文档库 最新最全的文档下载
当前位置:文档库 › 一种高动态范围红外图像增强技术_陈伟钦

一种高动态范围红外图像增强技术_陈伟钦

一种高动态范围红外图像增强技术_陈伟钦
一种高动态范围红外图像增强技术_陈伟钦

红外图像增强算法研究

红外图像增强算法研究 安阳,胡耀祖 武汉理工大学信息学院,武汉 (430070) E-mail:alen1983@https://www.wendangku.net/doc/db8162630.html, 摘要:本文根据红外图像的特点介绍了几种经典的图像增强算法,讨论算法的效果,提出对算法的一些改进,给出了一些改进后的效果。 关键词:红外图像,直方图,锐化 1.引言 红外技术是二战后兴起的一项红外信息转换与处理技术。它研究红外辐射的发射、传输和接收的规律及其应用原理,而红外成像技术是其应用最广泛的方面。随着科技的不断发展,红外热成像技术在军事、科研、工农业生产、医疗卫生等领域的应用越来越广泛,与此同时图像实时处理的研究也得到了迅速发展[1]。 随着红外成像技术的广泛应用,人们对红外图像成像质量的要求越来越高,要提高红外图像的质量可以有两种途径:一是不断研究更高性能的红外探测器;另一个就是要进行红外图像的预处理,从而改善图像质量。 目前随着材料技术的突破,美国,西欧等发达国家在红外成像阵列的研制取得了巨大的发展,高密度,高灵敏度,快响应的红外焦平面阵列在军事上已经得到了应用,非制冷焦平面阵列也得到了快速的发展。 但是由于材料器件的限制,仅仅依靠红外探测器的提高不能完全达到我们所期望的图像质量,而且高精度的探测器件的研制所花费的人力物力是十分巨大的。而解决这个问题的一个有效的手段就是对红外图像进行实时图像预处理。实时图像处理技术能在现有的条件下不仅能提高红外图像质量,而且在较短的时间内迅速改善和提高红外热像仪的各项性能指标。 2.红外图像对比度增强算法 2.1 红外图像的特点 红外成像的目标和背景的红外辐射需经过大气传输、光学成像、光电转换和电子处理等过程,才被转换成为红外图像。所以从红外图像的产生过程分析,红外图像主要有以下特点:1)空间相关性强,对比度低;2)表征对象的温度分布,是灰度图像,分辨率较低,图像比较模糊;3)噪声干扰较大,噪声比较复杂,信噪比低;4)存在器件性的非均匀性等。 我们可以看出红外图像存在很多缺陷,对人眼来说其最显著的特点就是对比度很低,图像很模糊,所以本文主要从对比度提升和图像锐化两个方面进行增强算法的研究。 2.2 红外图像的直方图均衡化及改进 红外图像直方图的特点是像素相对比较集中,灰度值变化不大,使得图像的对比度很低,视觉效果很差。直方图均衡的作用是改变图像中灰度概率分布,使其均匀化。使图像中灰度概率密度较大的像素向附近灰度级扩展,因而灰度层次拉开,而概率密度较小的像素的灰度级收缩,从而让出原来占有的部分灰度级,这样的处理使图像充分有效地利用各个灰度级,因而增强了图像对比度。

图像处理之动态范围扩展定义与方法

图像处理之动态范围扩展定义与方法 1、动态范围扩展定义 动态范围(Dynamic Range)是物理学中常见的概念,表示某一物理量最大值与最小值的比率,通常以对数表示,单位为dB。对于真实场景,它指场景中最明亮处与最黑暗处的亮度之比。自然景观的亮度范围覆盖非常之广,最大动态范围能达到160db,而人眼可以感知的亮度范围高达10个数量级。 现实中8比特量化的数字相机输出的图像只能记录有限范围的灰阶与颜色数,其动态范围只有两个数量级,远远小于常见的自然场景的动态范围及人眼所能感知的动态范围,数码相机动态范围不足的问题对其应用造成了较大的影响。鉴于该问题,需要我们进行动态范围扩展,从而让电子显示设备能够输出更宽动态范围的图像。 扩展数字成像系统的动态范围,即高动态范围成像技术(HDR),指利用硬件或者软件的方法,使系统输出的图像包涵尽可能大的场景亮度范围,并准确地再现场景真实的细节信息。目前实现该技术的主要方法:软件扩展方法和硬件扩展方法。其中软件扩展方法主要分为辐照度重建法和直接融合法。 2、动态范围扩展方法 2.1 硬件扩展方法 硬件上限制数字成像系统动态范围的主要元件是图像传感器(sensor),CCD/CMOS传感器的动态范围定义为饱和电荷量Qs与最小可探测电荷量Qd的比值如下。sensor动态范围主要受光敏器件的灵敏度、满阱容量和噪声水平等因素限制,而且传感器面积一定的条件下,提高像素数目与提高动态范围相互矛盾。因此在不减少图像传感器像素数目的条件下,提高动态范围需要增大图像传感器的面积,成本将会增加,成像系统的结构也可能受到影响。 硬件扩展的另一方案是通过改变光学系统结构或添加其他元件改变图像传感器接收光能量,经后期处理实现动态范围扩展。如利用分光棱镜使入射光线在不同的靶面成像,采用

