文档库 最新最全的文档下载
当前位置:文档库 › 第1章 质点力学 习题教学教材

第1章 质点力学 习题教学教材

第1章 质点力学 习题教学教材
第1章 质点力学 习题教学教材

第一章 质点力学 习题

习题1.1:设质点的运动方程为 j t y i t x t r )()()( ,其中 m t s m t x 2)1()(1 ;

m t s m t y 2)4

1()(22 。(1)试求s t 3 时的速度;(2)作出质点的运动轨迹图。 解:(1)由题意可得速度分量分别为

11 s m dt dx x ;t s m dt dy y )21(2 s t 3 时的速度为 j s m i s m )5.1()1(21

速度

与 x 之间的夹角 3.5615.1arctan

m t s m t x 2)1()(1

(2)运动方程

m t s m t y 2)4

1()(22 由运动方程消去参数 t 可得轨迹方程为 m 3)m 4

1(21- x x y

习题1.2:如图所示,A 、B 两物体由一长为

l 的刚性细杆相连,A 、B 两物体可在光滑轨道上滑行。如物体 A 以恒定的速率 向左滑行,当 60 时,物体 B 的速率为多少?

物体 A 的速度

物体 B 的速度

AOB 为一直角三角形,刚性细杆的长度 l 为一常量:

两边求导得 即

dt

dx ,y x tan ∴ j B tan B 沿 y 轴正向,当 60 时, 73.1 B 。 t

A v d j t

y i y B d d v v y 222x =l 0d d 2d d 2 t y y t x x t x y x t y d d d d j t

x y x j dt dy B d d v

j i r 21习题1.3:已知一质点的运动方程为 (SI ) ,求: ⑴ t = 1s 和 t = 2s 时位矢;

⑵ t = 1s 到 t = 2s 内位移;

⑶ t = 1s 到 t = 2s 内质点的平均速度;

⑷ t = 1s 和 t = 2s 时质点的速度;

⑸ t = 1s 到 t = 2s 内的平均加速度;

⑹ t = 1s 和 t = 2s 时的加速度; 解:⑴ m , m 。 ⑵ m 。

⑶ m /s 。 ⑷ m /s m /s

⑸ m /s 2 。 ⑹ m /s 2 。

习题1.4:一质点沿 x 轴运动,已知加速度为 t a 4 (SI)。初始条件为:0 t 时,

00 ,100 x m 。求:运动方程。 解:取质点为研究对象,由加速度定义有 (一维可用标量式)

由初始条件有: 得: j t i t r )2(22

j i r 242 j i r r r 321

2 j i j i t r v 321232 j t i dt r d v 22 j i v 221 j i v 422

j j t v v t v a 212212 j dt v d dt r d a 222 t dt dv a 4 tdt dv 4 t v tdt dv 0

0422t v

由速度定义得:

由初始条件得:

即 m 。

由以上可见,习题1.3和习题1.4分别属于质点运动学中的第一类和第二类问题。

习题1.5:质点做平面曲线运动,其位矢、加速度和法向加速度大小分别为和速度为 试说明下式正确的有哪些 ?

⑴ ⑵ ⑶ ⑷ 解:因为标量 ≠ 矢量,所以 ⑴ 不对。

由右图可见:

而 故 ⑵ 不对。 而 因此 ⑶ 正确。 由于 中 r 为曲率半径,而这里 r 为位矢的大小,不一定是曲率半径, 22t dt dx v dt t dx 22 dt t dx t

x 02

102103

23 t x ;dt v d a ;22dt r d a ;22dt

v d a a n .r v v a ,r r .r r ,22dt r d a ,2222dt

r d dt r d ,22dt v d dt dv a a a t n r v v a

结构力学课程教学改革

结构力学课程教学改革 摘要:文章通过阐述笔者在“结构力学”课程教学中所遇到的一些问题,并针对这些问题在教学内容、教学方式等方面进行了思考,最后对课程的教学改革提出了自己的一些看法。 关键词:结构力学;教学方法;教学改革 前言 结构力学是高校土木工程专业最重要的一门专业基础课之一,在整个土木工程专业教学中不但具有承上启下的核心地位,而且贯穿于整个专业学习的过程。结构力学的先修课包括高等数学、线性代数、计算机基础知识、工程力学等,作为土木工程学科主要的专业基础课之一,它是联系基础力学课程与工程设计课程的纽带,是从力学基本理论过渡到工程实际应用的重要桥梁。结构力学课程的教学质量直接决定了后续钢筋混凝土结构设计原理、钢结构、地基基础和抗震结构设计、以及课程设计和毕业设计等课程的教学效果,同时也是学生今后在设计或施工工作中解决工程问题的基础。因此,想要学生将大学的专业课程学习扎实,结构力学这门课程必须学好,这就对我们结构力学的教室提出了更高的要求。本人在结构力学的教学过程中,发现了一些教学上所存在的问题,文章将从这些问题着手,提出一些解决问题的方法,并对该课程的教学的改革提出几点自己的见解。 一、结构力学教学中存在的问题 (一)课时少 在教育部大力推行“大土木”专业背景下,学生的课程数量大幅

增加,导致各专业课分配到的课时不可避免的减少,结构力学也不例外。而结构力学是一门专业基础课,主要研究杆系结构的内力和变形,具有内容较多,理论性强,概念较为抽象,解决问题的思路多样化等特点。有很多重要的内容必须细细讲授,要耗费大量课时,课时少与内容多的矛盾相当突出。因此,必须增加结构力学课程的学时。 (二)内容繁琐、零乱 在目前的结构力学的培养方案中,有一些内容较为繁琐、零乱。例如在理论力学中,桁架杆的内力计算已经被讲授过,而结构力学又要重新再讲一次,内容得不到很好的衔接,导致学生上课一头雾水。而像矩阵位移法这类本科学生今后在工作中很少被运用到的内容,大纲却要求重点讲授,不仅浪费课时,也浪费学生学习的精力。因此,教学内容改革势在必行。 (三)内容抽象 结构力学研究计算的是结构在各种效应作用下的响应,包括内力的计算及位移的计算。由于内力看不见,摸不着,学生在学习的过程中缺乏感性的认识,学生很容易将内力等概念混淆,造成对知识点的模糊。且由于课程的内容抽象,这就造成学生在接触到这门课程时容易产生畏难情绪,再者由于学生在学习过程中没有明确的目的性,“怎样去学习”、“知识点该如何运用”、“如何分析力学模型”等问题普遍存在,导致学生不能学以致用,自然而然缺乏对结构力学这门理论性较强的课程的学习兴趣。学生学习后不知道学习结构力学对今后工作有何帮助。

