文档库 最新最全的文档下载
当前位置:文档库 › 模式识别方PCA实验报告

模式识别方PCA实验报告

模式识别方PCA实验报告
模式识别方PCA实验报告

模式识别作业

《模式识别》大作业人脸识别方法一 ---- 基于PCA 和欧几里得距离判据的模板匹配分类器

一、 理论知识

1、主成分分析

主成分分析是把多个特征映射为少数几个综合特征的一种统计分析方法。在多特征的研究中,往往由于特征个数太多,且彼此之间存在着一定的相关性,因而使得所观测的数据在一定程度上有信息的重叠。当特征较多时,在高维空间中研究样本的分布规律就更麻烦。主成分分析采取一种降维的方法,找出几个综合因子来代表原来众多的特征,使这些综合因子尽可能地反映原来变量的信息,而且彼此之间互不相关,从而达到简化的目的。主成分的表示相当于把原来的特征进行坐标变换(乘以一个变换矩阵),得到相关性较小(严格来说是零)的综合因子。

1.1 问题的提出

一般来说,如果N 个样品中的每个样品有n 个特征12,,

n x x x ,经过主成分分析,将

它们综合成n 综合变量,即

11111221221122221122n n n n n n n nn n

y c x c x c x y c x c x c x y c x c x c x =+++??=+++????=++

+

?

ij c 由下列原则决定:

1、i y 和j y (i j ≠,i,j = 1,2,...n )相互独立;

2、y 的排序原则是方差从大到小。这样的综合指标因子分别是原变量的第1、第2、……、

第n 个主分量,它们的方差依次递减。

1.2 主成分的导出

我们观察上述方程组,用我们熟知的矩阵表示,设12

n x x X x ??????=??????

是一个n 维随机向量,

12n y y Y y ????

??=??????

是满足上式的新变量所构成的向量。于是我们可以写成Y=CX,C 是一个正交矩阵,

满足CC ’=I 。

坐标旋转是指新坐标轴相互正交,仍构成一个直角坐标系。变换后的N 个点在1y 轴上

有最大方差,而在n y 轴上有最小方差。同时,注意上面第一条原则,由此我们要求i y 轴和j y 轴的协方差为零,那么要求

T YY =Λ

1

2n λλλ?????

?Λ=?????

?

令T

R XX =,则T T

RC C =Λ

经过上面式子的变换,我们得到以下n 个方程

111111212112111221122111121211()0()0

()0n n n n n n nn n r c r c r c r c r c r c r c r c r c λλλ-+++=+-++=++

+-

=

1.3 主成分分析的结果

我们要求解出C ,即解出上述齐次方程的非零解,要求ij c 的系数行列式为0。最后得出

结论i λ是||0R I λ-=的根,i y 的方差为i λ。然后选取前面p 个贡献率大的分量,这样就实现了降维。也就是主成分分析的目标。

二、 实现方法

1、 获取数据。在编程时具体是把一幅二维的图像转换成一维的;

2、 减去均值。要使PCA 正常工作,必须减去数据的均值。减去的均值为每一维的平均,

所有的x 值都要减去,同样所有的y 值都要减去,这样处理后的数据都具有0均值;

3、 计算协方差矩阵;

4、 计算协方差矩阵的特征矢量和特征值。因为协方差矩阵为方阵,我们可以计算它的特征

矢量和特征值,它可以告诉我们数据的有用信息;

5、选择成分组成模式矢量

现在可以进行数据压缩降低维数了。如果你观察上一节中的特征矢量和特征值,会注意到那些特征值是十分不同的。事实上,可以证明对应最大特征值的特征矢量就是数据的主成分。

对应大特征值的特征矢量就是那条穿过数据中间的矢量,它是数据维数之间最大的关联。

一般地,从协方差矩阵找到特征矢量以后,下一步就是按照特征值由大到小进行排列,这将给出成分的重要性级别。现在,如果你喜欢,可以忽略那些重要性很小的成分,当然这会丢失一些信息,但是如果对应的特征值很小,你不会丢失很多信息。如果你已经忽略了一些成分,那么最后的数据集将有更少的维数,精确地说,如果你的原始数据是n维的,你选择了前p个主要成分,那么你现在的数据将仅有p维。

现在要做的是你需要组成一个模式矢量,这只是几个矢量组成的矩阵的一个有意思的名字而已,它由你保持的所有特征矢量构成,每一个特征矢量是这个矩阵的一列。

6、获得新数据

这是PCA最后一步,也是最容易的一步。一旦你选择了须要保留的成分(特征矢量)并组成了模式矢量,我们简单地对其进行转置,并将其左乘原始数据的转置:其中rowFeatureVector是由特征矢量作为列组成的矩阵的转置,因此它的行就是原来的特征矢量,而且对应最大特征值的特征矢量在该矩阵的最上一行。rowdataAdjust是减去均值后的数据,即数据项目在每一列中,每一行就是一维。FinalData是最后得到的数据,数据项目在它的列中,维数沿着行。

FinalData = rowFeatureVector * rowdataAdjust

这将仅仅给出我们选择的数据。我们的原始数据有两个轴(x和y),所以我们的原始数据按这两个轴分布。我们可以按任何两个我们喜欢的轴表示我们的数据。如果这些轴是正交的,这种表达将是最有效的,这就是特征矢量总是正交的重要性。我们已经将我们的数据从原来的xy轴表达变换为现在的单个特征矢量表达。如果我们已经忽略了一些特征矢量,则新数据将会用我们保留的矢量表达。

三、matlab编程

matlab程序分为三部分。程序框图如下图所示。

四、 总结

从书里看我觉得最让人明白模板匹配分类器的一段话,就是“譬如A 类有10个训练样品,就有10个模板,B 类有8个训练样品,就有8个模板。任何一个待测样品在分类时与这18个模板都算一算相似度,找出最相似的模板,如果该模板是B 类中的一个,就确定待测样品为B 类,否则为A 类。”意思很简单吧,算相似度就是算距离。就是说,模板匹配就要用你想识别的样品与各类中每个样品的各个模板用距离公式计算距离,距离最短的那个就是最相似的。实验结果表明识别率达90%。 这样的匹配方法明显的缺点就是在计算量大,存储量大,每个测试样品要对每个模板计算一次相似度,如果模板量大的时候,计算量就十分的大。

