文档库 最新最全的文档下载
当前位置:文档库 › 机械模态分析的发展与应用-李涛-2015-04-22

机械模态分析的发展与应用-李涛-2015-04-22

机械模态分析的发展与应用-李涛-2015-04-22
机械模态分析的发展与应用-李涛-2015-04-22

机械模态分析的发展与应用

作者:李涛

摘要:模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振

动领域中的应用。模态分析的最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。本文主要介绍了模态分析的发展历史、现状和未来前景。

关键字:模态分析结构动力特性

Abstract:Modal analysis is a modern method of the study of structural

dynamic characteristics .It is the application of system identification method in the field of Vibration Engineering.Modal analysis of the ultimate goal is to identify the modal parameters of the system, in order to provide the basis for vibration characteristic analysis of the structure system, the vibration fault diagnosis and forecast and optimize the design of dynamic characteristics .This paper is mainly introduced the development history, present situation and future prospects of the modal analysis.

Key word: Modal analysis structural dynamic characteristics 一、前言

模态分析的经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各类振动特性的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。

二、提出问题

振动模态是弹性结构固有的、整体的特性。通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。近十多年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门

的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。

三、历史发展

模态参数可以用试验方法得到,六十年代所用的方法是共振法。在航空航天界普遍采用多点正弦激振调力的相位共振法,机械工程领域常用简单共振法或所谓机械阻抗法,当时称为地面振动试验(美国)或地面共振试验(欧洲)。

七十年代以来,随着基于快速付里叶变换(FFT)的动态信号分析仪的广泛应用,采用瞬态、随机等宽频带激振的频率响应测试技术及各种频域、时域模态识别方法,成为试验模态分析的主流。并在航空、航天、汽车、舰船、土木及动力、冶金、化工等机械工程领域得到广泛应用。试验模态分析用以测量和识别各种机械结构系统的动态特性(以模态频率,阻尼和振型等模态参数描述)。不仅直接应用于振动排故,质量控制,故障诊断,而且进一步用于有限数学模型改进,试验/分析建模,结构动力学修改,动力响应仿真载荷分析与动态优化设计。模态分析技术的广泛应用反过来对模态试验和动态测试技术提出新的要求。其核心是提高试验模态分析的可靠性和精度。参考文献【1】

八十年代以来,出现了一系列新的动态测试与分析新技术,在多输入/多输出( MIMO)动态测试频率响应估计和模态识别技术方面取得突破,在激振方式上,除了传统的瞬态和随机激振,又提出了瞬态随机( Burst Random)和瞬态快速扫频(Burs ch i r P )技术。除宽频带激振外,稳态正弦扫描也有其优点(为检验系统非线性等),而且在大量通道测试时,具有测试效率高的优越性。于是,新型模态分析系统应运而生,性能不断提高。参考文献【2】

在新要求的推动下,试验模态分析取得新的突破:多点宽频激振FR F测试与模态识别取得成功,并应用到大型复杂航天与航空结构,结构动力学修改和基于实测模态参数的有限元模型优化有了长足的进步。开发了新一代基于计算机的模态分析硬件与软件系统。基于模态分析的结构动态设计开始成为。理论与试验相结合的工程设计的工具。这时,模态分析进一步形成模态技术( Modal Analysis Technology )。

与此同时,计算机辅助设计与制造( C A D / C A M ) 已深入工程实践,但是传统的工程设计仍是一个开环过程,即分析一设计一制造。模态分析技术有机地将试验纳人到动态设计过程中。理论(如有限元)数学模型可以通过试验结果验证和修正(优化),有了可靠的数学模型,加上动力修改手段,就可以在计算机内进行仿真和设计。于是分析( C A A )、设计( C A D )、制造( C A M ) 和试验( C A T )形成有机配合的闭环更科学的设计过程。这一新技术称为计算机辅助工程( C A E ),模态分析技术在结构系统动态设计的C AE中起着重要的作用。

四、现状分析

过去几十年中,在世界上不同的电力系统中报告的电压不稳定事故有许多起。而电压崩溃事故的屡屡发生,也引起了电力工作者的关注,推动了电压稳定问题的研究。电压崩溃风险就是分析电网发生电压崩溃的概率和后果,是关于系统最大传输功率能力的一种风险。然而,面对已知的风险,如何采取有效的措施来降低它,成为亟需解决的问题。系统薄弱环节分析可以找出系统元件在导致电压崩溃中的参与程度如何,并确定其位置,为调度运行人员进一步操作提供依据。文献【3】明确地给出了电压崩溃的定义,并对电压失稳的机制进行了系统的研

究和分析。文献【4】提出了一种关于 P、Q 的抛物线关系曲线,建立了有功功率和无功功率之间的联系。文献【5】对电力系统中用于电压稳定分析的分岔理论进行了全面的概括,模态分析法就是从中提炼出来的一种判断电压稳定性的方法。文献【6】构造了一种累积指数指标CI。CI值越小,节点的稳定性能越好,可以此确定系统的薄弱环节。我们建立了一种全优化二次模型,将计算出的最小切负荷量作为电压崩溃的后果。运用模态分析法判断系统稳定性,并使用蒙特卡洛模拟法得出系统失效概率,进而求取风险值。形成了一套较为完整的风险评价思路。

随着侧量点数的增加(这对大型复杂结构的模态分析十分重要),采用常规的ICP加速度传感器,投资仍然可观。近年来,美国P C B公司推出了专用模态试验的所谓结构加速度传感器(简称STRUCTCEL)。不仅通道成本大为降低(为I C P传感器的1/6 ),而且性能适于结构模态试验(频带1一5 0O Hz,灵敏度I v/g,横向效应2 %,重3克)。为了适合多点测量模态试验,STRUCTCEL采用了空间(垂直、水平)安装、成组(每组1 5通道)电缆和现场标定技术。保证了侧量数据精度和一致性的提高。