土木工程专业理论力学教学改革

土木工程专业理论力学教学改革 理论力学是高等院校工科专业的一门专业基础课,对于土木工程这种对力学要求比较高的专业,它的作用更是突出。下面是搜集的相关内容的论文,欢迎大家阅读参考。 理论力学是土木工程专业中的一门核心技术基础课程,具有理论性强、内容多和课时少、教材针对性差等特点,加上教学手段单一,学生普通反映难学。为提高教学质量,激发学生积极性,培养其工程实际应用能力,文章在分析土木工程专业理论力学在教学方面存在的问题的基础上,又探讨了理论力学课程的教学 ___内容。 土木工程专业;理论力学;教学 ___;工程实际 理论力学是土木工程专业中的一门核心技术基础课程。在整个土木工程专业教学体系中,理论力学这门课程担负着承前启后的作用,它不仅是材料力学、结构力学等后继力学课程的基础,而且在整个教学过程中对培养学生的工程素质也有着非常重要的作用。因此,理论力学这门课程的教学,要在确保学生掌握内容和体系的同时,学会应用该理论和方法分析、解决一些简单的工程实际问题,从而培养学生的抽象化能力、逻辑思维能力和创新能力。理论力学是主要以伽利略和牛顿总结的基本定律为基础,研究物体机械运动一般规律的科学,属于古典力学范畴[1]。虽然其体系与内容已经相

当完善,但随着高等教育教学体制的 ___与深化,特别是针对土木工程专业学生来说,存在教学学时偏少、针对性教材缺乏、理论知识与工程实际 ___不够紧密、教学手段单一等问题,导致课程内容枯燥,学生学习压力大,提不起兴趣。笔者结合教学经验和对土木工程专业的认识,探讨了理论力学课程的教学 ___内容。 (一)教学学时偏少 不同高等院校使用的《理论力学》教材不尽相同,但基本上都包括静力学、运动学和动力学三个部分;这三个部分之间在层次结构和知识点上都存在逻辑关联,构成理论力学这门课程体系,是一个有机的整体[2]。但在高等教育教学体制的 ___下,随着基础学科加强、特色学科增多,课时不可避免的被压缩。比如,笔者所在学校根据“专结构、懂施工、长材料”人才培养方案特点,加强了与材料方面相关的学科,导致土木工程专业理论力学教学学时被减少到64个学时。课程内容多、知识点存在逻辑关联、体系完整等特点导致很难通过简单的减少课程内容来减少学时减少所带来的问题,这种简化方式只会导致这门课程失去其完整性与严谨性。 (二)缺乏针对性教材

哈工大材料力学-i课程教学大纲

《材料力学 - I 》课程教学大纲 课程中文名称:材料力学 课程英文名称: Mechanics of Materials 总学时: 98 讲课学时: 64 习题学时: 8 实验学时: 8 上机学时: 18 授课对象:机械、建筑、交通、材料、动力、能源等专业本科生 先修课程:高等数学,理论力学 一、课程教学目的 通过本课程学习,要求学生正确理解构件的强度、刚度、稳定性等基本概念以及平衡、几何、物理三类方程在求解力学问题时的重要作用。能熟练地计算杆件的应力与变形以及分析其强度、刚度与稳定性的能力。通过实验课教学,培养学生具有一定的创新性、综合性的实验能力。 二、教学内容及基本要求 强度、刚度、稳定性;变形固体及其理想化;外力及其分类;变形与位移。 应力状态分析:内力;应力的概念,正应力与切应力;一点的应力状态;切应力互等定律 ;二向应力状态分析,解析法;二向应力状态分析,图解法;三向应力状态分析;微体平衡。应变状态分析:应变概念,线应变与切应变;位移与应变的关系;几何方程;应变协调条件,相容方程;平面应变状态分析。 材料的力学性能、应力应变关系:材料的力学性能与基本实验;轴向拉伸和压缩实验;常 见工程材料的应力—应变曲线;应力松驰与蠕变;各向同性材料的广义虎克定律;应变能;各向同性材料弹性常数间的关系;各向异性材料应力—应变关系。 轴向拉压:轴向拉压杆的内力;轴向拉压杆的应力;圣文南原理;应力集中;轴向拉压杆的变形,变形能;轴向拉压静不定问题,温度应力,装配应力;构件受慣性力作用时的应

力计算。 扭转:扭转杆件的内力;圆轴扭转横截面上切应力;圆轴扭转破坏模式的分析;圆轴扭转变形与变形能;薄壁杆的自由扭转,剪力流。 弯曲:梁的内力,剪力与弯矩;剪力图与弯矩图;载荷、剪力及弯矩间的关系;纯弯曲梁的正应力;有关弯曲的讨论;弯曲切应力;开口薄壁非对称截面梁的弯曲,弯曲中心;梁的弹性弯曲变形,弹性曲线微分方程;直接积分求梁的变形;叠加原理与叠加法求变形;曲杆弯曲。 复杂内力时杆件应力计算:斜弯曲;偏心拉伸与压缩;截面核心;弯曲与扭转。 能量原理:虚功,杆件内力的虚功;虚功原理及其对杆件的应用;莫尔定理;图形互乘法;虚功原理应用于小变形固体;冲击。 静不定结构:静不定结构的概念及其分析方法;用力法分析静不定结构;具有对称与反对称性的静不定结构;连续梁。 材料失效及强度理论:常用工程材料的失效模式及强度理论概念;关于断裂的强度理论;关于屈服的强度理论;莫尔强度理论;强度条件与强度计算。 杆件的强度、刚度计算:强度条件与刚度条件;轴向拉压杆件的强度计算;扭转杆件的强度、刚度计算;弯曲杆件的强度、刚度计算;复杂内力时杆件的强度、刚度计算;提高构件强度、刚度的一些措施。 联接:工程中常见的联接结构;剪切实用计算;挤压实用计算;焊接缝与胶粘接缝的实用计算。 弹塑性变形与极限载荷分析:弹塑性变形与极限载荷法概念;应力 -应变关系曲线的简化;静不定桁架的极限载荷;圆轴的弹塑性扭转,残余应力;梁的弹塑性弯曲,塑性铰。 疲劳与断裂:交变应力与对其描述;疲劳概念与材料的疲劳极限;影响疲劳极限的主要因素;疲劳强度计算;变幅交变应力下构件的疲劳强度计算;疲劳裂纹扩展与构件的疲劳寿命压杆稳定:压杆稳定性概念;确定临界力的静力法,欧拉公式;超过比例极限压杆的临界

