文档库 最新最全的文档下载
当前位置:文档库 › 方波-三角波函数发生器的仿真设计与电路实现

方波-三角波函数发生器的仿真设计与电路实现

方波-三角波函数发生器的仿真设计与电路实现
方波-三角波函数发生器的仿真设计与电路实现

 万方数据

 万方数据

方波-三角波函数发生器的仿真设计与电路实现

作者:开萍, Kai Ping

作者单位:中山市中等专业学校,广东中山,528400

刊名:

中国教育技术装备

英文刊名:CHINA EDUCATIONAL TECHNIQUE & EQUIPMENT

年,卷(期):2009(21)

本文链接:https://www.wendangku.net/doc/d71685768.html,/Periodical_zgjyjszb200921058.aspx

方波三角波转换

一方波、三角波发生器 设计目的 1.学习由运算放大器组成的方波——三角波发生器电路,提高对运算放大器非线性应用的认识。 2.掌握方波——三角波发生电路的分析、设计和调试方法。 3.熟悉常用仪表,了解电路调试的基本方法 4.培养综合应用所学知识来指导实践的能力法 二、 设计要求 1.复习教材中波形发生电路的原理。 2.根据所给的性能指标,设计一个方波、三角波发生器,计算电路中的元件参数, 3.设计一个能产生方波、三角波信号发生器, 4.能同时输出一定频率一定幅度的2种波形:方波、和三角波; 5.可以用±12V 或±15V 直流稳压电源供电 6.画出标有元件值的电路图,制定出实验方案,选择实验仪器设备。 7实现方波和三角波输出电压:方波输出幅值110o p p U V -≤, 28o p p U V -≤。能够输出确定频率的三角波 三、 原理图 四、 设计说明书

1、设计题目 方波、三角波发生器 2设计目的 1.学习由运算放大器组成的方波——三角波发生器电路,提高对运算放大器非线性应用的认识。 2.掌握方波——三角波发生电路的分析、设计和调试方法。 3.熟悉常用仪表,了解电路调试的基本方法 4.培养综合应用所学知识来指导实践的能力法 3、设计要求 1.复习教材中波形发生电路的原理。 2.根据所给的性能指标,设计一个方波、三角波发生器,计算电路中的元件参数, 3.设计一个能产生方波、三角波信号发生器, 4.能同时输出一定频率一定幅度的2种波形:方波、和三角波; 5.可以用±12V或±15V直流稳压电源供电 6.画出标有元件值的电路图,制定出实验方案,选择实验仪器设备。 4、设计过程 实验器材 1)uA741 2片

三角波、方波、正弦波发生电路

波形发生电路 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器。 指标:输出频率分别为:102H Z、103H Z和104Hz;方波的输出电压峰峰值V PP≥20V (1)方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器 从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。 方案二: 1、由滞回比较器和积分器构成方波三角波产生电路。 2、然后通过低通滤波把三角波转换成正弦波信号。 方案三: 1、由比较器和积分器构成方波三角波产生电路。 2、用折线法把三角波转换成正弦波。 (2)方案的比较与确定

方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。即f=f0时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。 通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化围很小的情况下使用。然而,指标要求输出频率分别为102H Z、103H Z和104Hz 。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。 比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大;即零附近的差别最小,峰值附近差别最大。 因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比 例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率 围的限制。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 (3)工作原理:

方波三角波产生电路方案

方波-三角波产生电路的设计 1 技术指标 设计一个方波- 三角波产生电路,要求方波和三角波的重复频率为500Hz,方波脉冲幅度为6- 6.5V,三角波为1.5-2V,振幅基本稳定,振荡波形对称,无明显非线性失真。 2 设计方案及其比较 产生方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以直接产生三角波—方波。由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波。 2.1 方案一 非正弦波发生器的组成原理是电路中必须有开关特性的器件,可以是电压比较器,、集成模拟开关、TTL与非门等;具有反馈网络,它的作用是通过输出信号的反馈,改变开关器件的状态;具有延迟环节,常用RC电路充放电来实现;具有其他辅助部分,,如积分电路等。 矩形经过积分器就变成三角波形,即三角波形发生器是由方波发生器和反向积分器所组成的。但此时要求前后电路的时间常数配合好,不能让积分器饱和。 如图1所示为该电路设计图。 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。如图所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生 器。构成迟滞比较器,用于输出方波;构成积分电路,用于把方波转变为三角波,即输出三角波。

图1 方案一电路设计图 U1构成迟滞比较器,同相端电位由和决定。利用叠加定理可得: 当时,U1输出为正,即 当时,U1输出为负,即 构成反相积分器,为负时,正向变化。为正时,负向变化。 当时,可得: 当上升使略高于0v时,U1的输出翻转到 同样,时,当下降使略低于0时,。 这样不断重复就可以得到方波和三角波,输出方波的幅值由稳压管决定,被限制在之间。 积分电路的输入电压是滞回比较器的输出电压,而且不是,就是,所以输出电压的表达式为:

三角波、方波、正弦波发生电路之令狐文艳创作

波形发生电路 令狐文艳 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器。 指标:输出频率分别为:102H Z、103H Z和104Hz;方波的输出电压峰峰值V PP≥20V (1)方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器 从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。方案二: 1、由滞回比较器和积分器构成方波三角波产生电 路。 2、然后通过低通滤波把三角波转换成正弦波信号。方案三: 1、由比较器和积分器构成方波三角波产生电路。 2、用折线法把三角波转换成正弦波。 (2)方案的比较与确定 方案一:

文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。即f=f0时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。 通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用。然而,指标要求输出频率分别为102H Z、103H Z和104Hz。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。 比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大; 即零附近的差别最小,峰值附近差别最大。因此,根 据正弦波与三角波的差别,将三角波分成若干段, 按不同的比例衰减,就可以得到近似与正弦波的折 线化波形。而且折线法不受频率范围的限制。

正弦波-方波-三角波发生电路

一设计实验目的 (1)掌握电子系统的一般设计方法 (2)掌握模拟IC器件的应用 (3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计 (4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则 (5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决 调试中所发生的问题 (6)学会撰写课程设计报告 (7)培养实事求是,严谨的工作态度和严肃的工作作风 (8)培养综合应用所学知识来指导实践的能力 (9)完成一个实际的电子产品;进一步提高分析问题、解决问题的能力 设计一个正弦波-方波-三角波发生电路 (1)正弦波-方波-三角波的频率在100HZ~20KHZ范围内连续可调; (2)正弦波-方波的输出信号幅值为6V。三角波输出信号幅值为0~2V连续可调 (3)正弦波失真度≦5%。 二实验中的仪器设备 三实验所用电路 调节方波脉冲宽度 调节正弦波失真程度 调节方波电压大小

调节反馈电路的放大倍数 四实验结果 1.正弦波-方波-三角波的频率在~范围内连续可调;对应的时,对应的电容大小为1uf;对应的时,对应的电容大小为 2.方波的输出幅值为6V;正弦波的一级输出幅值为,二级输出幅值为;三角波峰值在0~4V内连续可调 3.正弦波失真度 一讨论 1.实验中发生的问题 (1) 我们由一级电路得到的方波峰峰值达到24V左右,后通过分压电路得到 所需要的方波电压峰值为6V

(2) 正弦波也可以通过负反馈电路适当放大

2.建议或其它 555电路产生方波,通过RC电路得到三角波,也可以通过积分器得到三角波,三角波到正弦波的转化,可以通过RC电路,或者通过低通滤波器,另外频率的调节可以通过可调电容! 器件清单表: 数量 LM358芯片 1 电阻 R8=R9 22kΩ 2 R1 1kΩ 1 R2 62kΩ 1 R3 100Ω 1 R4=R5=R6=10k 3 可调电阻 A 20k 1 R10 100k 1 电容 C3=470nF 1 C4=C5=10nF 2 可调电容 A=B=20nF 2 直流电源 Vcc=6v 1 555电路板 1

方波-三角波产生电路的设计.

方波-三角波产生电路的设计 1 技术指标 设计一个方波-三角波产生电路,要求方波和三角波的重复频率为500Hz ,方波脉冲幅度为6-6.5V ,三角波为1.5-2V ,振幅基本稳定,振荡波形对称,无明显非线性失真。 2 设计方案及其比较 产生方波、三角波的方案有多种,如首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;也可以直接产生三角波—方波。由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波。 2.1 方案一 非正弦波发生器的组成原理是电路中必须有开关特性的器件,可以是电压比较器,、集成模拟开关、TTL 与非门等;具有反馈网络,它的作用是通过输出信号的反馈,改变开关器件的状态;具有延迟环节,常用RC 电路充放电来实现;具有其他辅助部分,,如积分电路等。 矩形经过积分器就变成三角波形,即三角波形发生器是由方波发生器和反向积分器所组成的。但此时要求前后电路的时间常数配合好,不能让积分器饱和。 如图1所示为该电路设计图。 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC 积分器两大部分。如图所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。1U 构成迟滞比较器,用于输出方波;2U 构成积分电路,用于把方波转变为三角波,即输出三角波。

图1 方案一电路设计图 U1构成迟滞比较器,同相端电位p V 由1O V 和2O V 决定。利用叠加定理可得: 21211211211) ()(O V V O V P V R R R R R V R R R R V ?++++?++= 当0>P V 时,U1输出为正,即Z O V V +=1 当0

三角波信号发生电路设计

课程设计报告 课程名称:模拟电子技术基础 设计题目:三角波信号发生电路设计 姓名: 学号: 系别: 专业班级: 开始日期: 完成日期 指导教师: 成绩评定等级(分数)

课程设计任务书 班级:姓名:学号:

目录 一、设计意义 (1) 1.1信号发生器的概述 (1) 1.2预计完成步骤 (1) 1.3制定的措施 (1) 二、设计方案比较 (1) 2.1三角波发生电路设计方案一 (1) 2.2三角波发生电路设计方案二 (3) 三、电路组成框图 (5) 四、电路原理图 (5) 五、组装及仿真指标测试 (7) 六、总结 (8) 七、参考文献 (9)

一、设计意义 1.1信号发生器的概述 信号发生器在电子技术应用领域里的用途非常广泛,在数字系统和自动控制系统也常常需要方波,三角波,的非正弦波信号发生器。目前我们实验室用的较多的波形发生器主要有两种:低频正弦波发生器和通用多波形发生器,前者只能产生正弦波,调节范围不大,但是信号稳定,失真度底,主要用在对波形有很高的要求的实验中;后者能产生正弦波、方波和三角波,也有的能产生三种以上波形。 本次课程设计是做一个能够产生三角波电路的设计。 由理论分析知,电压比较器可以产生方波,积分电路可以产生三角波。 1.2预计完成步骤 任务一 总体设计 任务二 方波-三角波产生电路设计 任务三 方波-三角波产生电路的安装 任务四 方波-三角波产生电路的仿真和调试 1.3制定的措施 使用National Instruments Multisim 编辑电路原理图。并且进行理论仿真。 在几个方案中选择具有可行性以及稳定性强的的电路原理图。 对选定的原理图进行安装调试。 二、设计方案比较 2.1三角波发生电路设计方案一 图1 三角波发生电路(一) 三角波电路波形可以通过积分电路实现,把方波电压作为积分运算电路的输入,在积分运算电路的输出就得到了三角波。 如图1所示电路输入方波电压,可见,输出为三角波。图中滞回比较器的输出电压 Z U U ±=01 ,他的输入电压时积分电路的输出电压0U ,根据叠加原理,集成运放1A 同相输 入端电位

方波、三角波、正弦波信号产生

课程设计报告 题 目 方波、三角波、正弦波信号 发生器设计 课 程 名 称 模拟电子技术课程设计 院 部 名 称 机电工程学院 专 业 电气工程及其自动化 班 级 电气及其自动化(2)班 学 生 姓 名 李丽 学 号 1104102067 课程设计地点 C206 课程设计学时 1周 指 导 教 师 赵国树 金陵科技学院教务处制

目录 1、绪论 (4) 1.1相关背景知识 (4) 1.2课程设计条件................................................... . (4) 1.3课程设计目的.......... (4) 1.4课程设计的任务 (4) 1.5课程设计的技术指标 (5) 2、信号发生器的基本原理 (5) 2.1原理框图 (4) 2.2总体设计思路 (5) 3、各组成部分的工作原理 (5) 3.1 正弦波产生电路 (5) 3.1.1正弦波产生电路 (5) 3.1.2正弦波产生电路的工作原理 (6) 3.2 正弦波到方波转换电路 (8) 3.2.1正弦波到方波转换电路图 (6) 3.2.2正弦波到方波转换电路的工作原理 (8) 3.3 方波到三角波转换电路 (11) 3.3.1方波到三角波转换电路图 (11) 3.3.2方波到三角波转换电路的工作原理 (13) 4、电路仿真结果 (13) 4.1正弦波产生电路的仿真结果 (14) 4.2 正弦波到方波转换电路的仿真结果 (14) 4.3方波到三角波转换电路的仿真结果 (15) 5、设计结果分析与总结 (16)

1、绪论 1.1相关背景知识 信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。函数信号发生器在电路实验和设备检测中具有十分广泛的用途,可以用于生产测试、仪器维修和实验室,还广泛使用在其它科技领域,如医学、教育、化学、通讯、地球物理学、工业控制、军事和宇航等。它是一种不可缺少的通用信号源。 1.2课程设计条件 以本学期学习的电子技术基础(模拟部分)为知识背景,我们知道通过放大器、比较器等元器件可构成集成电路、反馈放大电路、运算放大电路等一系列组合放大电路。信号在我们的生活中是无处不在的,模拟信号是时间和幅度连续变化的信号。通过传感器我们可以将各种物理信号转换为电信号,再进过一系列信号的处理。如滤波、幅度放大等,我们可以获得自己需要的信号。 正弦波振荡电路。在通信、广播、医疗、电视系统中,都有广泛的应用。非正弦波产生电路。在一些电子系统中,如数学领域,方波、三角波的应用都是极其广泛的。 1.3课程设计目的 通过本次课程设计所要达到的目的是:提高学生在模拟集成电路应用方面的技能,树立严谨的科学作风,培养学生综合运用理论知识解决实际问题的能力。学生通过电路设计初步掌握工程设计方法,逐步熟悉开展科学实践的程序和方法,为后续课程的学习和今后从事的实际工作打下必要的基础。 1.4课程设计的任务 ①设计一个方波、三角波、正弦波函数发生器; ②能同时输出一定频率一定幅度的三种波形:正弦波、方波、三角波; ③用±5V电源供电。 产生正弦波、方波、三角波的方案有多种,如: ①首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波;②也可以首先产生三角波—方波,再将三角波变成正弦波或将方波变成正弦波;③也可以通过单片集成函数发生器8038来实现… 先是对电路的分析,参数的确定选择出一种最适合本课题的方案。在达到课题要求的前提下保证最经济。最方便。最优化的死亡合剂策略。然后运用仿真软件Multisim对电路进行仿真。观察效果并与要求的性能指标作对比。

