文档库 最新最全的文档下载
当前位置:文档库 › 基因组学

基因组学

基因组学
基因组学

第二章基因组学

2.1 概述

2.2 人类基因组计划

2.3 后基因组时代的生命科学

基因组(genome)1920年由Winkler提出。它是指一个单倍体细胞的所有DNA,或者一个双倍体细胞DNA组成的一半。

2.1 概述

? 2.1.1 基因

?1866, 孟德尔的遗传因子假说认为生物性状受细胞内遗传因子(hereditary factor)控制,遗传因子在生物世代间传递遵循分离规律和自由组合规律。

?半个世纪后,丹麦的生物学家Johansen(1903)肯定了Mondel 的遗传定律。他提出了基因型(Genotype)和表型(Phenotype)的概念,但他认为生物的遗传只是生物本身具有的一种遗传性质,并不太强调它的物质属性。

?根据现代生物学理论,基因是携带有遗传信息的DNA序列。

?根据基因是否转录和翻译功能可以把基因分为三类:

编码蛋白质的基因,它具有转录和翻译功能,包括编码酶蛋白、结构蛋白以及调节蛋白的基因等。

具有转录功能而没有翻译功能的基因,包括tRNA基因和rRNA基因。

不转录的基因,它对基因的表达起调节控制作用,如启动基因和操纵基因等。?1868年Fridrich Miescher从脓细胞核中提取“核素”。

?1928年,Griffith发现细菌转化,转化的物质即为遗传物质。

?1944年,Avery等人进一步证实转化过程中DNA是遗传信息的载体

? 2.1.2 脱氧核糖核酸

?DNA 的组成

DNA是由4种脱氧核糖核苷酸(dAMP,dGMP,dTMP,dCMP )组成的长链多聚分子。

脱氧核糖核苷酸由2-脱氧核糖、含氮碱基(A、T、G、C)和磷酸基团组成。?DNA 的结构

DNA的一级结构是指DNA分子中的单脱氧核糖核苷酸的连接方式与排列顺序。 DNA的二级结构--双螺旋结构

?1953年,Watson 和Crick提出了B型DNA双螺旋结构模型。

?1962年Watson 和Crick获得诺贝尔生理学或医学奖

DNA的三级结构

?DNA双螺旋链再盘绕,形成一种比双螺旋更高层次的空间构象。

?包括线形DNA形成的纽结、超螺旋和多重螺旋、环状DNA形成的结、超螺旋和连环等结构

?遗传学中心法则

? 2.1.3 基因组

?基因组是一种生物体或个体细胞所具有的一套完整的基因以及非基因的DNA 序列。

?生物的基因组一般以染色体的形式存在于细胞或细胞核中。

?原核和真核基因组的本质都是DNA(有些病毒基因组是RNA)

?原核生物(Prokaryote)的基因组:

染色体基因组(Chromosome Genome)

染色体外的质粒基因 (extrachromosome plasmid genome)原核生物(细菌、古菌)的基因组特点:

基因组较小;

染色体为双链环状的DNA分子(单倍体);

基因组上遗传信息具有连续性;

功能相关的结构基因组成操纵子结构和双向基因表达;

结构基因的单拷贝及rRNA基因的多拷贝;

基因组的重复序列少而短;

存在水平基因转移的证据如定位于染色体不稳定区的“致病岛”大片段?真核生物(Eukaryote)的基因组

核基因组(染色体基因组Chromosome Genome)

染色体外的质粒基因(extrachromosome plasmid genome)

细胞器基因组:

线粒体基因组(Mitochondrial genome,mtDNA)

叶绿体基因组(Chloroplast genome)

?真核生物(Eukaryote)的基因组的特点:

核基因组较大;

核基因组和细胞器基因组都以染色体形式存在,核基因组由多条染色体组成,细胞器基因组通常由单个染色体组成;

没有明显的操纵子结构;

有间隔区(即非编码区)和内含子序列;

重复序列多

2.2 人类基因组计划

人类基因组计划和曼哈顿原子弹计划及人类登月计划被誉为20世纪科学史上的三个里程碑,从讨论到实施共经历了十几年的时间。

? 2.2.1 人类基因组计划的提出和实施

?人类基因组计划概述

1986年3月7日美国生物学家,诺贝尔的得主Dulbecco 在《Science》杂志上发表了一篇题为“肿瘤研究的一个转折点:人类基因组的全序列分析”的短文,高瞻远瞩地率先向世界公开提出人类基因组计划,他在详细讨论癌症研究进展的基础上阐明了测定人类基因组序列的意义,指出不能继续用“零敲碎打”的方法来了解人类的基因,呼吁包括癌症在内的人类疾病的发生与基因直接或间接有关部门的科学家们联合起来,从整体上研究人类的基因组,分析人类基因组序列。

