文档库 最新最全的文档下载
当前位置:文档库 › 本特利3300轴向位移和胀差传感器的零位锁定问题

本特利3300轴向位移和胀差传感器的零位锁定问题

本特利3300轴向位移和胀差传感器的零位锁定问题
本特利3300轴向位移和胀差传感器的零位锁定问题

本特利3300轴向位移和胀差传感器的零位锁定问题

摘要:胀差、轴位移是汽轮机监测保护系统最重要的两项技术参数,本文具有针对性的从理论和实际调试两方面阐述了如何正确地锁定本特利3300系统胀差、轴位移传感器的测量零位;就如何避免实际安装调试中常出现的问题,分析并提出了可靠的解决方法,从而为减少因传感器零位锁定不当造

引言:在高参数,大容量汽轮发电机组中,轴位移和胀差是直接反映汽轮机动静间隙的两项最重要的技术参数,也是两项重要保护。目前,由于许多机组的轴差、位移监测系统传感器的零位锁定不当,使该系统在机组启动后,测量误差较大,甚至无法正常监测和投入保护,只能停机处理。因此,检修后机组的轴位移、胀差传感器的零位锁定是直接影响启机后,胀差、位移监测系统能否正确的反映汽轮机组的动静间隙,从而可靠投入保护的一项重要工作。

1 胀差、位移监测系统的测量原理

胀差、位移监测系统都是利用涡流传感器的输出电压与其被测金属表面的垂直距离在一定范围内成正比的关系,将位移信号转换成电压信号送至监测仪表,从而实现监测和保护的目的。现以300MW机组中N300-16.7/538/538型汽轮机组为例,将美国本特利内华达公司生产的3300/46斜坡式胀差和3300/20轴位移监测系统的测量原理进行阐述(轴位移、胀差的测量一次元件均采用本特利7200系列84712-00-07-10-02涡流传感器)。

1.1 本特利3300/46斜坡式胀差监测系统的工作原理

在机组正常运行中,胀差传感器固定在缸体上,而传感器的被测金属表面铸造在转子上,因此,汽缸和转子受热膨胀的相对差值称为“胀差”(一般习惯将转子的膨胀量大于汽缸的膨胀量产生的差值做为“正胀差”,反之为“负胀差”)。该差值被涡流传感器A和B做它和转子上被测表面的相对位移利用其“输出电压与被测金属表面距离成正比”的关系,并利用转子被测表面加工的8°斜坡将传感器的测量范围进行放大,其换算关系如下:

δ=L×Sin8°(式1-1)

(δ:传感器与被测斜坡表面的垂直距离;L:胀差)

如果传感器的正常线性测量范围为4.00mm(即δ=4.00mm),则对应被测胀差范围L为:

L=δ/Sin8°=400/Sin8°=28.74mm

由上式可知:胀差传感器利用被测表面8°的斜坡将其4.00mm的正常线性测量范围扩展为28.74mm的线性测量范围,从而满足了对0-20mm的实际胀差范围的测量。传感器将其与被测斜坡表面的垂直距离转换成直流电压信号送至前置放大器进行整形放大后,输出0-24VDC电压信号至3300/46斜坡式胀差监测器,分别将A、B传感器输入的信号进行叠加运算后进行胀差显示,并输出开关量信号送至保护回路时进行报警和跳闸保护。同时输出0-10VDC、1-5VDC或4-20mA模拟量信号至记录仪。具体安装原理图如下:

1.2 本特利3300/20轴位移监测系统的测量原理

由于本特利3300/20轴位移监测系统出厂设计为:当测量回路开路或机组的轴向位移达到报警或跳闸值时均会发出报警和跳闸信号,故一般采用4只传感器,分别送入两个3300/20轴位移监测器,两两相“与”后,再将两个监测器的开关量信号输出相“或”做为跳机保护条件较可靠。现以一只传感器为例说明其工作原理。单只轴向传感器的工作原理与单只胀差传感器的工作原理一样。都是利用涡流传感器将其与被测表面的位移转换成电压信号送至前置放大器,经整形放大后,输出0-24VDC电压信号,送至3300/20监测器进行信号处理,输出开关量信号至汽轮机跳闸保护系统实现保护功能。同时送出4-

20mA、0-10VDC或1-5VDC模拟量信号至记录仪。其信号传递原理图如下:

2 胀差、位移监测系统传感器的零位锁定

2.1 胀差、位移监测系统传感器的零位锁定必须参考的因素

a大轴推力瓦的间隙△值。

b大轴位置(即大轴推力盘已靠在推力瓦的工作面或非工作面)。

c胀差、位移监测器及传感器的校验数据。

现以N 300-16.7 /538/538型汽轮机组为例,分别介绍3300/46胀差和3300/20轴位移监测保护系统的零位锁定。胀差、轴位移监测传感器均采用本特利3300系列81724-00-07-10-02型涡流传感器,其特性曲线如图2-1所示:

已知△=0.36mm,胀差监测器量程为0~20mm,轴位移监测器量程为+1.25mm,大轴推力盘靠在工作面,位置如2-2所示:

2.2 3300/46斜坡式胀差传感器的零位锁定步骤:

1)因3300/46监测器的设计量程为0-20mm,而实际机组停运后会产生约0-2.50mm的负胀差,因此,传感器安装零位对应监测器的显示为+2.50mm。由图2-1所示传感器的特性曲线可知,此种型号的传感器安装基准电压为-10.00VDC,按此电压将A、B传感器分别固定,此时,3300/46监测器应显示+10.00mm,然后利用千分表和可调拖架将A、B传感器同时向图2-2所示的托差方向调整7.50mm,此时监测器的显示应为+2.50mm。

2)若大轴推力盘靠在工作面,等于将大轴从推离瓦的中间零位向机头推了1/2×△mm,应利用可调拖架将A、B传感器同时再向图2-2所示的胀差方向调整1/2×△mm后,将可调拖架锁定即可。此时,A、B传感器的间隙δ1、δ2可按下式推算:

δ1=δAO+(1/2×△+7.50)×Sin8°

δ2=δBO-(1/2×△+7.50)×Sin8°

式中:δAO、δBO为A、B传感器的安装基准电压-10.00VDC安装时,传感器与其被测表面之间的间隙。最终零位锁定后,应记录A、B传感器的输出电压。

3)若推力盘靠在推力瓦的非工作面,则在完成第2步后,利用可调拖架将

A、B传感器同时再向胀差的反方向(机头方向)调整1/2×△mm后,将可调拖架

锁定即可。此时,3300/46监测器应显示为+2.70mm。δ1,δ2可按下式推算:

δ1=δAO-(1/2×△-7.50)×Sin8°

δ2=δBO+(1/2×△-7.50)×Sin8°

2.3 3300/20轴位移监测系统的零位锁定:

因四只轴位移传感器均无可调拖架,故以传感器的零位电压计算值锁定较为准确可靠。已知:△=0.36mm,大轴推力盘靠在工作面,3300/20监测器量程为+1.25mm,传感器灵敏度F=4.00V/mm,零位安装电压V0=-10.00V,则零位电压X的计算:

X=VO-F×1/2×△=10-4.00×1/2×0.36=-9.28V

最终零位锁定后,3300/20监测器应显示为-0.18mm。

注:若大轴推力盘靠在推力瓦非工作面,则X应按下式计算:

X=VO+F×1/2×△

最后,按照计算出的X值安装锁定传感器。监测器显示为+0.18mm。

3 现场安装调试时传感器零位锁定中易出现的问题及分析:

1) 未考虑推轴间隙,表记则会产生1/2×△mm的测量误差。

2) 将1/2×△mm的推轴间隙调反,表记则会产生△mm的测量误差。

3) 胀差监测系统的零位锁定时,未考虑2.50mm的负向胀差余量,造成零位锁定错误。

在实际生产中,出现上述问题,均会导致监测系统产生很大的测量误差,使保护系统不能正常投入。因此,在实际胀差、位移监测系统的零位锁定中,按照本文所述的零位锁定方法则可避免此类问题的发生。

本特利3500组态中文说明

本特利组态 一、连接、上载 一般先上电,点击图1后,选择端口和波特率见图2,点CONNECT建立连接。 点UPLOAD图3,上载组态图4。 图1 图2 图3

图4 二、模块设置 1、模拟量模块设置 点击图4中左侧的options按钮,然后可以对各个模块进行组态。 以上图为例,1~7槽分别为CPU模块,增速箱振动,风机振动,风机位移,报警继电器,停车继电器,modbus通信模块。 点击图4中的2号槽进入图5的界面进行振动组态

图5 如图5中,选择通道信号类型,每两个通道为一组同类型信号,Radial Vibration为振动,如果信号为位移则选择Thrust Position.不测建相,将No Keyphasor打钩。用到那个通道将该通道Active打钩。设定量程,选择探头类型点击要设定的通道的Options按钮。现在以图5中通道1为例,进入图6选择探头类型 图6 再点击图6中的进入图7选择要设定的参数量程,并且可以设置报警和停机的延迟时间。设置好点ok保存,如果该模块四个通道信号类型,探头型号以及量程都相同,可以点击图5中的1和2按钮依次将设置好的1通道属性复制到Channel 2、Channel 3、Channel 4中。 位移的设置类似。

图7 2、继电器模块设置 点击图4中的槽5进入图8的界面 图8

图8的逻辑是该继电器模块的第一路通道是第一个模拟量模块前两个通道报警信号有任何一个出现,该继电器输出。依次可以根据实际情况设置其他通道输出逻辑。 三、报警、停机值设定 点击主菜单中的如下图 图9 要设置振动或位移的报警、停机值,可在图9的界面中点击相应的模块 图10

汽轮机轴向位移和胀差

汽轮机轴向位移与胀差 汽轮机轴向位移与胀差 (1) 一、汽轮机轴向位移增大的原因 (1) 二、汽轮机轴向位移增大的处理 (1) 三、汽机轴向位移测量失灵的运行对策 (1) 汽轮机的热膨胀和胀差 (2) 相關提問: (2) 1、轴向位移和胀差的概念 (3) 2、轴向位移和胀差产生的原因(影响机组胀差的因素) (3) 使胀差向正值增大的主要因素简述如下: (3) 使胀差向负值增大的主要原因: (4) 正胀差 - 影响因素主要有: (4) 3、轴向位移和胀差的危害 (6) 4、机组启动时胀差变化的分析与控制 (6) 汽封供汽抽真空阶段。 (7) 暖机升速阶段。 (7) 定速和并列带负荷阶段。 (7) 汽轮机推力瓦温度的防控热转贴 (9) 1 润滑油系统异常........................................................... .. (9) 2 轴向位移增大 (9) 3 汽轮机单缸进汽 (10) 4 推力轴承损坏 (10) 5 任意调速汽门门头脱落 (10) 6 旁路系统误动作 (10) 7 结束语 (10) 汽轮机轴向位移与胀差 轴向位移增大原因及处理 一、汽轮机轴向位移增大的原因 1)负荷或蒸汽流量突变; 2)叶片严重结垢; 3)叶片断裂; 4)主、再热蒸汽温度和压力急剧下降; 5)轴封磨损严重,漏汽量增加; 6)发电机转子串动; 7)系统周波变化幅度大; 8)凝汽器真空下降; 9)汽轮机发生水冲击; 10)推力轴承磨损或断油。 二、汽轮机轴向位移增大的处理 1)当轴向位移增大时,应严密监视推力轴承的进、出口油温、推力瓦金属温度、胀差及机组振动情况;

汽轮机运行中胀差的分析和控制

汽轮机运行中胀差的分析和控制 当汽轮机在启动加热、停机冷却过程中,或在运行中工况变化时,汽缸和转子会产生热膨胀或冷却收缩,由于转子的受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大,因此,在相同的条件下,转子的温度变化比汽缸快,使得转子与汽缸之间存在膨胀差,而这差值是指转子相对于汽缸而言的,把转子与汽缸之间热膨胀的差值称为相对膨胀差,简称胀差。当转子轴向膨胀大于汽缸的轴向膨胀时,称为正膨胀;反之若转子轴向膨胀小于汽缸的轴向膨胀时,称为负膨胀。 一.汽轮机胀差的产生 汽缸和转子之间出现胀差的主要原因是它们的结构和工作条件不同。由于转子与汽缸之间存在温差,各自受热状况不一样,转子质量小但接触蒸汽的面积大,温升和热膨胀较快,而汽缸质量大,温升和热膨胀就比较慢,因此在转子和汽缸热膨胀还没有达到稳定前,他们之间就有较大的胀差。同理,由于转子比汽缸体积小,转子的冷却收缩也比汽缸的冷却收缩快,这时它们之间也会产生较大胀差。汽轮机启动加热,从冷态变为热态,汽缸受热发生热膨胀,汽缸向高压侧或低压侧伸长。同样转子也因受热发生热膨胀。转子膨胀大于汽缸,其相对膨胀差被称为正胀差。汽轮机带负荷后,转子和汽缸受热面逐渐于稳定,热膨胀逐渐区于饱和,它们之间的相对膨胀差也逐渐减小,最后达到某一稳定。 二.胀差过大的危害 胀差的大小意味着汽轮机动静轴向间隙相对于静止时的变化,正胀差表示自喷嘴至动叶间隙增大;反之,负胀差表示该轴向间隙减小。汽轮机轴封和动静叶片之间的轴向间隙都很小,若汽轮机启停或运行中胀差变化过大,超过了轴封以及动静叶片间正常的轴向间隙时,就会使轴向间隙消失,导致动静部件之间发生摩擦,引起机组振动,以至造成机组损坏事故。因此,汽轮机都规定有胀差允许的极限值,它是根据动静叶片或轴封轴向最小间隙来确定的。当转子与汽缸间隙相对膨胀差值达到极限值时,动静叶片或轴封轴向最小间隙仍留有一定的合理间隙。不同容量的汽轮机组胀差允许极限值不同。我厂机组对胀差允许的极限值高压缸为-2.0~+7.4mm,中压缸-4.5~+7.0mm,低压缸-3.3~+9.1 mm。一旦胀差达到报警值,立即发出声光报警信号,以便运行人员及时采取措施,保护机组安全。如果胀差超限,热工保护将汽机打闸,保护机组安全。为了在汽轮机启动、暖机和升速过程中或在运行、停机过程中保护机组安全,必须设置汽轮机热膨胀测量装置和转子与汽缸相对膨胀测量装置。 三.汽轮机胀差增大的原因