高动态范围图像和色阶映射算子

第35卷第2期自动化学报Vol.35,No.2 2009年2月ACTA AUTOMATICA SINICA February,2009 高动态范围图像和色阶映射算子 杨克虎1姬靖1郭建军2郁文生1 摘要图像传感器动态响应范围的局限使其在捕捉高动态范围场景时力不从心,为了捕捉高动态范围图像(High dynamic range image,HDRI),近年来出现了许多新型传感器和新方法,本文将简要介绍这些研究进展;同样由于动态响应范围的局限,显示设备也不能胜任HDRI的显示,必须利用色阶映射算子(Tone mapping operator,TMO)将图像的动态范围进行合理的压缩,TMO最终决定了图像显示的质量,本文将众多的TMO归纳为全局算子和局部算子并进行了详细论述. 关键词高动态范围图像,色阶映射算子,人类视觉系统 中图分类号TP751 High Dynamic Range Images and Tone Mapping Operator YANG Ke-Hu1JI Jing1GUO Jian-Jun2YU Wen-Sheng1 Abstract The existing digital image capture device is not competent for the task of recording the vast-varying luminance range in the real world.In this paper,we?rst introduced the developments of high dynamic range image(HDRI)capture technology and the HDRI encoding format.To display such an HDRI in the traditional display device(CRT,LCD or printer),the dynamic range mismatch between image and display must be overcome by a tone mapping operator(TMO). An ideal TMO must keep a consistent perceptual experience between the displayed image and the real world scene.In recent years,many TMOs have been proposed,we summarized them into two types(global and local)and gave a detailed explanation. Key words High dynamic range image(HDRI),tone mapping operator(TMO),human visual system(HVS) 光学数字成像过程是将真实场景的光辐射值通过图像传感器(CCD或CMOS)转化为电信号,并以数字图像的方式保存下来,而图像显示的目的是通过显示媒质(CRT或LCD等)重现一幅数字图像所描述的真实场景,两者的终极目标是使用户获得与直接观察真实场景相同的感官体验.长期以来,图像传感器的动态响应范围都很小(一般CCD传感器的动态范围不超过1000:1),但真实环境的亮度值动态变化范围非常广,夜晚星光照射下场景的平均亮度大概为0.001cd/m2,而白天阳光照射下的场景则达到了100000cd/m2,可见平常大部分场景的亮度范围都远远超过了图像传感器的动态范围.如果用传统的图像传感器去拍摄高动态范围场景,得到的图像将会是令人失望的,这些图像要么明亮部分曝光过度丢失了太多的细节,要么阴暗部分曝光 收稿日期2008-02-21收修改稿日期2008-08-26 Received February21,2008;in revised form August26,2008国家自然科学基金(60572056,60874010,60334020,60621001),中国科学院海外杰出学者基金资助 Supported by National Natural Science Foundation of China (60572056,60874010,60334020,60621001)and the Overseas Outstanding Young Researcher Foundation of Chinese Academy of Sciences 1.中国科学院自动化研究所复杂系统与智能科学重点实验室北京100190 2.宏易未来(北京)科技有限公司北京100085 1.Key Laboratory of Complex Systems and Intelligence Sci-ence,Institute of Automation,Chinese Academy of Sciences, Beijing100190 2.HPI Innovation(Beijing)Co.,Ltd.,Beijing 100085 DOI:10.3724/SP.J.1004.2009.00113不足而无法分辨.为了捕捉到高动态范围场景的每一个细节,已有不少新型的传感器和新途径被提出,本文第1节将着重介绍这些进展. 高动态范围图像(High dynamic range image, HDRI)通过显示设备显示时,同样遇到了动态范围不匹配的问题.目前主流的CRT显示器所能产生的亮度范围大约是1cd/m2~100cd/m2,虽然动态范围很窄,但是已经足以应付大多数低动态范围图像的显示要求,并且效果也基本令人满意.而相对于高动态范围图像的亮度范围(0.001cd/m2~100000cd/m2),显示器所能产生的亮度范围显得过于狭窄,如果将图像的动态范围线性压缩到显示器的响应范围来显示,所得到的观赏效果跟原始场景相去甚远.为了解决真实场景和显示设备动态范围不匹配的矛盾,近年来国外的许多学者提出了各种各样所谓的色阶映射算子(Tone mapping operator, TMO),这些内容将在本文的第2节详细介绍. 1高动态范围图像 1.1高动态范围图像的获取 高动态范围图像的获取一般有两种方式:1)用图像传感器捕获的方式;2)图像合成的方式.在计算机图形学领域,整体光照度方法(辐射度方法,光线跟踪算法等)大多计算的是场景的真实辐射值,而不是最终的显示亮度值,因而动态范围会非常宽广.