方波_三角波发生电路实验报告

河西学院物理与机电工程 学院 综合设计实验 方波-三角波产生电路 实验报告 学院:物理与机电工程学院 专业:电子信息科学与技术

:侯涛 日期:2016年4月26日 方波-三角波发生电路 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波的波形发生器。 指标:输出频率分别为:102HZ、103HZ和104Hz;方波的输出电压峰峰值VPP≥20V 一、方案的提出 方案一: 1、由文氏桥振荡产生一个正弦波信号。 2、把文氏桥产生的正弦波通过一个过零比较器从而把正弦波转换成方波。 3、把方波信号通过一个积分器。转换成三角波。 方案二: 1、由滞回比较器和积分器构成方波三角波产生电路。 2、然后通过低通滤波把三角波转换成正弦波信号。 方案三: 1、由比较器和积分器构成方波三角波产生电路。

2、用折线法把三角波转换成正弦波。 二、方案的比较与确定 方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、C1=C2。即f=f0时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的方波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化围很小的情况下使用。然而,指标要求输出频率分别为102HZ、103HZ和104Hz 。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波、三角波发生器原理如同方案二。比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大即零附近的差别最小,峰值附近差别最大。因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率围的限制。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 三、工作原理: 1、方波、三角波发生电路原理

用集成运放组成的正弦波、方波、三角波产生电路

物理与电子工程学院《模拟电路》课程设计 题目:用集成运放组成的正弦波、方波、三 角波产生电路 专业电子信息工程专业 班级 14级电信1班 学号 1430140227 学生姓名邓清凤 指导教师黄川

完成日期: 2015 年 12 月 目录 1 设计任务与要求 (3) 2 设计方案 (3) 3设计原理分析 (5) 4实验设备与器件 (8) 4.1元器件的引脚及其个数 (8) 4.2其它器件与设备 (8) 5实验内容 (9) 5.1 RC正弦波振荡器 (9) 5.2方波发生器 (11) 5.3三角波发生器 (13) 6 总结思考 (14) 7 参考文献 (15)

用集成运放组成的正弦波、方波、三角波产生电路 姓名:邓清凤 电子信息工程专业 [摘要]本设计是用12V直流电源提供一个输入信号,函数信号发生器一般是指自动产生正弦波、方波、三角波的电压波形的电路或仪器。电路形式可采用由运放及分立元件构成:也可以采用单片机集成函数发生器。根据用途不同,有产生三种或多种波形的函数发生器,本课题采用UA741芯片搭建电路来实现方波、三角波、正弦波的电路。 [关键词]直流稳压电源12V UA741集成芯片波形函数信号发生器 1 设计任务与要求 (1)并且在proteus中仿真出来在同一个示波器中展示正弦波、方波、三角波。 (2)在面包板上搭建电路,并完成电路的测试。 (3)撰写课程设计报告。 (4)答辩、并提交课程设计报告书 2 设计方案 方案一:采用UA741芯片用集成运放组成的正弦波、方波、三角波产生电路优点:分立元件结构简单,可用常用分立元器件,容易实现,技术成熟,完全能够达到技术参数的要求,造价成本低。 缺点:设计、调试难度太大,周期太长,精确度不是太高。

三角波发生电路设计

三角波发生器设计 制作人:朱立超 西安建筑科技大学

一、工作原理: 1. 基本原理图: 2.工作原理: 1)如图1,三角波发生器电路,有两部分组成。其中集成运放A1组成滞回比较器,A2组成积分电路。滞回比较器可以产生稳定的方波信号,再通过积分电路积分产生所需要的三角波。 由积分电路2031(z)dt T U R C --? 可知积分电路输出电压同u o1 反向。 设t=0时积分电路电容上的初始电压为零,而滞回比较器输出端u o1=+Uz 。又有电路图可以看出,两级电路分别都引入了反馈, A 1同相输入端的电压u p1同时与u o1和u o 有关,根据叠加定理 可得 121o1o 1212 u u u p R R R R R R =+++ 由积分回路同向和反向输入端“虚短”“虚断”u p2= u n2=0,从而可 图1 三角波发生电路图