1988 年4 月,在MaKusick V 等科学家的倡导下还成立了国际人类基因组组织( Human GenomeOrganization ,HUGO) ,主要负责协调各国科学家共同完成HGP。 1990年春,美国国立卫生研究院(NIH)和能源部(DOE)联合发表了美国的人类基因组计划。

1990 年10 月1 日美国国会正式批准启动人类基因组计划,计划投入30亿美元的资金在15 年内完成人类基因组的分析研究,全世界免费共享所有研究成果。

随后,英国、法国、德国、日本和中国等纷纷加入该研究计划,组成国际联合研究小组。

?人类基因组计划的目的

确定人类DNA 的总体结构,弄清其中各种基因的结构、功能、位置相互关系,从整体上认识遗传信息的组成及其调控方式,促进生命科学和医学的发展。

?人类基因组计划的研究内容

主要研究可是完成人类23对染色体的全部基因的遗传图谱和物理图谱,完成23对染色体上全部碱基的序列测定。

人类23对染色体上共有30亿对碱基对,对其进行全部测定是个浩大的科学工程。

所以国际联合研究小组采用逐级征服策略,通过绘制遗传图谱、物理图谱和转录图谱,最终完成人类全基因组的碱基序列图谱。

?遗传图谱(genetic map)

?也称连锁图谱(linkage map),它是以具有遗传多态性(在1个遗传“位点”上具有一个以上的等位基因,在群体中的出现频率皆高于1%)的遗传标记为“路标”,以遗传学距离为(在减数分裂事件中,两个基本点位点之间进行交换、重组的百分率,1%的百分率称1厘摩(centimorgan,cM,以纪念现代遗传学之父摩尔根),大约相当于1000Kb(千碱基对))为“图距”的基因组图。

?意义:为人类相关基因克隆奠定基础。6000多个遗传标记已经能够把人类的基因组分成6000多个区域,使得连锁分析法可以找到某一致病的或表现型的基因与某一标记邻近(紧密连锁)的证据,这样可以把这一基因定位于这一已知区域,再对基因进行分离和研究。

?物理图谱(physical map)

?是指以一段已知核苷酸序列的DNA片段(STS,sequence tagged site,序列标记位置,其定义是染色体定位明确且可用PCR扩增的单拷贝序列)为“路标”,以Mb或Kb作为图距的基因组图。

?意义:其STS可把经典遗传学与细胞遗传学的位点信息转化为基因组的位点的物理信息,而基于STS位点信息的“相邻片段群”对提供了研究区域的实验材料,以这些片段为材料便可进行这一区域的基因组研究或在这一区域里寻找基因。?转录图谱(transcriptional map)

又称cDNA图(包括基因的cDNA,即EST expressed sequence tag,表达序列标签)或表达序列图。

在整个人类基因组中,只有1%~5%的序列直接为蛋白质编码。在人体(特别是成年个体)的每一特定组织中,一般只有10%的结构基因表达,即只有1万个不

同类型的mRNA。从整个基因组来说,抓住1%~5%,就抓住了大多数基因。

转录图谱的意义

?cDNA具有组织、生理与发育阶段的特异性。

?它能为估计人类基因的数目提供较为可靠的依据。

?它所提供的不同组织(空间)、不同发育阶段(时间)的基因表达的数目、种类及结构、功能(特别是序列)的信息,已成为基因克隆所必需。

?它提供了结构基因的“标记”,可作为进而筛选基因的探针。

?它本身就具有直接的经济价值,如作为基因诊断的探针。

?这是基因组序列分析效益最高、收获最快的方案。

?序列图谱( sequence map )

人类基因组的核苷酸序列图也就是分子水平的最高层次的最详尽的物理图。测定总长度约为一米、由30亿核苷酸组成的序列图。

? 2.2.2 非盈利研究机构和生物技术公司的竞争

?HGP 的最大特点是“全球化”。整个人类基因组计划主要由美国、英国、日本、法国、德国和中国6 个国家(20 个测序中心) 的1100 名生物科学家、计算机专家在HUGO的统一协调下“精诚合作、共享材料、共享数据、共同攻关”完成的。? 2.2.3 人类基因组序列草图的完成

?1999 年12 月,英、美、日等国的研究小组共同完成了人类第22 号染色体基因全序列(首次破译完整的人类染色体全基因全序列)