宽频带激振情况,频率响应可由激振力与响应信号的互功率谱密度( C P S D )和自功率谱密度( APSD)之比求得,PSD则由信号的频谱,即信号的傅立叶变换来计算,由此可知,FFT是不可缺的一环,也成为信号处理的核心。FFT可由软件或硬件两类方面实现,前者直接由FFT程序在通用计算机实现,缺点是速度太慢,即使用汇编语言,在微机上算10 2 4 点FFT也需秒量级时间,加上硬件乘法器可加快速度,但对多通道测量,仍难满足要求。硬件FFT早期直接用位片搭成l024点,速度可达数毫秒,但实现不便。1982年专门数字信号处理器( DSP)研制成功。经开发可完成FFT功能,速度为5 0 一 6 0毫秒/1024点,获得广泛应用。DSP可由微处理器控制,形成专用FFT分析器。DSP开发的FFT卡可直接作为微机插件,使微机具有FFT功能。值得注意的是,随着多通道模态试验要求的日益增长,FFT有模块(由DSP及控制微处理器组成)化趋势。与测量、数据采集系统一起,构成测试、端( Front End ),1986年推出的H P35655系统,即采用这种新的结构。(为了提高 FRF活计精度,数据平均和加窗仍然是两项重要的信号处理手段。前者用于减小随机(方差 ) 误差,后者用以降低由泄漏引粗的偏度误差。参考文献【7】

在木材检测领域中,一般讨论的是试验模态分析技术。其进行木材检测的基本原理是以木材结构振动响应的实测数据为基础,通过系统参数识别判断模态参数变化,从而判定木材的性质、木材是否有缺陷以及缺陷的位置和程度。Xiao yang Y,Takuro A,Yutaka I等在 2002年通过传递函数对板材检测进行模态分析参考文献【8】。研究中采用13根100×4×4cm 日本雪松木材试件,并把试件分成 3类:标准试件、含有节子的试件和含有纹理扭曲的试件。每个试件都布置好测量节点,通过模态实验得到各个节点频响函数,通过对频响函数幅值的分析得到试件第一阶模态振动波形,然后再把有缺陷试件的振动波形与标准件的振动波形进行比较分析。研究表明,用传递函数可以确定板材在第一阶振动模态上的波形,通过获得的波形与理论波形相比可以检测木材的缺陷。含有节子的板材的振动波形与理论波形有很大差异。我国崔英颖、张厚江等在2006年6月用振动法对木材缺陷进行检测参考文献【9】。分析节子个数和木材的腐朽、孔洞对木材力学性质的影响。分析认为:节子个数对木材的动态弹性模量影响显著;随着节子个数的增加,木材的动态弹性模量降低;孔洞个数和孔铜直径对木材的

动态弹性模量都有极其显著的影响;随着孔洞个数的增加或孔洞直径的增大,木材的动态弹性模量降低。

五、未来展望

在动态试验仿真技术研究中,结构数学模型的正确性对动态响应分析结果有很大的影响。用试验数据修改数学模型的刚度矩阵、质量矩阵和阻尼矩阵,这项工作占很大的工作量。关于模型修改技术的论文与方法很多,都是采用一个状态的模态试验数据进行数模型修改。但要将这些方法应于航天器这样复杂结构,修改效果不能令人满意。适合用于复杂大型结构数学模型修改的方法与程序还有待研究与开发。

非线性对动态响应的影响是很明显的。特别对于航天结构中的连接、饺接、带间隙结构,例如包带与滑动构件结构动态分析中有明显的非线性问题,如果用非线性理论方法来解决,实际上是无法用于工程问题,要寻找一种适用于工程的方法来分析。由随机激励和结构参数随机性引起的随机动态响应分析是重要的问题,特别是非线性因素对随机响应影响的分析更为困难。

子结构试验模态综合技术就是根据航天器结构的自然状态将系统结构分为若干子结构,对每个子结构进行模态试验,用每个子结构模态试验实测的模态数据代替用理论计算模型给出的理论模态数据,用子结构模态综合法对整个系统进行综合分析,给出整体结构模态特性。由于它回避了理论计算模型与实测结构之间的不一致误差,因而对复杂工程问题有很好的优点并受到重视。由于试验模态的测试精度和模态综合理论方法的精度限制,整体结构模态综合结果的误差还比较大,因而这种方法的实际应用还有很多问题要研究,要达到最终替代整体结构试验的目标还有一段距离。参考文献【10】

六、参考文献

【1】张令弥:“模态试验与分析的进展 ( 一 )—第二届国际模态分析学术会议”,《振动与冲击》 1 9 8 5 年第 3 期

【2】张令弥:“模态试验与分折的进展 ( 二 )—伽利略号航天器对比试验”,《振动与冲击》 1 9 8 6 年第 1 期。

【3】钱晶,黎敬霞,高峰。电压崩溃判据的应用研究[J]。云南水力发电。200 2(02)

【4】PAOSATEANPUN R, CHUSANAPIPUTT S, PHOOM-VUTHISARN S, etal. The li ne P-Q curve for steady-state voltage stability analysis[C] // IE EE International Conference on Power System Technology, Chongqing, C hina, 2006: 1-5.

【5】赵兴勇,张秀彬,苏小林。电力系统电压稳定性研究与分岔理论[J]。电工技术学报,2008,23(2):87-95。

【6】张学清,梁军,董晓明。基于累积指数的电网电压稳定性能的评估[J]。电工技术学报,2012,27(7): 235-241。

【7】梁君,赵登峰。工作模态分析理论研究现状与发展[J]。电子机械工程。2 006(06)

【8】Xiao yang Y, Takuro A, Yutaka I.Application of modal analysis by transfer function to nondestructive testing of wood I:determination o f lo-calized defects in wood by the shape of the flexural vibration w ave [ J] .Journal of Wood Science, 2002, 48 ( 4 ) :283-288