量子物理课程教学大纲

量子物理课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:量子物理 所属专业:材料物理 课程性质:专业基础课 学分:4 (二)课程简介、目标与任务; 课程简介: 量子理论和相对论是20世纪物理学取得的两个最伟大的进展之一,以研究微观物质运动规律为基本出发点建立的量子理论开辟了人类认识客观 世界运动规律的新途径,开创了物理学的新时代。 本课程着重介绍非相对论量子力学的基本概念、基本原理和基本方法。 首先从量子力学发展简史、黑体辐射实验等出发,讲述量子力学Schrodinger 方程和一维定态问题,着重讲述周期场和Bloch定理、能带结构。在此基础 上讲述量子力学的基本原理,包括波函数统计解释、线性厄米算符、本征值 问题、测不准关系、力学量完全集、Heisenberg方程等。中心力场部分主 要讲电磁场相互作用下氢原子的能级结构。矩阵力学主要讲力学量算符的矩 阵表示和本征值问题。定态微扰论和量子跃迁主要讲原子的几个效应和量子 系统在外场微扰情况下的光的吸收和辐射。最后讲多粒子全同性问题。 课程目标与任务: 1. 掌握微观粒子运动规律、量子力学的基本假设、基本原理和基本方 法。 2.掌握量子力学的基本近似方法及其对相关物理问题的处理。 3.掌握电子在周期势场情况下的运动规律,为学习固体物理打好基础。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 本课程需要学生先修《电磁学》、《光学》、《原子物理》、《数学物理方法》和《线性代数》等课程。《电磁学》和《光学》中的麦克斯韦理论最终统一了 光学和电磁学;揭示了任意温度物体都向外辐射电磁波的机制,它是19世纪 末人们研究黑体辐射的基本出发点,对理解本课程中的黑体辐射实验及紫外 灾难由于一定的帮助。《原子物理》中所学习的关于原子结构的经典与半经典 理论及其解释相关实验的困难是导致量子力学发展的主要动机之一。《数学物 理方法》中所学习的复变函数论和微分方程的解法都在量子力学中有广泛的 应用。《线性代数》中的线性空间结构的概念是量子力学希尔伯特空间的理论 基础,对理解本课程中的矩阵力学和表象变换都很有助益。 (四)教材与主要参考书。 [1] 钱伯初, 《理论力学教程》, 高等教育出版社; (教材) [2] 曾谨言,《量子力学》I,第四版,科学出版社, 2006年 [3] L. D. Landau and E. M. Lifshitz, Non-relativistic Quantum Mechanics; [4] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press 1958; 二、课程内容与安排 第一章绪论 第一节量子论发展简史 第二节黑体辐射实验与Plank常数的量纲分析,原子物理中的量纲结构(一)教学方法与学时分配:课堂讲授;4学时 (二)内容及基本要求 主要内容:主要介绍量子力学的发展简史、研究对象和微观粒子的基本特性及其量纲分析。 【重点掌握】: 1.量子力学的实验基础:黑体辐射;光电效应;康普顿散射实验;电子晶体衍射 实验;

理论力学教学改革与学生素质能力的培养

第29卷第2期 唐山师范学院学报 2007年3月 Vol. 29 No.2 Journal of Tangshan Teachers College Mar. 2007 ────────── 收稿日期:2004-04-02 作者简介:王志刚(1956-),男,河北唐山人,副教授。 - 111 - 理论力学教学改革与学生素质能力的培养 王志刚,王庆禄 (唐山师范学院 物理系,河北 唐山 063000) 摘 要:从理论力学的自身特点出发,改革课程内容体系和教学方法,培养学生的综合素质能力。 关键词:理论力学;教学方法;教学改革; 素质能力 中图分类号:G642.0 文献标识码:B 文章编号:1009-9115(2007)02-0111-02 1 理论力学自身的特点 理论力学[1][2]是物理专业为《热力学与统计力学》、《量子力学》、《电动力学》等后续课程提供必要的力学知识和有关的基本概念,同时也担负着培养学生逻辑思维能力和提高解决实际问题能力的任务。在学习理论力学之前学生已经学过普通力学,而理论力学本来就存在和普通力学有一些重复的弊端,因此在学习理论力学时,有些同学不能主动接受和应用理论力学中的新概念和新方法,而继续用普通力学知识来解决问题。传统的理论力学教材和讲授方法都是从特殊到一般,步步深入,这样也容易给学生造成一个错觉,认为理论力学就是力学的简单补充和继续,因此学生在上课过程中有时注意力不够集中,有时出现思想开小差的现象,这样不容易调动学生学习的积极性。为提高学生的综合素质能力,激发学生的学习积极性,教学改革势在必行。 2 理论力学内容体系的改革 理论力学的理论体系严谨,逻辑性较强,课程的内容既经典又完整,不易全面更新。但随着教学改革的进行和教学观念的转变,上课学时的不断减少,如果仅采取简单的压缩,只会陷入越来越深的困境,鉴于此,只有采取积极的办法,从课程自身的特点出发,挖掘课程本身的潜力,做到基础理论要精练、深化,应用方面要结合专业特点并适当进行拓宽。改变传统的从特殊到一般、从已知到未知的体系,充分利用数学工具,采用从一般到特殊的讲授方法。如:转动坐标系从最一般的转动系讲起,辅之以学生所学专业相应的例题,不能总停留在重平面转动系、轻空间转动系的水平上。在动力学部分,应加强分析力学的内容,重视两个自由度系统的力学问题分析,重视系统运动微分方程的建立,以便和后续课程更好接轨。这种体系有两方面优点:一方面,其描述简洁、精练,既缩短了篇幅又加深了内容。这种表述方法也是对学生思维能力和创造能力的良好训练。另一方面,它可以迫使学生放弃用普通力学的知识,来理解理论力学的内容, 从一开始就站在较高的起点上学习理论力学的新概念和新知识,努力掌握解决问题的新方法和新思路,还可以避免由于盲目利用以前知识来研究新问题而造成的错误,有利于纠正学生以前得到的不准确概念等问题。 3 教学方法和教学内容的适当改革 3.1 提高学生学习理论力学的主动性和积极性 在教学过程中,应该贯彻少而精的原则,精心选择教学内容,改变过去多而不细的方法,将一些最重要和最基本的概念、理论和分析方法教给学生,并通过必要的基本训练帮助学生理解和掌握,为发挥其创造性留足时间和空间。教学的重点内容是关键所在,教师讲解的应是各章节的主干内容,而对一般内容或者比较简单的章节则可稍加指点,或让学生带着问题去自学并将其联系到主干内容上。当课程讲完每一章时,应让学生自己进行小结,将前面所学的内容用一两条主线串联起来。理论力学的应用性主要体现在例题和习题的选用上,随着科技的发展,除了保留一些基本题型外,应该不断更新,如加一些天文学方面的例题等内容,以显示经典力学的渗透力。而我国理论力学教材中的例题和习题几十年来基本上没有大的变化,已明显落后于时代。因此在例题和习题的选择上既要结合专业特点和学生兴趣又要体现时代特色,还应注意相关领域的问题。这样就能使学生将理论力学和自己的专业以及现代科技结合起来,激发学生的学习兴趣和热情。 3.2 开展讨论式教学 讨论法与讲授法、演讲法都不同,它是在教师的引导下,通过学生集体的组织形式由教师提出问题,学生各抒己见,相互讨论,相互学习的教学方法。它由教师一人主讲变为由学生、教师共同讨论,整个讨论过程是师生双边活动。讨论法不仅能使学生看到发现真理的过程,而且能亲身体验和感受这个过程,可有效地培养学生灵活运用知识的能力,特别是独立思考能力和创新的能力。上好讨论课的关键是首先选

