文档库 最新最全的文档下载
当前位置:文档库 › 土体的应力应变及临界状态理论综述

土体的应力应变及临界状态理论综述

土体的应力应变及临界状态理论综述
土体的应力应变及临界状态理论综述

关于应力应变状态问题

关于应力应变状态问题(含组合变形) 2009年10月29日星期四 应力应变状态重点公式: 基本公式:ατασσσσσα2sin 2cos 22 xy y x y x --+ += ατασσσσσα2sin 2cos 2 2 90xy y x y x +-- += +ο ατασστα2cos 2sin 2 xy y x +-= y x xy σστα-- =22tan ()2 2 max 4212 xy y x y x τσσσσσ+-++= ()22 min 42 12 xy y x y x τσσ σσσ+-- += 应力圆的绘制及其应用:①、强调单元体的面与应力圆上的点一一对应关系。即:点面 对应,转向相同,转角两倍。②、确定任意斜截面上的应力;②、确定主应力的大小和方向;③、三向应力圆的绘制及其应用。 广义胡可定律及其公式: (){}z y x x E σσμσε+-=1 G xy xy τγ= (){}x z y y E σσμσε+-=1 G yz yz τγ= (){}y x z z E σσμσε+-= 1 G zx zx τγ= (){}32111 σσμσε+-= E ;(){}13221σσμσε+-=E ;(){}21331σσμσε+-=E 习题:P255 7.7、7.9、7.10、7.12、7.14、7.19、7.26、7.27、7.28、7.37、

四种常用强度理论: 最大拉应力理论(第一强度理论)[]σσ≤1 最大伸长线应变理论(第二强度理论)()[]σσσμσ≤+-321 最大切应力理论(第三强度理论)[]σσσ≤-31 畸变能密度理论(第四强度理论) ()()()[] []σσσσσσσ≤-+-+-2132322212 1 01、十、图示为一平面应力状态下的单元体。试证明任意互相垂直截面上的正应力之和为常数。即:ο90++=+αασσσσy x 或min max σσσσ+=+y x 。(7分)(2009吉大) 02、4、已知平面应力状态如图(应力单位MPa ),试计算主应力大小及方位,在图上标出主应力方位。(15分)(2009北工大) 题二.4图 03、5、已知铸铁构件上危险点的应力状态如图3-5所示。若铸铁拉伸许用应力[σ]+= 30MPa ,试校核该点处的强度。(15分)(2008华南理工)

应力状态及强度理论

图8-1 第 8章 应力状态及强度理论 例8-1 已知应力状态如图7-1所示,试计算截 面m-m 上的正应力m σ与切应力m τ 。 解:由图可知,x 与y 截面的应力分别为 MPa x 100-=σ MPa x 60-=τ MPa y 50=σ 而截面m-m 的方位角则为 α= -30o 将上述数据分别代入式(7-1)与(7-2), 于是得 ()()()()MPa m 5.11460sin 6060cos 250100250100-=?-?+?---++-=σ()()()MPa m 0.3560cos 6060sin 2 50100=?-?-?---=τ 例8-2 试用图解法解例8-1(图8-2a )。 (a) (b) 图8-2 解:首先,在τσ-平面内,按选定的比例尺,由坐标(-100,-60)与(50,60)分别确定A 和B 点图7-2b )。然后,以AB 为直径画圆,即得相应的应力圆。 为了确定截面m-m 上的应力,将半径CA 沿顺时针方向旋转α2=60o至CD 处,所得D 点即为截面m-m 的对应点。 按选定的比例尺,量得OE =115MPa (压应力),ED =35MPa ,由此得截面 m-m 的正应力与切应力分别为