红外图像的处理及其MATLAB实现

红外图像的处理及其MATLAB 函数实现 0.引言 随着红外技术日新月异的发展,红外技术在军事及人们日常生活中有着越来越广泛的应用。但由于红外探照灯及红外探测器件的限制,红外成像系统的成像效果仍然不够理想。在民用监测应用中,主要表现为夜视距离近,图像背景与被监测目标之间对比度模糊,被监测目标细节难以辨认,图像特征信息不明确等方面。为使图像更适于人眼观测、适用于图像后续目标识别及跟踪处理,有必要在红外图像采集和处理上做进一步的研究,来增强红外图像视觉效果。 1. 红外图像的获取及其特点 1.1 红外图像的获取 红外图像主要是由红外热像仪采集的。红外热像仪是一种二维热图像成像装置。热成像系统是一个光学一电子系统,可用于接收波长在m 100~75.0之间的电磁辐射,它的基本功能是将接收到的红外辐射转换成电信号,再将电信号的大小用灰度等级的形式表示,最后在显示器上显示出来。图1.1就是一张采集到的红外图像。 图1.1 输入的红外图像

1.2 红外图像的特点 红外图像反映了目标和背景不可见红外辐射的空间分布,其辐射亮度分布主要由被观测景物的温度和发射率决定,因此红外图像近似反映了景物温度差或辐射差。 根据其成像原理,总结红外图像特点如下: (1)红外热图像表征景物的温度分布,是灰度图像,没有彩色或阴影(立体感觉),故对人眼而言,分辨率低、分辨潜力差; (2)由于景物热平衡、光波波长、传输距离远、大气衰减等原因,造成红外图像空间相关性强、对比度低、视觉效果模糊; (3)热成像系统的探测能力和空间分辨率低于可见光CCD阵列,使得红外图像的清晰度低于可见光图像; (4)外界环境的随机干扰和热成像系统的不完善,给红外图像带来多种多样的噪声,比如热噪声、散粒噪声、f 1噪声、光子电子涨落噪声等等。噪声来源多样,噪声类型繁多,这些都造成红外热图像噪声的不可预测的分布复杂性。这些分布复杂的噪声使得红外图像的信噪比比普通电视图像低; (5)由于红外探测器各探测单元的响应特性不一致等原因,造成红外图像的非均匀性,体现为图像的固定图案噪声、串扰、畸变等。 由以上五点可知,红外图像一般较暗,且目标与背景对比度低,边缘模糊,视觉效果差。 通过以上比较分析,可以总结:可见光图像与红外图像的成像机理虽然不同(可见光图像是利用物体对光线的反射来获得的,而红外图像是靠物体自身的红外辐射获取的),但在低照度情况下,可见光图像与红外图像的视觉效果和直方图特征均相同,因此可以采用低照度可见光图像的处理方法来处理红外图像。 2. 红外图像的增强 2.1 图像增强 图像增强是指对图像的某些特征,如边缘、轮廓、对比度等进行强调或突显,以便于观察或做进一步的分析与处理。图像增强不意味着能增加原始的信息,有时甚至会损失一些信息,但图像增强的结果却能加强对特定信息的识别能力,便图像中感兴趣的特征得以加强,从而使这些特征的检测和识别变得更加容易。 图像增强方法的分类如图2.1所示:

摄影技术-理解动态范围

[摄影技术]理解动态范围 从上图可以看出,自然界光强的变化范围非常大,从直射的日光到星光的变化在8个数量级,即一亿倍,相当于26.6个曝光档。用摄影的语言,我们说自 然界光强的动态范围是8个数量级,或者说27EV。由于自然界中物体的反射过程非常复杂,光线经过反射之后的动态范围实际上远远超出了27EV。 数码相机的感光元件由一个个面积有限大小的像素组成。直观地说,曝光的过程就是往一个个像素上存储光子的过程。每个像素存储光子的能力都有个上限,超过了这个上限,光子就会溢出,多余的光子不会被记录下来,就好像盛水的容器都有一定的容量一样。因为噪声的存在(热噪声和统计噪声),像素记录光信号的强度也有个下限。像素能记录的光强(和光子数成正比)的上限和下限之比,构成了数码相机影像传感器的动态范围。像素的面积越大,存储光子的就容量越大,抗噪声的能力也越大,因此其记录影像的动态范围也就越大。 因此,大致来说,数码相机的动态范围就是它所能记录的最大光强(当像素饱和时)和所能记录的最小光强(决定于传感器的噪声)之比。动态范围一般用