3500本特利使用说明

有关萧山电厂的3500本特利使用说明 我厂于2005年5月在#1机组上安装了3500本特利表(由3300改造) BNC System Installed Date: 本特利公司系统安装日期:2005年5月 BNC System Construct and It’s P/N, S/N: 本特利公司系统构成及编号,系列号: 3500监测系统1套: 3500/15 2块, 3500/22 1块, 3500/25 1块, 3500/42 3块, 3500/45 1块, 3500/32 2块, 3500/33 1块, 3500/92 1块 Installation/Configuration/Calibration/Inspection Procedure: 安装/组态/校验/检测步骤: 1, 3500系统组态 1), 槽2的CH1是键相器, 1齿, 0 - 5000rpm。键相探头的安装电压为-10Vdc,不能对准键槽. 2), 槽3和槽4的8个通道组态为绝对振动,相对振动传感器为3300 8mm,瓦振传感器9200。量程0 – 500um pp, 绝对振动报警1为125um pp, 报警2为250um pp。 槽3: ch1= VB1R, ch2= VB2R, ch3= VB1S, ch4= VB2S 槽4: ch1= VB3R, ch2= VB4R, ch3= VB3S, ch4= VB4S

3), 槽5的CH1和CH2组态为轴位移,7200 11mm传感器,量程为±2mm, 报警1为±1.0mm, 报警2为±1.2mm 。轴位移正方向为远离探头。轴位移1和2的安装零位电压为-12Vdc。 Ch1=RP1, Ch2=RP2 4), 槽5的CH3组态为偏芯, 峰峰值量程0 – 500um pp.电名为RX. 安装零位电压为-10Vdc。 5), 槽6 CH1组态为高缸胀差, 量称为-2.0 -0- +8.0mm, 报警1为+6.0mm, -1.0mm。报警2为+7.0mm, -1.5mm。其正方向为靠近探头。高胀差的安装零位电压为-10Vdc 槽6 CH2组态为低缸胀差, 量称为-2.0 -0- +8.0mm, 报警1为+6.5mm,报警2为+7.0mm。其正方向为远离探头。低胀差的安装零位电压为-5Vdc Ch1= DEA, Ch2= DEB 6), 槽7的CH1是轴位移报警1输出, CH2是轴位移报警2输出。 7),槽8的CH1是高缸胀差报警1输出,CH2是高缸胀差报警2输出。CH3是低缸胀差报警1输出,CH4是低缸胀差报警2输出。 8), 槽9的CH1是VB1报警1输出, CH2是VB1报警2输出。CH3是VB2报警1输出, CH4是VB2报警2输出, CH5是VB3报警1输出, CH6是VB3报警2输出。CH7是VB4报警1输出, CH8是VB4报警2输出。

第06章 汽轮机轴向位移与胀差测量装置

第六章汽轮机轴向位移及胀差测量保护装置 一、JZX-3A型轴向位移和JDX-3A型相对膨胀装置 我厂1、3、4号机均采用JZX-3A型轴向位移测量保护装置和JDX-3A型相对膨胀测量装置,它们的结构、原理、使用方法完全一样,只是量程不同。轴向位移量程±2毫米,胀差量程±5毫米。它们具有共同的特点:设计合理,结构紧凑;性能稳定,线性度好;功能齐全,维修方便。 1检修项目与质量要求 1.1发讯器支架与测量盘检查 检查汽轮机上安装发讯器的支架与测量盘,该支架应安装牢靠,机械连接部件的可动部分,应灵活无卡涩,无晃动;弹簧张力恰当,回位正确;测量盘表面应光滑无损伤,损伤严重时应进行修补,否则,在低转速时,示值将摆动。 1.2发讯器部分 1.2.1发讯器的铁芯端面应平整无损,固定螺丝、销钉、防松垫等应齐全牢固,引线及保护金属软管应完整无损,不应与机械转动部分接触磨擦。 1.2.2测量发讯器各组线圈电阻值,应符合规定值。 1.2.3用500V绝缘表测量各组线圈间及对外壳的绝缘电阻,应不小于10MΩ(注意:测量时,必须拨下装置内的插头,防

止高压损伤电子元件)。 1.2.4发讯器上的标志牌应正确清楚,固定牢靠。 1.3 电源部分 1.3.1电源部分内外应清洁,各引线螺丝、固定螺丝、插接件等应齐全无松动。线头标志清楚正确。电源指示灯正常,电压指示表指示正确。 1.3.2各组电压值正确。当电源电压在200~240V范围内变化时,其输出电压变化应不超过±1%。 1.3.3用500V绝缘表测量一、二次线圈对外壳的绝缘电阻,应不小于10MΩ。 1.4 调整装置 1.4.1装置内部应清洁,各零部件固定牢靠,元器件插(焊)接应牢固。 1.4.2各指示灯、开关、按钮应齐全、可靠,电位器应接触良好,无跳动现象。 1.5指示仪表校准 仪表示值误差和同量程误差不应超过仪表的允许误差。并且模拟表应无卡涩现象,数字表无示值跳动现象。 2 整套装置的校准与技术要求 整套装置的校准是将发讯器按要求装在模拟试验台上进行