MPa m 115-=σ MPa m 35=τ 例 8-3 从构件中切取一微体,各截面的应力如图8-3a 所示,试用解析法与图解法确定主应力的大小及方位。 (a) (b) 图8-3 解:1.解析法 x 和y 截面的应力分别为 MPa x 70-=σ,MPa x 50=τ,0=y σ 将其代入式 (7-3)与 (7-5),得 }{MPa MPa 2696502070207022max min -=+?? ? ??--±+-=σσ ?-=??? ??--=?? ? ??-- =5.6202650arctan arctan max y x o σστα 由此可见, MPa 261=σ,02=σ,MPa 963-=σ 而正应力1σ 的方位角 o α则为-62.5o(图8-3a )。 2.图解法 按选定的在τσ-平面内,按选定的比例尺,由坐标(-70,50)与(0,-50)分别确定D 和E 点(图8-3b )。然后,以DE 为直径画圆即得相应的应力圆。 应力圆与坐标轴σ相交于A 和B 点,按选定的比例尺,量得OA =26MPa ,

第7章-应力状态和强度理论03.

西南交it 大学应用力*与工程系材#^力学教研i 图示拉伸甄压缩的单向应力状态,材料的破 坏有两种形式: 塑性屈服;极限应力为0■力=<5;或bpO2 腌性斷裂;极限应力为O ■必= CJ\ 此时,4 O>2和偽可由实验测得.由此可建 互如下S 度余件: ^mai 其中n 为安全系数? 2)纯剪应力状态: 图示纯剪应力狀态,材料的破 坏有两 种形式: 塑性屈服:极限应力为 腌性斯裂:极限应力为5 = 5 %和昭可由实验测得.由此可建立如下 =(^■1 it §7.7强度理论及其相当应力 1、概述 1)单向应力状态: a. <亠[6 n 其中, ?度条件:

前述a 度条件对材料破坏的原因并不深究.例如 图示低碳钢拉(压)时的强度条件为: r V J - b, b|nw W — — — // n 然而,其屈服是由于 YnurJl 起的,对?示单向 应力状态,有: 「niu 依照切应力强度条件,有:

4)材料破坏的形式 常温、静栽时材料的破坏形式大致可分为: ?腌性斷裂型: 例如:铸铁:拉伸、扭转等; "钢:三向拉应力状态. -塑性屈月艮型: 例如:低碳钢:拉伸、扭转寻; 铸铁:三向压缩应力状态. 可见:材料破坏的形式不仅与材料有关,还与应力状态有关. , 5)强度理论 根据一些实验资料,针对上述两种破坏形式,分别针对它们发生破坏的原因提出假说,并认为不论材料处于何种应力状态,某种类型的破坏都是由同一因素引起,此即为强度理论. 常用的破坏判据有: 旎性断裂:5,磁可皿 ?性斷裂:V; 下面将讨论常用的-基于上述四种破坏判据的?虞理论.

ch8 应力应变状态分析(3rd)

第八章 应力、应变状态分析 8-2 已知应力状态如图所示(应力单位为MPa ),试用解析法计算图中指定截面的正 应力与切应力。 题8-2图 (a)解:由题图所示应力状态可知, 45MPa 20MPa 10MPa 30=-===αηζζx y x ,,, 将上列数据代入平面应力状态斜截面应力公式,得 MPa 0.10)MPa 90sin 2 1030( MPa 0.40)MPa 90sin 202 10 30( =-==++= ααηζ (b)解:由题图所示应力状态可知, 5.22MPa 20MPa 10MPa 30===-=αηζζx y x ,,, 由此可得指定斜截面上的正应力和切应力分别为 )MPa cos4520sin452 1030( MPa 3.38)MPa sin4520cos452 10 3021030( =+--=-=---++-= ααηζ (c)解:由题图所示应力状态可知, 60MPa 15MPa 20MPa 10-==-==αηζζx y x ,,, 由此可得指定斜截面上的正应力和切应力分别为 MPa 5.20)]MPa 120cos(15)120sin(2 2010[ MPa 490.0)]MPa 120sin(15)120cos(2 20 1022010[ -=-+-+==---++-= ααηζ 8-3 试用图解法(应力圆)解题8-1。 解:题8-1图所示应力状态的应力圆如图8-3所示。

