文档库 最新最全的文档下载
当前位置:文档库 › 高土 整理

高土 整理

高土 整理
高土 整理

1、写2-3个高等土力学应用于实际工程的例子:

(1)根据土的强度知识可知道基坑上的主动土压力一般总是比同样土填方挡土墙上主动土压力小,这是因为基坑上的土通常都是原状土,原状土具备的结构性增加了土的强度,使得主动土压力小于填方挡土墙。其次基坑的原状土由于固结过程中的重力作用具有各向异性,在竖直方向的强度较填方挡土墙大,减少了主动土压力。

(2)在水下钻孔灌注桩的施工中,为了保护孔壁不倒塌,孔内的水位必须保持比地下水位高,产生向壁内的渗流,而为了使其保证一定的抗滑稳定安全系数,需要有足够的水力坡降i,因为在钻井孔内加泥浆护壁,使井壁处局部水力坡降加大。

2、土的应力应变特性:

主要的应力应变特性是其非线性、弹塑性、剪胀(缩)性、土的应力应变的各向异性、土的结构性、流变性。

非线性:在不同应力水平下由相同应力增量而引起的应变增量就不会相同,亦即表现出非线性。

压硬性:土的变形模量随围压增加而提高的现象。

剪胀性:由剪应力引起的体积变化,实质上是由于剪应力引起的土颗粒间相互位置的变化,使其排列发生变化,加大颗粒间的孔隙,从而体积发生了变化。

弹塑性:在加载后卸载到原应力状态时,土一般不会恢复到原来的应变状态。其中有部分应变是可恢复的,部分应变是不可恢复的塑性应变,并且后者往往占很大比例。可以表示为:ε=ε e+ε p 其中ε e表示弹性应变,ε p 表示塑性应变.。

土的应力应变的各向异性:土的各向异性主要表现为横向各向同性,亦即在水平面各个方向的性质大体上是相同的,而竖向与横向性质不同。

土的结构性是由于土颗粒的空间排列集合及土中各相间和颗粒间的作用力造成的。

土的流变性有关的现象是土的蠕变与应力松弛。蠕变是指在应力状态不变的条件下,应变随时间逐渐增长的现象;应力松弛是指维持应变不变,材料内的应力随时间逐渐减小的现象。

影响土应力应变的因素:应力水平、应力路径、应力历史. 应力水平一般有两层含义:一是指围压的绝对值的大小;二是指应力(常为剪应力)与破坏值之比,即S = q / q f。这里应力水平是指围压。

应力历史既包括天然土在过去地质年代中受到的固结和

地壳运动作用,也包括土在试验室(或在工程施工、运行中)受到的应力过程。

3、临界孔隙比:在三轴试验加载过程中,轴向应力差几乎不变,轴向应变连续增加,最终试样体积几乎不变时的孔隙比。

4绘图:

5、邓肯-张模型

邓肯-张模型,简称D-C 模型,属于非线性弹性本构关系,是邓肯等人根据康纳的建议,用双曲线(见图1)模拟土的三轴剪切试验中当σ3等于常数时的(σ1- σ3)~ε1关系[3],即

a

a

b a εεσσ+=

-31 (5)

图1 土的应力应变的双曲线关系

(a )(σ1- σ3)~ε1双曲线 (b )ε1/(σ1- σ3)~ ε1关系

邓肯-张模型的参数通常可以根据三轴试验求得,要求同

种土至少做三组或三组以上的三轴试验,即可根据上诉公式或曲线图求得所需的参数。该模型适用于正常固结及弱固结粘土及砂石料等应变硬化型材料,不适于严重超固结粘土、密实砂及具有应变软化性质的岩土类材料。该模型的不足之处是不能放映岩土类材料的剪胀性与压硬性,也没有考虑中间主应力的影响。

剑桥模型

剑桥模型的实验基础是在正常固结粘土和超因结粘土试样的排水和不排水三轴试验,最初也只是适用于正常固结和弱固结粘土,后来也推广应用与严重超固结粘土、砂土和一些岩石类材料。

比体积υ,表示单位体积固体颗粒与孔隙体积之和,即υ=1+e ;

平均主应力p ′=(σ1+2σ3)/3; 广义剪应力q ′=σ1-σ3。

将三轴剪切试验破坏时的p ′、q ′、υ的唯一对应关系绘制在p ′-q ′-υ三维空间中,表示为一条空间曲线,这条曲线就是临界状态线,如图4。临界状态线的方程为:

??

?

'

-Γ=''

='p p p M q ln λ (16)

图3 正常固结粘土三轴试验结果

(a )p-q 曲线 (b )υ-p 曲线 (c )υ-ln p 曲线

图4 三维坐标的临界状态下CSL

式(16)中Γ为p ′=1kPa 时CSL 线所对应的比体积;

λ为CSL 在υ-ln p 曲线的斜率;

?

?

sin 3sin 6 =

M ,三轴压缩取负号,三轴拉伸取正号。

因此,??

? ??-Γ?='='λυex p M p M q (17) 临界状态线说明破坏时的强度取决于破坏时的平均应力p ′和比体积υ,与应力历史和应力路径无关;当材料处于临界状态时,只发生剪应变,不发生体积变化,此时比体积成为临界比体积,相对应的孔隙比称为临界孔隙比。

在p ′-q ′-υ三维空间中,如图4,三轴固结排水或不排水路径沿正常固结曲线随固结压力而运动的轨迹构成的空间曲面称为状态边界面或罗斯柯面。正常固结粘土的各种排水试验和不排水固结试验的应力有效路径都在

罗斯柯面上。罗斯柯面是联系正常固结曲线与临界状态线的一个唯一的空间曲面,应力状态不可能超越罗斯柯面。

破坏面就是临界状态线与它在平面p ′-q ′投影线CSL 所构成的平面。对于具有应变软化性质的严重超固结粘土、密实砂土以及坚硬的岩石来说,其破坏点一般在临界状态线以上的应力峰值点,如图5,这些点构成的面成为伏斯列夫面,在平面p ′-q ′的投影线称为伏斯列夫线。

图5(b )中,NCL 为正常固结线:

p N '-=ln λυ(18)

CSL 为临界状态线:

p '-Γ=ln λυ (19)

SL 为回弹线

p k '-=ln κυυ (20)

图5 临界状态边界面

图6中,以平行于q ′轴的直线为母线,沿着膨胀线AR 移动,与罗斯柯面和破坏面而构成的曲面为弹性墙,弹性墙与罗斯柯面的交线为屈服曲面。

图6 状态边界面和弹性墙

根据罗斯柯的假设,可推导得:

ηεε-=''

-=M p q M d d p

p v (21)

式(21)中p q ''=η,为剪压比,式(21)反映了塑性增量在p ′-q ′平面上的方向,其实就是表示了流动法则。

通过推导可得p ′-q ′平面上“湿粘土”的屈服轨迹方程:

p p M p q

f '

'-'=0ln (22)

该方程在p ′-q ′平面上的形状如图7所示,像个“帽子”,

是子弹头形状。

图7 “湿粘土”的屈服轨迹

“湿粘土”的增量应力应变关系为:

??

??

??+-+=''11p dp d M e d v ληκ

λε (23)

()()()ηηκληκ

λε-''

+'?

+-=??

????'+-''+-=M p M p Md d p e p d M q d p M e d 11 (24)

因此要确定剑桥模型的屈服面和应力应变关系时只需要三个实验常数,即各向等压固结参数λ、回弹参数κ、破坏常数M ,各向等压固结参数λ和回弹参数κ可用各向等压试验确定,破坏常数M 可用常规三轴压缩试验确定。

优缺点:剑桥模型考虑了岩土类的静水压力屈服特性、压硬性、剪缩性和剪胀性;该模型参数少,且测试方法简单;该模型没有考虑中间主应力的影响,没有反应高压作用下,强度随平均主应力为曲线变化的特性。

莫尔-库仑准则

τf = f (σ )即一个平面上的抗剪强度τf 取决于作用于这个平面上的正应力σ。其中破坏包线的函数f (σ )由试验确定。根据这一准则,当材料应力状态的最大的莫尔园与上式所表示的包线相切时,材料就发生破坏。这也意味着中主应力σ2 对于强度无影响。

最简单的莫尔包线是线性的:τf =c+ σtg ? 引起材料破坏不是由于最大剪应力,而是决定在某个平面上τ-σ的最危险组合。式(3.6.15)用应力不变量可表示为:

它在主应力空间表现为一个不规则六面锥体表面.