最新材料力学教学大纲 张少实

材料力学教学大纲 1 2 第一部分大纲说明 3 一、本课和的性质 4 本课程为农业机械与自动化专业的专业必修课程之一。 5 二、本课程的教学目的 6 通过本课程学习,要求学生正确理解构件的强度、刚度、稳定性等基本概念以及平衡、几何、物理三类方程在求解力学问题时的重要作用。能熟练地计算杆件的应力与变形以7 8 及分析其强度、刚度与稳定性的能力。通过实验课教学,培养学生具有一定的创新性、9 综合性的实验能力。 10 三、本课程的课程内容与体系总体设计 11 总的指导思想是:将教学思想与观念改革、课程内容与体系改革、教学手段与方法改12 革融为一体,统一进行。用面向新世纪力学学科的新思想和新观点,来审视、精选、强化、浓缩和重新组织经典内容,更加满足机械原理、零件和力学等后续课程对于力学基 13 14 础知识的需求;适当增加新内容,目的是为当代力学的先进成果和思想开辟窗口和开设15 接口。与传统材料力学相比,课程内容与体系以及理论知识的表述手段上有如下改革:1.将以变形为课程主线的传统体系改为以应力、应变分析为主线;引入取微元体的 16 17 分析方法,从而加强应力、应变分析观点;引入平衡微分方程、应力和位移边界条件、18 几何方程、相容方程等弹性力学基本方程。 19 2.突出力学方程、几何方程、物理方程这三大方程在求解力学问题时的普遍意义和20 本质所在。 21 3.将研究对象从一维杆件扩充到三维弹形体。同时阐述均匀与非均匀、连续与非连22 续、各向同性与各向异性、小变形与大变形、线性与非线性等关于研究对象的基本假设,23 从而恰当引入了弹性力学、塑性力学、复合材料力学等学科的新观点和新思想并为此开24 辟窗口或开设接口。 4.将传统的杆件拉、压、剪、扭、弯、组合变形等五个章节内容加以浓缩,突出平 25 26 面假设,并揭示将这一问题作为三维问题的一个特例,再应用“平面假设”,从而得到问题解这一方法的本质所在。 27 28 5.彻底改变了书中插图是线框图形的传统面貌,代之而来的是运用计算机绘制的立体29 感与透明感很强的二维、三维图形与图像,这样更有助于对理论知识做形象直观描述;

北京大学物理学院量子力学系列教学大纲

北京大学物理学院量子力学系列教学大纲 课程号: 00432214 新课号: PHY-1-044 课程名称:量子力学 开课学期:春、秋季 学分: 3 先修课程:普通物理(PHY-0-04*以上)、理论力学(PHY-1-051)、电动力学(PHY-1-043)基本目的:使得同学掌握量子力学的基本原理和初步的计算方法,适合于非物理类专业的同学选修。 内容提要: 1.量子力学基本原理:实验基础、Hilbert空间、波函数、薛定谔方程、算符、表象变换、对称性与守恒律 2.一维定态问题:一般讨论、自由粒子、一维方势阱、谐振子、一维势垒3.轨道角动量与中心势场定态问题:角动量对易关系、本征函数、中心势、三维方势阱、三维谐振子、氢原子 4. 量子力学中的近似方法:定态微扰论、跃迁、散射。 5.全同粒子与自旋:全同性原理、自旋的表述、自旋与统计的关系、两个自旋的耦合、磁场与自旋的相互作用 教学方式:课堂讲授 教材与参考书: 曾谨言,《量子力学教程》,北京大学出版社, 1999. 学生成绩评定方法:作业10%、笔试90% 课程号: 00432214 新课号: PHY-1-054 课程名称:量子力学I 开课学期:春、秋季 学分: 4 先修课程:普通物理(PHY-0-04*以上)、高等数学、数学物理方法(PHY-1-011或以上)基本目的: 使得同学掌握量子力学的基本理论框架和计算方法。适合物理学院各类型同学以及非物理类的相关专业同学选修。 内容提要: 1.量子力学基本原理:实验基础、Hilbert空间、波函数、薛定谔方程、算符、表象变换、对称性与守恒律 2.一维定态问题:一般讨论、自由粒子、一维方势阱、谐振子、一维势垒3.轨道角动量与中心势场定态问题:角动量对易关系、本征函数、中心势、