图8-3 由图a 可以量得指定截面上的正应力和切应力分别为 MPa 0.15MPa 0.104545=== ηηζζαα,= 由图b 可以量得指定截面上的正应力和切应力分别为 MPa 3.7MPa 3.473030-===-- ηηζζαα,= 8-6 图示双向拉伸应力状态,应力σσσ ==y x 。试证明任意斜截面上的正应力均等 于σ,而切应力则为零。 题8-6图 证明:由题设条件可知, 0===x y x ηζζζ, 将上述数据代入平面应力状态斜截面应力公式,则有 02sin 2 02cos 2 2=+-==--++= αζ ζηζαζ ζζζζαα 由于式中α为任意值,故原命题得证。 8-7 已知某点A 处截面AB 与AC 的应力如图所示(应力单位为MPa ),试用图解法 求主应力的大小及所在截面的方位。

应力状态分析与强度理论

第五章应力状态分析与强度理论 1、内容提要 1.应力状态的概念 1.1一点的应力状态 通过受力构件的一点的各个截面上的应力情况的集合,称为该点的应力状态。 1.2一点的应力状态的表示方法——单元体 研究受力构件内一点处的应力状态,可以围绕该点取一个无限小的正六面体,即单元体。若单元体各个面上的应力已知或已计算出,则通过该点的其他任意方位截面上的应力就可用解析法或图解法确定。 1.3主平面、主应力 单元体上切应力为零的平面称为主平面,主平面上的正应力称为主应力。 过受力构件内任一点总有三对相互垂直的主平面。相应的主应力用、、来表示,它们按代数值的大小顺序排列,即。是最大主应力,是最小主应力,它们分别是过一点的所有截面上正应力中的最大值和最小值。 1.4应力状态的分类 (1)单向应力状态,只有一个主应力不为零,另两个主应力均为零;(2)二向或平面应力状态,两个主应力不为零,另一个为零; (3)三向或空间应力状态,三个主应力都不为零。 单向应力状态又称简单应力状态,二向、三向应力状态称为复杂应力状态。 2.平面应力状态分析的解析法 在平面应力状态的单元体中,有一对平面上的应力等于零,即为主平面,其上主应力为零。可将单元体用平面图形表示,如图5-1所示。 2.1任意斜截面上的应力 当已知、、时,应用截面法,可得 (5-1) 式中,正应力以拉应力为正,压应力为负;切应力以对单元体内任意点的矩为顺时针转向为正,反之为负;为斜截面外法线与x平面外法线即x 轴间的夹角,角从x轴量起,反时针转向为正,反之为负。 2.2主应力 (5-2) 式中,和分别表示单元体上垂直于零应力面的所有截面上正应力的最大值和最小值。它们是三个主应力中的两个,而另一个主应力为零。三个

第7章应力状态和强度理论(答案)

7.1已知应力状态如图所示(单位:MPa ),试求: ⑴指定斜截面上的应力; ⑵主应力; ⑶在单元体上绘出主平面位置及主应力方向; ⑷最大切应力。 解: 100x MPa σ= 200y MPa σ= 100x MPa τ= 0 30α=- (1)cos 2sin 2211.622 x y x y x ασσσσ σατα+-= + -=sin 2cos 293.32 x y x MPa ασστατα-=+= (2)max 261.82 x y MPa σσσ+= = min 38.22x y MPa σσσ+== MPa 8.2611=σ MPa 2.382=σ 03=σ (3)13 max 130.92 MPa σστ-== 7.2扭矩m kN T ?=5.2作用在直径mm D 60=的钢轴上,试求圆轴表面上任一点与母线成ο 30=α方向上的正应变。设E=200GPa, 0.3υ=。 解:表面上任一点处切应力为: max 59P T MPa W τ= = 表面上任一点处单元体应力状态如图 30sin 251MPa στα=-=- 120sin 251MPa στα=-= () 00430301201 3.310E εσυσ-= -=? 2 στ τ