【9】崔英颖。基于振动法进行木材应力分等和缺陷检测的研究[ D] .北京林业大学, 2006。

【10】邱吉宝,谭志勇。精确的混合界面模态综合技术。计算力学学报,1 9 9 7,14 :8 5 9 、 8 6 4

模态分析意义

模态分析意义模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。近十多年来,由于计算机技术、

FFT 分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。在各种各样的模态分析方法中,大致均可分为四个基本过程:(1)动态数据的采集及频响函数或脉冲响应函数分析1)激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。2)数据采集。SISO 方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。SIMO 及MIMO 的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。(2)建立结构数学模型根据已知条件,建立一种描述结构状态及特性的模型,作为计算及识别参数依据。目前一般假定系统为线性的。由于采用的识别方法不同,也分为频域建模和时

机械结构实验模态分析实验报告书

《机械结构实验模态分析》实验报告 开课实验室:汽车结构实验室 2019年月日 学院 姓名 成绩 课程 名称 机械结构实验模态分析 实验项目 名 称 机械结构实验模态分析 指导教师 教师评语 教师签名: 年 月 日 机械结构实验模态分析实验报告 一、实验目的和意义 模态分析技术是近年来在国内外得到迅速发展的一门新兴科学技术,广泛应用于航空、航天、机械制造、建筑、汽车等许多领域,在识别系统的动力学参数、动态优化设计、设备故障诊断等许多方面发挥了日益重要的作用。 本实验采用CCDS-1模态分析微机系统,对图1所示的框架结构进行分析。通过该实验达到如下目的: 212019 1817 16 1514 13121110 987 6 5 4 3 222120 20 202090 9090 90 90909090113 113 113 113 113 113 115 115 115 115 图1 框架结构图 详细了解CCDAS-1模态分析微机系统,并熟练掌握使用本系统的全过程,包括 了解测量点和激振点的选择。 了解模态分析实验采用的仪器,实验的连接、安装和调整。 1、 激励振时各测点力信号和响应信号的测量及利用这些测量信号求取传递函数,并分析影响传递 函数精度的因素。 2、 SSDAS-1系统由各测点识别出系统的模态参数的步骤。 3、 动画显示。 4、 灵敏度分析及含义。 通过CCDAS-1模态分析的全部过程及有关学习,能祥述实验模态的一般步骤。 通过实验和分析,大大提高综合分析能力和动手能力。

CCDAS-1系统模态分析的优缺点讨论并提出改进实验的意见。 二、测试及数据处理框图 加速度传感器 力传感器 脉冲锤 四个点由橡胶绳悬挂 1724 打印机 IBM PC 微型计算机 含AD板 CCMAS-1模态分析软件 双通道低 通滤波器 电荷放大器 电荷放大器 图2 测量及数据处理系统框图 三、实验模态分析的基本原理 对于一个机构系统,其动态特性可用系统的固有频率、阻尼和振型来描述,与模态质量和模态刚度一起通称为机械系统的模态参数。模态参数既可以用有限元的方法对结构进行简化得到,也可以通过激振实验对采集的振动数据进行处理识别得到。通过实验数据求取模态参数的方法就是实验模态分析。只要保证测试仪器的精度、实验条件和数据分析处理的精度就能获得高质量的模态参数。 一个线性系统,若在某一点j 施加激振力j F ,系统各点的振动响应为i X 1,2,...,i n =,系统任意两点的传递函数ij h 之间的关系可用矩阵表示如下: 11112122122212()... 0()...()...()...0n n j n n n nn x h h h x h h h F x h h h ωωωω?????? ???????????? =??? ??????????????? ??????M M M O M (1-1) 可记为:{}{}[]X H F = []H 称为传递函数矩阵。其中的任意元素ij h 可以通过激振实验得到 () () i ij j X h F ωω= ()i X ω,()j F ω分别表示响应i X 与激振力j F 的傅立叶变换。 测量方法是给系统施加一有限带宽频率的激振力(冲击也是一有限带宽激振力),同时测量系统的响应,将力和响应信号进行滤波,A/D 转换并离散采样,进行双通道FFT 变换,计算出激振力j F 与响应i X 之间的传递函数ij h 。 对测量的传递函数进行曲线拟和得到模态参数,一个多自由度系统曲线拟和传递函数的解析式为:* * 1 ()[]n ijk ijk ij k k k r r h S S P S P == - --∑ (1-3)

DHMA实验模态分析系统的概述

DHMA实验模态分析系统的概述 江苏东华测试技术有限公司推出的“DHMA实验模态分析系统”, 从激励信号、传感器、适调器、数据采集和分析软件到实验报告的生成,构成了完整的进行实验模态分析的硬件和软件条件。专业的技术培训,保证了用户可靠、准确、合理的使用本系统。 DHMA实验模态分析系统汇集了公司多年来硬件、软件研发经验,和广大用户对实验模态分析系统的改进意见,参考国内外实验模态分析领域专家学者的研究成果和指导意见,功能强大,特点鲜明:采用内嵌专业知识的软件模式,即使是非专业的用户也可以成功地进行模态实验;内嵌的工作流程保证符合质量标准的重复实验过程;强大的模态参数提取技术保证了高质量、不受操作者经验多寡的影响,即使对模态高度密集或阻尼很大的结构也游刃有余。 汽车白车身现场图片

汽车白车身一阶振型 针对不同实验对象的特点,本公司提供了三种具体的解决方案,满足了大多数用户的需求: 方案一:不测力法(环境激励)实验模态分析系统 不测力法实验模态分析(OMA)可用于对桥梁及大型建筑、运行状态的机械设备或不易实现人工激励的结构进行结构特性的动态实验。仅利用实测的时域响应数据,通过一定的系统建模和曲线拟合的方法识别结构的模态参数。桥梁及大型建筑、运行状态下的机械设备等不易实现人工激励的结构均可采用不测力法来进行实验模态分析。

方案二:锤击激励法实验模态分析系统 DHMA实验模态分析系统可以提供用户完整的锤击激励法实验模态分析完整的解决方案,是对被测结构用带力传感器的力锤施加一个已知的输入力,测量结构各点的响应,利用软件的频响函数分析模块计算得到各点频响函数数据。利用频响函数,通过一定的模态参数识别方法得到结构的模态参数。锤击激励法实验模态分析可分为单点激励法和单点拾振法。