本特利3500型TSI系统安装与调试

1 传感器的安装与调试 1.1轴承振动传感器探头的安装 6个φ8 mm灵敏度为7.87 V/rnm 的涡流探头分别装于1号、2号、3号轴承处。每个轴承处安装两只互成90° ,垂直于轴承,探头与水平方向的夹角为45°,分别测量X、Y方向上的振动。一般涡流传感器,涡流影响范围约为传感器线圈直径的三倍,因此传感器对应的测量宽度应为传感器直径的三倍,而且在传感器空间24mm范围内不应有其它金属物存在,否则会带来误差。安装间隙电压应为传感器输出特性曲线确定的线形中点位而定,φ8 mm灵敏度为7.87 V/mm的探头,安装间隙电压为- 9.75 V或1.2 mm左右。由于传感器线形电压范围大大超过测量范围,所以安装间隙允许有较大的偏差,只要保证测量范围在线形段内即可,但为了满足故障诊断和可靠性的需要,一般要求安装电压9.75土0.2 V。 1.2轴向位移、高低压差胀传感器的安装 轴向位移测的是推力轴承相对汽缸的轴向位移,在机组运行过程中,使动静部件之间保持一定的轴向间隙,避免汽轮机内部转动部件和静止部件之间发生摩擦和碰撞。两只轴向位移传感器探头安装在2号轴承处,分别装于甲乙两侧,探头朝向低压缸方向安装探头型号为7200型φ14 mm探头,灵敏度为3.937 V/mm,前臵器供电电压为-24V。大轴相对于汽缸的设计零点为止推轴承靠在工作瓦面为大轴零位。在安装轴向位移和低压差胀传感器前,首先要把大轴推到零位,然后按要求安装。轴向位移的量程范围为-2 mm一+ 2 mm,安装电压- 9.75

土0.2 V 沾化电厂汽轮机膨胀相对死点在2号轴承处,高压缸转子膨胀在以2号轴承处为相对死点向前箱方向膨胀,低压缸转子膨胀在以2轴承处为相对死点向发电机方向膨胀。高低压差胀探头为不带前臵器φ25 mm涡流探头,灵敏度为0.8 V/ mm,因为高低压差胀都是朝着发电机方向安装,要使高低缸差胀测量范围均在线形范围之内,按照探头线性中点及量程范围- 2--10 mm定位。探头零位的安装电压可按下式计算: 高压差胀探头零位安装电压:探头线性中点电压(-6.95 V)-探头灵敏度(0.8 V/mm)*4 低压差胀探头零位安装电压:探头线性中点电压(-6.95 V) +探头灵敏度(0.8 V/mm)*4 所以,高压差胀探头零位安装电压为-11.10 V;低压差胀探头零位安装电压为-3.8V。 1.3大轴偏心传感器的安装 偏心度的测量是监视大轴的弯曲程度。直接偏心指瞬时偏心值,峰一峰值偏心表示的是轴弯曲正方向的极值与负方向的极值之差。偏心的测量是通过偏心探头和键向探头共同完成的,均为φ8 m灵敏度为7.874 V/mm的涡流探头,键相器探头监测轴上一个凹槽,当轴每转一周,在探头上产生一个脉冲电压,提供计算偏心峰一峰值的频率。探头的安装间隙电压都为一10 V,注意键相探头的安装,不要正对着槽位安装。键相器也为振动提供相位信号,以便对振动进行分析研究。 1.4转速探头的安装

汽机轴向位移和胀差传感器的零位锁定问题

汽机轴向位移和胀差传感器的零位锁定问题 摘要:胀差、轴位移是汽轮机监测保护系统最重要的两项技术参数,本文具有针对性的从理论和实际调试两方面阐述了如何正确地锁定本特利3300系统胀差、轴位移传感器的测量零位;就如何避免实际安装调试中常出现的问题,分析并提出了可靠的解决方法,从而为减少因传感器零位锁定不当造引言:在高参数,大容量汽轮发电机组中,轴位移和胀差是直接反映汽轮机动静间隙的两项最重要的技术参数,也是两项重要保护。目前,由于许多机组的轴差、位移监测系统传感器的零位锁定不当,使该系统在机组启动后,测量误差较大,甚至无法正常监测和投入保护,只能停机处理。因此,检修后机组的轴位移、胀差传感器的零位锁定是直接影响启机后,胀差、位移监测系统能否正确的反映汽轮机组的动静间隙,从而可靠投入保护的一项重要工作。 1 胀差、位移监测系统的测量原理 胀差、位移监测系统都是利用涡流传感器的输出电压与其被测金属表面的垂直距离在一定范围内成正比的关系,将位移信号转换成电压信号送至监测仪表,从而实现监测和保护的目的。现以300MW机组中N300-16.7/538/538型汽轮机组为例,将美国本特利内华达公司生产的3300/46斜坡式胀差和3300/20轴位移监测系统的测量原理进行阐述(轴位移、胀差的测量一次元件均采用本特利7200系列84712-00-07-10-02涡流传感器)。 1.1 本特利3300/46斜坡式胀差监测系统的工作原理 在机组正常运行中,胀差传感器固定在缸体上,而传感器的被测金属表面铸造在转子上,因此,汽缸和转子受热膨胀的相对差值称为“胀差”(一般习惯将转子的膨胀量大于汽缸的膨胀量产生的差值做为“正胀差”,反之为“负胀差”)。该差值被涡流传感器A和B做它和转子上被测表面的相对位移利用其“输出电压与被测金属表面距离成正比”的关系,并利用转子被测表面加工的8°斜坡将传感器的测量范围进行放大,其换算关系如下: δ=L×Sin8°(式1-1) (δ:传感器与被测斜坡表面的垂直距离;L:胀差) 如果传感器的正常线性测量范围为4.00mm(即δ=4.00mm),则对应被测胀差范围L为: L=δ/Sin8°=400/Sin8°=28.74mm 由上式可知:胀差传感器利用被测表面8°的斜坡将其4.00mm的正常线性测量范围扩展为28.74mm的线性测量范围,从而满足了对0-20mm的实际胀差范围的测量。传感器将其与被测斜坡表面的垂直距离转换成直流电压信号送至前置放大器进行整形放大后,输出0-24VDC电压信号至3300/46斜坡式胀差监测器,分别将A、B传感器输入的信号进行叠加运算后进行胀差显示,并输出开关量信号送至保护回路时进行报警和跳闸保护。同时输出0-10VDC、1-5VDC 或4-20mA模拟量信号至记录仪。具体安装原理图如下:

汽轮机轴位移定位

汽轮机轴位移、胀差传感器的零位锁定 1,测量前,先对推力轴承,外壳,球面瓦枕,调整垫片,工作瓦片,非工作瓦片,固定垫圈,支持销钉,转子推力盘等部件进行详细检查,瓦片装上后应能自由活动,各部件的接触面应无毛 刺,飞边及其它杂物. 2,测量时停止汽缸及转子上进行其它工作,并向轴颈及推力 盘上浇透平油. 3,装好千分表两块,一块装在转子的台肩或推力盘上测量转子的总串动量,另一块装在推力瓦外壳上,作监视推力瓦外壳前后窜动用;表装卡要和转子轴线平行,否则测量会有误差. 4,拴好钢丝绳,进行盘车,同时用橇杠或专用工具将转子分别尽量的推向工作瓦片侧及非工作瓦片侧,并记录表的两次读数,则两次读数的差值即为推力间隙. 5,推力间隙与动静部分的间隙是相互关联的,推力轴承是用来保持转子与汽缸轴向对位置的,所以在测量及调整推力间隙时,应考虑到当转子推向工作瓦片侧时,动静间隙(叶轮与前方隔板的间隙)的最小值,应大于推力间隙. 6,测量推力间隙应考虑到主轴承轴线与推力平面的不垂直度,可能影响推力间隙沿圆周不一致,导致瓦块负荷分配不均匀,引起运行中推力瓦片的温度不一致,有时甚至相差甚大.如出现这一情况,检修中必须细致检查综合瓦的垂直度,并适当微调整上下左右瓦块厚度间隙,重新负荷分配.