7.3用电阻应变仪测得空心钢轴表面某点与母线成ο45方向上的正应 变4 100.2-?=ε,已知转速min /120r ,G=80GPa ,试求轴所传 递的功率。 解:表面任一点处应力为 max 9550P P P T n W W τ== max 9550 P W n P τ∴= 纯剪切应力状态下,0 45斜截面上三个主应力为:1στ= 20σ= 3στ=- 由广义胡克定律 ()11311E E υ εσυστ+= -= 又()21E G υ=+Q V 2G τε∴= 代入max 9550 P W n P τ= ,得109.4P KW = 7.4图示为一钢质圆杆,直径mm D 20=,已知A 点与水平线成ο 60 方向上的正应变4 60101.4-?=ο ε,E=200GPa ,0.3υ=, 试求荷载P 。 解:0P A σ= 204D P πσ=? 斜截面上 02 060cos 4 σσσα== 2001503cos 4 σσσα== 由广义胡克定律 () 0006015060134E E υεσυσσ-= -= 将060043E εσυ = -代入2 04 D P πσ=? 解得P=36.2KN ο

应力状态与应变状态分析

第8章典型习题解析 1. 试画出下图所示简支梁A 点处的原始单元体。 图8.1 解:(1)原始单元体要求其六个截面上的应力应已知或可利用公式直接计算,因此应选取如下三对平面:A 点左右侧的横截面,此对截面上的应力可直接计算得到;与梁xy 平面平行的一对平面,其中靠前的平面是自由表面,所以该对平面应力均为零。再取A 点偏上和偏下的一对与xz 平行的平面。截取出的单元体如图(d)所示。 (2)分析单元体各面上的应力: A 点偏右横截面的正应力和切应力如图(b)、(c)所示,将A 点的坐标x 、y 代入正应力和切应力公式得A 点单元体左右侧面的应力为: z M y I σ= b I QS z z *= τ 由切应力互等定律知,单元体的上下面有切应力τ ;前后边面为自由表面,应力为零。在单元体各面上画上应力,得到A 点单元体如图(d)。 2.图(a)所示的单元体,试求(1)图示斜截面上的应力;(2)主方向和主应力,画出主单元体;(3)主切应力作用平面的位置及该平面上的正应力,并画出该单元体。 解:(1)求斜截面上的正应力 ?30-σ和切应力?30-τ

由公式 MPa 5.64)60sin()60()60cos(2100 5021005030-=?---?---++-= ?-σ MPa 95.34)60cos()60()60sin(2100 5030=?--+?---= ?-τ (2)求主方向及主应力 8 .010050120 22tan -=----=-- =y x x σστα ?-=66.382α ?=? -=67.7033.1921αα 最大主应力在第一象限中,对应的角度为 070.67α=?,主应力的大小为 1 5010050100cos(270.67)(60)sin(270.67)121.0MPa 22σ= ??--??=-+--+ 由 y x σσσσαα+=+2 1 可解出 2 1 (50)100(121.0)71.0MPa x y ασσσσ=+=-+-=-- 因有一个为零的主应力,因此 )33.19(MPa 0.7133?--=第三主方向=ασ 画出主单元体如图8.2(b)。 (3)主切应力作用面的法线方向 25 .1120100 502tan =---= 'α ?='34.512α ?='? ='67.11567.2521αα 主切应力为 ' 2 ' 1 MPa 04.96)34.51cos()60()34.51sin(2100 50ααττ-=-=?-+?--= 此两截面上的正应力为 MPa 0.25)34.51sin()60()34.51cos(2100 502100501 =?--?--++-= 'ασ MPa 0.25)34.231sin()60()34.231cos(2100 502100502 =?--?--++-= 'ασ 主切应力单元体如图所示。