模态试验及分析的基本步骤

模态试验及分析的基本步骤 1.动态数据的采集及响应函数分析 首先应选取适当的激励方式。激励方式可以是正弦、随机或瞬态中的任何一种。激励方式不同,相应的模态参数识别方法也不同。目前主要有单输入单输出、单输入多输出和多输入多输出三种方法。然后进行数据采集。对于单输入单输出方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振型数据;单输入多输出及多输入多输出的方法要求大量通道数据的高速采集,因此要求大量的振动测量传感器或激振器,试验成本极高。在采集信号数据以后,还要在时域或频域对信号进行处理,例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。 2.建立结构数学模型 根据己知条件,建立一种描述结构状态及特性的模型,作为计算及参数识别的依据,目前一般假定系统为线性的。由于采用的识别方法不同,数学建模可分为频域建模和时域建模。根据阻尼特性及频率藕合程度又可分为实模态和复模态等。 3.参数识别 按识别域的不同可分为频域法、时域法和混合域法。激励方式不同,相应的识别参数方法也不尽相同。并非越复杂的方法识别的结果越可靠。对于目前能够进行的大多数不是十分复杂的结构,只要取得了可靠的频响数据,用简单的识别方法也可能获得良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量数据不可靠,识别的结果也不会理想。 4.振型动画 参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应各阶模态的振型。但是由于结构复杂,由许多自由度组成的振型的数组难以引起对振动直观的想象,所以必须采用振型动画的办法,将放大的振型叠加到原始的几何形状上。

机械模态分析作业

机械模态分析 作业:如图1所示是一个单自由系统附件一个减振器形成的的两自由振动系统,已知m 1=105kg ,m 2=7kg ,k 1=10000N/m ,k 2=410N/m ,c 2=1.15N ·m-1·s ,F 1(t)=F 1e j ωt 。求:(简化为粘性比例阻尼进行实模态分析) 1. 物理坐标下的振动微分方程; 2. 频响函数矩阵; 3. 频响函数的模态展式矩阵; 4. 脉冲相应函数; 5. 画出H 11(ω)的幅频特性曲线,相频特性曲线,实频特性曲线, 虚频特性曲线,Nyquist 图,Bode 图; 6. 固有频率,阻尼固有频率; 7. 画出振型图; 8. 模态坐标系下的振动微分方程; 9. 模态参数:复模态质量,复模态刚度,复模态阻尼。 10.按实模态系统,给出灵敏度分析。 11.集全班同学的数据(必要的话再补做不同m 2,k 2,c 2参数下的数据,画出x1的最大振幅与m 2,k 2,c 2,的变化曲线,从而分析出减振器的最佳参数。 解: 1.振动微分方程 对质量m 1、m 2绘分离体图(如图1-1),用牛二定律列分离体在铅垂方向的力平衡方程得 1221221111122122122 ()()()()F c x x k x x k x m x c x x k x x m x ???? ? ? ?? +-+--=----= (1.1) 将(1.1)整理可得: 112 2112 21122 22 2222000m x c c x k k k x F m c c k k x x x ???????? ?? -+-?????????? ????++=??????????????--?? ? ??????????? (1.2) 且m 1=105、m 2=7、k 1=10000、k 2=410、c 2=1.15,代入(1.2)得: ?? ????=????????????+???? ? ???????????+??????????????????????0 410 410-410- 104101.15 1.15- 1.15- 15.17 0 0 1051212121F x x x x x x (1.3) 可以得出此二自由度系统振动微分方程为:()M x C x Kx f t ?? ? ++= 其中M=???? ??7 0 0 105;C=?????? 1.15 1.15- 1.15- 15.1;K=??? ???410 410- 410 - 10410;f(t)= ?? ? ???0 1F 图1-1、系统的分离体图 2.频响函数矩阵 由书P25(1.4-58)公式可知,此二自由度系统频响函数矩阵为一2×2 方阵,其表达式为: 图1 两自由度振动系统

振动测试理论和方法综述

振动测试理论和方法综述 摘要:振动是工程技术和日常生活中常见的物理现象。在长期的科学研究和工程实践中,已逐步形成了一门较完整的振动工程学科,可供进行理论计算和分析。随着现代工业和现代科学技术的发展,对各种仪器设备提出了低振级和低噪声的要求,以及对主要生产过程或重要设备进行监测、诊断,对工作环境进行控制等等。这些都离不开振动的测量。振动测试技术在工业生产中起着十分重要的作用,为此设计和制造高效的振动测试系统便成为测试技术的重要内容。本文概述了振动测试的发展历程,总结和分析了振动测试系统的基本组成和应用理论,列举了几种机械振动测试系统的类型。最后分析了振动测试系统的几个发展趋势。 关键词:振动测试;振动测试系统;测试技术;激振测试系统 1.引言 振动问题广泛存在于生活和生产当中。建筑物、机器等在内界或者外界的激励下就会产生振动。而机械振动常常会破坏机械的正常工作,甚至会降低机械的使用寿命并对机器造成不可逆的损坏。多数的机械振动是有害的。因而对振动的研究不仅有利于改善人们的生活环境和生活水平,也有助于提高机械设备的使用寿命,提高人们的生产效率。正因如此振动测试在生产和科研等多方面都有着十分重要的地位[1]。为了控制振动,将振动给人们带来的危害降至最低,就需要我们了解振动的特性和规律,对振动进行测试和研究。振动测试应运而生。 振动测试有着较为长久的发展历史,是与人类社会的发展有着紧密的联系。随着计算机技术和相关高科技技术的问世和发展,振动测试系统也有了飞跃性的发展。振动测试系统从最早的简单机械设备的应用到如今的先进的计算机技术和设备的应用。从刚开始的检测人员的耳朵来进行测量、判断和计算出大概的故障点的原始方法到现在的计算机控制、存储、处理数据的处理[2],无不体现出振动测试系统的长足发展和飞跃式的进步。与此同时,振动测试在理论方面也有了长足的发展,1656 年惠更斯首次提出物理摆的理论并且创造出了单摆机械钟到现今的自动控制原理和计算机的日趋完善,人们对机械振动分析的研究已日趋成熟。而伴随着振动测试系统的进步和日臻成熟,其在国民的日常生活和生产中所扮演的角色也愈发的重要。 2.振动测试与分析系统(TDM)的发展