五、 参考文献

【1】 边肇其,张学工.模式识别【M 】.第2版.北京.:清华大学出版社,2000

【2】 周杰,卢春雨,张长水,李衍达,人脸自动识别方法综述【J 】.电子学报,2000,

5(4):102-106

《模式识别》大作业人脸识别方法二 ---- 基于PCA 和FLD 的人脸识别的线性分类器

一、理论知识

1、 fisher 概念引出

在应用统计方法解决模式识别问题时,为了解决“维数灾难”的问题,压缩特征空间的

维数非常必要。fisher 方法实际上涉及到维数压缩的问题。fisher 分类器是一种几何分类器, 包括线性分类器和非线性分类器。线性分类器有:感知器算法、增量校正算法、LMSE 分类算法、Fisher 分类。

若把多维特征空间的点投影到一条直线上,就能把特征空间压缩成一维。那么关键就是找到这条直线的方向,找得好,分得好,找不好,就混在一起。因此fisher 方法目标就是找到这个最好的直线方向以及如何实现向最好方向投影的变换。这个投影变换恰是我们所寻求的解向量*

W ,这是fisher 算法的基本问题。

样品训练集以及待测样品的特征数目为n 。为了找到最佳投影方向,需要计算出各类均值、样品类内离散度矩阵i S 和总类间离散度矩阵w S 、样品类间离散度矩阵b S ,根据Fisher 准则,找到最佳投影准则,将训练集内所有样品进行投影,投影到一维Y 空间,由于Y 空间是一维的,则需要求出Y 空间的划分边界点,找到边界点后,就可以对待测样品进行进行一维Y 空间的投影,判断它的投影点与分界点的关系,将其归类。

Fisher 法的核心为二字:投影。

二、 实现方法

(1) 计算给类样品均值向量i m ,i m 是各个类的均值,i N 是i ω类的样品个数。

11,2,...,i

i X i

m X i n

N ω

=

=∑

(2) 计算样品类内离散度矩阵

i S 和总类间离散度矩阵w S

1

()()1,2,...,i

T

i i

i

X w i

i S X m X m i n

S S ω

==

--==∑∑

(3) 计算样品类间离散度矩阵b S

1212()()T b S m m m m =--

我们希望投影后,在一维Y 空间各类样品尽可能地分开,也就是说我们希望两类样品均值之差(12m m -)越大越好,同时希望各类样品内部尽量密集,即希望类内离

散度越小越好,因此,我们可以定义Fisher 准则函数:()T b F T

w W S W

J W W S W =

使得()F J W 取得最大值的*

W 为

*112()w W S m m -=-

(5) 将训练集内所有样品进行投影

*()T y W X =

如果w S 是非奇异的,则要获得类间离散度与类内离散度的比值最大的投影方向()

F J W 的满足下式:

12()max [,,

]T b F m T w W S W

J W arc w w w W S W

==

其中12[,,

]m w w w 是满足下式的b S 和w S 对应的m 个最大特征值所对应的特征向量。

注意到该矩阵最多只有C-1个非零特征值,C 是类别数。

2、程序中算法的应用

Fisher 线性判别方法(FLD )是在Fisher 鉴别准则函数取极值的情况下,求得一个最佳判别方向,然后从高位特征向量投影到该最佳鉴别方向,构成一个一维的判别特征空间。

将Fisher 线性判别推广到C-1个判决函数下,即从N 维空间向C-1维空间作相应的投影。利用这个m 维的投影矩阵M 将训练样本n 维向量空间转化为m 维的MEF 空间并且获得在MEF 空间上的最佳描述特征,即

1120,,

()

1,2,

,i i

i

T m i i y y y y M x m m i N ==--=

由这N 个MEF 空间上的最佳描述特征可以求出12,,N y y y 的样品类内离散度矩阵w

S 和总类间离散度矩阵b S ,取1

w b S S -的K 个最大的特征可以构成FLD 投影矩阵W 。将MEF

空间上的最佳描述特征12,,N y y y 在FLD 投影矩阵W 上进行投影,将MEF 空间降维到

MDF 空间,并获得对应的MDF 空间上的最佳分类特征,即

12(,,

)1,2,

,i i

i

i k i

Z Z Z Z Wy i N ===

通过计算12,,k Z Z Z 的欧氏距离,可以将训练样本分为C (C 等于1

w b S S -的秩)

,完成对训练样本集的分类

1、 matlab 编程

1、fisher 判别法人脸检测与识别流程图

2、matlab 程序分为三部分。程序框图如下图所示。

2、 总结

从计算成本来看,PCA+LDA 方法的好处在于对高维空间的降维,避免了类内离散度矩阵不可逆的情况。然而,从识别性能来看,由于主成分只是代表图像的灰度特征,是从能量的角度衡量主成分大小的,应用

PCA 之后,舍弃的对应较小特征值的次要成分有可能对LDA 来说重要的分类信息,有可能降低分类识别性能。 而且,在实际应用中,特别是在人脸图像识别中,由于“维数灾难”的存在,FLD 通常会遇到两个方面的困难:

(1) 类内离散度矩阵w S 总是奇异的。这是由于w S 的秩最多为N-C ,(N 是用于训练样本的图像数目,C 是人脸的类别数)。而一般情况下,用于训练的图像数目N 是远小

于每幅图像的像素数目,即“小样本问题“经常出现。

(2) 计算的复杂度。在高维空间中,要得出一个分类向量的复杂度远远高于计算一个低

维空间中的分类向量。

3、 参考文献

【1】边肇其,张学工.模式识别【M 】.第2版.北京.:清华大学出版社,2000

【2】周杰,卢春雨,张长水,李衍达,人脸自动识别方法综述【J 】.电子学报,2000,5(4):102-106

数值分析实验报告1

实验一误差分析 实验1.1(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 其中ε(1.1)和(1.221,,,a a 的输出b ”和“poly ε。 (1(2 (3)写成展 关于α solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。 实验过程: 程序: a=poly(1:20); rr=roots(a); forn=2:21 n form=1:9 ess=10^(-6-m);

ve=zeros(1,21); ve(n)=ess; r=roots(a+ve); -6-m s=max(abs(r-rr)) end end 利用符号函数:(思考题一)a=poly(1:20); y=poly2sym(a); rr=solve(y) n

很容易的得出对一个多次的代数多项式的其中某一项进行很小的扰动,对其多项式的根会有一定的扰动的,所以对于这类病态问题可以借助于MATLAB来进行问题的分析。 学号:06450210 姓名:万轩 实验二插值法