材料力学习题第六章应力状态分析答案详解

第6章 应力状态分析 一、选择题 1、对于图示各点应力状态,属于单向应力状态的是(A )。 20 (MPa ) 20 d 20 (A )a 点;(B )b 点;(C )c 点;(D )d 点 。 2、在平面应力状态下,对于任意两斜截面上的正应力αβσσ=成立的充分必要条件,有下列四种答案,正确答案是( B )。 (A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。 3、已知单元体AB 、BC 面上只作用有切应力τ,现关于AC 面上应力有下列四种答案,正确答案是( C )。 (A )AC AC /2,0 ττσ==; (B )AC AC /2,/2τ τσ==; (C )AC AC /2,/2τ τσ==;(D )AC AC /2,/2ττσ=-=。 4、矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b )所示。关

于它们的正确性,现有四种答案,正确答案是( D )。 (b) (a) (A)点1、2的应力状态是正确的;(B)点2、3的应力状态是正确的; (C)点3、4的应力状态是正确的;(D)点1、5的应力状态是正确的。 5、对于图示三种应力状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。 τ (a) (b) (c) (A)三种应力状态均相同;(B)三种应力状态均不同; (C)(b)和(c)相同;(D)( a)和(c)相同; 6、关于图示主应力单元体的最大切应力作用面有下列四种答案,正确答案是( B )。 (A) (B) (D) (C) 解答: max τ发生在 1 σ成45o的斜截面上 7、广义胡克定律适用范围,有下列四种答案,正确答案是( C )。 (A)脆性材料;(B)塑性材料; (C)材料为各向同性,且处于线弹性范围内;(D)任何材料;

应力与应变关系

一、应力与应变 1、应力 在连续介质力学里,应力定义为单位面积所承受的作用力。 通常的术语“应力”实际上是一个叫做“应力张量” (stress tensor)的二阶张量。 概略地说,应力描述了连续介质内部之间通过力(而且是通过近距离接触作用力)进行相互作用的强度。 具体说,如果我们把连续介质用一张假想的光滑曲面把它一分为二,那么被分开的这两部分就会透过这张曲面相互施加作用力。 很显然,即使在保持连续介质的物理状态不变的前提下,这种作用力也会因为假想曲面的不同而不同,所以,必须用一个不依赖于假想曲面的物理量来描述连续介质内部的相互作用的状态。 对于连续介质来说,担当此任的就是应力张量,简称为应力。 2、应变 应变在力学中定义为一微小材料元素承受应力时所产生的单位长度变形量。因此是一个无量纲的物理量。 在直杆模型中,除了长度方向由长度改变量除以原长而得“线形变”,另外,还定义了压缩时以截面边长(或直径)改变量除以原边长(或直径)而得的“横向应变”。 对大多数材料,横向应变的绝对值约为线应变的绝对值的三分之一至四分之一,二者之比的绝对值称作“泊松系数”。 3、本构关系 应力与应变的关系我们叫本构关系(物理方程)。E σε=(应力=弹性模量*应变) 4、许用应力(allowable stress ) 机械设计或工程结构设计中允许零件或构件承受的最大应力值。要判定零件或构件受载后的工作应力过高或过低,需要预先确定一个衡量的标准,这个标准就是许用应力。 凡是零件或构件中的工作应力不超过许用应力时,这个零件或构件在运转中是安全的,否则就是不安全的。