结构模态分析方法

模态分析技术的发展现状综述 摘要:本文首先系统的介绍了模态分析的定义,并以模态分析技术的理论为基础,查阅了大量的文献和资料后,介绍了三种模态分析技术在各领域的应用,以及国内外对于结构模态分析技术研究的发展现状,分析并总结三种模态分析技术的特点与发展前景。 关键词:模态分析技术发展现状 Modality Analysis Technology Development Present Situation Summary Abstract:This article first systematic introduction the definition of modality analysis,and based on modal analysis theory,after has consulted the massive literature and the material.Introduced application about three kind of modality analysis technology in various domains. At home and abroad, the structural modal analysis technology research and development status quo.Analyzes and summarizes three kind of modality analysis technology characteristic and the prospects for development. Key words:Modality analysis Technology Development status 0 引言 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。模态分析的过程如果是由有限元计算的方法完成的,则称为计算模态分析;如果是通过试验将采集的系统输入与输出信号经过参数识别来获得模态参数的,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 1 数值模态分析的发展现状 数值模态分析主要采用有限元法,它是将弹性结构离散化为有限数量的具体质量、弹性特性单元后,在计算机上作数学运算的理论计算方法。它的优点是可以在结构设计之初,根据有限元分析结果,便预知产品的动态性能,可以在产品试制出来之前预估振动、噪声的强度和其他动态问题,并可改变结构形状以消除或抑制这些问题。只要能够正确显示出包含边界条件在内的机械振动模型,就可以通过计算机改变机械尺寸的形状细节。有限元法的不足是计算繁杂,耗资费时。这种方法,除要求计算者有熟练的技巧与经验外,有些参数(如阻尼、结合面特征等)目前尚无法定值,并且利用有限元法计算得到的结果,只能是一个近似值。 正因如此,大多数数学模拟的结构,在试制阶段常应做全尺寸样机的动态试验,以验证计算的可靠程度并补充理论计算的不足,特别对一些重要的或涉及人身安全的结构,就更是如此。 70 年代以来,由于数字计算机的广泛应用、数字信号处理技术以及系统辨识方法的发展 , 使结构模态试验技术和模态参数辨识方法有了较大进展,所获得的数据将促进产品性能的改进、更新[1] 。在硬件上,国外许多厂家研制成功各种类型的以FFT和

模态分析软件操作

模态分析软件操作说 明及实例 东方振动和噪声技术研究所 1999.3.16 目录 一模态分析的步骤 (2) 1.确定分析的方法 (2) 2.测点的选取、传感器的布置 (2) 3.仪器连接 (3) 4.示波 (3) 5.输入标定值 (3) 6.采样 (4) 7.传递函数分析 (4) 8.进行模态分析 (4) 二模态分析实例 (5)

例一自由梁的模态分析实例 (5) 例二楼房的模态分析实例 (15) 模态分析是一种参数识别的方法,因为模态分析法是在承认实际结构可以运用所谓“模态模型”来描述其动态响应的条件下,通过实验数据的处理和分析,寻求其“模态参数”。 模态分析的关键在于得到振动系统的特征向量(或称特征振型、模态振型)。试验模态分析便是通过试验采集系统的输入输出信号,经过参数识别获得模态参数。具体做法是:首先将结构物在静止状态下进行人为激振(或者环境激励),通过测量激振力与振动响应,找出激励点与各测点之间的“传递函数”,建立传递函数矩阵,用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构的模态参数,从而建立起结构物的模态模型。 东方所研制的模态分析系统,自推出以来参与了许多重大的科研项目如大型航空航天设备(长征火箭、通信卫星、大型雷达、火箭发射平台等)、大桥(火箭激振钱塘江大桥、锤击法激振乌海黄河铁路大桥属国内首次)、大楼、大坝、、机车(汽车)车辆和大型港口机械等,分析精度高、操作简便,尤其是变时基模态分析及高速模态三视图动画技术更是在国内外处于领先地步。 一、模态分析的步骤 1. 确定分析的方法 DASP中提供的模态分析方法有多输入单输出法、单输入多输出法和多输入多输出方法。一般采用较多的是多输入单输出或单输入多输出方法,在这两种方法中选取时,视哪一种方法简便而定,如激励装置大、不好移动但传感器移动方便就选取单输入多输出方法(即单点激励、多点移步拾振);如传感器移动不方便但激励装置小、容易移动就选取多输入单输出方法(即单点拾振、多点移步激励)。 有时结构因为过于巨大和笨重,以至于采用单点激振时不能提供足够的能量,将我们所感兴趣的模态都激励出来;其次,结构在同一频率时可能有多个模态,这样单点激振就不能把它们分离出来,这时就要采取两个甚至多个激励来激发结构的振动,即采取多输入多输出方法。 在DASP中进行模态分析时,由于采用了高弹性聚能力锤和先进的变时基传递函数分析技术,对于象大型铁路桥、火箭发射平台这样的大型结构用力锤敲击就能分析出结构的模态;对于大型的混凝土结构(如大楼)可以以天然脉动作为激励信号进行模态分析。所以在大多数情况下,采取单输入多输出或多输入单输出方法就可完全满足工程需要。 2. 测点的选取、传感器的布置 选择好分析方法后,就要根据结构的特点和试验目的确定测点的数目和布置,以及传感器的安装方法等。