莫尔-库仑强度准则是描述剪切面上剪应力τ与该面上正应力σ间关系,表现了土作为散体材料的摩擦强度的基本特点。这是比较合理的,所以它在土力学得到广泛的应用。但它假设中主应力σ2对土的抗剪强度没有影响,它的强度包线常常被假设是直线,即内摩擦角?是常数,与围压无关,这些近似一般不会引起大误差,但当应力水平很大时,可能引起比较大误差。当用莫尔-库仑准则作为塑性模型的屈服准则时,由于其屈服面及在π平面上轨迹有导数不连续的角点,这在数值计算中不够方便。

比奥求固结系数:

该理论常被认为是真三向固结理论。

从式(5.10.8)可以看到:

(1)方程中的c v 3 为三向固结系数,它不同于单向固结系数c v 1 ;(2)式中Θ 的是一点的三个正应力之和(总应力),在固结过程中并不一定为一常量,只有在固结完成后,它才等于外荷重在该点的三个正应力分量之和;(3)当只考虑超静孔压时,式(5.10.5)第三式中?γ 可代为0,即不计静水压力部分。

对于二向平面(平面应变)问题,比奥方程为式(5.10.5)中的第1 与3 两式及水流连续条件为:

顺便指出,按弹性应力一应变关系,可以得到单向固结的固结系数C v 1 ,有下列形式:

如果v '’= 0.5,则三个系数相等,如果v '’ = 0,则

曼代尔一克雷尔效应

超静水压力u 在固结的开始段持续上升,等到某时刻后才开始下降,逐步消散。这种现称为曼代尔-克雷尔效应. 产生曼代尔-克雷尔效应的原因:可以解释如下。在表面透水的地基面上施加荷量,经过暂短的时间,靠近排水面的土体由于排水发生体积收缩,总应力与有效应力均有增加。土的泊桑比也随之改变。但是内部土体还来不及排水。为了保持变形协调,表层的压缩必然挤压土体内部,使那里的应力有所增大。因此,某个区域内的总应力分量将超过它们的起始值,而内部孔隙水由于收缩力迫使其压力上升。水平总应力分量的相对增长(与起始值相比)比垂直分量的相对增长要大。

按平面应变问题分析,该效应有以下特点:

a)地面排水性能愈差,效应愈不显著,地面不透水时,几乎无该效应。 b)如果地面透水,超静水压力出现峰值点的时间随深度而推后,并且峰值愈来愈高.

c)该效应的倾向影响范围是在x 2 ? z 2 = a 2的双曲线的二曲线之间;在同一水平面上,离基础轴线愈近,效应愈明显。 d)由于曼代尔-克雷尔效应,地面透水的土体中一点的剪应力随时间变化,最大值可能在固结过程中的基础边缘产生.

e)该效应还随土的泊松比的增大而减小。

太沙基三向固结理论与比奥理论的主要区别

(1)基本假设:太沙基假定z y x e σσσ++=,固结过程不随时间变化;比奥没有这个假定

(2)空隙压力和位移的关系:太沙基是须依次求出孔隙水压u ——固结度U ——沉降量S

比奥理论:可同时求出固结度U 、空隙水压u 以及沉降量S

(3)U 随着时间t 的变化:太沙基与泊松比u 无关;比奥中泊松比对固结影响大,具曼德尔效应。

计算题:从地基中采取了原状试样,经室内试验等取得下列资料:正常固结地基土的初始孔隙比e 0 = 0.9,压缩指标C c = 0.25, ? ' = 30°,压缩层厚H = 3m ,取样点土层覆盖压力为75kPa ,建筑物引起的附加压力为Δσ1 =40 kPa ,Δσ3=20kPa 。原状试验在不同等压固结后的三轴不排水试验的有效应力路径和相应应变见图5-5-8。计算瞬时加荷后地基的瞬时沉降和固结后总沉降。

(ⅰ)静止侧压力系数K 0= 1- sin 30 °

=0.5

在图上确定 A 点后,过A 点按三轴固结不排水试验测定的有效应力路径的形状绘出有效应力路径BAC 。

土力学整理

《土质学与土力学》习题库 注:红色标注的内容是不考试的内容,黑色的内容为考试内容。 第一章习题 一.填空题 1.土粒粒径越,颗粒级配曲线越,不均匀系数越,颗粒级配越。为了获得较大密实度,应选择级配的土粒作为填方或砂垫层的材料。 2.粘土矿物基本上是由两种原子层(称为品片)构成的,一种是,它的基本单元是Si—0四面体,另一种是,它的基本单元是A1—OH八面体。 3.土中结构一般分为、和三种形式。 4.衡量天然状态下粘性土结构性强弱的指标是,其定义是值愈大,表明土的结构性,受扰动后土的强度愈多。 5.土中主要矿物有、和。它们都是由和组成的层状晶体矿物。 二.选择题 1.在毛细带范围内,土颗粒会受到一个附加应力。这种附加应力性质主要表现为( ) (A)浮力; (B)张力; (C)压力。 2.对粘性土性质影响最大的是土中的( )。 (A)强结合水; (B)弱结合水; (C)自由水; (D)毛细水。 3.砂类土的重要特征是( )。 (A)灵敏度与活动度; (B)塑性指数与液性指数;(C)饱和度与含水量; (D)颗粒级配与密实度。4.土中所含“不能传递静水压力,但水膜可缓慢转移从而使土具有一定的可塑性的水,称为( )。 (A)结合水; (B)自由水; (C)强结合水; (D)弱结合水。 5.软土的特征之一是( )。 (A)透水性较好; (B)强度较好; (C)天然含水量较小; (D)压缩性较高。 6.哪种土类对冻胀的影响最严重?( ) (A)粘土; (B)砂土; (C)粉土。 7.下列粘土矿物中,亲水性最强的是( )。 (A)高岭石; (B)伊里石; (C)蒙脱石 8.对土粒产生浮力的是( )。 (A)毛细水; (B)重力水; (C)强结合水, (D)弱结合水。 (9)毛细水的上升,主要是水受到下述何种力的作用?( ) (A)粘土颗粒电场引力作用; (B)孔隙水压力差的作用(C)水与空气交界面处的表面张力作用。 (10)软土的特征之一是( )。 (A)透水性较好; (B)强度较好; (C)天然含水量较小; (D)压缩性较高 三.问答题 2.什么是颗粒级配曲线,它有什么用途? 3.粘土矿物有哪几种?对土的矿物性质有何影响?并说明其机理? 6.试比较土中各种水的特征。