许用应力等于考虑各种影响因素后经适当修正的材料的失效应力除以安全系数。 失效应力为:静强度设计中用屈服极限(yield limit )或强度极限(strength limit );疲劳强度设计中用疲劳极限(fatigue limit )。 5、许用应力、失效应力及安全系数之间关系 塑性材料(大多数结构钢和铝合金)以屈服极限为基准,除以安全系数后得许用应力,即[]()/ 1.5~2.5s n n σσ==。(许用应力=屈服极限/安全系数) 脆性材料(铸铁和高强钢)以强度极限为基准,除以安全系数后得许用应力, 即[]()/2~5b n n σσ==。(许用应力=强度极限/安全系数) 表3机床静力学分析结果总结 机床的位置 应力 应变 位移 油缸 27 5号顶尖 10 固定支撑钉 在分析中发现油缸所受的应力最大,油缸使用的是35钢,5号顶尖使用的材料是45钢,固定支撑钉使用的是T8,查《机械设计》三者都小于其许用应力,故设计满足要求。它们的主要力学性能参数如表,查《机械设计师手册》。 表4主要力学性能参数 材料名称 屈服强度( ) 抗拉强度 35钢 315 600 45钢 355 598 T8 900 采用安全系数法判断零件危险截面处的安全程度是疲劳强度计算中应用广泛的一种方法,其强度条件是:危险截面处的安全系数S 应大于等于许用安全系数 ,即 查《机械设计》S ,所以

第七章应力状态和强度理论习题

第七章 应力状态和强度理论习题 一、单项选择题 1、第三强度理论和第四强度理论适合于何种材料? A 、塑性材料, B 、脆性材料 C 、金属材料, D 、非金属材料 2、第一强度理论和第二强度理论适合于何种材料? A 、塑性材料, B 、脆性材料, C 、金属材料, D 、非金属材料。 二、 填空题 1、 对于单元体,切应力等于零的平面叫做 ,该平面上的正应力叫做 。 2、第一、二强度理论适合于 材料;第三、四强度理论适合于 材料。 3、第三强度理论的相当应力为 。 4、单元体上只有一对主应力数值不等于零的应力状态称为 应力状态。 5、单元体上只有二对主应力数值不等于零的应力状态称为 应力状态。 6、单元体上三对主应力数值都不等于零的应力状态称为 应力状态。 三、填空题 1、求图示单元体的三个主应力和最大切应力 (图中应力单位:Mpa )。 答:单元体的三个主应力和最大切应力分别为: σ1= Mpa, σ2= Mpa, σ3= Mpa, τmax = Mpa 。 2、求图示单元体的三个主应力和最大切应力 (图中应力单位:Mpa )。 答:单元体的三个主应力和最大切应力分别为: σ1= Mpa, σ2= Mpa, 图 7.3.1 图 7.3.2

σ3= Mpa, τmax = Mpa 。 3、已知应力状态如图所示,应力单位为MPa 试求:(1)主应力大小;(2)最大切应力。 4、已知应力状态如图所示,应力单位为MPa 。 试求:(1)主应力大小;(2)最大切应力。 1、A 2、B 二、填空题 1、主平面 主应力 2、 脆性 塑性 3 、r313s s s =- 4、单向 5、二向 6、三向 二、填空题 1、 2、 3、解: (1)应力分量 50020x y x MPa MPa σστ===- max min 57.0507.022x y MPa MPa σσσσ+??===??-?? MPa MPa 0.70 0.57321-===∴σσσ (2)最大剪应力 MPa 0.3220 .70.572 3 1max =+= -= σστ

第七章应力状态和强度理论习题答案

第七章 应力状态和强度理论习题答案 一、单项选择题 1、A 2、B 二、填空题 1、主平面 主应力 2、 脆性 塑性 3、主平面 主应力 4 、eq313 s s s =- 5、主平面 主应力 6、单向 7、二向 8、三向 二、填空题 1、解: (1)应力分量 MPa MPa xy y x 200 50-===τσσ max min 57.0507.022x y MPa MPa σσσσ+??==±=??-?? MPa MPa 0.70 0.57321-===∴σσσ (2)最大剪应力 MPa 0.3220 .70.572 3 1max =+= -= σστ 2、解: (1)应力分量 MPa MPa MPa xy y x 253060-===τσσ max min 74.2603015.822x y MPa MPa σσσσ+??+=±= ±=???? 08 .152.74321===∴σσσMPa (2)最大剪应力 MPa 1.3720 2.742 3 1max =-= -=σστ