模态分析与振动测试技术

模态分析与振动测试技术 固体力学 S0902015 李鹏飞

模态分析与振动测试技术 模态分析的理论基础是在机械阻抗与导纳的概念上发展起来的。近二十多年来,模态分析理论吸取了振动理论、信号分析、数据处理数理统计以及自动控制理论中的有关“营养”,结合自身内容的发展,形成了一套独特的理论,为模态分析及参数识别技术的发展奠定了理论基础。 一、单自由度模态分析 单自由度系统是最基本的振动系统。虽然实际结构均为多自由度系统,但单自由度系统的分析能揭示振动系统很多基本的特性。由于他简单,因此常常作为振动分析的基础。从单自由度系统的分析出发分析系统的频响函数,将使我们便于分析和深刻理解他的基本特性。对于线性的多自由度系统常常可以看成为许多单自由度系统特性的线性叠加。 二、多自由度系统模态分析 对于多自由度系统频响函数数学表达式有很多种,一般可以根据一个实际系统来讨论,给出一种形式;也可根据问题的要求来讨论,给出其他不同的形式。为了课程的紧凑,直接联系本课程的模态分析问题,我们就直接讨论多自由度系统通过频响函数表达形式的模态参数和模态分析。即多自由度系统模态参数与模态分析。 多自由度系统模态分析将主要用矩阵分析方法来进行。 我们以N个自由度的比例阻尼系统作为讨论的对象。然后将所分析的结果推广到其他阻尼形式的系统。 设所研究的系统为N个自由度的定常系统。其运动微分方程为: (2—1) ++= M X CX KX F ?)阶式中M,C,K分别为系统的质量、阻尼及刚度矩阵。均为(N N 矩阵。并且M及K矩阵为实系数对称矩阵,而其中质量矩阵M是正定矩阵,刚度矩阵K对于无刚体运动的约束系统是正定的;对于有刚体运动的自由系统则是半正定的。当阻尼为比例阻尼时,阻尼矩阵C为对称矩阵(上述是解耦条件)。 N?阶矩阵。即 X及F分别为系统的位移响应向量及激励力向量,均为1

机床实验模态分析综述

机床的模态分析方法综述 甄真 (北京信息科技大学机电工程学院,北京100192) 摘要:模态分析是研究机械结构动力特性的一种近代方法,是结构动态设计及设备的故障诊断的重要方法。机床在工作时,由于要承受各种变载荷而产生振动,其精度和寿命会受到影响。因此有必要对机床进行模态分析,了解其动态特性,以便进一步分析和改进。本文概述了模态分析的概念、研究意义及发展历史,介绍了机床模态分析的研究现状, 从理论方法与试验方法两方面指出了其关键技术以及研究发展方向。 关键词:模态分析;动态特性;机床;理论方法;实验方法 Summary of the model analysis method of machine tool ZHEN Zhen (Beijing Information Science & Technology University, Mechanical and Electrical Engineering College, Beijing, 100192) Abstract:Modal analysis is a modern method to study the dynamic characteristics of mechanical structure. It’s an important method in structure dynamic design and fault diagnosis of equipment.Its accuracy and lifetime will be affected due to withstand all kinds of variable load and vibration when the machine tool works.So it is necessary to make modal analysis and to understand the dynamic characteristics for machine tool in order to further analyze and improve. This paper summarizes the concept, significance and history of modal analysis and introduces the research status of model analysis of machine tool. It also points out the key technology and research direction in this field from two aspects of theoretical method and experimental method. Key words:model analysis; dynamic characteristics; machine tool; theoretical method; experimental method 0 引言 模态是指机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。模态分析是一种研究机械结构动力的方法,是系统辨别方法在工程振动领域中的应用。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可预言结构在此频段内在外部或内部各种振源作用下实际响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法[1]。 模态分析将构件的复杂振动分解为许多简单而独立的振动,并用一系列模态参数来表征的过程。根据线性叠加原理,一个构件的复杂振动是由无数阶模态叠加的结果。在这些模态中。模态分析最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。模态分析主要分为3类方法:一是,基于计算机仿真的有限元分析法;二是,基于输入(激励)输出(响应)模态试验的试验模态分析法;三是,基于仅有输出(响应)模态试验的运行模态分析法。有限元分析属结构动力学正问题,但受无法准确描述复杂边界条件、结构物理参数和部件连接状态等不确定性因素的限制难以达到很高的精度。第二、三类方法属结构动力学反问题,基于真实结构的模态试验。因而能得到更准确

环境振动下模态参数识别方法综述.

环境振动下模态参数识别方法综述 摘要:模态分析是研究结构动力特性的一种近代方法,是系统识别方法在工程振动领域中的应用。环境振动是一种天然的激励方式,环境振动下结构模态参数识别就是直接利用自然环境激励,仅根据系统的响应进行模态参数识别的方法。与传统模态识别方法相比,具有显著的优点。本文主要是做了环境振动下模态识别方法的一个综述报告。 关键词:环境振动模态识别综述 Abstract: The modal analysis is the study of structural dynamic characteristics of a modern method that is vibration system identification methods in engineering applications in the field. Ambient vibration is a natural way of incentives, under ambient vibration modal parameter identification is the direct use of the natural environment, incentives, based only on the response of the system for modal parameter identification method. With the traditional modal identification methods, has significant advantages. This paper is a summary report of the environmental vibration modal identification method. Keywords: Ambient vibration ;modal parameters ;Review 随着我国交通运输事业的发展,各种形式的大、中型桥梁不断涌现,由于大型桥梁结构具有结构尺大、造型复杂、不易人工激励、容易受到环境影响、自振频率较低等特点,传统模态参数识别技术在应用上的局限性越来越突出。传统的振动试验采用重振动器或落锤激励桥梁,需要投入大量人力和试验设备,激励成本增高,难度大,而且对于桥梁这样的大型复杂结构,激励(输入)往往很难测得,也不适合长期监测的实验模态分析。 环境振动是指振幅很小的环境地面运动。系由天然的和(或)人为的原因所造成,例如风、海浪、交通干扰或机械振动等,受激结构的振幅较小,但响应涵盖频率丰富。系统或者结构的模态参数包括:模态频率、模态阻尼、模态振型等。模态参数识别是系统识别的一部分,通过模态参数的识别可以了解系统或结构的动力学特性,这些动力特性可以作为结构有限元模型修正、故障诊断、结构实时监测的评定标准和基础。环境振动下的模态参数识别就是利用自然环境激励,根据结构的动