知u o =u p2.由于t 0时电容两端电压为了零,所以 u o =0,而u 01=+Uz ,故u p1也为正。而当u o1=+Uz 时,经反向积分,输出电压u o 将随着时间往负方向线性增长,则u p1将随之逐渐减小,当减小至u p1=u n1=0时,滞回比较器的输出端电压发生跳变,使u o1由+Uz 跳变为-Uz ,此时u p1也将跳变成为一个负值。当u o1=-Uz 时,积分电路的输出电压u o 将随着时间往正方向线性增长,u p1将又逐渐增大,当增大至u p1= u n1=0时,滞回比较器的输出端再次发生跳变,u 01由-Uz 跳变为+Uz 。如此重复上述过程,于是滞回比较器的输出电压u 01成为周而复始的矩形波,从而积分电路的输出电压u o 也成为周期性重复的三角波。 滞回比较器和积分电路特性: 2)输出幅度: 在u o1=-Uz 期间,积分电路的输出电压u o 往正方向线性增长,此时u p1也随着增长,当增长至u p1= u n1=0时,滞回比较器的输出电压u o1发生跳变,而发生跳变时的u o 值即是三角波的最大值Uom 。将条图3 电路的波形图 图2 电压输出特性

集成运放构成的三角波方波发生器

集成运放构成的三角波方波发生器 一、实验目的 1.理解三角波方波发生器的设计思路,搭接出最简单的电路,获得固定频率、幅度的三角波、方波输出。 2.理解独立可调的设计思路,搭接出频率、占空比、三角波幅度、三角波直流偏移、方波幅度、方波直流偏移均独立可调的电路,调整范围不限。 3.理解分块调试的方法,进一步增强故障排查能力。 二、实验思路 利用集成运放构成的比较器和电容的充放电,可以实现集成运放的周期性翻转,进而在输出端产生一个方波。这个电路如图2.3.1所示,它的工作原理请参阅相关教科书。注意在这个电路中,给电容的充电是恒压充电,随着电容电压的升高,其充电电流越来越小,电容电压上升也越来越缓慢。理论分析可知,电容上电压的变化,是一个负指数曲线。因此,这个电路只能实现方波发生。但是,我们注意到,这个负指数曲线在工作过程中是不停地正向充电、反向放电,已经和三角波有些类似。如果能够使得电容上充电电流固定,则其电压的上升或者下降将是线性的,就可以在电容端获得一个三角波。 我们可以立即联想到这样一个事实:当积分器的输入是固定电压,则其输出是线性上升或者下降的。因此,将图2.3.1中的RC充电电路去掉,用一个积分器替代,并考虑到极性,再增加一级反相电路,就可以实现三角波的产生,如图2.3.2所示。 图2.3.2电路使用了3个集成运放。电路设计者认为,A3并不是必须的,因为它仅仅完成了1倍的反相放大,这个功能完全可以利用A1的输入端极性进行巧妙设计来实现。为了节省1个运放,设计者给出了新的电路,如图2.3.3所示,它仅使用2个运放。

图2.3.3所示电路的工作原理,请参阅相关教科书。图中稳压管DZ和电阻R3组成稳压电路,目的是克服运放输出的不对称。 本实验在实现上述基本电路的基础上,还提出了新的要求。有下列6个量:三角波和方波共有的频率、共有的占空比、三角波的幅度、方波的幅度、三角波的直流偏移、方波的直流偏移,其中每个量都由一个独立的电位器控制,当调节某个量时,其它5个量不能发生变化。这就是独立可调的要求。 本实验将给出一个独立可调的三角波方波发生器电路,要求学生在认真分析的基础上,用运放、电阻、电容、稳压管等元器件,自己实现搭接。然后在搭接好的电路上,观察、调节、记录,体会其中的设计思想。 三、实验原理 图2.3.4是可以满足设计要求的最终电路。其中A1、A2、A3及其附属电路,完成三角波、方波的发生,并且实现频率和占空比的可调。A4、A5及其附属电路,实现三角波和方波的幅度、直流偏移可调。 图2.3.4电路与图2.3.3电路有3点主要的区别。第一、用R13、RW2、DZ1、DZ2组成一个双向电阻值不同的电路,取代图2.3.3中的积分器电阻R,使得积分器工作过程中,正向充电和反向放电的时间常数不一致,三角波上升斜率和下降斜率大小不同,造成方波的占空比不同。需要注意的是,由于用一个电位器调节,无论在什么位置,积分器的正向时间常数和反向时间常数的和,是一个常数,就造成单纯调节RW2,只改变占空比而不会改变频率。第二、在稳压管输出和积分器之间,加入A3构成的反相放大器,可以通过RW1调节积分器输入电压大小,进而改变积分器输出电压变化斜率,造成波形发生的频率变化。这样,uo1产生方波,uo2产生三角波。这两个波形的频

方波和三角波发生器电路

创作编号:BG7531400019813488897SX 创作者:别如克* 方波和三角波发生器电路 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。如图6. 5所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。 方波和三角波发生器的工作原理 A1构成迟滞比较器,同相端电位Vp由VO1和VO2决定。利用叠加定理可得: 当Vp>0时A1输出为正,即VO1 = +Vz;当Vp<0时,A1输出为负即VO1 = -Vz A2构成反相积分器 VO1为负时,VO2 向正向变化,VO1 为正时,VO2 向负向变化。假设电源接通时VO 1 = -Vz,线性增加。 当VO2上升到使Vp略高于0v时,A1的输出翻转到VO1 = +Vz 。