材料力学教学大纲

《材料力学》教学大纲 大纲说明 课程代码:5125001 课程总学时:64课时(讲课54课时,实验10课时) 总学分:4学分 课程类别:必修 适用专业:土木工程专业(本科) 预修要求:高等数学、理论力学 课程的性质、目的、任务: 材料力学是一门重要的技术基础课,是其它技术课和专业课的基础。材料力学的任务就是在对构件进行力学分析的基础上,为设计构件时选择适当的材料和尺寸,以保证达到强度、刚度和稳定性的要求,为使设备构件能够满足适用、安全和经济的要求,提供基础理论知识。课程教学的基本要求: 通过学习,使学生掌握构件强度、刚度和稳定性的基本概念和计算方法;培养学生对工程设计中的强度、刚度、稳定问题有明确的概念,必要的知识,能进行初步的设计及实验分析能力的具备。 本课程的学习中,要密切联系实际,培养学生正确的分析问题的方法,注意正确理解掌握基本概念和基本方法。考虑到课程性质,建议采用多媒体教学手段。实验是本课程的重要组成部分,在教学中应予以充分重视。 大纲的使用说明: 本大纲适用于土木工程本科专业64课时的材料力学课程使用,可根据具体的课时情况作适当的增删。 大纲正文 第一章绪论学时:2学时(讲课2学时)本章讲授要点:《材料力学》任务、研究对象、变形固体的基本假设、内力和应力的概念、截面法、线应变和角应变。 重点:变形固体基本假设、截面法、应力和应变的概念。 第一节材料力学的任务 一、强度、刚度和稳定性的概念 二、材料力学的任务 第二节变形固体的基本假设 一、连续性假设 二、均匀性假设 三、各向同性假设 四、小变形假设

第三节外力及其分类 一、外力的分类 二、载荷的分类 第四节内力、截面法和应力的概念 一、内力的概念 二、截面法求内力 三、应力的概念及单位 第五节线应变和角应变 一、线应变的概念 二、角应变的概念 第七节杆件变形的基本形式 一、轴向拉伸与压缩 二、剪切 三、扭转 四、平面弯曲 第二章轴向拉伸与压缩学时:11学时(讲课7学时,实验4学时) 本章讲授要点:轴向拉伸与压缩的概念;轴力和轴力图;横截面和斜截面上的应力计算;虎克定律;轴向拉压杆的变形计算;材料的力学性质;轴向拉压杆的强度计算;应力集中的概念;简单超静定问题的基本解法。 重点:轴力和轴力图;应力和应变;虎克定律;变形计算;低碳钢的力学性能;强度条件的应用 难点:简单超静定问题 第一节轴向拉伸与压缩的概念和实例 一、轴向拉伸与压缩的概念 二、工程实例 第二节轴向拉压杆横截面上的内力和应力 一、轴力的计算和轴力图 二、应力的计算 第三节轴向拉压杆斜截面上的应力 一、斜截面上的应力计算 二、几种特殊情况的讨论 第四节金属材料的机械性质 一、低碳钢在轴向拉伸与压缩时的机械性质 二、其他塑性材料的机械性质 三、铸铁在轴向拉伸与压缩时的机械性质 第五节轴向拉压杆的强度条件 一、许用应力和安全系数 二、轴向拉压杆的强度条件 三、强度条件的应用 第六节轴向拉压杆的变形

《量子力学》课程教学大纲

《量子力学》课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:量子力学 所属专业:物理学专业 课程性质:专业基础课 学分:4 (二)课程简介、目标与任务; 课程简介: 量子理论是20世纪物理学取得的两个(相对论和量子理论)最伟大的进展之一,以研究微观物质运动规律为基本出发点建立的量子理论开辟了人 类认识客观世界运动规律的新途径,开创了物理学的新时代。 本课程着重介绍《量子力学》(非相对论)的基本概念、基本原理和基本方法。课程分为两大部分:第一部分主要是讲述量子力学的基本原理(公 设)及表述形式。在此基础上,逐步深入地让学生认识表述原理的数学结构, 如薛定谔波动力学、海森堡矩阵力学以及抽象表述的希尔伯特空间的代数结 构。本部分的主要内容包括:量子状态的描述、力学量的算符、量子力学中 的测量、运动方程和守恒律、量子力学的表述形式、多粒子体系的全同性原 理。第二部分主要是讲述量子力学的基本方法及其应用。在分析清楚各类基 本应用问题的物理内容基础上,掌握量子力学对一些基本问题的处理方法。 本篇主要内容包括:一维定态问题、氢原子问题、微扰方法对外场中的定态 问题和量子跃迁的处理以及弹性散射问题。 课程目标与任务: 1. 掌握微观粒子运动规律、量子力学的基本假设、基本原理和基本方 法。 2.掌握量子力学的基本近似方法及其对相关物理问题的处理。 3.了解量子力学所揭示的互补性认识论及其对人类认识论的贡献。

(三)先修课程要求,与先修课与后续相关课程之间的逻辑关系和内容衔接; 本课程需要学生先修《电磁学》、《光学》、《原子物理》、《数学物理方法》和《线性代数》等课程。《电磁学》和《光学》中的麦克斯韦理论最终统一 了光学和电磁学;揭示了任意温度物体都向外辐射电磁波的机制,它是19 世纪末人们研究黑体辐射的基本出发点,对理解本课程中的黑体辐射实验及 紫外灾难由于一定的帮助。《原子物理》中所学习的关于原子结构的经典与 半经典理论及其解释相关实验的困难是导致量子力学发展的主要动机之一。 《数学物理方法》中所学习的复变函数论和微分方程的解法都在量子力学中 有广泛的应用。《线性代数》中的线性空间结构的概念是量子力学希尔伯特 空间的理论基础,对理解本课程中的矩阵力学和表象变换都很有助益。 (四)教材与主要参考书。 [1] 钱伯初, 《理论力学教程》, 高等教育出版社; (教材) [2] 苏汝铿, 《量子力学》, 高等教育出版社; [3] L. D. Landau and E. M. Lifshitz, Non-relativistic Quantum Mechanics; [4] P. A. M. Dirac, The Principles of Quantum Mechanics, Oxford University Press 1958; 二、课程内容与安排 第一章微观粒子状态的描述 第一节光的波粒二象性 第二节原子结构的玻尔理论 第三节微观粒子的波粒二象性 第四节量子力学的第一公设:波函数 (一)教学方法与学时分配:课堂讲授;6学时 (二)内容及基本要求 主要内容:主要介绍量子力学的实验基础、研究对象和微观粒子的基本特性及其状态描述。 【重点掌握】: 1.量子力学的实验基础:黑体辐射;光电效应;康普顿散射实验;电子晶体衍射