最新模态试验及分析的基本步骤

模态试验及分析的基本步骤 1 1.动态数据的采集及响应函数分析 2 首先应选取适当的激励方式。激励方式可以是正弦、随机或瞬态中的任何一种。激3 励方式不同,相应的模态参数识别方法也不同。目前主要有单输入单输出、单输入多4 输出和多输入多输出三种方法。然后进行数据采集。对于单输入单输出方法要求同时5 高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得6 振型数据;单输入多输出及多输入多输出的方法要求大量通道数据的高速采集,因此要7 求大量的振动测量传感器或激振器,试验成本极高。在采集信号数据以后,还要在时8 域或频域对信号进行处理,例如谱分析、传递函数估计、脉冲响应测量以及滤波、相9 关分析等。 10 2.建立结构数学模型 11 根据己知条件,建立一种描述结构状态及特性的模型,作为计算及参数识别的依 12 据,目前一般假定系统为线性的。由于采用的识别方法不同,数学建模可分为频域建13 模和时域建模。根据阻尼特性及频率藕合程度又可分为实模态和复模态等。 14 3.参数识别 15 按识别域的不同可分为频域法、时域法和混合域法。激励方式不同,相应的识别参16 数方法也不尽相同。并非越复杂的方法识别的结果越可靠。对于目前能够进行的大多17 数不是十分复杂的结构,只要取得了可靠的频响数据,用简单的识别方法也可能获得18 良好的模态参数;反之,即使用最复杂的数学模型、最高级的拟合方法,如果频响测量19 数据不可靠,识别的结果也不会理想。 20 4.振型动画 21 参数识别的结果得到了结构的模态参数模型,即一组固有频率、模态阻尼以及相应22 各阶模态的振型。但是由于结构复杂,由许多自由度组成的振型的数组难以引起对振23

振动测试和分析技术综述分析解析

振动测试和分析技术综述 黄盼 (西华大学,成都四川 610039) 摘要:振动测试和分析对结构和系统动态特性分析及其故障诊断是一种有效的手段。综述了当前振动测试和分析技术,包括振动测试与信号分析的国内外发展概况、振动信号数据采集技术、振动测试技术、以及振动测试与信号分析的工程应用,最后对振动测试与分析技术的未来发展方向进行了展望。 关键词:振动测试; 信号分析; 动态特性; 综述 Summary of Vibration Testing and Analysis HuangPan ( Xihua University,Chengdu 610039,China) Abstract: Vibration testing and analysis is an effective tool in analyzing structure and system dynamic characteristic and detecting the failures of structures,systems and facilities. The present paper reviews the current vibration testing and analysis techniques,including the development of vibration measurement and analysis of domestic and foreign,vibration signal data acquisition,vibration testing technology ,vibration measurement and analysis in engineering application. Finally,the future development in the field of vibration testing and analysis is predicted. Key words: vibration testing; signal analysis; dynamic characteristic;overview

运用hypermesh进行模态分析

1 引言 系统的模态参数(模态频率、模态阻尼、振型)对系统的动态分析和优化设计具有实用价值。通常由试验模态分析和计算模态分析两种方法。但由于受实验条件和时间的限制,组织实施往往比较困难,而且在测量次数,测量数据的处理准确性方面也难以得到充分的保证,在设计阶段难以实现。基于虚拟样机技术的虚拟实验方法在履带车辆箱体类零部件模态参数测量方面在设计阶段就能为方案优化提供指导,缩短产品开发周期,节省费用。因此,开展在虚拟环境下测试箱体类零部件的模态参数研究与探讨并扩展其应用具有重要意义。本文以某型履带车辆传动箱设计为例,应用HyperMesh为前处理软件,对其进行了有限元网格的划分,进而对箱体的模态进行了分析。 2 箱体有限元模型的建立及模态分析 首先依据传动箱体的尺寸,建立箱体的三维实体模型。利用HyperMesh对传动箱体的实体模型进行有限元网格划分,箱体的材料为铝合金,其密度为 2.66e33kg/m3,泊松系数为0.31,杨氏模量为7.7e72N/m2,强度极限为176.4MPa。整个箱体共划分76151个4面体单元,22262个节点。在此过程中,还必须考虑到箱体有限元模型建立后与各传动轴之间的连接,即柔性体与刚体间的连接。传动箱各轴都是通过轴承与箱体连接的,笔者在有限元模型中应用多点约束(MPC,Multi-point Constraint)来模拟轴承的作用。所谓多点约束是将某节点的依赖自由度定义为其他若干节点独立自由度的函数。多点约束可以用于不相容单元间的载荷传递,表征一些特定的物理现象,比如刚性连接、铰接、滑动等。笔者在箱体有限元模型中各轴孔的中心点处建立一个虚拟杆单元,如图1所示。轴孔内表面各节点的自由度则依赖于对应的虚拟杆单元。各传动轴与箱体间的约束也是在对应的虚拟单元处建立,各传动轴上的作用力则通过相应的虚拟杆单元和多点约束作用于箱体之上。文中建立的包括轴承模型的传动箱箱体有限元模型如图2所示。

模态分析在工程中的应用概述

模态分析在工程中的应用概述 学号:XXXXXX 姓名:XXX 模态分析是研究结构动力特性的一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析(FEA);如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为实验模态分析(EMA)。通常,模态分析都是指实验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一个易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析所寻求的最终目标在于改变机械结构系统由经验与类比和静态设计为动态、优化设计方法;在于借助试验与理论分析相结合的方法,对已有结构系统进行识别、分析和评价,从中找出结构系统在动态性能上所存在的问题,确保工程结构能安全可靠及有效地工作;在于根据现场测试的数据来这段及预报振动故障和进行噪声控制。通过这些方法为老产品的改进和新产品的设计提供可靠的依据。[1] 模态分析是一项综合性技术,可以应用于各个工程部门及各种工程结构。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息万变。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速Fourier 变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对实验导纳函数的曲线拟合,识别出结构物体的模态参数,从而建立起结构物体的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物体的实际振动的响应历程或响应谱。[2] 模态分析技术的应用可以归纳为以下几个方面:评价现有结构系统的动态特性,在新产品设计中进行结构动态特性的预估及优化设计,诊断及预报机构系统的故障,控制结构的辐射噪声,识别结构系统的载荷。[1] 下面对近几年国内模态分析在工程中各个方面的应用分别进行概述。 1.评价现有结构系统的动态特性 在处理结构的振动问题时,必须对其动态特性有全面的了解,而其动态特性