土力学重点整理第一章至第五章

土力学与地基基础重点整理 (1-5章,第六章以后自行看书) 第一章:工程地质 1、三大岩石:按成因分为岩浆岩(火成岩)、沉积岩(水成岩)、变质岩。 岩浆岩(火成岩):由地球内部的岩浆侵入地壳或喷出地面冷凝而成。 沉积岩(水成岩):岩石经风化,剥蚀成碎屑,经流水、风或冰川搬运至低洼处沉积,再经压密或化学作用胶结成沉积岩。约占地球陆地面积的75%。 变质岩:是原岩变了性质的一种岩石。变质原因:由于地壳运动和岩浆活动,在高温、高压和化学性活泼的物质作用下,改变了原岩的结构、构造和成分,形成一种新的岩石。 2、第四纪沉积层主要包括残积层、坡积层、洪积层、冲积层、海相沉积层、湖 沼沉积层。 3、残积层、坡积层、洪积层、冲积层的形成原因、特性及如果作为建筑地基需 注意: 残积层:母岩经风化、剥蚀,未被搬运,残留在原地的岩石碎屑。裂隙多,无层次,平面分布和厚度不均匀。如果作为建筑地基,应注意不均匀沉降和土坡稳定性问题。 坡积层:雨水和融雪水洗刷山坡时,将山上的岩屑顺着斜坡搬运到较平缓的山坡或山麓处,逐渐堆积而成。厚薄不均、土质也极不均匀,通常孔隙大,压缩性高。如果作为建筑地基,应注意不均匀沉降和地基稳定性。 洪积层:由暴雨或大量融雪形成的山洪急流,冲刷并搬运大量岩屑,流至山谷出口或山前倾斜平原,堆积而成。靠山谷处窄而陡,谷口外逐渐变成宽而

缓,形如扇状。如果作为建筑地基,应注意土层的尖灭和透镜体引起的不均匀沉降(需精心进行工程地质勘察) 冲积层:由河流的流水将岩屑搬运、沉积在河床较平缓地带,所形成的沉积物。 简答及论述题 1、不良地质条件会对工程造成什么影响?选择工程地址时应注意避开哪些 不良地质条件? 不良地质条件会引发造成工程建设中的地基下沉、基础不均匀沉降及其它许多的地质灾害现象,使工程质量受到严重影响 :①场址选择时,应避让工程地质条件差,对工程建设存在危险的地段,如果需采用对工程建设不利的地段作为建设场址时,应采取有效的应对措施;②在进行场区规划及总平面布置时,应优先选择工程地质条件较好的区段作为主要建筑物的建筑场地。 2、工程的设计及施工,应如何注意地下水的影响? ,通常设计基础的埋深深度应不小于地下水位深度;当地下水位埋藏浅、基础埋深大于地下水位深度时,基槽开挖与基础施工必须进行排水。 第二章重点: 一、土的粒径级配P44-46 1、粒径级配:各粒组的相对含量,用质量百分数来表示。这是决定无黏性土的重复指标,是粗粒土的分类定名的标准 2、分析方法: (1)筛析法:适用于粗粒土 粒径>0.075mm

土力学复习重点概念

第一章 1.地下水分类:1.上层滞水:积聚在局部隔水层上的水称 为上层滞水2.潜水:埋藏在地表下第一个连续分布的 稳定隔水层以上,具有自由水面的重力水 3.承压水: 埋藏在两个连续分布的隔水层之间完全充满的有压地 下水 2.动力水:土体中渗流的水对单位体积土体的骨架作用 的力 3.流土:当动水力的数值等于或大于土的浮重度时土体 被水冲起的现象 4.管涌:当土体级配不连续时,水流将土体粗粒空隙中 充填的细粒土带走,破坏土的结构 5.土的结构:单粒结构,蜂窝结构,絮状结构 6.土颗粒的大小:粗土粒的压缩性低,强度高,渗透性 大 7.土的粒径级配:各粒组的相对含量,占总质量的百分 数来表示 8.土中水的形式:结合水(强结合水,弱结合水)自由 水(重力水,毛细水)气态水,固态水 9.无粘性土密实度:1.孔隙比2.相对密度:相对密度越大, 越密实3.标准贯入试验N 10.粘性土的物理状态指标:塑性指数Ip:表示细颗粒土 体在可塑状态下,含水率变化的最大区间,Ip越大说 明吸附结合水越多,粘粒含量高吸水强 液性指数IL:表示粘性土的稠度,IL越大,稠度越大 活动度A:表示粘性土的塑性指数与土中脚力含量百 分数的比值 灵敏度St:粘性土的原状土无侧限抗压强度与原土结 构完全破坏的重塑土的无侧限抗压强度的比值 11.触变性:当粘性土结构受扰动后,土的强度就降低。 但静置一段时间,土的强度有逐渐增长 12.压缩模量Es:土的试样单向受压,应力增量与应变增 量之比 13.压缩系数a:表示在单位压力增量作用下土的孔隙比的 减小值,压缩系数越大,土的压缩性越好 14.正常固结土:指土层历史上经受的最大压力,等于现 有覆盖土的自重压力。 15.超固结土:指该土层历史上曾经受过大于现有覆盖土 重的前期固结压力 16.欠固结土:指土层目前还没有达到完全固结,土层实 际固结压力小于土层自重压力 17.减小沉降量的措施:①外因方面:减小基底的附加应 力,采取:1)上部结构采用轻质材料,减小基底接触 应力。2)当地基中无软弱下卧层时,加大基础埋深② 内因方面:修造建筑物之前,预先对地面进行加固处 理 18.减小沉降差的措施:①设计时尽量使上部荷载中心受 压,均匀分布②遇到高低层相差悬殊或地基软硬突变 等情况,可合理设置沉降缝③增加上部结构对地基不 均匀沉降的调整作用④妥善安排施工顺序⑤人工补救第四章 1 影响抗剪强度指标的因素:1,土的物理性质的影响:1)土的矿物成分:砂土中石英含量高,内摩擦角大;云母矿物含量多,则内摩擦角小。2)土的颗粒形状与级配:土颗粒越粗,表面越粗糙,内摩擦角越大。土的级配良好,内摩擦角越大。土粒均匀,内摩擦角小3)土的原始密度:原始密度越大,内摩擦角越大,同时图的原始密度越大,土的孔隙小,接触紧密,黏聚力也必然大4)土的含水率增加时,内摩擦角减小。对于粘性土,含水率增加,将使抗剪强度降低5)土的结构:粘性土受扰动,则黏聚力降低2,孔隙水压力的影响在外荷载作用下,随时间的增长,孔隙水压力因排水而逐渐消散,同时有效应力相应的增加。有效应力影响图的内摩擦强度1)三轴固结排水剪,测得的抗剪强度值最大2)三轴不固结不排水剪,测得的抗剪强度值最小3)三轴固结不排水剪。固结:孔隙压力水的消散,同时有效应力的增加,土体逐渐被压密的过程。 2 地基的临塑荷载:在外荷载作用下,地基中刚开始产生塑性变形即局部剪切破坏时基础底面单位面积上所受的载荷。地基的临界荷载:地基中的塑性变形区最大深度时相对应的基础底面压力。 3 地基的极限荷载:地基在外荷作用下产生的应力达到极限平衡时的荷载。 4 影响极限载荷的因素: 1,地基的破坏形式1)地基整体滑动破坏:当地基土良好或中等,上部荷载超过地基极限荷载时,地基中的塑性变形区扩展成整体,导致地基发生整体滑动破坏。2)地基局部剪切破坏:当基础埋深大,加荷速度快时,因基础旁侧荷载大,阻止地基整体滑动破坏,使地基发生基础底部局部剪切破坏。3)地基冲切剪切破坏:当地基为松砂或软土,在外荷作用下使地基产生大量沉降,基础竖向切入土中,发生冲切剪切破坏。 2,地基土的指标:强度指标c,φ和重度。它们越大,则极限载荷越大。 3,基础尺寸:基础宽度增大,极限荷载增大。基础埋深加大时,则基础旁侧荷载加大,因而极限荷载加大。 4,荷载作用方向:1)荷载为倾斜方向:倾斜角越大,极限荷载越小。为不利因素。2)荷载为竖直方向:则极限荷载大。 5,荷载作用时间:时间短暂,极限荷载可以提高。长期作用下,极限荷载降低。 第五章 土压力的种类:1.静止土压力:当挡土墙静止不动时,墙后 土体由于墙的侧限作用而处于静止状态。 2.主动土压力:当挡墙在墙后土体的推力作用 下,向前移动,墙后土体随之向前移动。土 体下方阻止移动的强度发挥作用,使作用在 墙背上的土压力减小。当墙后土体达到主动 极限平衡状态时,墙背上的土压力减小至最 小。产生主动土压力条件:密砂:-△=0.5%H (H为挡土墙高度)。密实粘性土:-△ =1%~2%H 3.被动土压力:挡土墙在较大的外力作用下, 向后移动推向填土,则填土受墙的挤压,使 作用在墙背上的土压力增大。当土体达到被 动极限平衡状态,墙背上作用的土压力增至 最大。墙体在外力作用下向后位移+△,密 实土若+△≈5%H产生被动土压力;粉质土 +△=10%H产生被动土压力 影响土压力因素:1.挡土墙位移方向和位移量的大小事影响 土压力大小的最主要因素。 2.挡土墙形状:挡土墙剖面形状包括墙背竖 直或是倾斜,墙背光滑或是粗糙。 3.挡土墙性质:包括填土松密程度即重度、 干湿程度即含水率、土的强度指标内摩擦角 和黏聚力大小c的大小以及填土表面形状 (水平、上斜、下斜) 库伦土压力理论:研究课题——①墙背俯斜②墙背粗糙,墙 与土之间有摩擦角③填土为理想散粒体,粘 聚力为0④填土表面倾斜 基本假定:①挡土墙向前移动②墙后填土沿墙背和填土中某 一平面同时下滑形成滑动楔体③土楔体处 于极限平衡状态不及本身压缩变形④楔形 体对墙背的推力即为主动土压力Pa 第七章 1、地基坚实均匀,可以采用天然地基浅基础。地基上部软弱,下部坚实,可考虑用桩基础。有的地基软弱层很厚,可采用人工加固基础。 2、地基基础方案的类型:①天然地基上的浅基础(基础简单,工程量小,施工方便,造价低廉,优先选用):当建筑场地上土质均匀,坚实,性质良好,地基承载力特征值大于120KPa,对于一般多层建筑可做在千层天然土层上。②不良地基人工处理后的浅基础:遇到地基土层软弱,压缩性高,强度低,无法承受上部结构荷载时,需经过人工加固后作为地基。③桩基础:当建筑地基上部土层软弱,深层土质坚实时,可采用桩基础,上部结构荷载通过桩基础穿过软弱土层传到下部坚实土层。④深基础:若上部结构荷载很大,一般浅基础无法承受,或相邻建筑不允许开挖基槽施工以及有特殊用途时。 3、天然地基上浅基础的设计内容和步骤:①初步设计基础的结构形式,材料与平面布置。②确定基础的埋置深度③计算地基承载力特征值,并经深度和宽度修正,确定修正后的地基承载力特征值④根据作用在基础顶面荷载F和深宽修正后的地基承载力特征值,计算基础的底面积⑤计算基础高度并确定剖面形状⑥若地基持力层下部存在软弱土层时,则需要验算软弱下卧层的承载力⑦地基基础设计等级为甲乙级建筑物和部分丙级建筑物应计算地基的变形⑧验算建筑物或构建物的稳定性⑨基础细部结构和构造设计⑩绘制基础施工图 4、浅基础的结构类型:①独立基础②条形基础(砖混结构的墙基、挡土墙基础)③十字交叉荷载(上部荷载较大时,采用条形基础不能满足承载力要求)④筏板基础(上部荷载较大,地基软弱或地下防渗要求时)⑥箱型基础(高层建筑荷载大,高度大,按照地基稳定性要求,基础埋置深度应加深,采用箱型基础) 5、基础的材料:①无筋扩展基础(刚性基础):材料抗压强度较大,不能承受拉力或弯矩。技术简单,材料充足,造价低廉,施工方便,多层砌体结构采用这种形式。②扩展基础(柔性基础)由钢筋混凝土材料建造的基础,不受刚性角的限制,基础剖面做成扁平状,用较小的基础高度把上部荷载传到较大的基础底面上去以适应承载力要求。设计宽基浅埋已解决存在软弱下卧层强度太低时采用这种基础。 6、箱型基础筏型基础从室外标高算起,而条形基础或独立基础从室内标高算起 7、基础通常放在地下水位以上,若在地下水位以下则要进行基槽排水。当地基为粘性土时候,下层卵石层有承压水时候,在基槽开挖时,保留粘性土槽底安全厚度,防止槽底土层发生流土破坏。 8、防止冻害的措施 在冻胀,强冻胀,特强冻胀地基上,应采用以下措施 1.对在地下水位以上的基础,基础侧面应回填非冻胀性的 中砂或者粗砂,其厚度不应小于10cm。对在地下水位 以下的基础,可采用桩基础,自锚式基础(冻土层下有 扩大板或扩地短柱) 2.宜选择地势高,地下水位低,地表排水良好的建筑场地。 对低洼场地,宜在建筑物四周向外一倍冻深距离范围 内,使室外地坪至少高出自然地面300~500mm