曝光值的档数来表示。如果最大和最小光强的比值是1024:1,动态范围就是10EV (即10档光圈;因为1024等于2的10次方)。 因为相机能记录的最小光强和影像传感器的噪声有关,其动态范围也是ISO 值的函数。ISO值越高,噪声越严重,动态范围也越低。一些数码相机,在ISO 值的低端有扩展的低ISO值(比如尼康D700的物理ISO最低值是200,但扩展ISO可以到100)。这些扩展的低ISO值可以减少噪声,但同时也减少了动态范围(从而导致变低的影像对比度)。这是因为低扩展ISO的设置是这样的:让相机过曝一档以提高信噪比,之后再截断高光部分以使最后成像没有过曝。这样,记录的最大光强没有改变,最小光强增加了,所以动态范围减小了。 即使相机的传感器能够扑捉到很大的动态范围,实际有用的动态范围还跟相机把光信号转化成数字信号储存下来的能力有关。这个能力在数码技术上由A/D 转换因子决定,这个转换因子称作位深(bit)。记录介质的位深越高,能记录下来的动态范围越大,参见下表: 注意,上表给出的只是理论上的动态范围,实际表现的动态范围取决于很多因素,比如最终影像在电脑显示屏上显示的动态范围和打印出的相片的动态范围都会和理论值有明显差别。

高动态范围连续影像技术的发展及前景

高动态范围连续影像技术的发展及前景 数字化是当今世界电影行业发展的必然趋势.随着数字化浪潮带来的新技术应用,成像技术也在不断地提高。而高动态范围成像技术,也将成为对影片画面质量的提高具有强大推动力的角色。 一、高动态范围成像技术的起源及发展 1.高动态范围成像技术的起源 高动态范围成像(英文缩写HDR)技术原本用于记录核爆炸瞬间,是在20世纪30至40年代,由美国摄影师查尔斯·威科夫首先提出的。在20世纪40年代,威科夫和埃尔顿一起在太平洋拍摄核爆时,首先使用了这一技术。1952年,威科夫使用高动态范围成像技术记录了世界上第一颗试验性氢弹“常青藤麦克”的爆炸。那张题为“常青藤麦克”的照片后来发表在1954年美国《生活》杂志的封面上, 成为最著名的HDR照片。随后这种成像技术才真正被定义,并逐渐发展成从一组不同曝光量的影像中,集成为一幅高动态范围影像的方法。 2.高动态范围成像技术的发展 进入20世纪晚期,美国南加州大学的Paul Debevec博士公开提出了组合多个不同曝光量影像以生成HDR影像的技术。在1997年的SIGGRAPH展会上,他发表了题为《从相片中恢复高动态范围光彩图》的论文。这篇论文阐述了如何对同一个画面,用不同曝光量多次拍摄,随后组合处理这些不同曝光量的影像,从而得到一幅合成的HDR影像。经过前期的拍摄和后期的处理这一复合过程,自然使得画质远超单次拍摄的结果。这样一来,纵使感光器件或者胶片的宽容度有限,却仍然能通过多次成像,得到动态范围特别高的影像。随后,各种包括压缩比特深度等电脑应用算法被开发出来,使得HDR影像终于可以在传统的设备(如显示器)上显示出来。以上就是HDR摄影在上世纪的发展概况。 进入21世纪以来,随着数码相机的普及和相关软件处理能力的增强,使得人人皆可成为摄影者。而在摄影界被广泛使用的HDR影像这个术语,就几乎演变成为数码图片摄影的专利,一般特指在数码摄影中,使用包围曝光生成的影像,经过后期软件影调处理过程,得到的高动态范围影像。而本文所说的HDR影像并非照相术中的单幅照片,而主要是指HDR 视频或基于文件的高动态范围连续影像。 HDR视频的概念被正式提出来,到现在也有十多年了。在2000年就已经出现过关于消费级别的HDR视频的论文了,但在专业的连续影像领域,至今未有人成功探索出能够付诸应用的流程。如今我们常提起的HDR往往是指图片摄影,而凤毛麟角的所谓HDR视频也只是延时逐格摄影而已。目前的延时逐格摄影,严格来说并不是传统意义上的电影拍摄,