同的汽轮机,对轴向位移的零点要求不同,有的以大轴推向工作面为零点,有的要求以推力间隙的中 间位置为零点,具体要根据机组的设计要求。以下的安装调试方法适合以推力间隙的中间位置为零点的机组:(以电涡流原理的探头为例) 1、首先让机务人员测定轴向推力间隙。(假定为D ㎜) 2、机务人员用千斤顶将大轴推向工作面。 3、将轴向位移探头的移动导轨移动至中间位置。 4、调整探头在支架上的位置(用万用表监视间隙电 压)使间隙电压显示-10V ,然后将轴向位移探头固定在支架上并锁紧。 5、手动沿导轨移动探头支架,使间隙电压显示 “X”V后,将支架锁定在导轨上。(间隙电压 “X”算法:设探头的灵敏度为aV/㎜。 X=-10+(-0.5D)* a 6、此时二次表应显示轴向位移值为:0.5D㎜ 说明:如果机组设计是以大轴推向工作面为零点,那么取消上面的第5步即可。 〔摘要〕胀差、轴位移是汽轮机监测保护系统最重要的两项技术参数,从理论和实际调试两方面阐述了如何正确地锁定本特利3300系统胀差、轴位移传感器的测量零位;并就如何避免实际安装调试中经常出现的问题,提出了可靠的解决方法,从而为减少因传感器零位锁定不当造成的测量、保护动作误差提供参考。

本特利3500安装与调试

1传感器的安装与调试 1.1轴承振动传感器探头的安装 6个φ8 mm灵敏度为 7.87 V/rnm的涡流探头分别装于1号、2号、3号轴承处。每个轴承处安装两只互成90°,垂直于轴承,探头与水平方向的夹角为45°,分别测量X、Y方向上的振动。一般涡流传感器,涡流影响范围约为传感器线圈直径的三倍,因此传感器对应的测量宽度应为传感器直径的三倍,而且在传感器空间24mm范围内不应有其它金属物存在,否则会带来误差。安装间隙电压应为传感器输出特性曲线确定的线形中点位而定,φ8 mm灵敏度为 7.87 V/mm的探头,安装间隙电压为- 9.75 V或 1.2 mm左右。由于传感器线形电压范围大大超过测量范围,所以安装间隙允许有较大的偏差,只要保证测量范围在线形段内即可,但为了满足故障诊断和可靠性的需要,一般要求安装电压 9.75土 0.2 V。 1.2轴向位移、高低压差胀传感器的安装 轴向位移测的是推力轴承相对汽缸的轴向位移,在机组运行过程中,使动静部件之间保持一定的轴向间隙,避免汽轮机内部转动部件和静止部件之间发生摩擦和碰撞。两只轴向位移传感器探头安装在2号轴承处,分别装于甲乙两侧,探头朝向低压缸方向安装探头型号为7200型φ14mm探头,灵敏度为 3.937V/mm,前臵器供电电压为-24V。 大轴相对于汽缸的设计零点为止推轴承靠在工作瓦面为大轴零位。在安装轴向位移和低压差胀传感器前,首先要把大轴推到零位,然后按要求安装。轴向位移的量程范围为-2 mm一+ 2 mm,安装电压-

9.75土 0.2 V沾化电厂汽轮机膨胀相对死点在2号轴承处,高压缸转子膨胀在以2号轴承处为相对死点向前箱方向膨胀,低压缸转子膨胀在以2轴承处为相对死点向发电机方向膨胀。高低压差胀探头为不带前臵器φ25 mm涡流探头,灵敏度为 0.8 V/ mm,因为高低压差胀都是朝着发电机方向安装,要使高低缸差胀测量范围均在线形范围之内,按照探头线性中点及量程范围- 2--10 mm定位。探头零位的安装电压可按下式计算: 高压差胀探头零位安装电压: 探头线性中点电压(- 6.95 V)-探头灵敏度( 0.8 V/mm)*4 低压差胀探头零位安装电压: 探头线性中点电压(- 6.95V)+探头灵敏度( 0.8 V/mm)*4 所以,高压差胀探头零位安装电压为- 11.10 V;低压差胀探头零位安装电压为- 3.8V。 1.3大轴偏心传感器的安装 偏心度的测量是监视大轴的弯曲程度。直接偏心指瞬时偏心值,峰一峰值偏心表示的是轴弯曲正方向的极值与负方向的极值之差。偏心的测量是通过偏心探头和键向探头共同完成的,均为φ8 m灵敏度为

低缸胀差和轴向位移偏大的原因分析和调整方法

低缸胀差和轴向位移偏大的原因分析和调整方法 运行中低缸胀差偏大或轴向位移偏大是常见的缺陷,由于产生原因不清楚,机组不得不降负荷运行,但有时候往往是虚惊一场,较多的是转子冷、热态在缸内的位置不清楚,元件调整和传动试验方法不对,本文以125MW机组为例,阐述它们之间的关系和调整方法,供其它类型机组的专业技术人员参考。 1.与动静间隙的关系 1.1低缸胀差与动静间隙的关系 低缸胀差传感器装在3号轴承盘车齿轮处,该轴承箱与低压缸没有直接连接,因此,3300表盘上所显示的低缸胀差值应是低压转子的绝对膨胀值。整根转子的膨胀死点在推力轴承处,低压外缸的膨胀死点在低压缸靠2号轴承前端,低压内缸相对低压外缸的死点在低压进汽中心线处,因此,在热态下,低压内缸除沿进汽中心线向两侧膨胀外,还与低压外缸一起向发电机侧膨胀。 假设以低压缸进汽中心线为参考点则有: 转子在该点的膨胀量为低缸差胀(A)的一半。 低压外缸在该点的膨胀值为低压外缸绝对膨胀值(B)的一半,B一般为1~1.2mm。 若取0.5~0.6mm的安全裕量。 设安装间隙为(X0),内缸膨胀量为C则膨胀后的轴向间隙(X)有: X=X0-A/2+B/2-C-0.6 正向: 低压缸动静碰摩最危险的部位是靠机头前的19、20、21级最小安装间隙为7mm。中心线距21级约600mm,平均温度按250℃计,低压内缸在21级处与转子反向膨胀约1.5mm,要保证动静部分不发生摩擦就必须使X>0。 X=7-1.5-A/2+1~1.2/2-0.6>0 A<10mm时,是安全的。 负向: 低压缸动静碰摩最危险的部位是靠电机侧的25、26、27级最小安装间隙为3+0.5mm,在26级处,由于内缸与转子的温差很小,相对胀差可忽略,因此有: X=-(3+0.5)-A/2+1~1.2/2-0.6 A<-5mm时,是安全的。 1.2轴向位移与动静间隙的关系 轴向位移在正常运行时是一定的,它的显示值与机组的推力间隙和热工测量系统调整时的初始值有关,机组运行后基本不变,只有在推力瓦有磨损时它才发生变化。推力间隙一般控制在0.35~0.45mm之间,机组检修过程中调整动静间隙都是将推力盘分别向前、后推足后进行调整的,所以,正常运行时,推力间隙所对应的轴向位移,对机组的动静间隙是没有影响的,它对胀差的影响较小。 事故状态下,推力轴承磨损后,轴向位移将发生较大的变化,推力瓦乌金厚度为1.5mm 左右,轴向位跳机值为+(-)1.2mm,考虑到极端情况下,此时的胀差也到跳机值,低缸胀差的保护定值为+7.5、-1.5因此有:

本特利BN3500安装指导说明

BN3500现场调试和传感器安装指导 该指导书主要针对印度135MW机组编制,该工程TSI与常规设计不同在于,胀差是冗余布置,特别是低压缸胀差,为冗余补偿式测量,安装时需要对两对传感器同时考虑安装间隙,还有该机组盖振配置为XY向。其他机型可以参考变通。 1、软件安装 BN3500系统调试软件3500/01,安装简单;现场调试安装请注意软件版本,目前厂内调试一般用的最新软件,因此现场最好也安装最新版本软件,否则在软件组态通讯上会有不匹配的情况出现。本指导按软件版本V3.92SP2(不同版本组态界面可能不一样)完成。 2、通讯连接 BN3500系统调试通讯通过通讯电缆从PC和框架接口模块(3500/20,该卡件已经被淘汰,目前为3500/22)连接。3500/20板件背后有个开关,可以选择RS232/RS422,一般情况下,出厂即是选的RS232,因此现场直接用232的电缆连接即可,BN3500系统用RS232电缆连接如图1),通讯连接不需要密码,只要电缆没问题就OK,设置(通讯口和波特率)也不用更改,连接界面如图2、3。 图1 RS232电缆连接 图2 通讯连接界面一

图3 通讯连接界面二 3、模块组态以及组态下载 按TSI机箱框架实际槽位布置新建一个框架配置组态(只针对同一机箱配置,不同机箱需要不同框架配置组态),该配置也可以直接从TSI框架接口模块中上传至PC上(因为出厂前,TSI在厂内已经完成调试工作),如图4。 图4 上传机箱配置到PC上 右键框架中任何一个模块,即可对其进行组态,右键菜单如图5: 图5 卡件组态 卡件右键OPTIONS,设置卡件参数,包括传感器选型,测量类型,通道选择等; 卡件右键SETPOINTS设置报警停机值; 卡件右键VERIFICATION为卡件通道显示(间隙电压和间隙值),当PC与框架接口模块处于连接状态,并且传感器安装连接上时,可以在这个画面中检测传感器间隙值显示;同时在该画面中可以显示该模块OK状态,通道OK状态和传感器所处的状态(间隙值,电压值,停机报警状态变化),界面如图6。

轴向位移

轴向位移 1什么是轴向位移?轴向位移变化有什么危害? 答:气压机与汽轮机在运转中,转子沿着主轴方向的串动称为轴向位移。 机组的轴向位移应保持在允许范围内,一般为0.8~1.0mm,超过这个数值就会引起动静部分发生摩擦碰撞,发生严重损坏事故,如轴弯曲,隔板和叶轮碎裂,汽轮机大批叶片折断等。转子轴向位移(也被成为窜轴)这一指标主要是用以监督推力承轴的工作状况。 汽轮机运行中,汽流在其通道中流动时所产生的轴向推力是由推力承轴来承担的,并由它来保持转子和汽缸的相对轴向位置。不同负荷下轴向推力的大小是不同的,推力承轴在受压时产生的弹性变形也相应变化,所以运行中应该将位移数值和准值作比较,借以查明机组运行是否正常。 作用在汽轮机转子的轴向推力,是由推力承轴来承受的,推力承轴承受转子的轴向推力并维持汽轮机通流部分正常的动静轴向间隙。如果显然,轴向推力的变化将影响推力承轴工况的变化,进而会影响到汽轮机动静轴向间隙。从汽轮机安全运行的角度看来,动静轴向间隙是不允许由过大的变化的,所以通常均在推力承轴部位装设汽轮机转子轴向位移监测装置,以保证汽轮机组的安全工作。 推力承轴,包括承轴座架、瓦架、油膜,并非绝对刚性,也就是说在轴向推力用下会产生一定程度的弹性位移。如果汽轮机轴向推力过大,超过了推力承轴允许的负载限度,则会导致推力承轴的损坏,较常见到的就是推力瓦磨损和烧毁,此时推力承轴将不能保持机组动静之间的正常轴向间隙,从而将导致动静碰磨,严重时还会造成更大的设备损坏事故。而在机组运行中,轴向推力增大的因素常常有: (1)负载增加,则主蒸汽流量增大,各级整齐压差随之增大,使机组轴向推力增大。抽气供热式或背压式机组的最大轴向推力可能发生在某一中间负荷,因为机组除了电负荷增加外,还有供热负荷增加的影响因素。 (2)主蒸汽参数降低,各级的反动度都将增大,使机组轴向推力增大。 (3)隔板气封磨损,漏气量增加,使级间压差增大。 (4)机组通流部分因蒸汽品质不佳而结垢时,相应级的叶片和叶轮前后压差将增大,使机组的轴向推力增加。 (5)发生水冲击事故时,机组的轴向推力将明显增大。 由于机组在正常工况下运行时,作用在汽轮机转子上的轴向推力就很大,如果再发生以上几种异常情况,轴向推力将会更大,引起推力瓦块温度升高,严重时会使推力瓦块融化。 从上述分析可知,轴向位移可以较直观反映出运行中机组轴向推力的变化。同时还可看到,轴向推力的大小将影响到推力承轴工况的变化,也就是说提倡者工况的变化可在一定程度反映出轴向推力的变化,这一点已为运行实践所证实,例如轴向推力增大时,推力瓦温度将升高,推力承轴回油温度也将升高。近来一些机组还装设了推力瓦油膜压力表。实践表明,用推力瓦油膜压力表来监视轴向推力的变化,反映很灵敏。当然用推力瓦温、推力承轴回油温度或推力瓦油膜压力都不能直接反映出轴向推力的绝对值,但都可在一定限度内反映轴向推力变化的幅度。应该指出:推力承轴回油温度对轴向推力变化的反映比较迟缓,已经由不少慈乌金已磨损或开始熔化,但回油温度仍无明显变化的实例,所以我们认为应选择推力瓦温和油膜压力作为轴向推力和轴向位移的主要辅助监视表计。一些机组推力瓦片未装热电阻测温装置,这是不够安全的,应该创造条件加装。目前大功率机组推力承轴不仅每一推力瓦片均装设热电阻,甚至非工作瓦片也装设有测温装置。