人脸识别实验报告

人脸识别——特征脸方法 贾东亚12346046 一、实验目的 1、学会使用PCA主成分分析法。 2、初步了解人脸识别的特征法。 3、更熟练地掌握matlab的使用。 二、原理介绍 1、PCA(主成分分析法介绍) 引用一个网上的例子。假设有一份对遥控直升机操作员的调查,用x1(i)表示飞行员i的 飞行技能,x2(i)表示飞行员i喜欢飞行的程度。通常遥控直升飞机是很难操作的,只有那些 非常坚持而且真正喜欢驾驶的人才能熟练操作。所以这两个属性x1(i)和x2(i)相关性是非常强的。我们可以假设两者的关系是按正比关系变化的。如下图里的任意找的向量u1所示,数据散布在u1两侧,有少许噪声。 现在我们有两项数据,是二维的。那么如何将这两项变量转变为一个来描述飞行员呢?由图中的点的分布可知,如果我们找到一个方向的U,所有的数据点在U的方向上的投影之 和最大,那么该U就能表示数据的大致走向。而在垂直于U的方向,各个数据点在该方向的投影相对于在U上的投影如果足够小,那么我们可以忽略掉各数据在该方向的投影,这样我们就把二维的数据转化成了在U方向上的一维数据。 为了将u选出来,我们先对数据进行预处理。先求出所有数据的平均值,然后用数据与平均值的偏差代替数据本身。然后对数据归一化以后,再代替数据本身。 而我们求最大的投影和,其实就是求各个数据点在U上的投影距离的方差最大。而XT u 就是投影的距离。故我们要求下式的最大值: 1 m ∑(x(i)T u)2=u T( 1 m ∑x(i)x(i)T m i=1 ) m i=1 u 按照u是单位向量来最大化上式,就是求1 m ∑x(i)x(i)T m i=1的特征向量。而此式是数据集的 协方差矩阵。

模式识别第二次上机实验报告

北京科技大学计算机与通信工程学院 模式分类第二次上机实验报告 姓名:XXXXXX 学号:00000000 班级:电信11 时间:2014-04-16

一、实验目的 1.掌握支持向量机(SVM)的原理、核函数类型选择以及核参数选择原则等; 二、实验内容 2.准备好数据,首先要把数据转换成Libsvm软件包要求的数据格式为: label index1:value1 index2:value2 ... 其中对于分类来说label为类标识,指定数据的种类;对于回归来说label为目标值。(我主要要用到回归) Index是从1开始的自然数,value是每一维的特征值。 该过程可以自己使用excel或者编写程序来完成,也可以使用网络上的FormatDataLibsvm.xls来完成。FormatDataLibsvm.xls使用说明: 先将数据按照下列格式存放(注意label放最后面): value1 value2 label value1 value2 label 然后将以上数据粘贴到FormatDataLibsvm.xls中的最左上角单元格,接着工具->宏执行行FormatDataToLibsvm宏。就可以得到libsvm要求的数据格式。将该数据存放到文本文件中进行下一步的处理。 3.对数据进行归一化。 该过程要用到libsvm软件包中的svm-scale.exe Svm-scale用法: 用法:svmscale [-l lower] [-u upper] [-y y_lower y_upper] [-s save_filename] [-r restore_filename] filename (缺省值:lower = -1,upper = 1,没有对y进行缩放)其中,-l:数据下限标记;lower:缩放后数据下限;-u:数据上限标记;upper:缩放后数据上限;-y:是否对目标值同时进行缩放;y_lower为下限值,y_upper为上限值;(回归需要对目标进行缩放,因此该参数可以设定为–y -1 1 )-s save_filename:表示将缩放的规则保存为文件save_filename;-r restore_filename:表示将缩放规则文件restore_filename载入后按此缩放;filename:待缩放的数据文件(要求满足前面所述的格式)。缩放规则文件可以用文本浏览器打开,看到其格式为: y lower upper min max x lower upper index1 min1 max1 index2 min2 max2 其中的lower 与upper 与使用时所设置的lower 与upper 含义相同;index 表示特征序号;min 转换前该特征的最小值;max 转换前该特征的最大值。数据集的缩放结果在此情况下通过DOS窗口输出,当然也可以通过DOS的文件重定向符号“>”将结果另存为指定的文件。该文件中的参数可用于最后面对目标值的反归一化。反归一化的公式为: (Value-lower)*(max-min)/(upper - lower)+lower 其中value为归一化后的值,其他参数与前面介绍的相同。 建议将训练数据集与测试数据集放在同一个文本文件中一起归一化,然后再将归一化结果分成训练集和测试集。 4.训练数据,生成模型。 用法:svmtrain [options] training_set_file [model_file] 其中,options(操作参数):可用的选项即表示的涵义如下所示-s svm类型:设置SVM 类型,默

人工智能YOLO V2 图像识别实验报告材料

第一章前言部分 1.1课程项目背景与意义 1.1.1课程项目背景 视觉是各个应用领域,如制造业、检验、文档分析、医疗诊断,和军事等领域中各种智能/自主系统中不可分割的一部分。由于它的重要性,一些先进国家,例如美国把对计算机视觉的研究列为对经济和科学有广泛影响的科学和工程中的重大基本问题,即所谓的重大挑战。计算机视觉的挑战是要为计算机和机器人开发具有与人类水平相当的视觉能力。机器视觉需要图象信号,纹理和颜色建模,几何处理和推理,以及物体建模。一个有能力的视觉系统应该把所有这些处理都紧密地集成在一起。作为一门学科,计算机视觉开始于60年代初,但在计算机视觉的基本研究中的许多重要进展是在80年代取得的。计算机视觉与人类视觉密切相关,对人类视觉有一个正确的认识将对计算机视觉的研究非常有益。 计算机视觉是一门研究如何使机器“看”的科学,更进一步的说,就是是指用摄影机和电脑代替人眼对目标进行识别、跟踪和测量等机器视觉,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。作为一个科学学科,计算机视觉研究相关的理论和技术,试图建立能够从图像或者多维数据中获取‘信息’的人工智能系统。这里所指的信息指Shannon定义的,可以用来帮助做一个“决定”的信息。因为感知可以看作是从感官信号中提取信息,所以计算机视觉也可以看作是研究如何使人工系统从图像或多维数据中“感知”的科学。 科学技术的发展是推动人类社会进步的主要原因之一,未来社会进一步地朝着科技化、信息化、智能化的方向前进。在信息大爆炸的今天,充分利用这些信息将有助于社会的现代化建设,这其中图像信息是目前人们生活中最常见的信息。利用这些图像信息的一种重要方法就是图像目标定位识别技术。不管是视频监控领域还是虚拟现实技术等都对图像的识别有着极大的需求。一般的图像目标定位识别系统包括图像分割、目标关键特征提取、目标类别分类三个步骤。 深度学习的概念源于人工神经网络的研究。含多隐层的多层感知器就是一种深度学习结构。深度学习通过组合低层特征形成更加抽象的高层表示属性类别或特征,以发现数据的分布式特征表示。深度学习的概念由Hinton等人于2006年提出。基于深度置信网络提出非监督贪心逐层训练算法,为解决深层结构相关的优化难题带来希望,随后提出多层自动编码器深层结构。此外Lecun等人提出的卷积神经网络是第一个真正多层结构学习算法,它利用空间相对关系减少参数数目以提高训练性能。