《材料力学》课程教学大纲

《材料力学》课程教学大纲 二、教学目标 了解材料力学的基本理论、基本概念和基本分析方法。使学生能科学地辨认材料力学中的各种概念、原理、专业术语,使学生知道材料力学中各种构件的分类、受力过程和变化倾向。理解材料力学中杆件和梁的几种变形形式。使学生能用自己的语言对各种理论知识加以叙述、解释和归纳,并且能够指出各部分知识之间的内在联系和相互区别。 熟悉各种概念、原理和定律,掌握其计算与应用的方法。具体反映在: 1. 对材料力学的基本理论、基本概念和基本分析方法有明确的认识。 2. 掌握一般杆类零件和构件的受力与变形原理,具有绘出其合理的力学计算简图的初步能力。 3. 能够熟练地分析与计算杆件在拉、压、剪、扭、弯时的内力,绘制相应的内力图。 4. 能够熟练地分析与计算杆件在基本变形下的应力和变形,并进行相应的强度和刚度计算。 5. 对应力状态理论与强度理论有明确的认识,并能够将其应用于组合变形情况下的强度计算。对应变状态有关概念有一定了解和认识。 6. 熟练地掌握简单超静定问题的求解方法。 7. 能够熟练地分析与计算理想中心受压杆件的临界荷载和临界应力,并对国家现行钢结构设计规范所规定工程压杆的稳定计算方法,有深入地了解和认识,并能够熟练地进行压杆的稳定性计算。 8. 对杆件的应变能有关概念、基本原理和基本定理有一定认识和掌握,并能够熟练地用来计算简单梁、扭转圆轴和简单拉压杆结构的位移,进而计算简单超静定问题的内力。 9.对于常用材料的基本力学性能及其测试方法有初步认识。 10. 对于电测实验应力分析的基本原理和方法有初步认识。 三、教学内容与教学要求 1.绪论 内容要求:了解材料力学的任务、变形固体的概念;理解变形固体的基本假设;熟悉杆件变形的基本形式分类。 重点:杆件的四种基本变形。 难点:理解变形固体的四个基本假设。

原子物理学课程教学大纲

原子物理学课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:原子物理学 所属专业:物理学专业 课程性质:基础课 学分:4 (二)课程简介、目标与任务; 原子物理学是物理类专业本科生的专业必修课,以物质结构的第一个微观层次(原子)为研究对象,是联接经典物理和近代物理的一门承上启下的课程。在理论方法上,该课程揭露经典理论在原子这一微观层次遭遇到的困难,并且为了解决这些困难而引入量子力学,学生将在本课程中较为系统地学习到量子力学的基本概念、基本原理、基本思想和方法。在应用实践上,通过本课程的学习,学生将系统性地了解和掌握原子物理学的发展历史,获得有关原子的电子结构、性质及其与外场相互作用的系统性知识,为以后从事相关的科学研究、生产应用和教学工作打下良好的基础。 (三)先修课程要求,与先修课之间的逻辑关系和内容衔接; 先修课程:《高等数学》、《数学物理方法》、《力学》、《理论力学》、《热学》、《电磁学》、《光学》 关系:《高等数学》和《数学物理方法》是学习原子物理学的数学基础。《力学》、《理论力学》、《热学》、《电磁学》和《光学》包含了学生在学习原子物理学之前需要掌握的必要的经典物理知识。有了这些准备知识才能理解为何不能用经典理论来研究原子体系,从而必须引入量子力学。 (四)教材与主要参考书; 选用教材:杨福家, 《原子物理学》第四版, 高等教育出版社, 2010 主要参考书:

1, C. J. Foot,《Atomic Physics》, Oxford University Press, 2005 2, H. Friedrich,《Theoretical Atomic Physics》, Springer, 2006 3, 褚圣麟,《原子物理学》,高等教育出版社, 1987 4, 曾谨言,《量子力学》,科学出版社, 2000 5, 卢希庭,《原子核物理》,原子能出版社, 1981 二、课程内容与安排 绪论原子物理学的发展历史(2学时)【了解】 第一章原子的组成和结构(5学时) 第一节原子的质量和大小【掌握】 第二节电子的发现【了解】 第三节原子结构模型【了解】 第四节原子的核式结构,卢瑟福散理论【重点掌握】【难点】 第五节卢瑟福理论的成功和不足【掌握】 第二章原子的量子态,玻尔理论(8学时) 第一节背景知识:黑体辐射、光电效应和氢原子光谱【掌握】 第二节玻尔的氢原子理论【重点掌握】【难点】 第三节玻尔理论的实验验证【掌握】 第四节玻尔理论的推广:椭圆轨道理论和碱金属原子光谱【重点掌握】 第五节玻尔理论的成功与缺陷【掌握】 第三章量子力学导论(18学时)【重点掌握】【难点】 第一节波粒二象性 第二节不确定关系 第三节波函数及其统计解释 第四节态叠加原理 第五节薛定谔方程 第六节薛定谔方程应用举例 第七节平均值和算符 第八节量子力学总结 第九节氢原子/类氢离子的量子力学解法 第十节爱因斯坦关于辐射和吸收的唯象理论 第十一节量子跃迁理论,含时微扰论

理论力学课程体系改革探索与实践

理论力学课程体系改革探索与实践 摘要:本文介绍1996年以来清华大学的理论力学课程体系改革情况。通过分析理论力学课程在工科大学生培养中的定位和任务,明确与中学物理、大学普通物理的不同分工,确定理论力学的核心内容。实践中逐渐形成了新的理论力学体系,用64学时完成理论力学的核心内容,并保持了系统性和逻辑性。 关键词:理论力学:教学改革;课程体系;教学内容 理论力学是清华大学的重要基础课之一,目前由航空航天学院的理论力学课程组面向机械学院、土木水利学院、航空航天学院开设。自1987年以来,理论力学一直是校级一类课程,2002年入选学校首批“百门精品课”建设项目,2003年被评为北京市精品课程,2004年被评为国家精品课程。 一、课程体系改革的过程 1996年正逢四年一届的全国大学生力学竞赛,我在8月初突然接到任务:9月上旬用16个学时为参加竞赛的学生串讲理论力学。由于没有系统讲授过理论力学课程的经验,这是极大的挑战,也迫使我另辟蹊径,初步形成了现在的课程体系雏形。这次竞赛中,清华大学参赛学生获得了理论力学成绩第2名到第7名。 而后,我们在工程力学系95级、96级、98级连续进行课程体系改革试点。当时理论力学的课内学时为112,秋季学期48学时,讲静力学和运动学内容,春季学期64学时,讲动力学内容。使用的教材是清华大学理论力学教研组罗远祥等编写的《理论力学》。 促成新体系在全校推广的机遇是清华大学的学制由5年改为4年而大幅度压缩学时。用64学时讲完原有的教学内容,采用新体系是惟一出路。2000年,理论力学教学组的4位青年教师编写了讲义,在全校试用。2001年正式出版了新体系教材,并在后续几年内完成了教材的“立体化”。 二、课程体系改革的思路 在大幅度压缩学时之前,清华大学(以土木系为例)理论力学的学时