学习显示高动态范围的图像

Pattern Recognition 40(2007)2641– 2655 https://www.wendangku.net/doc/db8162630.html,/locate/pr Learning to display high dynamic range images Guoping Qiu a ,?,Jiang Duan a ,Graham D.Finlayson b a School of Computer Science,The University of Nottingham,Jubilee Campus,Nottingham NG81BB,UK b School of Computing Science,The University of East Anglia,UK Received 27September 2005;received in revised form 10April 2006;accepted 14February 2007 Abstract In this paper,we present a learning-based image processing technique.We have developed a novel method to map high dynamic range scenes to low dynamic range images for display in standard (low dynamic range)reproduction media.We formulate the problem as a quantization process and employ an adaptive conscience learning strategy to ensure that the mapped low dynamic range displays not only faithfully reproduce the visual features of the original scenes,but also make full use of the available display levels.This is achieved by the use of a competitive learning neural network that employs a frequency sensitive competitive learning mechanism to adaptively design the quantizer.By optimizing an L 2distortion function,we ensure that the mapped low dynamic images preserve the visual characteristics of the original scenes.By incorporating a frequency sensitive competitive mechanism,we facilitate the full utilization of the limited displayable levels.We have developed a deterministic and practicable learning procedure which uses a single variable to control the display result.We give a detailed description of the implementation procedure of the new learning-based high dynamic range compression method and present experimental results to demonstrate the effectiveness of the method in displaying a variety of high dynamic range scenes.?2007Pattern Recognition Society.Published by Elsevier Ltd.All rights reserved. Keywords:Learning-based image processing;Quantization;High dynamic range imaging;Dynamic range compression;Neural network;Competitive learning 1.Introduction With the rapid advancement in electronic imaging and com-puter graphics technologies,there have been increasing interests in high dynamic range (HDR)imaging,see e.g.,Ref.[1–17].Fig.1shows a scenario where HDR imaging technology will be useful to photograph the scene.This is an indoor scene of very HDR.In order to make features in the dark areas visible,longer exposure had to be used,but this rendered the bright area saturated.On the other hand,using shorter exposure made features in the bright areas visible,but this obscured features in the dark areas.In order to make all features,both in the dark and bright areas simultaneously visible in a single image,we can create a HDR radiance map [3,4]for the https://www.wendangku.net/doc/db8162630.html,ing the technology of Ref.[3],it is relatively easy to create HDR maps for high dynamic scenes.All one needs is a sequence of low ?Corresponding author.Fax:+441159514254. E-mail address:qiu@https://www.wendangku.net/doc/db8162630.html, (G.Qiu). 0031-3203/$30.00?2007Pattern Recognition Society.Published by Elsevier Ltd.All rights reserved.doi:10.1016/j.patcog.2007.02.012 dynamic range (LDR)photos of the scene taken with different exposure intervals.Fig.2shows the LDR display of the scene in Fig.1mapped from its HDR radiance map,which has been created using the method of [3]from the photos in Fig.1.It is seen that all areas in this image are now clearly visible.HDR imaging technology has also been recently extended to video [13,14]. Although we can create HDR numerical radiance maps for high dynamic scenes such as those like Fig.1,reproduction devices,such as video monitors or printers,normally have much lower dynamic range than the radiance map (or equivalently the real world scenes).One of the key technical issues in HDR imaging is how to map HDR scene data to LDR display values in such a way that the visual impressions and feature details of the original real physical scenes are faithfully reproduced.In the literature,e.g.,Refs.[5–17],there are two broad categories of dynamic range compression techniques for the dis-play of HDR images in LDR devices [12].The tone reproduc-tion operator (TRO)based methods involve (multi-resolution)spatial processing and mappings not only take into account the

红外增强算法综述

红外增强算法综述 在图像形成、传输或变换的过程中,由于受到其它客观因素诸如系统噪声、曝光不足或过量、相对运动等影响,获取图像往往会与原始图像之间产生某种差异(称为降质或退化)。退化后的图像通常模糊不清或者经过机器提取的信息量减少甚至错误,因此必须对其采取一些手段进行改善。图像增强技术正是在此意义上提出的,目的就是为了改善图像的质量。图像增强根据图像的模糊情况采用各种特殊的技术突出图像中的某些信息,削弱或消除元关信息,达到强调图像的整体或局部特征的目的。图像增强尚没有统一的理论方法,常用的图像增强技术有直方图修改、图像平滑滤波、图像锐化等。下面将由红外图像的直方图出发,介绍相关的增强算法。 一、红外图像的直方图及其特点 1、红外图像的直方图 图像的基本描述有灰度、分辨率、信噪比、频谱等等。灰度直方图是用于表达图像灰度分布情况的统计图表,有一维直方图和二维直方图之分。其中最常用的是一维直方图,其定义是:对于数字图像()y x f ,,设图像灰度值为0r 、1r ......1-L r ,则概率密度函数()i r P 为: ()()....3,2,1== i r r P i i 图像上总的像素数的像素数灰度级为 且有()110 =∑-k i r P ,由于i r 取值离散,故直方图习惯画成灰度级—像素数(图1) 的形式。 图1:典型直方图 直方图具有以下性质: 1) 只表示图像中每一灰度级出现的频数,而失去了具有该灰度级的像素的位置信息; 2) 图像与直方图之间是多对一的映射关系;