土力学知识点复习

复习内容 1. 什么是地基,基础,土是如何形成的。 2. 什么是人工地基,天然地基,什么是持力层,下卧层。 3. 土的三相是什么意思。s d d ,,,,sat γγγγ'这些符号有什么不同含义。 4. 掌握与土的三相有关的物理性质指标表达式并会应用。 5. 土的颗粒级配系数是怎么得来的。如何判断土的级配是否良好。土的级配曲线陡峭说明什么问题。平缓又说明什么问题。填方用土应采用何种土。 6. 沙雕是不是说明砂土具有粘聚性。 7. 冻土地基,湿陷性黄土地基,软土地基,膨胀土地基等特殊土地基都各有什么特点。 8. 无粘性土的密实度与其工程性质有什么联系。可以采用哪些指标衡量无粘性土的密实度,各有什么优缺点。 9. 什么是界限含水量,W P ,W L 各代表什么含义,如何获得。 10. I P,,I L 的含义,与粘性土的工程性质有何关系,如何计算。 11. 什么是土的灵敏度。 12. 什么是土的最佳含水率。粘性土的击实机理。影响土的击实效果因素。 13. 无粘性土在什么状态下可以取得好的击实效果。 14. 淤泥和淤泥质土是在什么环境下形成的,有什么不同。这种土层有什么特点。 1. 何谓自重应力,附加应力,二者在地基中的分布情况如何。 2. 基底压力与基底附加应力有何不同,如何计算。 3. 在偏心荷载作用下,基底压力如何计算,为何会出现应力重分布情况。 4. 自重应力能产生沉降吗,水位下降能使土体产生压缩变形吗。 1. 什么是土的压缩性,土体积减少的原因是什么。体积减小速度取决于什么因素。 2. 什么是土的固结,什么是土的固结度。 3. 压缩指标表达式及压缩性划分 4. 分层总和法计算地基沉降量的步骤。规范法步骤 5. 什么是渗流,什么是土的渗透性,达西公式说明什么问题。渗透变形有几种。 6. 何谓有效应力原理。 7. 影响土中水的流出速度有哪些?如果想加快土体固结,可采用什么方法。 1. 何谓土的抗剪强度。无粘性土的抗剪强度由什么构成。粘性土的抗剪强度由