模式识别实验报告

模式识别实验报告

————————————————————————————————作者:————————————————————————————————日期:

实验报告 实验课程名称:模式识别 姓名:王宇班级: 20110813 学号: 2011081325 实验名称规范程度原理叙述实验过程实验结果实验成绩 图像的贝叶斯分类 K均值聚类算法 神经网络模式识别 平均成绩 折合成绩 注:1、每个实验中各项成绩按照5分制评定,实验成绩为各项总和 2、平均成绩取各项实验平均成绩 3、折合成绩按照教学大纲要求的百分比进行折合 2014年 6月

实验一、 图像的贝叶斯分类 一、实验目的 将模式识别方法与图像处理技术相结合,掌握利用最小错分概率贝叶斯分类器进行图像分类的基本方法,通过实验加深对基本概念的理解。 二、实验仪器设备及软件 HP D538、MATLAB 三、实验原理 概念: 阈值化分割算法是计算机视觉中的常用算法,对灰度图象的阈值分割就是先确定一个处于图像灰度取值范围内的灰度阈值,然后将图像中每个像素的灰度值与这个阈值相比较。并根据比较的结果将对应的像素划分为两类,灰度值大于阈值的像素划分为一类,小于阈值的划分为另一类,等于阈值的可任意划分到两类中的任何一类。 最常用的模型可描述如下:假设图像由具有单峰灰度分布的目标和背景组成,处于目标和背景内部相邻像素间的灰度值是高度相关的,但处于目标和背景交界处两边的像素灰度值有较大差别,此时,图像的灰度直方图基本上可看作是由分别对应于目标和背景的两个单峰直方图混合构成。而且这两个分布应大小接近,且均值足够远,方差足够小,这种情况下直方图呈现较明显的双峰。类似地,如果图像中包含多个单峰灰度目标,则直方图可能呈现较明显的多峰。 上述图像模型只是理想情况,有时图像中目标和背景的灰度值有部分交错。这时如用全局阈值进行分割必然会产生一定的误差。分割误差包括将目标分为背景和将背景分为目标两大类。实际应用中应尽量减小错误分割的概率,常用的一种方法为选取最优阈值。这里所谓的最优阈值,就是指能使误分割概率最小的分割阈值。图像的直方图可以看成是对灰度值概率分布密度函数的一种近似。如一幅图像中只包含目标和背景两类灰度区域,那么直方图所代表的灰度值概率密度函数可以表示为目标和背景两类灰度值概率密度函数的加权和。如果概率密度函数形式已知,就有可能计算出使目标和背景两类误分割概率最小的最优阈值。 假设目标与背景两类像素值均服从正态分布且混有加性高斯噪声,上述分类问题可以使用模式识别中的最小错分概率贝叶斯分类器来解决。以1p 与2p 分别表示目标与背景的灰度分布概率密度函数,1P 与2P 分别表示两类的先验概率,则图像的混合概率密度函数可用下式表示为

数值分析上机实验报告

数值分析上机实验报告

《数值分析》上机实验报告 1.用Newton 法求方程 X 7-X 4+14=0 在(0.1,1.9)中的近似根(初始近似值取为区间端点,迭代6次或误差小于0.00001)。 1.1 理论依据: 设函数在有限区间[a ,b]上二阶导数存在,且满足条件 {}α?上的惟一解在区间平方收敛于方程所生的迭代序列 迭代过程由则对任意初始近似值达到的一个中使是其中上不变号 在区间],[0)(3,2,1,0,) (') ()(],,[x |))(),((|,|,)(||)(|.4;0)(.3],[)(.20 )()(.110......b a x f x k x f x f x x x Newton b a b f a f mir b a c x f a b c f x f b a x f b f x f k k k k k k ==- ==∈≤-≠>+ 令 )9.1()9.1(0)8(4233642)(0)16(71127)(0)9.1(,0)1.0(,1428)(3 2 2 5 333647>?''<-=-=''<-=-='<>+-=f f x x x x x f x x x x x f f f x x x f 故以1.9为起点 ?? ?? ? ='- =+9.1)()(01x x f x f x x k k k k 如此一次一次的迭代,逼近x 的真实根。当前后两个的差<=ε时,就认为求出了近似的根。本程序用Newton 法求代数方程(最高次数不大于10)在(a,b )区间的根。

1.2 C语言程序原代码: #include #include main() {double x2,f,f1; double x1=1.9; //取初值为1.9 do {x2=x1; f=pow(x2,7)-28*pow(x2,4)+14; f1=7*pow(x2,6)-4*28*pow(x2,3); x1=x2-f/f1;} while(fabs(x1-x2)>=0.00001||x1<0.1); //限制循环次数printf("计算结果:x=%f\n",x1);} 1.3 运行结果: 1.4 MATLAB上机程序 function y=Newton(f,df,x0,eps,M) d=0; for k=1:M if feval(df,x0)==0 d=2;break else x1=x0-feval(f,x0)/feval(df,x0); end e=abs(x1-x0); x0=x1; if e<=eps&&abs(feval(f,x1))<=eps d=1;break end end