3) 一副图像各子区直方图之和等于该图像的全图直方图。 在图像处理中,直方图是很有用的决策和评价工具。直方图可以提供下列信息: 1) 每个灰度级像素数出现的频数; 2) 图像像素值的动态范围; 3) 整幅图像的大致平均亮度; 4) 图像的整体对比度情况。 直方图统计在对比度拉伸,灰度级修正、动态范围调整、图像亮度调整、模型化等图像处理方法中发挥了很大作用,在本文后面的讨论中将可以看到直方图的意义。 2、红外直方图的特点 对红外图像直方图与可见光图像直方图进行对比研究可以发现,红外图像相对于可见光图像有着其特有的规律和特点: 1) 像素灰度值动态范围小,很少能覆盖整个灰度级空间。而可见光图像的像素则几乎分布于几乎整个灰度级空间。 2) 绝大部分像素集中于某些相邻的灰度级范围内,在这些范围内以外的灰度级上的像素数量很少,而可见光的像素分布则相对比较均匀。 3) 直方图中有明显的峰存在,很多情况下为单峰或者双峰(分为主峰、次峰),而可见光图像直方图的峰不是很明显,并且峰的数量一般多于两个。 但要注意的是,上述三点是大多数红外图像直方图所具备的特点。由于具体的气候条件、环境温度等因素的影响,不同季节不同时间段内各种物体的热辐射呈现不同的特点,物体越热,红外成像的亮度越高,物体温度越低,其红外成像的亮度就越低,所以实际当中的红外图像往往呈现出各自的特点,并不一定与上述特点完全一致。 二、通常的红外图像增强算法 图像增强是一种基本的图像预处理手段,对图像的某些特征,如对比度、边缘等进行增强或突显,便于后续分析和处理。它并不意味着能增加原始图像的信息,有时甚至会损失一些信息。但图像增强的结果却能加强对某些特定信息的识别能力,使图像中我们感兴趣的特征得以加强,从而使这些特征的检测和识别变得更加容易。 1、红外图像增强算法的分类 图像增强的处理技术从增强的作用域出发,可以分为空间域的方法和变换域的方法两大类,如图2所示。空间域法直接对图像像素进行操作,主要的空间域法有直方图均衡化、直方图规定化、灰度窗口和空域滤波等技术;而频率域法是首先将图像从空间域按照某种变换模型(如傅立叶变换)变换到频率域,然后对图像进行处理,再将其反变换到空间域,获得增强图像,这是一种间接地方法,频域方法有高通滤波、低通滤波、带通和带阻滤波等技术。 图像增强算法的优劣不是绝对的,由于具体用的目的和要求不同,所需要的具体的增强技术也大不相同,因此没有图像增强的通用标准,观察者才是某种增强方法优劣的最终判断者。增强算法处理的效果,除了与算法本身有一定关系外,还与图像的数据特征直接相关。实际应用中应当根据图像数据的特点和工作的要求来选择合理的图像增强处理方法。 由于红外图像的成像机理以及红外成像系统自身的原因,红外图像与可见光图像相比,大多有图像对比度低、图像较模糊、噪声大等特点。为了有利于后续

红外图像与可见光图像融合笔记

红外图像与可见光图像融合 笔记 图像融合是将来自不同传感器在同一时间(或者不同时间)对同一目标获取的两幅或者多幅图像合成为一幅满足某种需求图像的过程。 为了获得较好的融合效果,在研究融合算法之前,对图像预处理理论及方法进行了研究。预处理理论主要包括图像去噪、图像配准和图像增强。图像去噪目的是为了减少噪声对图像的影响。图像配准是使处于不同状态下的图像达到统一配准状态的方法。图像增强是为了突出图像中的有用信息,改善图像的视觉效果,并方便图像的进一步融合。 图像融合评价方法:主观评价和客观评价。指标如:均值、标准差、信息熵等。 针对IHS变换和小波变换的优缺点,本文提出了一种基于这两种变换结合的图像融合方法。该算法的具体实现步骤如下:先对彩色可见光图像进行IHS变换,对红外图像进行增强,然后将变换后得到的I分量与已增强的红外图像进 行2层小波分解,将获得的低频子带和高频子带使用基于窗口的融合规则,而后对分量进行小波重构和IHS逆变换,最后得到融合结果。经仿真实验证明,此结果优于传统IHS变换和传统小波变换,获得了较好的融合结果,既保持了可见光图像中的大量彩色信息又保留了红外图像的重要目标信息。 红外传感器反映的是景物温度差或辐射差,不易受风沙烟雾等复杂条件的影响。一般来说,红外图像都有细节信息表现不明显、对比度低、成像效果差等缺点,因此其可视性并不是很理想。 可见光成像传感器与红外成像传感器不同,它只与目标场景的反射有关与其他无关,所以可见光图像表现为有较好的颜色等信息,反应真实环境目标情况,但当有遮挡时就无法观察出遮挡的目标。 利用红外传感器发现烟雾遮挡的目标或在树木后的车辆等。在夜间,人眼不 能很好的辨别场景中的目标,但由于不同景物之间存在着一定的温度差,可以利用红外传感器,它可以利用红外辐射差来进行探测,这样所成的图像虽然不能直接清晰的观察目标,但是能够将目标的轮廓显示出来,并能依据物体表面的温度和发射率的高低把重要目标从背景中分离出来,方便人眼的判读。但由于自身成像原理以及使用条件等原因,所形成图像具有噪声大、对比度低、模糊不清、视觉效果差等问题。不利于人眼判读。 可以将两者图像融合在一起,这样可以丰富图像信息,提高图像分辨率,增强图像的光谱信息,弥补单一传感器针对特定场景表达的不全面,实现对场景全面清晰准确的表达。 两者的主要区别有: (1)可见光图像与红外图像的成像原理不同,前者依据物体的反射率的不同进行成像,后者依据物体的温度或辐射率不同进行成像,因此红外图像的光谱信 息明显不如可见光图像。