三、计算题 1、 解 简化力系 () ()() [] 200m m d 32 109.11025.1W T M m 25KN .12 1 5.22D F -2F M 9.5KN 522.52F F F F 3 2 62 6Z 2 Max 2Max r3P ≈≤?+?= +=?=?===++=++=解出总σπσd 2、解 由题 () ()() [] σπσ≤≈?+?= +=-=??=??=?=≤≤?-==??=??=?=∑MPa d W T M M T m m N L X X F Z r AB 12932 104.1105.1105.1150101L F M 0M 0M mm N 104.1140101L F M 3 2 52 52 2353AB Max 1A 53BC 所以符合强度 3、解: (1)外力分析,将作用在胶带轮上的胶带拉力F1、F2向轴线简化,结果如图 传动轴受竖向主动力: kN 1436521=++=++=F F G F , 此力使轴在竖向平面内弯曲。 附加力偶为: ()()m kN 8.16.03621?=?-=-=R F F M e , 此外力偶使轴发生变形。 故此轴属于弯扭组合变形。 (2)内力分析 分别画出轴的扭矩图和弯矩图如图。 危险截面上的弯矩m kN 2.4?=M ,扭矩m kN 8.1?=T (3)强度校核

本章应力和应变分析与强度理论的知识结构框图

本章应力和应变分析与强度理论重点、难点、考点 本章重点是应力状态分析,要掌握二向应力状态下斜截面上的应力、主应力、主平面方位及最大切应力的计算。能够用广义胡克定律求解应力和应变关系。理解强度理论的概念,能够

按材料可能发生的破坏形式,选择适当的强度理论。 难点主要有 ① 主平面方位的判断。当由解析法求主平面方位时,结果有两个相差 90 ”的方位角,一般不容易直接判断出它们分别对应哪一个主应力,除去直接将两个方位角代人式中验算确定的方法外,最简明直观的方法是利用应力圆判定,即使用应力圆草图。还可约定y x σσ≥,则两个方位中绝对值较小的角度对应max σ所在平面。 ② 最大切应力。无论何种应力状态,最大切应力均为2/)(31max σστ-=,而由式( 7 一 l )中第二式取导数0d d =α τα得到的切应力只是单元体的极值切应力,也称为面内最大切应力,它仅对垂直于Oxy 坐标平面的方向而言。面内最大切应力不一定是一点的所有方位面中切应力的最大值,在解题时要特别注意,不要掉人“陷阱”中。 本章主要考点: ① 建立一点应力状态的概念,能够准确地从构件中截取单元体。 ② 二向应力状态下求解主应力、主平面方位,并会用主单元体表示。会计算任意斜截面上的应力分量。 ③ 计算单元体的最大切应力。 ④ 广义胡克定律的应用。 ⑤ 能够选择适当的强度理论进行复杂应力状态下的强度计算,会分析简单强度破坏问题的原因。 本章习题大致可分为四类: ( l )从构件中截取单元体这类题一般沿构件截面截取一正六面体,根据轴力、弯矩判断横截面上的正应力方向,由扭矩、剪力判断切应力方向,单元体其他侧面上的应力分量由力平衡和切应力互等定理画完整。特别是当单元体包括构件表面(自由面)时,其上应力分量为零。 ( 2 )复杂应力状态分析一般考题都不限制采用哪一种方法解题,故最好采用应力圆分析,它常常能快速而有效地解决一些复杂的问题。 ( 3 )广义胡克定律的应用在求解应力与应变关系的题目中,不论构件的受力状态,均采用广义胡克定律,即可避免产生不必要的错误,因为广义胡克定律中包含了其他形式的胡克定律。 ( 4 )强度理论的应用对分析破坏原因的概念题,一般先分析危险点的应力状态,根据应力状态和材料性质,判断可能发生哪种类型的破坏,并选择相应的强度理论加以解释。计算题一般为组合变形构件的强度分析(详见第 8 章)与薄壁容器的强度分析,薄壁容器可利用平衡条件求出横截面与纵向截面上的正应力,由于容器的对称性,两平面上无切应力,故该应力即为主应力,并选择第三或第四强度理论进行强度计算。