人脸识别实验报告解读

人脸识别——特征脸方法 贾东亚12346046 一、实验目的 1、学会使用PCA主成分分析法。 2、初步了解人脸识别的特征法。 3、更熟练地掌握matlab的使用。 二、原理介绍 1、PCA(主成分分析法介绍) 引用一个网上的例子。假设有一份对遥控直升机操作员的调查,用表示飞行员i的 飞行技能,表示飞行员i喜欢飞行的程度。通常遥控直升飞机是很难操作的,只有那些 非常坚持而且真正喜欢驾驶的人才能熟练操作。所以这两个属性和相关性是非常强的。我们可以假设两者的关系是按正比关系变化的。如下图里的任意找的向量u1所示,数据散布在u1两侧,有少许噪声。 现在我们有两项数据,是二维的。那么如何将这两项变量转变为一个来描述飞行员呢?由图中的点的分布可知,如果我们找到一个方向的U,所有的数据点在U的方向上的投影之和最大,那么该U就能表示数据的大致走向。而在垂直于U的方向,各个数据点在该方向 的投影相对于在U上的投影如果足够小,那么我们可以忽略掉各数据在该方向的投影,这 样我们就把二维的数据转化成了在U方向上的一维数据。 为了将u选出来,我们先对数据进行预处理。先求出所有数据的平均值,然后用数据与平均值的偏差代替数据本身。然后对数据归一化以后,再代替数据本身。 而我们求最大的投影和,其实就是求各个数据点在U上的投影距离的方差最大。而X T u 就是投影的距离。故我们要求下式的最大值: 按照u是单位向量来最大化上式,就是求的特征向量。而此式是数据集的协方差矩阵。

在实际应用中,我们不止面临二维的数据。因此不能使用几何的形式呈现,但原理也是一样。就是找到一组相互正交的单位向量,然后根据贡献率考虑选择其中的部分作为考量的维数,这也就实现了数据的降维。 三、实验步骤 1、将库里的400张照片分成两组。一组作为训练,一组作为库。每个人的前五张照片作为 训练,后五张作为库。训练的照片按照顺序的数字重命名。库的照片名字不变。 2、库照片处理。 ①将每一张库的照片转化成N维的向量。(库里的照片是112*92,故将转化成的矩阵按列或行展开,就是个10304维的向量)我们稍后要对如此多维的向量用PCA进行降维。然后把这些向量存入一个矩阵里。而我是将这200个向量以列的形式存在了矩阵里。 即 ,,, ②将这200个向量的每个元素相加起来求出平均值。再用Z里的每一个向量减去这个平均值得到每个的偏差。 平均值,每个向量的偏差 即最后 ,,, ③接下来我们就要针对这些预处理后的数据进行降维。我们要求的N个相互正交的向量就是协方差矩阵的特征向量,而对应的特征值就是各个向量所占的比重。但是Z是个10304*200的矩阵,那么就是个10304*10304的矩阵。使用matlab直接求其特征值与特征向量不太实际。 所以我们考虑一个简单的运算方法: 协方差矩阵的秩受到训练图像的限制:如果有N个训练样本,则最多有N? 1 个对应非零特征值的特征向量,其他的特征向量对应的特征值都是0。如果训练样本的数目比图像的维数低,则可以通过如下方法简化主成份的计算。 设 Z是预处理图像的矩阵,每一列对应一个减去均值图像之后的图像。则,协方差矩阵为,并且对S的特征值分解为

数值分析拉格朗日插值法上机实验报告

课题一:拉格朗日插值法 1.实验目的 1.学习和掌握拉格朗日插值多项式。 2.运用拉格朗日插值多项式进行计算。 2.实验过程 作出插值点(1.00,0.00),(-1.00,-3.00),(2.00,4.00)二、算法步骤 已知:某些点的坐标以及点数。 输入:条件点数以及这些点的坐标。 输出:根据给定的点求出其对应的拉格朗日插值多项式的值。 3.程序流程: (1)输入已知点的个数; (2)分别输入已知点的X坐标; (3)分别输入已知点的Y坐标; 程序如下: #include #include #include float lagrange(float *x,float *y,float xx,int n) /*拉格朗日

插值算法*/ { int i,j; float *a,yy=0.0; /*a作为临时变量,记录拉格朗日插值多项*/ a=(float*)malloc(n*sizeof(float)); for(i=0;i<=n-1;i++) { a[i]=y[i]; for(j=0;j<=n-1;j++) if(j!=i) a[i]*=(xx-x[j])/(x[i]-x[j]); yy+=a[i]; } free(a); return yy; } int main() { int i; int n; float x[20],y[20],xx,yy; printf("Input n:");

scanf("%d",&n); if(n<=0) { printf("Error! The value of n must in (0,20)."); getch();return 1; } for(i=0;i<=n-1;i++) { printf("x[%d]:",i); scanf("%f",&x[i]); } printf("\n"); for(i=0;i<=n-1;i++) { printf("y[%d]:",i);scanf("%f",&y[i]); } printf("\n"); printf("Input xx:"); scanf("%f",&xx); yy=lagrange(x,y,xx,n); printf("x=%f,y=%f\n",xx,yy); getch(); } 举例如下:已知当x=1,-1,2时f(x)=0,-3,4,求f(1.5)的值。

KL变换应用于人脸识别

基于K-L 变换的人脸识别 一、基本要求 从网上下载人脸图像,构建人脸训练数据库和测试数据库,采用K-L 变换进行特征脸提取,并实现人脸识别。通过K-L 变换在人脸识别中的应用,加深对所学内容的理解和感性认识。 1、或者从网上下载其它数据库,编程实现K-L 变换。 2、课堂报告、并提交实验报告及相应程序。 二、实验原理 1、K-L 变换:就是以样本特征向量在特征空间分布为原始数据,通过变换,找 到维数较少的组合特征,达到降维的目的。 K-L 变换是一种正交变换,即将一个向量X ,在某一种坐标系统中的描述,转换成用另一种基向量组成的坐标系表示。这组基向量是正交的,其中每个坐标 基向量用j u 表示,∞=,2,1 , j ,因此,一个向量X 可表示成 ∑∞ == 1 j j j u c X 如果我们将由上式表示的无限多维基向量坐标系统改成有限维坐 标系近似,即 ∑=∧ =d j j j u c X 1 表示X 的近似值或估计量,我们希望在同样维数条件下,使向量X 的估计量误差最小。确切地说是使所引起的均方误差: )]?()?[(X X X X E T --=ξ 为最小。K-L 变换可以实现这个目的。 因为 ?? ?≠==i j i j u u i T j 0 1

将 ∑∞ +=∧ = -1 d j j j u c X X 带入到)]?()?[(X X X X E T --=ξ中可得到 ][ 1 2 ∑∞ ==j j c E ξ 容易看到 X u c T j j = 因此 ][ 1 ∑∞ +=d j T T j u XX u E ξ 由于j u 是确定性向量,因此上式可改写为 [] ∑∞ +== 1 d j j T T j u XX E u ξ 令 [] T XX E =ψ 则 ∑∞ +== 1 d j j T j u u ψξ 用拉格朗日乘子法,可以求出在满足正交条件下,ξ取极值的坐标系统,即用函数 ∑∑∞ +=∞ +=-- =1 1 ]1[d j j T j j d j j T j j u u u u u g λψ) ( 对j u ,∞+=,,1 d j 求导数,因此有 ∞+==,,1,0- d j u I j j )(λψ 我们令0=d ,从而可得到以下的结论: 以矩阵ψ的本征向量座位坐标轴来展开X 时,其截断均方误差具有极值性质,且当取d 个d j u j ,,2,1 =,来逼近X 时,其均方误差 ∑∞ +== 1 d j j λ ξ 式中j λ是矩阵ψ的相应本征值。 可以证明,当取d 个与矩阵ψ的d 个最大本征值对应的本征向量来展开X