兰州大学量子力学教学大纲

量子力学教学大纲 教学基本内容及学时分配(72学时) 第一章绪论(4学时) 1、课程的发展和改革状况;教材评介 2、量子理论发展简史 3、黑体辐射定律与普朗克常数 4、光子 5、玻尔量子论 6、德布罗意“物质波”假设 7、原子物理中的特征量(结合量纲分析法) 第二章波函数和薛定谔方程(8学时) 1、薛定谔方程 2、波函数的统计诠释;连续性方程 3、定态;有关一维束缚态的若干定理 4、一维平底势阱中的粒子(包括无限深势阱,有限深势阱, 势阱) 5、一维谐振子(微分方程解法) 6、势垒贯穿 第三章量子力学基本原理(16学时) 1、波函数和算符 2、态叠加原理 3、线性算符;常用力学量的算符表示 4、波函数的普遍诠释(力学量的取值及概率假设);平均值公式 5、动量(连续谱,箱归一化);连续谱一般的理论 6、力学量算符的对易关系 7、两个力学量算符的共同本征态 8、不确定关系(测不准关系) 9、波函数随时间的变化;演化算符

10、力学量随时间的变化;薛定谔图象和海森伯图象;守恒量;宇称 11、对称性和守恒定律 12、海尔曼—费曼定理和位力定理 第四章表象理论(8学时) 1、狄拉克态矢量概念;矢量空间 2、量子力学公式的矩阵表示 3、坐标表象;波函数 4、动量表象 5、能量表象;求和规则 6、谐振子(升降算符解法);相干态 7、角动量(升降算符解法) 第五章中心力场(7学时) 1、中心力场的一般概念 2、轨道角动量的本征函数 3、自由粒子波函数 4、球形势阱中的粒子;氘核 5、粒子在库仑场中的运动(束缚态);类氢离子;氢原子;与玻尔量子 论的比较 6、三维各向同性谐振子 7、二维中心力场 第六章扰论与变分法(6学时) 1、非简并态微扰论;应用举例 2、简并态微扰论;一级近似 3、氢原子能级在电场中的分裂 4、变分法;应用举例 第七章自旋(9学时)

07310150材料力学性能教学大纲.docx

材料力学性能 Mechanical Properties of Materials 课程编号: 07310150 学分:2 学时:30(其中:讲课学时: 26实验学时: 4上机学时:) 先修课程:材料科学基础、工程力学、材料工艺学或组织控制等课程 适用专业:金属材料、无机非金属材料、高分子材料、光电、复合材料、材料成型与 加工等各专业本科三年级学生 教材:《工程材料力学性能》,束德林主编,机械工业出版社, 2008 年 6 月第 2 版开课学院: 一、课程的性质与任务: 《材料力学性能》是材料类专业的一门主要的技术基础课程。 《材料力学性能》的基本任务是通过课堂教学和实验教学,使学生掌握材料在不同条件 下的力学行为及其变化规律,掌握表征材料力学性能的各项指标和测定方法,以及影响 材料性能的内外因素,进一步明确材料的组成―工艺―结构―性能的关系,提高学生正 确选择和合理使用材料、改进材料性能方面的能力。二、课程的基本内容及要求: 一、绪论 1、教学内容 (1)本课程的目的、性质和主要内容; (2)本课程与其它课程的关系、课程学习方法。 2、基本要求 (1)理解本课程的目的、性质和主要内容; (2)了解本课程与其它课程的关系、课程学习方法。 二、材料在单向静拉伸载荷下力学性能 1、教学内容 (1)拉伸曲线和应力应变曲线; (2)弹性变形:弹性变形及其本质、弹性模量、比例极限与弹性极限、弹性比功; (3)弹性不完整性:包申格效应、弹性后效、弹性滞后和循环韧性; (4)塑性变形:塑性变形方式与特点、屈服现象与屈服强度、影响屈服强度的因素、应变硬化、颈缩现象、抗拉强度、塑性; (5)材料的断裂:断裂类型和断裂过程、断裂机理和微观断口特征、断裂强度、断裂理论的应用、韧性与韧度。

《 材料力学 》课程教学大纲

《材料力学》课程教学大纲 二、课程简介 材料力学课程是一门用以培养学生在工程检验与设计中有关力学方面设计与计算能力的技术基础课,本课程主要研究工程结构中构件的承载能力问题。通过材料力学的学习,能够对构件的强度、刚度和稳定性问题具有明确的基本概念,必要的基础知识,比较熟练的计算能力,一定的分析能力和初步的实践能力。 材料力学课程是高等工科院校中土木工程专业一门主干专业课程。在教学过程中要综合运用先修课程中所学到的有关知识与技能,结合各种实践教学环节,进行土木工程毕业生所需的基本训练,为学生进一步学习有关后续专业课程和有目的从事工程检验与设计工作打下基础。因此材料力学课程在土木工程专业的教学计划中占有重要的地位和作用。 三、课程目标 材料力学是由基础理论课过度到专业课程的技术基础课。通过该课程的学习,要求学生对杆件的强度、刚度和稳定性问题具有明确的基本概念、必要的基础知识、比较熟练的计算能力、一定的分析能力和初步的实验能力。 四、教学内容及要求 第一章绪论及基本概念(2课时) 内容:材料力学的任务和研究对象;变形固体的基本假设;内力、截面法;应力的概念;线应变和剪应变;杆件变形的基本形式。 重点讲解:内力、应力和应变的概念和胡克定律。介绍本课程重点内容及学习方法。 第二章轴向拉伸与压缩(6课时) 内容:轴向拉伸和压缩的基本概念和实例;截面法、轴力和轴力图;直杆横截面和斜截面上的应力,最大剪切应力;低碳钢和铸铁的拉伸试验及拉伸时材料的力学性质;低碳钢和铸铁的压缩试验及压缩时材料的力学性质;许用应力,强度条件;圣维南原理;轴向拉伸和压缩时的变形;应变能、比能;应力集中的概念。 重点讲解轴向拉(压)杆内力、应力以及强度计算的概念,截面法在求解拉(压)杆内力中的具体应用。详细介绍材料在拉伸与压缩时的力学性能。重点讲解轴向拉(压)杆的应变和变形计算