应力状态和强度理论习题及答案

应力状态和强度理论 一、判断题 1.若单元体某一截面上的剪应力为零,则该截面称为主平面。() 2.主平面上的剪应力称为主应力。() 3.当单元体上只有一个主应力不为零时,称作二向应力状态。() 5.图2所示单元体最大剪应力为25Mpa。() 6.图3所示单元体为单向应力状态。() 图2图3图4 7. 向应力状态如图4所示,其最大主应力σ1=3σ()。 8. 任一单元体,在最大正应力作用面上,剪应力为零。() 9. 主应力是指剪力为零的截面上的正应力。() 10.力圆上任一点的横坐标值对应单元体某一截面上的正应力。() 二、选择题 1.图1所示应力圆对应的单元体为图()。

图5 三、选择题 1.若一点的应力状态为平面应力状态,那么该点的主应力不可能为:()。 A 、σ1> 0 σ2=σ3=0 B、σ1> 0 σ2 =0 σ3 < 0 C、σ1>σ2>0 σ3=0 D、σ1>σ2>σ3>0 2.已知单元体各面上的应力如图,则其主平面方位为()。 A、B、 C、D、 四、填空题 1.图示为一平面应力状态的单元体及其应力圆,试在应力圆上表示0-1,0-2,0-3平面的位置。 图6

2.试验表明,材料受力后的破坏主要有两种形式,一种是,是由于或所引起;另一种是,是由于所引起的。 3.一单元体如图所示,则单元体的主应力为__________ ,为 __________ ,为__________ ,最大主应力与x 轴的夹角为__________ 。 五、简单计算 1.单元体上的应力如图7所示,试求其它应力和最大剪应力。 2.图8所示单元体,试求图示斜截面上的正应力和剪应力。 图7图8 3.试求图示单元体o斜截面应力。已知:。 图9

第10章应力状态与强度理论及其工程应用

第10章 应力状态与强度理论 及其工程应用 10.1 概述 10.1.1 应力状态的基本概念 轴向拉伸或压缩杆: 横截面 1 P F A σ= 1A 横截面面积 斜截面 2 cos sin 22 x x θθσσθστθ? =??= ?? 即用不同方位的截面截取,任意点A 的应力是不同的。 受扭圆轴:

横截面 x P M I τρ= 斜截面 s i n2 α στα =-c o s2 α ττα = 即, A点的应力大小和方向随截面的方位不同而不同。 应力状态:构件受力后,通过一个点的所有截面上的应力情况的总体,称为该点的应力状态。 对于受力构件有必要研究其一点的应力状态。 研究应力状态的目的:找出一点处沿不同方向应力的变化规律,确定出最大应力,从而全面考虑构件破坏的原因,建立适当的强度条件。 10.1.2 应力状态分析的基本方法 研究一点的应力状态时,往往围绕所考察的点取一微小正六面体------

单元体。 单元体:微小的立方体, dx dy dz 、、为无限小,其侧面上的应力可 看作是均匀分布的,立方体的两相对侧面的应力可看成是大小相等,方向相反。 在单元体各面上标上应力——应力单元体。 根据一点的应力状态中各应力在空间的不同位置,可以将 ?? ? 空间应力状态 应力状态平面应力状态 空间应力状态:所有面上均有应力作用的应力状态。 平面应力状态:所有应力作用线都处于同一平面内的应力状态(有一对面上总是没有应力)。

?? ? 单向应力状态 平面应力状态纯剪切应力状态 单向应力状态:只受一个方向的正应力作用的应力状态。 纯剪切应力状态:只受剪应力作用的应力状态。 对于平面应力状态,由于单元体有一对面上没有应力作用,所以三维单元体可以用一平面微元表示。

相关文档
相关文档 最新文档