气是一次风)。三次风通过专门设立的三次风管进入分解炉成为分解炉内煤粉燃烧所需的主要助燃空气。

相关文档