数值分析实验报告1

实验一 误差分析 实验(病态问题) 实验目的:算法有“优”与“劣”之分,问题也有“好”与“坏”之别。对数值方法的研究而言,所谓坏问题就是问题本身对扰动敏感者,反之属于好问题。通过本实验可获得一个初步体会。 数值分析的大部分研究课题中,如线性代数方程组、矩阵特征值问题、非线性方程及方程组等都存在病态的问题。病态问题要通过研究和构造特殊的算法来解决,当然一般要付出一些代价(如耗用更多的机器时间、占用更多的存储空间等)。 问题提出:考虑一个高次的代数多项式 )1.1() ()20()2)(1()(20 1∏=-=---=k k x x x x x p 显然该多项式的全部根为1,2,…,20共计20个,且每个根都是单重的。现考虑该多项式的一个扰动 )2.1(0 )(19=+x x p ε 其中ε是一个非常小的数。这相当于是对()中19x 的系数作一个小的扰动。我们希望比较()和()根的差别,从而分析方程()的解对扰动的敏感性。 实验内容:为了实现方便,我们先介绍两个Matlab 函数:“roots ”和“poly ”。 roots(a)u = 其中若变量a 存储n+1维的向量,则该函数的输出u 为一个n 维的向量。设a 的元素依次为121,,,+n a a a ,则输出u 的各分量是多项式方程 01121=+++++-n n n n a x a x a x a 的全部根;而函数 poly(v)b =

的输出b 是一个n+1维变量,它是以n 维变量v 的各分量为根的多项式的系数。可见“roots ”和“poly ”是两个互逆的运算函数。 ;000000001.0=ess );21,1(zeros ve = ;)2(ess ve = ))20:1((ve poly roots + 上述简单的Matlab 程序便得到()的全部根,程序中的“ess ”即是()中的ε。 实验要求: (1)选择充分小的ess ,反复进行上述实验,记录结果的变化并分析它们。 如果扰动项的系数ε很小,我们自然感觉()和()的解应当相差很小。计算中你有什么出乎意料的发现表明有些解关于如此的扰动敏感性如何 (2)将方程()中的扰动项改成18x ε或其它形式,实验中又有怎样的现象 出现 (3)(选作部分)请从理论上分析产生这一问题的根源。注意我们可以将 方程()写成展开的形式, ) 3.1(0 ),(1920=+-= x x x p αα 同时将方程的解x 看成是系数α的函数,考察方程的某个解关于α的扰动是否敏感,与研究它关于α的导数的大小有何关系为什么你发现了什么现象,哪些根关于α的变化更敏感 思考题一:(上述实验的改进) 在上述实验中我们会发现用roots 函数求解多项式方程的精度不高,为此你可以考虑用符号函数solve 来提高解的精确度,这需要用到将多项式转换为符号多项式的函数poly2sym,函数的具体使用方法可参考Matlab 的帮助。

《模式识别》实验报告

《模式识别》实验报告 一、数据生成与绘图实验 1.高斯发生器。用均值为m,协方差矩阵为S 的高斯分布生成N个l 维向量。 设置均值 T m=-1,0 ?? ??,协方差为[1,1/2;1/2,1]; 代码: m=[-1;0]; S=[1,1/2;1/2,1]; mvnrnd(m,S,8) 结果显示: ans = -0.4623 3.3678 0.8339 3.3153 -3.2588 -2.2985 -0.1378 3.0594 -0.6812 0.7876 -2.3077 -0.7085 -1.4336 0.4022 -0.6574 -0.0062 2.高斯函数计算。编写一个计算已知向量x的高斯分布(m, s)值的Matlab函数。 均值与协方差与第一题相同,因此代码如下: x=[1;1]; z=1/((2*pi)^0.5*det(S)^0.5)*exp(-0.5*(x-m)'*inv(S)*(x-m)) 显示结果: z = 0.0623 3.由高斯分布类生成数据集。编写一个Matlab 函数,生成N 个l维向量数据集,它们是基于c个本体的高斯分布(mi , si ),对应先验概率Pi ,i= 1,……,c。 M文件如下: function [X,Y] = generate_gauss_classes(m,S,P,N) [r,c]=size(m); X=[]; Y=[]; for j=1:c t=mvnrnd(m(:,j),S(:,:,j),fix(P(j)*N)); X=[X t]; Y=[Y ones(1,fix(P(j)*N))*j]; end end

调用指令如下: m1=[1;1]; m2=[12;8]; m3=[16;1]; S1=[4,0;0,4]; S2=[4,0;0,4]; S3=[4,0;0,4]; m=[m1,m2,m3]; S(:,:,1)=S1; S(:,:,2)=S2; S(:,:,3)=S3; P=[1/3,1/3,1/3]; N=10; [X,Y] = generate_gauss_classes(m,S,P,N) 二、贝叶斯决策上机实验 1.(a)由均值向量m1=[1;1],m2=[7;7],m3=[15;1],方差矩阵S 的正态分布形成三个等(先验)概率的类,再基于这三个类,生成并绘制一个N=1000 的二维向量的数据集。 (b)当类的先验概率定义为向量P =[0.6,0.3,0.1],重复(a)。 (c)仔细分析每个类向量形成的聚类的形状、向量数量的特点及分布参数的影响。 M文件代码如下: function plotData(P) m1=[1;1]; S1=[12,0;0,1]; m2=[7;7]; S2=[8,3;3,2]; m3=[15;1]; S3=[2,0;0,2]; N=1000; r1=mvnrnd(m1,S1,fix(P(1)*N)); r2=mvnrnd(m2,S2,fix(P(2)*N)); r3=mvnrnd(m3,S3,fix(P(3)*N)); figure(1); plot(r1(:,1),r1(:,2),'r.'); hold on; plot(r2(:,1),r2(:,2),'g.'); hold on; plot(r3(:,1),r3(:,2),'b.'); end (a)调用指令: P=[1/3,1/3,1/3];