高动态范围图像的原理与应用

高动态范围图像原理与应用 摘要:主要阐述了高动态范围图像的概念、编码方式、合成方式、合成原理以及显示方式。关键字:高动态范围图像、HDR 第一章概要 1.1数字图像成像 传统胶片成像过程是基于光化学理论。在相机拍摄时,光线通过相机镜头到达胶片的感光晶体卤化银上,引起胶片的光学密度发生变化,曝光量越大,光学密度越小,呈现非线性关系。再经过扫描、数字化等非线性处理转换成数字图像。与胶片成像不同,现在普遍使用的数码相机是利用影像传感器(一般是CCD和CMOS)把接收到的光信号通过图像传感器上的光敏单元离散成正比于曝光量的成千上万个像素点,并转换成模拟电压信号,再经过模拟/数字转换处理后变成数字信号,最后经过微处理器的非线性运算转换成图像的标准存储格式如BMP、JPEG、TIFF等存储在物理介质上(如图1-1所示)。 图1-1数字图像成像流程 图1-1描述了典型的现代数码相机成像的流程。流程图中一系列的转换过程可是 看作非线性的映射关系,最后形成了每通道8位表示的图像。 1.2数字图像中的动态范围 动态范围(Dynamic Range)在很多领域用来表示某个变量最大值与最小值的比率。在数字图像中,动态范围也被称为对比度,表示了在图像可显示得范围内最大灰度值和最小灰度值之间的比率。对真实世界中的自然在场景来说,动态范围代表了最亮的光照亮度和最暗光照亮度的比。目前大部分的彩色数字图像中,R、G、B各通道分别使用一个字节8位来存储,也就是说,各通道的表示范围是0~255灰度级,这里的0~255就是图像的动态范围。 由于真实世界中同一场景中动态范围变化很大,我们称之为高动态范围(high dynamic range, HDR),相对的普通图片上的动态范围为低动态范围(low dynamic range,LDR)。 数码相机的成像过程实际上就是真实世界的高动态范围到相片的低动态范围的映射。这往往是一个非线性的过程(图1-2)。 图1-2动态范围映射 1.3高动态范围图像获取方式及其编码方式 传统数字图像各通道256个等级灰度所表示的色差范围十分有限。高动态范围图像(HDRI)是一种可以表示实际场景中亮度大范围变化的图像类型,因此,可以更好地表示场景中亮区和暗区的光学特性。高动态范围图像所要表示的像素值范围通常很大,有时候需要达到数十万,甚至数百万。高动态范围图像每个颜色通道需要比传统图像更多的数据位,这是因为它的线性编码以及需要表示从到人眼可见亮度范围甚至是更大范围的数值。经常使用16位“half precision”或者32位浮点数表示高动态范围像素。但是,如果使用合适的传递函数进行变换,一些应用中的高动态范围像素可以用10-12位表示亮度,用8位表示色度,