四、报告要求 1、课题的任务和要求。 2、课题的不同方案设计和比较,说明所选方案的理由。 3、电路各部分原理分析和参数计算。 4、测试结果及分析: (1)实测输出频率范围,分析设计值和实测值误差的来源。 (2)对应输出频率的高、中、低三点,分别实测输出电压的峰-峰值范围,分析输出电压幅值随频率变化的原因。 (3)频率特性测试,在低频端选定一个输出幅值,而后逐步调高输出频率,选12~15个测试点,用示波器观测输出对应频率下的输出幅值,填入自己预做的表格,画出电路的幅频特性。 注意:输出幅值一旦选定,在调节输出测试频率点过程中,不能再动! (4)画出示波器观测到的各级输出波形,并进行分析;若波行有失真,讨论失真产生的原因和消除的方法。 5、课题总结 6、参考文献 2、方波、三角波发生器 (1)按图11-2所示电路及参数接成方波、三角波发生器。

正弦波-方波-三角波信号发生器设计

苏州科技学院天平学院 模拟电子技术课程设计指导书 课设名称正弦波-方波-三角波信号发生器设计 组长李为学号1232106101 组员谢渊博学号1232106102 组员张翔学号1232106104 专业电子物联网 指导教师 二〇一二年七月 模拟电子技术课程设计指导书

一设计课题名称 正弦波-方波-三角波信号发生器设计 二课程设计目的、要求与技术指标 2.1课程设计目的 (1)巩固所学的相关理论知识; (2)实践所掌握的电子制作技能; (3)会运用EDA工具对所作出的理论设计进行模拟仿真测试,进一步完善理论设计;(4)通过查阅手册和文献资料,熟悉常用电子器件的类型和特性,并掌握合理选用元器件的原则; (5)掌握模拟电路的安装\测量与调试的基本技能,熟悉电子仪器的正确使用方法,能力分析实验中出现的正常或不正常现象(或数据)独立解决调试中所发生的问题; (6)学会撰写课程设计报告; (7)培养实事求是,严谨的工作态度和严肃的工作作风; (8)完成一个实际的电子产品,提高分析问题、解决问题的能力。 2.2课程设计要求 (1)根据技术指标要求及实验室条件设计出电路图,分析工作原理,计算元件参数;(2)列出所有元器件清单; (3)安装调试所设计的电路,达到设计要求; 2.3技术指标 (1)输出波形:方波-三角波-正弦波; (2)频率范围:100HZ~200HZ连续可调;

(3)输出电压:正弦波-方波的输出信号幅值为6V.三角波输出信号幅值为0~2V连续可调; γ。 (4)正弦波失真度:% ≤ 5 三系统知识介绍 3 函数发生器原理 本设计要求产生三种不同的波形分别为正弦波\方波\ 三角波。实现该要求有多种方案。 方案一:首先产生正弦波,然后通过整形电路将正弦波变换成方波,再由积分电路将方波变成三角波。 方案二:首先产生方波——三角波,再将方波变成正弦波或将三角波变成正弦波。 3.1函数发生器的各方案比较 我选的是第一个方案,上述两个方案均可以产生三种波形。方案二的电路过多连接部方便而且这样用了很多元器件,但是方案的在调节的时候比较方便可以很快的调节出波形。方案一电路简洁利于连接可以节省元器件,但是在调节波形的时候会比较费力,由于整个电路时一起的只要调节前面部分就会影响后面的波形。 四电路方案与系统、参数设计 4.1基于集成运算放大器与晶体管差分放大器的函数发生器 4.1.1设计思路 我们组总体设计思路为:先通过比较器产生方波,方波通过积分器产生三角波,三角波通过差分放大器产生正弦波。 函数发生器电路组成框图如下所示

三角波正弦波转换电路.

目录 1.设计要求 (2) 2.设计方案与论证 (2) 3.设计原理 (4) 3.1硬件分析 (4) 3.1.1总体电路图 (4) 3.1.2三角波产生电路 (4) 3.1.3 门限电压的估算 (5) 3.1.4矩形波产生电路 (6) 3.1.5工作原理 (6) 3.1.6三角波整流电路 (7) 3.1.7调幅电路 (8) 3.1.8偏置电路 (10) 3.2 multisim软件简介 (11) 4.元器件清单 (12) 5.元器件识别与检测 (13) 6.硬件制作与调试 (13) 7.设计心得 (14) 8.参考文献 (14)