浅谈汽轮机的热膨胀和胀差

浅谈汽轮机的热膨胀和胀差 一、轴向位移和胀差的概念 轴位移指的是轴的位移量而胀差则指的是轴相对于汽缸的相对膨胀量,一般轴向位移变化时其数值较小。轴向位移为正值时,大轴向发电机方向移,若此时汽缸膨胀远小于轴的膨胀,胀差不一定向正值方向变化;如果机组参数不变,负荷稳定,胀差与轴向位移不发生变化。机组启停过程中及蒸汽参数变化时,胀差将会发生变化,由于负荷的变化而轴向位移也一定发生变化。运行中轴向位移变化,必然引起胀差的变化。 汽轮机的转子膨胀大于汽缸膨胀的胀差值称为正胀差,当汽缸膨胀大于转子膨胀时的胀差值称为负胀差。 胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣,避免动静部分发生碰撞,损坏设备。启动时,一般应用加热装置来控制汽缸的膨胀量,而转子主要依靠汽轮机的进汽温度和流量以及轴封汽的汽温和流量来控制转子的膨胀量。启动时胀差一般向正方向发展。汽轮机在停用时,随着负荷、转速的降低,转子冷却比汽缸快,所以胀差一般向负方向发展,特别是滑参数停机时尤其严重,必须采用汽加热装置向汽缸夹层和法兰通以冷却蒸汽,以免胀差保护动作。 汽轮发电机中,由于蒸汽在动叶中做功,以及隔板汽封间隙中的漏汽等原因,使动叶前后的蒸汽压力有一个压降。这个压降使汽轮机转子顺着蒸汽流动方向形成一个轴向的推力,从而产生轴向位移。如

果轴向位移大于汽轮机动静部分的最小间隙就会使汽轮机静、转子相碰而损坏。轴向位移增大,会使推力瓦温度开高,乌金烧毁,机组还会出现剧烈振动,故必须紧急停机,否则将带来严重后果。 差胀保护是指汽轮机转子和汽缺之间的相对膨胀差。在机组启、停过程中,由于转子相对汽缸来说很小,热容量小,温度变化快,膨胀速度快。若不采取措施加以控制升温速度,将使机组转子与汽缸摩擦造成损坏。故运行中差胀不能超过允许值。 汽轮机转子停止转动后,负胀差有可能会更加发展,因此应当维持一定温度的轴封蒸汽,以免造成恶果。 二、轴向位移和胀差产生的原因(影响机组胀差的因素) 使胀差向正值增大的主要因素简述如下: 1)启动时暖机时间太短,升速太快或升负荷太快。 2)汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱。 3)滑销系统或轴承台板的滑动性能差,易卡涩,汽缸胀不出。4)轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长。 5)机组启动时,进汽压力、温度、流量等参数过高。 6)推力轴承工作面、非工作面受力增大并磨损,轴向位移增大。7)汽缸保温层的保温效果不佳或保温层脱落,在严禁季节里,汽机房室温太低或有穿堂冷风。 8)双层缸的夹层中流入冷汽(或冷水)。 9)胀差指示器零点不准或触点磨损,引起数字偏差。

本特利3500中文说明书

TSI系统调试基本知识 本内容将围绕大多数电厂中广泛使用的美国本特利(BENTLY)公司生产的振动检测系统3500为模版,全面讲述系统安装、组态、调试过程及调试中常见问题的处理。 第一节 TSI系统硬件基本知识 3500系统能提供连续、在线监测功能,适用于机械保护应用,并为早期识别机械故障提供重要的信息。该系统高度模块化的设计主要包括: 见下图: 系统的工作流程是:从现场取得的传感器输入信号提供给3500监测器框架内的监测器和

键相位通道,数据被采集后,与报警点比较并从监测器框架送到一个地方或多个地方处理。 3500框架中模件的共同特征是带电插拔和内部、外部接线端子。任何主模件(安装在3500框架前端)能够在系统供电状态中拆除和更换而不影响不相关模块的工作,如果框架有两个电源,插拔其中一块电源不会影响3500框架的工作。外部端子使用多芯电缆(每个模块一根线)把输入\输出模块与终端连接起来,这些终端设备使得在紧密空间内把多条线与框架连接起来变的非常容易,内部端子则用于把传感器与输入\输出模块直接连接起来。外部端子块一般不能与内部端子输入/输出模块一起使用。 1、3500/05系统框架 3500框架用于安装所有的监测器模块和框架电源。它为3500各个框架之间的互相通讯提

供背板通讯,并为每个模块提供所要求的电源。 3500框架有两种尺寸: 1 全尺寸框架——19英寸EIA框架,有14个可用模块插槽 2 迷你型框架——12英寸框架,有7个可用模块插槽 电源和框架接口模块必须安装于最左边的两个插槽中。其余14个框架位置(对与迷你型框架来说是其余7个位置)可以安装任何模 块。 2、3500/15电源模块 3500 电源是半高度模块,必须安装在框架左边特殊设计的槽口内。3500 框架可装有一个或两个电源(交流或直流的任意组合)。其中任何一个电源都可给整个框架供电。如果安装两个电源,第二个电源可做为第一个电源的备份。当安装两个电源时,上边的电源作为主电源,下边的电源作为备用电源,只要装有一个电源,拆除或安装第二个电源模块将不影响框架的运行。3500 电源能接受大范围的输入电压,并可把该输入电压转换成其它3500 模块能接受的电压。对于3500 机械保护系统,有以下三种电源: 1.交流电源 2.高压直流电源 3.低压直流电源 输入电源选项: 175 到 264 Vac rms: (247 到 373 Vac, pk),47 到 63 Hz。该选项使用交流电源且为高电压(通常220V)交流电源输入模块(PIM)。安装版本R 以前的交流电源输入模块(PIM)和/或版本M 以前的电源模块要求电压输入:175 到250 Vac rms。 85 到 132 Vac rms: (120 到 188 Vac, pk), 47 到 63 Hz。该选项使用交流电源并且是低电压(通 常110V)交流电源输入模块(PIM)。安装版本R 以前的交流电源输入模块(PIM)和/或版本M 以前的电源模块要求电压输入:85 到125 Vac rms。 88 到 140 Vdc: 该选项使用直流电源,并且是高电压直流电源输入模块(PIM)。 20 到 30 Vdc: 该选项是低压直流供电,是低压直流供电模块(PIM)。

汽轮机轴向位移与胀差的分析与控制

汽轮机轴向位移与胀差的分析与控制 汽轮机轴向位移与胀差 (1) 一、汽轮机轴向位移增大的原因 (1) 二、汽轮机轴向位移增大的处理 (1) 三、汽机轴向位移测量失灵的运行对策.......................................................................... 1汽轮机的热膨胀和胀差............................................................................................................. 2相關提問: .......................................................................................................................... 21、轴向位移和胀差的概念................................................................................................ 32、轴向位移和胀差产生的原因(影响机组胀差的因素)............................................ 3使胀差向正值增大的主要因素简述如下: .............................................................. 3使胀差向负值增大的主要原因: .............................................................................. 4正胀差-影响因素主要有:.................................................................................... 43、轴向位移和胀差的危害................................................................................................ 64、机组启动时胀差变化的分析与控制............................................................................ 61、汽封供汽抽真空阶段。........................................................................................