虚拟现实增强技术综述_周忠

中国科学:信息科学2015年第45卷第2期:157–180 https://www.wendangku.net/doc/db8162630.html, 虚拟现实增强技术综述 周忠x*,周颐x,肖江剑y x北京航空航天大学虚拟现实技术与系统国家重点实验室,北京100191 y中国科学院宁波工业技术研究院,宁波315201 *通信作者.E-mail:zz@https://www.wendangku.net/doc/db8162630.html, 收稿日期:2014–04–08;接受日期:2014–07–07;网络出版日期:2014–12–16 国家自然科学基金(批准号:61170188,61273276)和国家高技术研究发展计划(“863”计划)(批准号:2012AA011801,2012AA01 1803)资助项目 摘要随着近年来计算机三维处理能力的增长和低成本传感显示元件的出现,虚拟现实得到了快速发展,特别是与现实世界产生了越来越多的结合技术,从虚拟和现实的两个角度对虚拟现实进行增强.论文重点围绕近几年的发展趋势,论述了增强现实与增强虚拟环境的技术特点,介绍了虚拟现实增强技术的相关硬件设备发展;然后分别介绍了增强现实和增强虚拟环境技术的发展现状,讨论了移动互联网上的虚实增强技术与应用,并结合作者参与ISO/IEC的工作,介绍了相关国际标准制定最新情况;最后进行总结并提出需要解决的问题. 关键词增强虚拟环境增强现实虚实增强混合现实 1引言 虚拟现实技术建立人工构造的三维虚拟环境,用户以自然的方式与虚拟环境中的物体进行交互作用、相互影响,极大扩展了人类认识世界,模拟和适应世界的能力.虚拟现实技术从20世纪60~70年代开始兴起,90年代开始形成和发展,在仿真训练、工业设计、交互体验等多个应用领域解决了一些重大或普遍性需求,目前在理论技术与应用开展等方面都取得了很大的进展.虚拟现实的主要科学问题包括建模方法、表现技术、人机交互及设备这三大类,但目前普遍存在建模工作量大,模拟成本高,与现实世界匹配程度不够以及可信度等方面的问题[1]. 针对这些问题,已经出现了多种虚拟现实增强技术,将虚拟环境与现实环境进行匹配合成以实现增强,其中将三维虚拟对象叠加到真实世界显示的技术称为增强现实,将真实对象的信息叠加到虚拟环境绘制的技术称为增强虚拟环境.这两类技术可以形象化地分别描述为“实中有虚”和“虚中有实”.虚拟现实增强技术通过真实世界和虚拟环境的合成降低了三维建模的工作量,借助真实场景及实物提高了用户体验感和可信度,促进了虚拟现实技术的进一步发展. 搜索热度代表了大众对于该词的关注程度,一般来说,新技术会引起搜索高潮,然后慢慢下降,在技术取得突破或出现某热点事件时激增,最终趋于稳定.我们使用Google trends对比了虚拟现实,增强现实,增强虚拟环境和混合现实等词的全球搜索热度,为了有所参照,以人机交互(HCI)作为参考,搜索结果对比如图1所示.可以看出,和人机交互一样,虚拟现实的搜索热度逐渐下降并趋于稳定,这说

一种红外图像增强算法研究

一种红外图像增强算法研究 针对传统红外图像存在的一些不足,提出一种融合多尺度Retinex和小波变换的红外图像增强算法。该算法综合了小波变换多尺度、多分辨率的优点,以及多尺度Retinex红外增强的特性,利用小波变换对图像信号进行分解,对低频系数进行多尺度Retinex算法处理,而对小波分解的高频细分量进行消除噪声并改善图像细节部分,并同时也改善了性噪比、对比度以及亮度均匀性等性能指标。通过仿真该算法可增强图像细节,优化图像整体视觉效果。 标签:红外图像;图像增强;小波变换;多尺度Retinex法 引言 随着现代科技发展及社会进步,红外成像技术已经被广泛应用于军事用途和民用领域。然而因为红外图像采集器件本身的结构和原理限制,及采集过程中复杂的环境因素影响,目前的红外成像效果无法完全满足人们的需求。所以在技术运用中需要对得到的红外图像进行必要的增强处理,以使之更利于视觉分辨,从而更好地确认目标,便于后续智能化分析与处理。 小波变换是一种多分辨率分析方法,其作为一种数学工具近年来得到广泛应用[1]。由于该方法可以将图像分解成不同分辨率的尺度,它具有代表信号在时域和频域的局部特征的能力,因而通过小波重建可使处理后的图像质量得到有效改善。Retinex理论的增强算法可经过原始图像与高斯函数的卷积获得最优亮度估计,改善图像的亮度均匀性[2]。图像能量信息主要在低频部分,通过Retinex 算法可以很好的完成低频子代图像的动态压缩,改善图像整体效果[3]。 文章对红外图像增强算法进行一些针对性研究,提出了一种红外图像增强算法,该算法融合了多尺度的Retinex和小波变换思想。该算法综合了小波变换多尺度、多分辨率的特点,以及Retinex红外增强的优势,实现红外图像增强,通过仿真实现增强效果较好。 1 小波变换基础理论 小波变换是由傅立叶分析发展而来的新兴学科,又称多分辨分析[2]。该方法应用领域十分广泛,理论意义极其重大,无论对古老的自然科学还是新兴的高新技术应用学科都产生强烈的冲击,是目前国际高度关注的前沿领域。 小波变换由于在实域和频域同时具有良好的局部化性质、多分辨率特性、低墒性、去相关性以及选基灵活的特点[4],使得小波变换方法成为了图像增强领域的研究热点。 二维离散小波变换在分析过程中可以通过一维离散小波变换为基础进行推导,而二维双正交小波变换可以分解为两个一维小波变换,即先进行X方向变

相关文档