土力学复习资料整理资料讲解

<<<<<<精品资料》》》》》 填空: 土体一般由固相(固体颗粒)、液相(土中水)和气相(气体)三部分组成,简称“三相体系”。 常见的粘土矿物有:蒙脱石、伊利石和高岭石。 由曲线的形态可评定土颗粒大小的均匀程度。如曲线平缓则表示粒径大小相差很大,颗粒不均匀,级配良好;反之, 则颗粒均匀,级配不良。 颗粒分析试验方法:对于粒径大于0.075mm的粗粒土,可用筛分法;对于粒径小于0.075mm的细粒土,可用沉降分析法(水分法)。 土中水按存在形式分为:液态水、固态水和气态水。土中液态水分为结合水和自由水两大类;结合水可细分为强结合 水和弱结合水两种。 含水量试验方法:土的含水量一般采用“烘干法”测定;在温度100?105C下烘至恒重。 塑性指数Ip越大,表明土的颗粒愈细,比表面积愈大,土的粘粒或亲水矿物含量愈高,土处在可塑状态的含水量变化范围就愈大。 塑性指数定名土类按塑性指数:Ip > 17为粘土; 10 < Ip W 17为粉质粘土。 液性指数:I L= ( 3 - 3 p) / ( 3 L- 3 p) = ( 3 - 3 p) / Ip。当土的天然含水量 3 < 3 P时,1 L < 0, 土体处于坚硬状态; 当3 > 3 L时,I L > 0, 土体处于流动状态;当3在3 p和3 L之间时,| L = 0?1, 土体处于可塑状态。粘性土根据液性指数可划分为坚硬、硬塑、可塑、软塑及流塑五种软硬状态。 土的结构和构造有三种基本类型:单粒结构、蜂窝结构及絮凝结构。 影响土的击实(压实)特性的因素:含水量影响、击实功(能)的影响、土类及级配的影响。 人工填土按组成物质分类:素填土、杂填土和冲填土三类。 压缩系数a1-2给土分类:1);a1-2<0.1 MPa-1为低压缩性土;2)0.1 MPa-1毛1-2<0.5 MPa-1为中压缩性土; 3)a1-2> 0.5 MPa-1属高压缩性土。 分层厚度 抗剪强度指标的测定方法选用:直接剪切试验、三轴压缩试验、无侧限抗压强度试验、十字板剪切试验。 剪切破坏面位置: 抗剪强度指标C、?值的确定:粗粒混合土的抗剪强度C、?值通过现场剪切试验确定。 地基破坏形式分为:整体剪切破坏、局部剪切破坏、冲剪破坏。 荷载效应组合:1)作用短期效应组合;2)作用长期效应组合。 地基基础方案类型:浅基础和深基础。 浅基础进行稳定性验算内容:1.基础倾覆稳定性验算;2?基础滑动稳定性验算。 摩擦桩的传力机理:大部分荷载传给桩周土层,小部分传给桩端下的土层 水中基坑的围堰工程类型:土围堰、草(麻)袋围堰、钢板桩围堰、双壁钢围堰、地下连续墙围堰。 桩基础组成:多根桩组成的群桩基础。 桩按受力(承载性状)分类:竖向受荷桩、横向受荷桩、桩墩。 桩基础按设置效应分类:挤土桩、部分挤土桩、非挤土桩。 <<<<<<精品资料》》》》》

最新土力学与地基基础知识点整理

地基基础部分 1.土由哪几部分组成? 土是由岩石风化生成的松散沉积物,一般而言,土是由固体颗粒、液态水和空隙中的气体等三部分组成。 2.什么是粒径级配?粒径级配的分析方法主要有哪些? 土中土粒组成,通常以土中各个粒组的相对含量(各粒组占土粒总质量的百分数)来表示,称为土的粒径级配。 对于粒径小于或等于60mm、大于0.075的土可用筛分法,而对于粒径小于0.075的土可用密度计法或移液管法分析。 3.什么是自由水、重力水和毛细水? 自由水是存在于土粒表面电场范围以外的水,它可以分为重力水和毛细水。 重力水存在于地下水位一下的土骨架空隙中,受重力作用而移动,传递水压力并产生浮力。毛细水则存在于地下水位以上的孔隙中,土粒之间形成环状弯液面,弯液面与土粒接触处的表面张力反作用于土粒,成为毛细压力,这种力使土粒挤紧,因而具有微弱的粘聚力或称为毛细粘聚力。 4.什么是土的结构?土的主要结构型式有哪些? 土的结构主要是指土体中土粒的排列和联结形式,它主要分为单粒结构、蜂窝结构和絮状结构三种基本类型。 5.土的物理性质指标有哪些?哪些是基本物理性质指标?哪些是换算指标? P6 6.熟练掌握土的各个物理性质指标的概念,并能够进行相互换算。 P7-8 7.无粘性土和粘性土的物理特征是什么? 无粘性土一般指具有单粒结构的碎石土和砂土。天然状态下无粘性土具有不同的密实度。密实状态时,压缩小,强度高。疏松状态时,透水性高,强度低。 粘性土粒之间存在粘聚力而使土具有粘性。随含水率的变化可分别划分为固态、半固态、可塑及流动状态。 8.什么是相对密度? P9 9.什么是界限含水量?什么是液限、塑限含水量? 界限含水率:粘性土由一种状态转换到另一种状态的分界含水率; 液限:由流动状态转为可塑状态的界限含水率; 塑限:有可塑状态转为半固态的界限含水率; 缩限:由半固态转为固态的界限含水率。 10.什么是塑性指数和液性指数?他们各反映粘性土的什么性质? P10 11.粗粒土和细粒土各采用什么指标进行定名? 粗粒土:粒径级配 细粒土:塑性指数

土力学复习资料(整理)知识讲解

土力学复习资料 第一章绪论 1.土力学的概念是什么?土力学是工程力学的一个分支,利用力学的一般原理及土工试验,研究土体的应力变形、强度、渗流和长期稳定性、物理性质的一门学科。 2.土力学里的"两个理论,一个原理"是什么?强度理论、变形理论和有效应力原理 3.土力学中的基本物理性质有哪四个?应力、变形、强度、渗流。 4. 什么是地基和基础?它们的分类是什么? 地基:支撑基础的土体或岩体。分类:天然地基、人工地基基础:结构的各种作用传递到地基上的结构组成部分。根据基础埋深分为:深基础、浅基础 5.★地基与基础设计必须满足的三个条件★ ①作用于地基上的荷载效应(基底压应力)不得超过地基容许承载力特征值,挡土墙、边坡以及地基基础保证具有足够防止失稳破坏的安全储备。即满足土地稳定性、承载力要求。 ②基础沉降不得超过地基变形容许值。即满足变形要求。 ③基础要有足够的强度、刚度、耐久性。 6.若地基软弱、承载力不满足设计要求如何处理?需对地基进行基础加固处理,例如采用换土垫层、深层密实、排水固结、化学加固、加筋土技术等方法进行处理,称为人工地基。 7.深基础和浅基础的区别? 通常把埋置深度不大(3~5m),只需经过挖槽、排水等普通施工程序就可以建造起来的基础称为浅基础;反之,若浅层土质不良,须把基础埋置于深处的好地层时,就得借助于特殊的施工方法,建造各种类型的深基础(如桩基、墩基、沉井和地下连续墙等。) 8.为什么基础工程在土木工程中具有很重要的作用? 地基与基础是建筑物的根本,统称为基础工程,其勘察、设计、施工质量的好坏直接影响到建筑物的安危、经济和正常使用。基础工程的特点主要有:①由于基础工程是在地下或水下进行,施工难度大②在一般高层建筑中,占总造价25%,占工期25%~30%③隐蔽工程,一旦出事,损失巨大且补救困难,因此基础工程在土木工程中具有十分重要的作用。 第二章土的性质与工程分类 1.土:连续、坚固的岩石在风化作用下形成的大小悬殊的颗粒,经过不同的搬运方式,在各种自然环境中生成的沉积物。 2.三相体系:固相(固体颗粒)、液相(土中水)、气相(气体)三部分组成。 3.固相:土的固体颗粒,构成土的骨架,其大小形状、矿物成分及组成情况是决定土物理性质的重要因素。 土的矿物成分:土的固体颗粒物质分为无机矿物颗粒和有机质。 颗粒矿物成分有两大类:原生矿物、次生矿物。 原生矿物:岩浆在冷凝过程中形成的矿物,如石英、长石、云母。 次生矿物:原生矿物经化学风化作用的新的矿物,如黏土矿物。 黏土矿物的主要类型:蒙脱石、伊利石、高岭石(吸水能力逐渐变小) 土的粒组:粒度:土粒的大小。粒组:大小、性质相近的土粒合并为一组。画图: <——0.05——0.075——2——60——200——>粒径(mm) 粘粒粉粒| 砂粒圆砾| 碎石块石 细粒| 粗粒| 巨粒 土的颗粒级配:土中所含各颗粒的相对含量,以及土粒总重的百分数表示。△ 颗粒级配表示方法: 曲线纵坐标表示小于某土粒的累计百分比,横坐标则是用对数值表示的土的粒径。曲线平缓则表示粒径大小相差很大,颗粒不均匀,级配良好;反之,则颗粒均匀,级配不良。*书本P7 表2.2和图2.5 判断土质的好坏。