数值分析实验报告模板

数值分析实验报告模板 篇一:数值分析实验报告(一)(完整) 数值分析实验报告 1 2 3 4 5 篇二:数值分析实验报告 实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。利用二分法求解给定非线性方程的根,在给定的范围内,假设f(x,y)在[a,b]上连续,f(a)xf(b) 直接影响迭代的次数甚至迭代的收敛与发散。即若x0 偏离所求根较远,Newton法可能发散的结论。并且本实验中还利用利用改进的Newton法求解同样的方程,且将结果与Newton法的结果比较分析。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。掌握二分法的原理,验证二分法,在选对有根区间的前提下,必是收

敛,但精度不够。熟悉Matlab语言编程,学习编程要点。体会Newton使用时的优点,和局部收敛性,而在初值选取不当时,会发散。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b) Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式xk?1?xk?f(xk) f'(xk) 产生逼近解x*的迭代数列{xk},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 xk?1?xk?rf(xk) 'f(xk) 其中r为要求的方程的根的重数,这就是改进的Newton 法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x);

人脸识别实验报告

人脸识别——特征脸方法 贾东亚 一、 实验目的 1、学会使用PCA 主成分分析法。 2、初步了解人脸识别的特征法。 3、更熟练地掌握matlab 的使用。 二、 原理介绍 1、 PCA (主成分分析法介绍) 引用一个网上的例子。假设有一份对遥控直升机操作员的调查,用x 1(i ) 表示飞行员i 的 飞行技能,x 2(i )表示飞行员i 喜欢飞行的程度。通常遥控直升飞机是很难操作的,只有那些非常坚持而且真正喜欢驾驶的人才能熟练操作。所以这两个属性x 1(i )和x 2(i )相关性是非常强的。我们可以假设两者的关系是按正比关系变化的。如下图里的任意找的向量u1所示,数据散布在u1两侧,有少许噪声。 现在我们有两项数据,是二维的。那么如何将这两项变量转变为一个来描述飞行员呢由图中的点的分布可知,如果我们找到一个方向的U ,所有的数据点在U 的方向上的投影之和最大,那么该U 就能表示数据的大致走向。而在垂直于U 的方向,各个数据点在该方向的投影相对于在U 上的投影如果足够小,那么我们可以忽略掉各数据在该方向的投影,这样我们就把二维的数据转化成了在U 方向上的一维数据。

为了将u选出来,我们先对数据进行预处理。先求出所有数据的平均值,然后用数据与平均值的偏差代替数据本身。然后对数据归一化以后,再代替数据本身。 而我们求最大的投影和,其实就是求各个数据点在U上的投影距离的方差最大。而X T u 就是投影的距离。故我们要求下式的最大值: 1 m ∑(x(i)T u)2=u T( 1 m ∑x(i)x(i)T m i=1 ) m i=1 u 按照u是单位向量来最大化上式,就是求1 m ∑x(i)x(i)T m i=1 的特征向量。而此式是数据集 的协方差矩阵。 在实际应用中,我们不止面临二维的数据。因此不能使用几何的形式呈现,但原理也是一样。就是找到一组相互正交的单位向量u k,然后根据贡献率考虑选择其中的部分作为考量的维数,这也就实现了数据的降维。 三、实验步骤 1、将库里的400张照片分成两组。一组作为训练,一组作为库。每个人的前五张照片作为 训练,后五张作为库。训练的照片按照顺序的数字重命名。库的照片名字不变。 2、库照片处理。 ①将每一张库的照片转化成N维的向量。(库里的照片是112*92,故将转化成的矩阵按列或行展开,就是个10304维的向量)我们稍后要对如此多维的向量用PCA进行降维。然后把这些向量存入一个矩阵里。而我是将这200个向量以列的形式存在了矩阵里。 即 Z={Γ1,Γ2,Γ3,Γ4 (200)

模式识别实验报告(一二)

信息与通信工程学院 模式识别实验报告 班级: 姓名: 学号: 日期:2011年12月

实验一、Bayes 分类器设计 一、实验目的: 1.对模式识别有一个初步的理解 2.能够根据自己的设计对贝叶斯决策理论算法有一个深刻地认识 3.理解二类分类器的设计原理 二、实验条件: matlab 软件 三、实验原理: 最小风险贝叶斯决策可按下列步骤进行: 1)在已知 ) (i P ω, ) (i X P ω,i=1,…,c 及给出待识别的X 的情况下,根据贝叶斯公式计 算出后验概率: ∑== c j i i i i i P X P P X P X P 1 ) ()() ()()(ωωωωω j=1,…,x 2)利用计算出的后验概率及决策表,按下面的公式计算出采取i a ,i=1,…,a 的条件风险 ∑== c j j j i i X P a X a R 1 )(),()(ωω λ,i=1,2,…,a 3)对(2)中得到的a 个条件风险值) (X a R i ,i=1,…,a 进行比较,找出使其条件风险最小的 决策k a ,即()() 1,min k i i a R a x R a x == 则 k a 就是最小风险贝叶斯决策。 四、实验内容 假定某个局部区域细胞识别中正常(1ω)和非正常(2ω)两类先验概率分别为 正常状态:P (1ω)=; 异常状态:P (2ω)=。 现有一系列待观察的细胞,其观察值为x : 已知先验概率是的曲线如下图:

)|(1ωx p )|(2ωx p 类条件概率分布正态分布分别为(-2,)(2,4)试对观察的结果 进行分类。 五、实验步骤: 1.用matlab 完成分类器的设计,说明文字程序相应语句,子程序有调用过程。 2.根据例子画出后验概率的分布曲线以及分类的结果示意图。 3.最小风险贝叶斯决策,决策表如下: 结果,并比较两个结果。 六、实验代码 1.最小错误率贝叶斯决策 x=[ ] pw1=; pw2=; e1=-2; a1=; e2=2;a2=2; m=numel(x); %得到待测细胞个数 pw1_x=zeros(1,m); %存放对w1的后验概率矩阵 pw2_x=zeros(1,m); %存放对w2的后验概率矩阵

(完整版)哈工大-数值分析上机实验报告

实验报告一 题目:非线性方程求解 摘要:非线性方程的解析解通常很难给出,因此线性方程的数值解法就尤为重要。本实验采用两种常见的求解方法二分法和Newton法及改进的Newton法。 前言:(目的和意义) 掌握二分法与Newton法的基本原理和应用。 数学原理: 对于一个非线性方程的数值解法很多。在此介绍两种最常见的方法:二分法和Newton法。 对于二分法,其数学实质就是说对于给定的待求解的方程f(x),其在[a,b]上连续,f(a)f(b)<0,且f(x)在[a,b]内仅有一个实根x*,取区间中点c,若,则c恰为其根,否则根据f(a)f(c)<0是否成立判断根在区间[a,c]和[c,b]中的哪一个,从而得出新区间,仍称为[a,b]。重复运行计算,直至满足精度为止。这就是二分法的计算思想。