汽轮机胀差

一、汽轮机胀差的定义当汽轮机启动加热或停止运行冷却时以及负荷发生变化时,汽缸和转子都会产生热膨胀或冷却收缩。由于转子受热表面积比汽缸大,且转子的质量比相对应的汽缸小,蒸汽对转子表面的放热系数较大。 因此,在相同条件下,转子的温度变化比汽缸快,转子与汽缸之间存在膨胀差,而这差值是指转子相对于汽缸而言,故称为相对膨胀差(即胀差)。 习惯上规定转子膨胀大于汽缸膨胀时的胀差值为正胀差,例如当进入汽轮机的蒸汽温度明显升高或汽轮机暖机时,转子和汽缸同时受热膨胀,转子由于质量相对汽缸要小,受热后膨胀要快,在轴向上膨胀量要大于汽缸的膨胀量,表现为正胀差。汽缸膨胀大于转子膨胀时的胀差值为负胀差。当进入汽轮机的蒸汽温度明显降低或汽轮机滑参数停机时,转子和汽缸同时受冷收缩,转子由于质量相对汽缸要小,受冷后收缩要快,在轴向上收缩量要大于汽缸的收缩量,表现为负胀差。 二、差胀保护的意义:差胀保护的意义:汽轮机启动、停机和异常工况下,常因转子加热(或冷却)比汽缸快,产生膨胀差值(简称差胀)。无论是正差胀还是负差胀,达到某一数值,汽轮机轴向动静部分就要相碰发生摩擦。为了避免因差胀过大引起动静摩擦,大机组一般都设有差胀保护,当正差胀或负差胀达到某一数值时,立即破坏真空紧急停机,防止汽轮机损坏。 三、胀差大的危害:当胀差超过规定值时,就会使汽轮机动静

间的轴向间隙消失,发生动静摩擦,引起汽轮机组振动增大,甚至掉叶片、大轴弯曲等严重事故。 四、汽轮机在启动、停机及运行过程中,胀差的大小与下列因素有关: 1.启动机组时,汽缸与法兰加热装置投用不当,加热汽量过大或过小。 2.暖机过程中,升速率太快或暖机时间过短。 3.正常停机或滑参数停机时,汽温下降太快。 4.增负荷速度太快。 5.甩负荷后,空负荷或低负荷运行时间过长。 6.汽轮机发生水冲击。 7.正常运行过程中,蒸汽参数变化速度过快。 8.轴位移变化。 使胀差向正值增大的主要原因如下: 1)启动时暖机时间太短,升速太快或升负荷太快。 2)汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱。 3)滑销系统或轴承台板的滑动性能差,易卡涩。 4)轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长。 5)机组启动时,进汽压力、温度、流量等参数过高。 6)推力轴承磨损,轴向位移增大。

汽轮机胀差轴向位移的产生原因及其防控措施

汽轮机胀差,轴向位移的产生原因及其防控措施1轴向位移和胀差的概念 轴位移指的是轴的位移量,而胀差则指的是轴相对于汽缸的相对膨胀量,一般轴向位移变化时其数值较小。轴向位移为正值时,大轴向发电机方向移,若此时汽缸膨胀远小于轴的膨胀,胀差不一定向正值方向变化;如果机组参数不变,负荷稳定,胀差与轴向位移不发生变化。机组启停过程中及蒸汽参数变化时,胀差将会发生变化,由于负荷的变化而轴向位移也一定发生变化。运行中轴向位移变化,必然引起胀差的变化。 汽轮机的转子膨胀大于汽缸膨胀的胀差值称为正胀差,当汽缸膨胀大于转子膨胀时的胀差值称为负胀差。 根据汽缸分类又可分为高差、中差、低I差、低II差。 胀差数值是很重要的运行参数,若胀差超限,则热工保护动作使主机脱扣,避免动静部分发生碰撞,损坏设备。 启动时,一般应用加热装置来控制汽缸的膨胀量,而转子主要依靠汽轮机的进汽温度和流量以及轴封汽的汽温和流量来控制转子的膨胀量。启动时胀差一般向正方向发展。汽轮机在停用时,随着负荷、转速的降低,转子冷却比汽缸快,所以胀差一般向负方向发展,特别是滑参数停机时尤其严重,必须采用汽加热装置向汽缸夹层和法兰通以冷却蒸汽,以免胀差保护动作。 汽轮发电机中,由于蒸汽在动叶中做功,以及隔板汽封间隙中的漏汽等原因,使动叶前后的蒸汽压力有一个压降。这个压降使汽轮机转子顺着蒸汽流动方向形成一个轴向的推力,从而产生轴向位移。如果轴向位移大于汽轮机动静部分的最

小间隙就会使汽轮机静、转子相碰而损坏。轴向位移增大,会使推力瓦温度开高,乌金烧毁,机组还会出现剧烈振动,故必须紧急停机,否则将带来严重后果。差胀保护是指汽轮机转子和汽缺之间的相对膨胀差。在机组启、停过程中,由于转子相对汽缸来说很小,热容量小,温度变化快,膨胀速度快。若不采取措施加以控制升温速度,将使机组转子与汽缸摩擦造成损坏。故运行中差胀不能超过允许值。 汽轮机转子停止转动后,负胀差有可能会更加发展,因此应当维持一定温度的轴封蒸汽,以免造成恶果。 2轴向位移和胀差的影响因素 使胀差向正值增大的主要因素简述如下: 1)启动时暖机时间太短,升速太快或升负荷太快。 2)汽缸夹层、法兰加热装置的加热汽温太低或流量较低,引起汽加热的作用较弱。 3)滑销系统或轴承台板的滑动性能差,易卡涩,汽缸胀不出。 4)轴封汽温度过高或轴封供汽量过大,引起轴颈过份伸长。 5)机组启动时,进汽压力、温度、流量等参数过高。 6)推力轴承工作面、非工作面受力增大并磨损,轴向位移增大。 7)汽缸保温层的保温效果不佳或保温层脱落,在严禁季节里,汽机房室温太低或有穿堂冷风。 8)双层缸的夹层中流入冷汽(或冷水)。

相关文档
相关文档 最新文档