1.设计要求 在研制、生产、使用、测试和维修各种电子元器件、部件以及整机设备时,都需要有信号源,由它产生不同频率、不同波形的电压、电流信号并加到被测器件、设备上,用其他测量仪器观察、测量被测者的输出响应,以分析和确定它们的性能参数。 而波形发生器是它们中一种更为常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。本次课程设计应用所学电路设计构成可产生三角波形,并在此基础上应用二极管整流网络对所产生的三角波整流为正弦波,再对正弦波进行进一步的处理。 使用模拟或者数字的方法设计一个频率可调的三角波发生器,并利用二极管网络将三角波整成正弦波。对正弦波作进一步处理: 1) 使正弦波峰峰值可变 2) 使正弦波可叠加直流偏置 3) 频率调节范围50Hz~100KHz 分析原理,设计电路,正确选择参数,在实现电路仿真的基础上搭建和调试硬件电路。 2.设计方案与论证 本次课程设计应用多谐振荡电路产生方波,再应用积分电路对所产生的方波进行一次积分产生三角波,用二极管整形网络对三角波进行整流使之产生不失真的正弦波。对正弦波进一步处理:用反相放大器对产生的波形进行放大,后跟反相加法器对正弦波进行直流偏置。用multisim软件对电路仿真。 总体框图如下:

方波和三角波发生器电路

方波和三角波发生器电路 由集成运算放大器构成的方波和三角波发生器,一般均包括比较器和RC积分器两大部分。如图6.5所示为由迟滞比较器和集成运放组成的积分电路所构成的方波和三角波发生器。 方波和三角波发生器的工作原理 A1构成迟滞比较器,同相端电位Vp由VO1和VO2决定。利用叠加定理可得: 当 Vp>0时 A1输出为正,即VO1 = +Vz;当 Vp<0时, A1输出为负即 VO1 = -Vz A2构成反相积分器 VO1为负时, VO2 向正向变化, VO1 为正时, VO2 向负向变化。假设电源接通时VO1 = -Vz,线性增加。 当VO2上升到使Vp略高于0v时,A1的输出翻转到VO1 = +Vz 。

四、报告要求 1、课题的任务和要求。 2、课题的不同方案设计和比较,说明所选方案的理由。 3、电路各部分原理分析和参数计算。 4、测试结果及分析: (1)实测输出频率围,分析设计值和实测值误差的来源。 (2)对应输出频率的高、中、低三点,分别实测输出电压的峰-峰值围,分析输出电压幅值随频率变化的原因。 (3)频率特性测试,在低频端选定一个输出幅值,而后逐步调高输出频率,选12~15个测试点,用示波器观测输出对应频率下的输出幅值,填入自己预做的表格,画出电路的幅频特性。 注意:输出幅值一旦选定,在调节输出测试频率点过程中,不能再动! (4)画出示波器观测到的各级输出波形,并进行分析;若波行有失真,讨论失真产生的原因和消除的方法。 5、课题总结 6、参考文献 2、方波、三角波发生器 (1)按图11-2所示电路及参数接成方波、三角波发生器。

图11-2 (2)将电位器Rp调至中心位置,用双综示波器观察并描绘方波V01及三角波V02 (注意标注图形尺寸),并测量Rp及频率值。 表11-3 方波V01及三角波V02 波形 Rp= (中间) , f= (3)改变Rp的位置,观察对V01和V02 幅值和频率的影响,将测量结果填入表11-3中 (记录不失真波形参数)。 表11-4 F ( KHz ) Rp ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高 频率最低 (4)将电位器Rp调至中间位置,改变R1为10K可调电位计,观察对V01和V02 幅值和频率的影响。将 测量结果填入表11-4中。 表11-5 F (KHz ) R1 ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高 频率最低 (5)电位器Rp保持中间位置,R1接10K电阻,改变R2为100K可调电位计,观察对V01和V02 幅值和频率的影响。将测量结果填入表11-5中。(记录有波形的测试参数) 表11-6 F ( KHz ) R2 ( Ω )V01P-P(V)V02P-P(V)备 注 频率最高

三角波发生器设计报告

计算机硬件技术课程设计 学院:自动化工程学院 班级: 姓名: 学号: 同组人: 2015年1月

目录一、目的· 二、内容·· 三、设计任务· 四、方案选择及原理·· 五、所用器件· 六、原理及结果图· 七、流程图· 八、程序代码· 九、设计中遇到的问题· 十、收获及体会·

三角波发生器 一、目的 1、了解和掌握8086、DAC0832等接口芯片和示波器的原理和功能; 2、能用这些接口芯片构建一个简单的系统控制对象, 3、掌握接口电路的综合设计与使用; 4、通过自己动手,进一步了解计算机工作原理,接口技术,提高计算机硬件, 软件综合应用能力,即对微机原理,接口技术,汇编语言程序设计进行综合训练。 二、内容 利用D/A设计一个三角波发生器,可利用按键改变其输出波形的幅值。例如,可利用5个按键改变其输出波形的幅值,当按下按键时使D/A输出幅值从1V增加到5V。 三、设计任务 1、选用8086和适当的存储器及接口芯片完成相应的功能。 2、画出详细的硬件连接图。 3、画出软件流程图。 4、给出所有程序清单并加上必要注释。 5、完成设计说明书(列出参考文献,所用器件型号)。 四、方案选择及原理 D/A转换器产生各种波形的原理:利用D/A转换器输出的模拟量与输入数字量成正比关系这一特点,将D/A转换器作为微机输出接口,CPU通过程序向D/A 转换器输出随时间呈现不同变化规律的数字量,则D/A转换器就可输出各种各样的模拟量,如方波、三角波、锯齿波、正弦波等。 五、所用器件 CPU8086、地址锁存器74LS373、译码器74154、数/模转换器DAC0832 主要器件简介