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率围各阶主要模态的特性,就可能预言结构在此频段在外部或部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 二、各模态分析方法的总结

(一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带围,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计算机存,因此在当前小型二通道或四通道傅立叶分析仪中,都把这种方法做成置选项。然而随着计算机的发展,存不断扩大,计算速度越来越快,在大多数实际应用中,单自由度方法已经让位给更加复杂的多自由度方法。 1、峰值检测 峰值检测是一种单自由度方法,它是频域中的模态模型为根据对系统极点进行局部估计(固有频率和阻尼)。峰值检测方法基于这样的事实:在固有频率附近,频响函数通过自己的极值,此时其实部为零(同相部分最

模态分析理论应用实际的讨论

模态分析理论应用实际的讨论 模态分析在结构设计中的应用认识小结 在结构设计中,我们通常要运用模态分析的方法来辅助设计,提高结构设计的合理性和科学性。模态参数获取有两种方法: 一种是有限元法,一般的FEA软件都可以计算,WB当然也没有问题拉; 一种是测试的方法,比如用LMS https://www.wendangku.net/doc/d710936092.html,b来测试。 这两种方法对于测试简单的结构是没有问题的,分析结果和试验结果很吻合。但是对于复杂的装配体结构,FEA软件就显得无能为力了,因为装配体有令人讨厌的结合面,对于结合面的分析,据我所知目前还没有比较好的办法(就算是最高的CAE高手恐怕也算不准)。所以复杂装配体的模态一般用测试的方法解决。当然CAE工程师可以用实验数据得到的结合面刚度阻尼值来修正自己的有限元模型。 一般模态分析的结果中,最受关注的是固有频率值及其振型。固有频率主要用以对照结构外的激振频率,看是否出现共振,共振出现的后果很严重,它会使设备的加工精度降低很多,另外固有频率值是衡量结构动静刚度的标杆,如果我想提高结构的动静刚度,不断改变自己设计的结构一般就能实现,当然设计水平也很重要;而通过观察振型我可以判断这个振型是否影响我设备的加工精度,如果影响的话,我会考虑将改变这个振型的频率,避免实际生产中出现加工精度降低的情况。模态分析在CAE中应该很简单,算出固有频率和振型也很轻松。但是如何在设计中运用好这个工具其实有很多学问。对于振型而言,可能不同的领域关注的焦点可能会不一样。以机床为例,如果计算机床的床身模态振型,可能振型有弯曲,扭转等众多振型,如果存在机床进刀、加工方向的振型,那么有可能这些振型会影响机床的加工精度。那么在设计阶段就必须对结构进行调整,比如修改结构内部的肋板分布,提高影响加工精度振型的固有频率,减少发生共振进而影响机床加工精度的可能性。我的看法是,振型模态分析要和结构强度刚度分析结合在一起,强度分析结果的高应力区如果和某一阶模态振型位移较大区域重合,就可认为结构是偏危险的,这些高应力区域有可能就是疲劳裂纹的萌生位置,而实际中的连续结构体振型应该是无穷多的,经典理论认为实际工程中能够对结构安全产生影响的往往只是低阶的频率振型,所以只要结构避开低阶共振区就能安全运行,然而随着结构形式运行条件等因素的不断变化,现代机械的振动形式也越来越复杂,除了静态强度刚度,动态强度刚度也越来越重要,在水中的湿模态分析,目前似乎还没有完美简洁的解决办法,计算分析所采用的模型和计算条件与实际运行中结构之间的差异会直接影响计算结果的精度,所以如何减小这个差异,或者说如何使分析过程更加接近实际是一直以来我们的目标。 模态分析中经常遇到的问题就是当分析对象为装配体的时候。装配体模态计算的正确性绝不仅仅在熟悉产品这么简单,尤其是类似于螺栓结合面、导轨结合面的地方,关于结合面的研究老早就到了一个瓶颈了,由于结合部特性参数的影响因素众多,如结合面材料、加工方法和表面质量,结合面介质及其性质,结合面几何形状及法面压力大小等,特别是在结合部作用机理尚未被真正揭示之前,要在理论上精确获得结合部的特性参数及其分析计算表达式非常困难,故用有限元法识别精度还有待验证。 结合部动力学参数识别问题的确是个技术性难题。目前解决好这一问题的手段是:测试+仿真,建立混合模型。另外对于产品的认知度问题是个值得讨论的问题,比如加强劲板形状的设计就是个问题。你是否已经能够罗列出各种简单振动模式下最好的结构形式?首先列一张表,然后你会心里有数些。但产品并非那么简单,所以需要设计复杂结构。那么,仅仅凭借模态测试是不够的,需要做结构形式的优化,那我们现有的优化技术中,拓扑优化是解决这一问题的好帮手。 曾经拿一家公司的产品,测试和计算发现他们的产品第一阶模态就到了300Hz以上,而同形式的产品,国内仅能到70几Hz.这个差距是何等的大?想办法把我们的产品也做到这样,那你就牛了。 这里谈到结构优化,我就插一句,ANSYS Workbench在分析或者说验证方面很不错,但是要涉及到拓扑优化和形貌优化则比较差,几乎不能应用到实际工程中,最多使用的尺寸优化。如果大家要做结构优化的话,建议使用一下HyperWorks/Optistruct,这个在结构优化上可以说是绝对领先的。. 还有就是共振的实际分析

相关文档