土力学复习资料整理.doc

填空: 土体一般由固相(固体颗粒)、液相(土中水)和气相(气体)三部分组成,简称“三相体系二 常见的粘土矿物有:蒙脱石、伊利石和高岭石。 由曲线的形态可评定土颗粒大小的均匀程度。如曲线平缓则表示粒径大小相差很大,颗粒不均匀,级配良好;反之, 则颗粒均匀,级配不良。 颗粒分析试验方法:对于粒径大于0. 075mm的粗粒土,可用筛分法;对于粒径小于0. 075mm的细粒土,可用沉降分析法(水分法)。 土的颗粒级配评价:根据颗粒级配曲线的坡度可以大致判断土的均匀程度或级配是否良好。 粒径级配曲线:颗粒级配曲线的越陡,说明颗料粒径比较一致,级配不良。相反,颗粒级配曲线的越缓,说明颗粒不均匀,级配良好。 土中水按存在形式分为:液态水、固态水和气态水。土中液态水分为结合水和自由水两大类;结合水可细分为强结合水和弱结合水两种。 含水量试验方法:土的含水量一般采用“烘干法”测定;在温度100?105°C下烘至恒重。 塑性指数1P越大,表明土的颗粒愈细,比表面积愈大,土的粘粒或亲水矿物含量愈高,土处在可塑状态的含水量变化范围就愈大。 槊性指数定名土类按槊性指数:Ip >17为粘土;10 3|,时,lL>0, 土体处于流动状态;当3在3p和3|,之间时,Il,二0?1, 土体处于可塑状态。粘性土根据液 性指数可划分为坚硬、硬塑、可塑、软塑及流塑五种软硬状态。 土的结构和构造有三种基本类型:单粒结构、蜂窝结构及絮凝结构。 影响土的击实(压实)特性的因素:含水量影响、击实功(能)的影响、土类及级配的影响。 人工填土按组成物质分类:素填土、杂填土和冲填土三类。 有效应力原理,即有效应力等于上层总压力减去等效孔隙压力;其中,等效孔隙压力等于孔隙压力与等效孔隙压力系数之积,等效系数介于0和1之间。 饱和的有效应力原理:(1)饱和土体内任一平面上受到的总应力等于有效应力加孔隙水压力之和;(2)土的强度的变化和变形只取决于土中有效应力的变化。 压缩系数。1.2给土分类:1); ai.2<0.1 MPa1为低压缩性土;2) 0.1 MPa-y0.2vO.5MP广为中压缩性土;3) (7I.2>0.5 MPa*1属高压缩性土。 分层厚度 抗剪强度指标的测定方法选用:直接剪切试验、三轴压缩试验、无侧限抗压强度试验、十字板剪切试验。 弟切破坏而位置: 抗剪强度指标c、(P值的确定:粗粒混合土的抗剪强度c、(P值通过现场剪切试验确定。 地基破坏形式分为:整体剪切破坏、局部剪切破坏、冲剪破坏。 荷载效应组合:1)作用短期效应组合;2)作用长期效应组合。 地基基础方案类型:浅基础和深基础。 浅基础进行稳定性验算内容:1.基础倾覆稳定性验算;2.基础滑动稳定性验算。 摩擦桩的传力机理:大部分荷载传给桩周土层,小部分传给桩端下的土层 水中基坑的围堰工程类型:土围堰、草(麻)袋围堰、钢板桩围堰、双壁钢围堰、地下连续墙围堰。 桩基础组成:多根桩组成的群桩基础。 桩按受力(承载性状)分类:竖向受荷桩、横向受荷桩、桩墩。 桩基础按设置效应分类:挤土桩、部分挤土桩、非挤土桩。 桩基础按承台位置分类:高桩承台基础和低桩承台基础。 我国主要的区域性特殊土类型:湿陷性黄土、膨胀土、软土和冻土。

土力学知识点总结

土力学知识点总结 1、土力学是利用力学一般原理,研究土的物理化学和力学性质及土体在荷载、水、温度等外界因素作用下工程性状的应用科学。 2、任何建筑都建造在一定的地层上。通常把支撑基础的土体或岩体成为地基(天然地基、人工地基)。 3、基础是将结构承受的各种作用传递到地基上的结构组成部分,一般应埋入地下一定深度,进入较好的地基。 4、地基和基础设计必须满足的三个基本条件:①作用与地基上的荷载效应不得超过地基容许承载力或地基承载力特征值;②基础沉降不得超过地基变形容许值;③挡土墙、边坡以及地基基础保证具有足够防止失稳破坏的安全储备。 5、地基和基础是建筑物的根本,统称为基础工程。 6、土是连续、坚固的岩石在风化作用下形成的大小悬殊的颗粒、经过不同的搬运方式,在各种自然坏境中生成的沉积物。 7、土的三相组成:固相(固体颗粒)、液相(水)、气相(气体)。 8、土的矿物成分:原生矿物、次生矿物。 9、黏土矿物是一种复合的铝—硅酸盐晶体。可分为:蒙脱石、伊利石和高岭石。

10、土力的大小称为粒度。工程上常把大小、性质相近的土粒合并为一组,称为粒组。划分粒组的分界尺寸称为界限粒径。土粒粒组分为巨粒、粗粒和细粒。 11、土中所含各粒组的相对含量,以土粒总重的百分数表示,称为土的颗粒级配。级配曲线的纵坐标表示小于某土粒的累计质量百分比,横坐标则是用对数值表示土的粒径。 12、颗粒分析实验:筛分法和沉降分析法。 13、土中水按存在形态分为液态水、固态水和气态水。固态水又称矿物内部结晶水或内部结合水。液态水分为结合水和自由水。自由水分为重力水和毛细水。 14、重力水是存在于地下水位以下、土颗粒电分子引力范围以外的水,因为在本身重力作用下运动,故称为重力水。 15、毛细水是受到水与空气交界面处表面张力的作用、存在于地下水位以下的透水层中自由水。土的毛细现象是指土中水在表面张力作用下,沿着细的孔隙向上及向其他方向移动的现象。 16、影响冻胀的因素:土的因素、水的因素、温度的因素。 17、土的结构是指土颗粒或集合体的大小和形状、表面特征、排列形式及他们之间的连接特征,而构造是指土层的层理、裂隙和大孔隙等宏观特征,亦称宏观结构。 18、结构的类型:单粒结构、蜂窝结构、絮凝结构。