三角波发生电路设计

三角波发生电路设计

由积分回路同向和反向输入端“虚短”“虚断”u p2= u n2=0,从而可知u o =u p2.由于t 0时电容两端电压为了零,所以 u o =0,而u 01=+Uz ,故u p1也为正。而当u o1=+Uz 时,经反向积分,输出电压u o 将随着时间往负方向线性增长,则u p1将随之逐渐减小,当减小至u p1=u n1=0时,滞回比较器的输出端电压发生跳变,使u o1由+Uz 跳变为-Uz ,此时u p1也将跳变成为一个负值。当u o1=-Uz 时,积分电路的输出电压u o 将随着时间往正方向线性增长,u p1将又逐渐增大,当增大至u p1= u n1=0时,滞回比较器的输出端再次发生跳变,u 01由-Uz 跳变为+Uz 。如此重复上述过程,于是滞回比较器的输出电压u 01成为周而复始的矩形波,从而积分电路的输出电压u o 也成为周期性重复的三角波。 滞回比较器和积分电路特性: 2)输出幅度: 在u o1=-Uz 期间,积分电路的输出电压u o 往正方向线性增长,此 图3 电路的 图 2 电压输

时u p1也随着增长,当增长至u p1= u n1=0时,滞回比较器的输出电压u o1发生跳变,而发生跳变时的u o 值即是三角波的最大值Uom 。将条件u o1=-Uz ,u+=0和u o =Uom 代入上式,可得 om )(02 12211U R R R Uz R R R ++-+= 可解得三角波的输出幅度为z 2 1om U R R U = 3)周期频率: 在积分电路对u o1=-Uz 进行积分的半个振荡周期内,输出电压u o 由-Uom 上升至+Uom ,则对积分电路可列出一下表达式: ?=--203om 2dt )z (1T U U C R 即om 22 z 3U T C R U =? 所以三角波的振荡周期为2 3134z om 4R C R R U CU R T == 三角波震荡频率: 2134R f R R C = 三角波的输出幅度与稳压管的Uz 以及电阻值之比R 1/R 2成正比。三角波的振荡周期则与积分电路的时间常数R 3C 以及电阻值之比R 1/R 2成正比。仿真设计时要先确定Uz 值(本设计仿真二极管采用1N5233B 类型经测量和对比规格可知其端电压Uz 为6V ),再调整电阻R 1和R 2,使输出幅度达到规定值,然后再调整R 3和C 使振荡周期满足要求。

三角波产生电路

实验9 a 集成信号发生电路

1.了解用集成运算放大器构成的RC正弦波振荡电路的工作原理及调试方法。 2.了解用集成运算放大器及电压比较器构成的矩形波、三角波发生器电路的工作原理 及调试方法。 *3. 了解脉冲波、锯齿波发生器电路的构成。

利用集成运算放大器的优良特性,接上少量的外部元件,可以方便地构成性能良好的正弦波振荡器和各种波形发生器电路。由于集成运算放大器本身高频特性的限制,一般只能构成频率较低的RC 振荡器,在集成电压比较器电路中引入正反馈,构成滞回比较器,就能产生方波、三角波、脉冲波和锯齿波。 1. RC 振荡电路 集成运算放大器输入端接上具有选频特性的可以构成文氏电桥振荡器,产生正弦波信号。RC 文氏电桥的RC 串并联电路如图3.9a.1(a)所示。一般取R 1=R 2=R ,C 1=C 2=C 时,RC 串并联电路有对称的选频特性曲线见图 3.9a.1(b)。当频率01 2f RC π=时,可在R 、C 并联 的两端得到最大的电压值O 3 f U U += ,把这个电压输入运算放大器的同相端作为正反馈信 号,把电阻R 3、R 4的分压电压f U ?作为负反馈信号-输入运算放大器的反相端。调节电阻R 3使负反馈电压f U ?接近正反馈电压f U +,但又稍小于正反馈电压f U +,这时电路满足振荡的幅值和相位条件,而且输出波形失真最小。如果负反馈电压远小于正反馈电压,电路满足振荡条件,但因正反馈过强,使输出波形严重失真。如果负反馈电压大于正反馈电压f f U U ?+>,则电路不满足振荡条件,不能起振。因为RC 串并联电路在振荡频率f O 时的输出电压f U +是输入电压U O (即运算放大器的输出电压U O )的1/3,所以为了得到不失真的振荡波形,产生负反馈电压f U ?的电阻R 3、R 4的分压比也应是1/3,即R 4/(R 3+R 4)=1/3。 O 1 3 U o 图3.9a.1文氏电桥

相关文档