Newton法通常预先要给出一个猜测初值x0,然后根据其迭代公式 产生逼近解x*的迭代数列{x k},这就是Newton法的思想。当x0接近x*时收敛很快,但是当x0选择不好时,可能会发散,因此初值的选取很重要。另外,若将该迭代公式改进为 其中r为要求的方程的根的重数,这就是改进的Newton法,当求解已知重数的方程的根时,在同种条件下其收敛速度要比Newton法快的多。 程序设计: 本实验采用Matlab的M文件编写。其中待求解的方程写成function的方式,如下 function y=f(x); y=-x*x-sin(x); 写成如上形式即可,下面给出主程序。 二分法源程序: clear %%%给定求解区间 b=1.5; a=0;

%%%误差 R=1; k=0;%迭代次数初值 while (R>5e-6) ; c=(a+b)/2; if f12(a)*f12(c)>0; a=c; else b=c; end R=b-a;%求出误差 k=k+1; end x=c%给出解 Newton法及改进的Newton法源程序:clear %%%% 输入函数 f=input('请输入需要求解函数>>','s') %%%求解f(x)的导数 df=diff(f);

面部表情识别实验报告分析

面部表情识别实验 实验报告 小组成员: 面部表情识别实验 西南大学重庆 400715

摘要:情绪认知是一种复杂的过程,它包含观察、分析、判断、推理等,是借助于许多线索,特别是借助面部那些活动性更大的肌肉群的运动而实现的。所以,情绪认知的准确度受多种因素的影响。 当我们与他人相互交往的时候,不管是不是面对面。我们都正在不断的表达着情绪,同时又正在观察,解释着的对方做出的表情,在人际交往过程中,情绪的表达和认知是十分的迅速和及时,那么人是借助于哪些表情来认知他人的情绪的呢?情绪识别实际上并不是针对表情本身的,而是针对这它背后的意义。例如:皱眉可能是一种情绪的表现,我们见到这种面部表情就试图解释潜在于它背后的情绪。尖锐,短促,声音嘶哑可能是一种情绪表现,我们听到这种语言表情就试图解释潜在于它背后的情绪捶胸,顿足可能是一种情绪的表现,我们见到这种动作表情就是试图解释潜在于它背后的情绪。对于这个复杂的问题,心理学家曾经做过许多的研究。 面部表情认知的研究可分为两个步骤:第一步是面部表情刺激物的制作或选择,这可以用专门拍摄(录像)或图示来描画,也可以用完全装扮出的活生生的表情或自发的表情等。第二步时对表情进行识别评定。也可以用多种方法,如自由评定法,即让被试自由地对表情给出情绪词汇;或限制评定法,即向被试提供各种提供各种情绪词汇或情绪情境,要求被试只能根据所提供的情绪词汇或者情绪情境进行分类或者匹配等;或参照自由评定法,即向被试提供参考线索(如情境,人格特征等),让其说出所表达的情绪的词汇等。 关键词:情绪表情认知线索

1 前言 传统心理学把情绪列为心理现象的三大方面之一。情绪也是心理学理论体系中一个不可缺少的研究环节。情绪(emotion)是体验,又是反应;是冲动,又是行为;它是有机体的一种复合状态。情绪的表现有和缓的和激动的,细微的和强烈的,轻松的和紧张的等诸多形式,广泛地同其他心理过程相联系。自古以来,科学家们十分注意探讨情绪之奥妙,但与情绪的重要性不相适应的是,长期以来情绪研究一直是心理学尤其是实验心理学研究中的一个薄弱环节。造成这一现象的最主要原因是情绪所特有的复杂性以及由此衍生出来的情绪研究方法学上的困难。我国心理学家孟昭兰(1987)将理论认为面部表情是传递具体信息的外显行为面部表情是提供人们在感情上互相了解的鲜明标记。情绪过程既包括情绪体验,也包括情绪表现,而表情既是情绪的外部表现,也是情绪体验的发生机制;既是最敏锐的情绪发生器,也是最有效的情绪显示器。这就从机制上说明了以面部肌肉运动模式作为情绪标志的根据。 面部表情(facial expression_r)的发生是有其客观的物质基础的:表情按面部不同部位的肌肉运动而模式化,面部反应模式携带着心理学的意义,那就是或快乐、或悲伤等具体情绪。但是,对表情进行测量的原则在于:所要测量的是面孔各部位的肌肉运动本身,而不是面部所给予观察者的情绪信息。该实验将14名被试分为两组进行表情认知的实验,实验目的在于通过实验了解面部表情认知的基本

数值分析实验报告总结

数值分析实验报告总结 随着电子计算机的普及与发展,科学计算已成为现代科 学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。 算法算法是指由基本算术运算及运算顺序的规定构成的完 整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。 误差 计算机的计算结果通常是近似的,因此算法必有误差, 并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表 第三章泛函分析泛函分析概要 泛函分析是研究“函数的函数”、函数空间和它们之间 变换的一门较新的数学分支,隶属分析数学。它以各种学科

如果 a 是相容范数,且任何满足 为具体背景,在集合的基础上,把客观世界中的研究对象抽 范数 范数,是具有“长度”概念的函数。在线性代数、泛函 分析及相关的数学领域,泛函是一个函数,其为矢量空间内 的所有矢量赋予非零的正长度或大小。这里以 Cn 空间为例, Rn 空间类似。最常用的范数就是 P-范数。那么 当P 取1, 2 ,s 的时候分别是以下几种最简单的情形: 其中2-范数就是通常意义下的距离。 对于这些范数有以下不等式: 1 < n1/2 另外,若p 和q 是赫德尔共轭指标,即 1/p+1/q=1 么有赫德尔不等式: II = ||xH*y| 当p=q=2时就是柯西-许瓦兹不等式 般来讲矩阵范数除了正定性,齐次性和三角不等式之 矩阵范数通常也称为相容范数。 象为元素和空间。女口:距离空间,赋范线性空间, 内积空间。 1-范数: 1= x1 + x2 +?+ xn 2-范数: x 2=1/2 8 -范数: 8 =max oo ,那 外,还规定其必须满足相容性: 所以

相关文档