土力学与基础工程知识点考点整理汇总

一、绪论 1.1土力学、地基及基础的概念 1.土:土是连续、坚固的岩石经风化、剥蚀、搬运、沉积而形成的散粒堆 积物。 2.地基:地基是指支撑基础的土体或岩体。(地基由地层构成,但地层不一 定是地基,地基是受土木工程影响的地层) 3.基础:基础是指墙、柱地面下的延伸扩大部分,其作用是将结构承受的 各种作用传递到地基上的结构组成部分。(基础可以分为浅基础和深基 础) 4.持力层:持力层是指埋置基础,直接支撑基础的土层。 5.下卧层:下卧层是指卧在持力层下方的土层。(软弱下卧层的强度远远小 于持力层的强度)。 6.基础工程:地基与基础是建筑物的根本,统称为基础工程。 7.土的工程性质:土的散粒性、渗透性、压缩性、整体强度(连接强度) 弱。 8.地基与基础设计必须满足的条件:①强度条件(按承载力极限状态设计): 即结构传来的荷载不超过结构的承载能力p f ≤;②变形条件:按正常使 s≤ 用极限状态设计,即控制基础沉降的范围使之不超过地基变形的允许值[] 二、土的性质及工程分类 2.1 概述 土的三相组成:土体一般由固相(固体颗粒)、液相(土中水)、气相(气体)三部分组成,简称为三相体系。 2.2 土的三相组成及土的结构 (一)土的固体颗粒物质分为无机矿物颗粒和有机质。矿物颗粒的成分有两大类:(1)原生矿物:即岩浆在冷凝过程中形成的矿物,如石英、长石、云母等。(2)次生矿物:系原生矿物经化学风化作用后而形成的新的矿物(如粘土矿物)。它们的颗粒细小,呈片状,是粘性土固相的主要成分。次生矿物

中粘性矿物对土的工程性质影响最大 —— 亲水性。 粘土矿物主要包括:高岭石、蒙脱石、伊利石。蒙脱石,它的晶胞是由两层硅氧晶片之间的夹一层铝氢氧晶片所组成称为2:1型结构单位层或三层型晶胞。它的亲水性特强工程性质差。伊利石它的工程性质介于蒙脱石与高岭石之间。高岭石,它是由一层硅氧晶片和一层铝氢氧晶片组成的晶胞,属于1:1型结构单位层或者两层。它的亲水性、膨胀性和收缩性均小于伊利石,更小于蒙脱石,遇水稳定,工程性质好。 土粒的大小称为粒度。在工程性质中,粒度不同、矿物成分不同,土的工程性质也就不同。工程上常把大小、性质相近的土粒合并为一组,称为粒组。而划分粒组的分界尺寸称为界限粒径。土粒粒组先粗分为巨粒、粗粒和细粒三个统称,再细分为六个粒组:漂石(块石)、卵石(碎石)、砾粒、砂粒、粉粒和黏粒。 土中所含各粒组的相对含量,以土粒总重的百分数表示,称为土的颗粒级配。土的级配曲线的纵坐标表示小于某土粒的累计质量百分比,横坐标则是用对数值表示土的粒径。由曲线形态可评定土颗粒大小的均匀程度。若曲线平缓则粒径大小相差悬殊,颗粒不均匀,级配良好;反之,则颗粒均匀,级配不良。 工程中常用不均匀系数u C 和曲率系数c C 来反映土颗粒的不均匀程度。 6030 u d C d =()2 301060c d C d d =? 10d —小于某粒径的土粒质量总土质量10%的粒径,称为有效粒径; 30d —小于某粒径的土粒质量总土质量30%的粒径,称为中值粒径; 60d —小于某粒径的土颗粒质量占总质量的60%的粒径,称限定粒径。 工程上对土的级配是否良好可按如下规定判断 ① 对于级配连续的土:Cu 5,级配良好;5Cu ,级配不良。 ② 对于级配不连续的土,级配曲线上呈台阶状,采用单一指标Cu 难以全面有效地判断土的级配好坏,需同时满足Cu 5和13Cu = 两个条件时,才为级配良好,反之级配 不良。 确定土中各个粒组相对含量的方法称为土的颗粒分析试验 ① 筛分法(对于粒径大于0.075mm 的粗粒土)