理论力学教学改革的尝试与体会

理论力学教学改革的尝试与体会 【摘要】我校目前工科讲授的理论力学是哈尔滨工业大学编写的教材,该教材在我校已使用多年,就该教材的教学内容,教学方法,教学过程及教学手段等问题,并结合我校的实际教学情况,提出了一些看法及本人的一些体会。 【关键词】理论力学;教学方法;教学改革;教学效果 随着当前科学技术的不断发展和改革开放的不断深入,社会对人才的培养提出了更高的要求。作为培养人才的基地——高等学校,必须加强对大学生的素质教育,加强对大学生的综合能力培养。结合理论力学教材特点,在教学内容调整的基础上,又结合本校学生的特点对教学方法及教学手段进行改革尝试。 1 明确课程特点与学生特点 理论力学是大学生遇到的第一门专业技术基础课程,它是培养大学生综合运用能力,培养学生分析解决工程实际能力。在理论力学讲授之前学生学得是数学,物理,化学等各门基础理论课,而在理论力学之后学得是材料力学,结构力学,机械零件设计等各门专业课程。所以理论力学是工科院校培养教育中的第一个重要的转折点,即由偏重基础理论培养向偏重工程实际培养的重要转折点。 哈尔滨工业大学编写的理论力学最新版即第七版对原有的教学内容进行了适当的调整,同时也增加了部分新内容。该教材最突出的特点是理论性强,信息量大,题目新颖,并注重联系工程实际。这对培养学生逻辑思维能力,综合运用能力颇有好处。 虽然理论力学的定律和定理为数不多,但却得到各种不同的,广泛的运用。对于学习理论力学的学生来说,最大的困难在于运用理论中的定律去解决具体的工程实际问题。而在理论力学的教学过程中,学生普遍反映的是理论性特强,难以看懂,难以理解。同时近几年来理论力学课时大幅度压缩,高等学校连续扩招,导致教学质量连续下滑。基于以上原因,并结合本校的实际教学情况,本人在理论力学实际教学过程中对部分教学内容进行适当调整,对教学方法和教学手段进行了尝试性地改革,通过调整,改革后,教学效果十分显著,教学质量明显回升。 2 教学内容适当地调整 教学内容的调整必须以基本内容为核心,并根据学生的实际情况而定。在实际教学过程中不过分地追求理论的纵向完美,而是注重讲述力学基本概念,注重讲述如何应用理论去解决工程实际问题。 理论力学中静力学第一章节中的力矩及力偶矩的性质内容不做详细教授,只是讲授它的转向及数值的性质。学生在大学物理中已学过。而是在第二章节中的力偶系的简化中给予复习。经过教学实践证明,这种讲授是完全可行的。物体系

《工程力学》教学大纲

《工程力学》课程 教学大纲 课程代码:2010208 课程名称:工程力学/Engineering Mechanics 课程类型:学科基础课 学时学分:64/4 适用专业:工程管理/勘查技术与工程(专升本) 开课部门:防灾工程系 一、课程的地位、目的和任务 课程的地位:工程力学课程是工程管理,勘查技术与工程(专升本)专业的一门学科基础课程。其内容以在简单构件受力及变形分析的基础上,进一步掌握分析、计算杆件结构受力与变形的基本原理和方法,了解各类结构的受力性能,培养结构分析与计算方面的能力,为学习有关专业课程及进行结构设计和科学研究打下基础。因此在专业的人才培养计划中占有重要地位和作用。 课程的目的与任务:总的要求是了解计算简图的意义,对一般的杆件结构能选择计算简图;掌握力的基本性质,力系的合成、平衡条件及其应用;掌握构件的各种基本变形的强度、刚度和稳定性计算;了解几种典型结构的受力特性,能熟悉计算静定结构的内力和位移。 二、课程与相关课程的联系与分工 先修课:高等数学,大学物理,建筑识图与房屋构造 后续课:建筑结构,土力学 工程力学课程是工程管理专业,勘查技术与工程(专升本)专业的一门学科基础课程,其需要的前续知识并不多,只需要掌握常见的数学积分方法和大学物理经典力学知识;学习工程力学可以将理论力学、材料力学和结构力学汇成一体,形成工程力学的新体系,是学生今后研究结构及构件受力和承载能力问题的基础。 三、教学内容与基本要求 绪论

1.教学内容 (1)了解工程力学的任务(重点),荷载的分类 (2)熟悉各种常见的约束性质,掌握结构的计算简图 (3)理解变形固体及其基本假定 2、教学重点难点 重点:强度、刚度、稳定性概念;刚体及变形固体假定 难点:刚体及变形固体假定 3、教学基本要求 (1)了解建筑结构荷载分类,约束形式及简化 (2)掌握强度、刚度和稳定性基本概念,基本假定 第1章静力学基础 1.教学内容 (1)静力学基本概念 (2)静力学基本公理 (3)工程常见约束类型、约束及其反力、受力分析及受力图 (4)物体受力分析 2、教学重点难点 重点:静力学公理;常见约束及其约束反力;物体的受力分析与受力图 难点:物体系统的受力分析及其受力图的画法;物体系统平衡问题的解题思路3、教学基本要求 (1)熟练计算力的投影,掌握各种力系的简化方法和简化结果 第2章平面基本力系 1、教学内容 (1)平面汇交力系合成与平衡的几何法 (2)平面汇交力系合成与平衡的解析法 (3)平面力对点的矩 (4)平面力偶系的平衡 2、教学重点难点 重点:平面体系合成与投影定理 难点:力矩合成与平衡定理 3、教学基本要求 (1)熟悉主矢和主矩,用各种平面力系的平衡条件和平衡方程求解单个物体和简单物体系统的平衡问题 第3章平面一般力系 1、教学内容 (1)力向一点平移 (2)平面一般力系的简化

相关文档