土力学知识点总结归纳

不均匀系数:反映土颗粒粒径分布均匀性的系数定义为限制粒径d60与有效粒径d10之比 塑限:可塑状态与半固体状态间的分界含水量称为塑限。 液限:指粘性土从流塑状态过度到可塑状态时的界限含水量。 基底压力:建筑物荷载由基础传递给地基,基础底面传递给地基表面的压力。 基底附加应力:由于建筑物产生的基底压力与基础底面处原来的自重应力之差 称为附加应力,也就是在原有的自重应力的基础上新增的应力。 渗透固结:饱和土在受到外荷载作用时,孔隙水从空隙中排除,同时土体中的 孔隙水压减小,有效应力增大,土体发生压缩变形,这一时间过程称为渗透固结。 固结:饱和黏质土在压力作用下,孔隙水逐渐排出,土体积逐渐减小的过程。 固结度:指地基在外荷载作用下,经历时间t产生的沉降量St与基础的最终沉降 量S的比值。 库伦定律:在一般的荷载范围内,土的抗剪强度与法向应力之间呈直线关系,即 τf=c+tanυ式中c,υ分别为土的粘聚力和内摩擦角。 粒径级配:各粒组的质量占土粒总质量的百分数。 静止土压力:当挡土结构物在土压力作用下无任何移动或转动,墙后土体由于墙背 的侧限作用而处于弹性平衡状态时,墙背所受的土压力称为静止土压力。 主动土压力:若挡土墙受墙后填土作用离开土体方向偏移至土体达到极限平衡状态时 ,作用在墙背上的土压力称为主动土压力。 被动土压力:挡土墙在外力作用下向后移动或转动,达到一定位移时,墙后土体处于 极限平衡状态,此时作用在墙背上的土压力。 土的颗粒级配:土中各粒组相对含量百分数。 土体抗剪强度:土体抵抗剪切破坏的极限能力。 液性指数:是粘性土的天然含水量和塑限的差值与塑性指数之比,用符号IL表示。 基础埋深:指从室外设计地坪至基础底面的垂直距离。 角点法:角点法的实质是利用角点下的应力计算公式和应力叠加原理推求地基中任意 点的附加应力的方法 压缩系数:表示土的压缩性大小的主要指标,压缩系数大,表明在某压力变化范围内 孔隙比减少得越多,压缩性就越高。 土的极限状态:土体中的剪应力等于土的抗剪强度时的临界状态称之为土的极限平衡状态。 软弱下卧层:地基受力层范围内存在有承载力低于持力层的土层。 持力层:直接承受基础荷载的一定厚度的地基土层。 1.土的三相实测指标是什么?其余指标的导出思路主要是什么? 答案:三相实测指标是土的密度、土粒密度和含水量。 换算指标包括土的干密度(干重度)、饱和密度(饱和重度)、有效重度、孔隙比、孔隙率和饱和度。换算指标可以从其基本定义出发通过三相组成的体积、重量关系导出。 2.地基中自重应力的分布有什么特点? 答案:自重应力沿深度方向为线性分布(三角形分布)在土层的分层界面和地下水位处有转折。 集中荷载作用下地基中附加应力的分布规律? 答案:1)在集中荷载作用线上(r=0),附加应力随深度的增加而减小;2)在r>0的竖直线上, 附加应力随深度的增加而先增加后减小;3)在同一水平面上(z=常数),竖直向集中力作用线 上的附加应力最大,向两边则逐渐减小。 简述均布矩形荷载下地基附加应力的分布规律? 答案:①附加应力σz自基底起算,随深度呈曲线衰减;②σz具有一定的扩散性。它不仅分布在 基底范围内,而且分布在基底荷载面积以外相当大的范围之下;③基底下任意深度水平面上的σz ,在基底中轴线上最大,随距中轴线距离越远而越小。 3. 朗肯土压力理论和库仑土压力理论的异同点是什么? 答案:相同点:两种土压力理论都是极限平衡状态下作用在挡土墙是的土压力,都属于极限平衡理论。不同点:朗肯是从一点的应力状态出发,先求出土压力强度,再求总土压力,属于极限应力法;库 仑考虑整个滑动楔体静力平衡,直接求出总土压力,需要时在求解土压力强度,属于滑动楔体法。 4. 土压力计算中,朗肯理论和库仑理论的假设及适用条件有何不同? 答:朗肯理论假定挡土墙的墙背竖直、光滑,墙后填土表面水平且延伸到无限远处,适用于粘性土 和无粘性土。库仑理论假定滑裂面为一通过墙踵的平面,滑动土楔体是由墙背和滑裂面两个平面 所夹的土体所组成,墙后填土为砂土。适用于各类工程形成的不同的挡土墙,应用面较广,但只适 用于填土为无粘性土的情况 5. 分层总和法计算地基最终沉降量时进行了哪些假设? ①计算土中应力时,地基土是均质、各向同性的半无限体;②地基土在压缩变形时不允许侧向膨胀 ,计算时采用完全侧限条件下的压缩性指标;③采用基底中心点下的附加应力计算地基的变形量。 6. 简述变形模量与压缩模量的关系。 答:试验条件不同:土的变形模量E0是土体在无侧限条件下的应力与应变的比值;而土的压缩模量Es是土体在完全侧限条件下的应力与应变的比值。二者同为土的压缩性指标,在理论上是完全可以 相互换算的。 7. 地基最终沉降量通常是由哪三部分组成? 答:瞬时沉降;次固结沉降;固结沉降。 8. 请问确定基础埋置深度应考虑哪些因素? 答:确定基础埋置深度应综合考虑以下因素:(1)上部结构情况:如建筑物的用途、结构类型及荷载的大小和性质;(2)工程地质和水文地质条件:如地基土的分布情况和物理力学性质;(3)当地冻结深度及河流的冲刷深度;(4)建筑场地的环境条件。 9. 固结沉降是指什么? 答:地基受荷后产生的附加应力,使土体的孔隙减小而产生的沉降称为固结沉降,通常这部分沉降是地基沉降的主要部分。 10. . 三轴压缩试验按排水条件的不同,可分为哪几种试验方法?工程应用时,如何根据地基土排水条件的不同,选择土的抗剪强度指标? 答:三轴压缩试验按排水条件的不同,可分为不固结不排水剪、固结不排水剪和固结排水剪三种试验方法。工程应用时,当地基土的透水性和排水条件不良而施工速度较快时,可选用不固结不排水剪 切试验指标;当地基土的透水性和排水条件较好而施工速度较慢时,可选用固结排水剪切试验指 标;当地基土的透水性和排水条件及施工速度界于两者之间时,可选用固结不排水剪切试验指标。11.地基破坏形式有那几种?各自发生在何种土类地基? 有整体剪切破坏,局部剪切破坏和冲剪破坏 第一章 1.三相比例指标:土的三相物质在体积和质量上的比例关系。 试验指标:通过试验测得的指标有土的密度,土粒密度和含水量。换算指标:包括土的干密度,饱和密度,有效重度,空隙比,空隙率,饱和度。 2.颗粒级配:土粒的大小组成通常以土中各个粒组的相对含量来表示称为土的颗粒级配。 不均匀系数C u反应了不同粒组的分布情况,Cu<5的土称为匀粒土,级配不良。Cu>10的土级配良 好且C s=1~3 3.土结构的三种类型:单粒结构,蜂窝结构,絮状结构。 4.界限含水量:从一种状态到另一种状态的分界点称为分界含水量,流动状态与可塑状态间的分界 含水量称为液限ωL可塑状态与半固体状态间的分界含水量称为塑限ωP 塑性指标I P=ωL-ωP 液性指标I L = 5.砂土密度判别方法:根据砂土的相对密实度可以将砂土划分为密实,中密,松散三种密实度。 但由于测定砂土的最大空隙率和最小空隙比试验方法的缺陷,实验结果有很大的出入,同时由于 很难在地下水位以下的砂层中取得原状砂样,砂土的天然空隙比很难准确的测定,相对密实度的 应用受到限制。因此在工程实践中通常用标准贯入击数来划分砂土的密实度。 6.地基分类原则: 第三章 1.自重应力:由土体重力引起的应力。附加应力:外荷载作用下,在土中产生的应力增量。 基底压力:建筑物荷载通过基础传递给地基的压力。基底附加应力:上部结构和基础传递到基底 的地基反力与基底处原先存在于土中的自重应力之差。 2.自重应力对地基变形的影响: 第四章 1.土压缩性:我们把这种在外力作用下土的体积缩小的特性称为土的压缩性。原因: 2.分层综合假定(p82) 3.固结:饱和黏质土在压力作用下,孔隙水逐渐排出,土体积逐渐减小的过程。包括主固结或 次固结。 固结度:饱和土层或试样在固结过程中,某一时刻的孔隙水压力平均消散值(或压缩量)与初始 孔隙水压力(或最终压缩量)比值,以百分率表示。 第五章 1.土的抗剪强度:土体对于外荷载所产生的剪应力的极限抵抗能力。 2.土的抗剪强度指标试验方法 按排水条件:直剪p109,三轴剪切使用条件p111 压缩系数a:表示土体压缩性大小的指标,是压缩试验所得e-p曲线上某一压力段割线的斜率;一般 采用压力间隔P1=100kPa至P2=200kPa时对应的压缩系数a1-2来评价土的压缩性。 压缩模量Es: 土的压缩模量指在侧限条件下土的垂直向应力与应变之比,是通过室内压缩试验得到 的,是判断土的压缩性和计算地基压缩变形量的重要指标之一。 变形模量E0:通过现场载荷试验求得的压缩性指标,即在部分侧限条件下,其应力增量与相应的应 变增量的比值。能较真实地反映天然土层的变形特性。 2、固结:饱和黏质土在压力作用下,孔隙水逐渐排出,土体积逐渐减小的过程。包括主固结或次固结。 固结度:饱和土层或试样在固结过程中,某一时刻的孔隙水压力平均消散值(或压缩量)与初始孔 隙水压力(或最终压缩量)比值,以百分率表示。 3、分层法假定,Zn的确定;规范法假定,Zn的确定;固结度计算。 分层总和法是指将地基沉降计算深度内的土层按土质和应力变化情况划分为若干分层,分别计 算各分层的压缩量,然后求其总和得出地基最终沉降量。这是计算地基最终沉降量的基本且常用的方法。 第五章土的抗剪强度 1、土抗剪强度:是指土体抵抗剪切破坏的极限强度,包括内摩擦力和内聚力。抗剪强度可通过剪切试 验测定。 土抗剪强度构成:由土的抗剪强度表达式可以看出,砂土的抗剪强度是由内摩阻力构成,而粘性土 的抗剪强度则由内摩阻力和粘聚力两个部分所构成。 内摩阻力包括土粒之间的表面摩擦力和由于土粒之间的连锁作用而产生的咬合力。咬合力是指当土体相对滑动时,将嵌在其它颗粒之间的土粒拔出所需的力,土越密实。连锁作用则越强。 粘聚力包括原始粘聚力、固化粘聚力和毛细粘聚力。 2、土的极限平衡条件——由莫尔圆抗剪强度相切几何关系确定。当土体达到极限平衡状态,土的抗剪强 度指标C、&与土的应力1,3的关系。 第六章土压力计算 1、静止土压力:挡土结构在土压力作用下,其本身不发生变形和任何位移,土体处于弹性平衡状态,此 时作用在挡土结构上的土压力称为静止土压力。 主动土压力:挡土结构物向离开土体的方向移动,致使侧压力逐渐减小至极限平衡状态时的土压力,它 是侧压力的最小值。 被动土压力:挡土结构物向土体推移,致使侧压力逐渐增大至被动极限平衡状态时的土压力,它是侧压 力的最大值。 三者辨析:挡土墙上的土压力按照墙的位移情况可分为静止、主动和被动三种。静止土压力是指挡土墙 不发生任何方向的位移,墙后土体施于墙背上的土压力;主动土压力是指挡土墙在墙后土体作用下向前发 生移动,致使墙后填土的应力达到极限平衡状态时,墙后土体施于墙背上的土压力;被动土压力是指挡土 墙在某种外力作用下向后发生移动而推挤填土,致使墙后土体的应力达到极限平衡状态时,填土施于墙背 上的土压力。这里应该注意是三种土压力在量值上的关系为Pa

相关文档
相关文档 最新文档