?2000 年6 月26 日,国际人类基因组测序联盟与Celera 公司联合发布了“人类基因组工作草图”(work draft )

? 2.2.4 中国承担的人类基因组计划

?1999年我国终于争取到了人类基因组计划的国际合作任务,即3号染色体上的一小段,约占总体的1%。

?主要负责人类3 号染色体短臂从D3S3610 至端粒的30Mb 区域上3000 万个碱基对序列的测定分析。

1%比起99%来微乎其微,但是对于我国来说意义非常重大

在经费投入方面,中国仅仅用500万美元的投入而参与到该项国际计划,从而分享了其他参与国家已经投入了50亿取得的成果。

在时间周期上,我国仅用6个月的时间赶上了其他国家积累10年的科学探索经历。 在政治角度上,我国参与该项目计划改变了国际热呢里基因组研究的格局,使作为第三世界成员国的中国理所当然地分享了全部的成果、数据、资源和技术,拥有了发言权,为第三世界国家建立了信心和榜样。

在科学研究方面,通过参与该项计划,建立了中国自己的,接近世界水平的基因组研究实力,有可能与跨国集团企业相抗争。

?通过参与这项计划不仅提升本国的政治威信,还提高了我国生命科学领域的科研能力,并为我国水稻基因组计划的完成奠定了坚实基础。

? 2.2.5 其他生物基因组研究进展

?原核生物基因组计划

?1995第一个独立生活的细菌(流感嗜血杆菌)全基团组序列测定完成

?1996 第一个自养生活的古生菌詹氏甲烷球菌基因组测定完成

?1997埃希氏大肠杆菌基因组测序完成

?到2008年7月1日为止,已经完成基因组测序的原核生物有723个,其中包括671种真细菌,21种古生菌。正在进行全基因组测序的原核生物有1107种,其中真细菌1072种,古生菌35种。

?真核生物基因组计划

?真菌

?1997 第一个真核生物(酿酒酵母)基因组测序完成

?到2008年7月1日为止,已经完成9种基因组序列测定,另外有76种真菌的基因组序列测定正在进行。

?原生动物

?到2008年7月1日为止,已经完成6种基因组序列测定,正在进行得有70种。

?植物

?到2008年7月1日为止,已经完成全基因组测序的植物有拟南芥和水稻2种,正在进行全基因组测序的植物品种有45个。

?2000年12月TIGR 基因组研究所(The Institute for Genomic Research,简称TIG R)联合多个基因组研究中共同完成了模式植物-——拟南芥的全基因组序列测定。?2002年12月18日,中国、日本、美国等把多个国家和地区的研究机构共同完成了全世界重要农作物品种——水稻的全基因组序列测定工作。

?动物

?到2008年7月1日为止,已经完成全基因组测序的动物有秀丽隐杆线虫、黑腹果蝇、人类和家鼠等4种,正在进行全基因组测序个有195种动物。

? 2.2.6 基因组计划的局限

?即使HGP能在2001年提前完成,也未能表明人类自身基因组的所有基因间序列完全确定。

?基因组计划即使已经确定某个生物基因组内的全部基因,也未能告诉人们这一生物体的哪些基因在何时何地以何种程度表达,而生命过程的精确机制很大程度上正是基于这类基因的精细调控。

?基因与其编码产物蛋白质的线性对应关系只是在于新生肽链而不是最终的功能蛋白质中。

?基因是遗传信息的源头,而功能性蛋白质是基因功能的执行体。

2.3 后基因组时代的生命科学

? 2.3.1 后基因组时代

?人类基因组计划的完成为人类提供了一本天书,在目前的科技水平上没有谁能完全读懂她。

?破译这本天书,破译生命的奥秘,就是人类基因组计划完成后的主要目标,这一阶段的研究工作称为后基因组研究。

?人类基因组计划的完成意味着后基因组时代的到来。后基因组时代的一个标志就是以基因组研究为基础产生了一系列新型的学科,这些新兴学科一般通称为后基因组时代的生命科学。

? 2.3.2 衍生基因组学

? 1 人类基因组新计划

?单体型图计划

?国际人类基因组单体型图计划(简称HapMap计划)是由多个国家(加拿大、中国、日本、尼日利亚、英国和美国)联合进行的项目。

?HapMap计划正式开始于2002年10月27-29日的HapMap计划第一次会议,预计进行3年。

?这一计划的目的在于建立一个免费向公众开放关于人类疾病(及疾病对药物反应)相关基因的数据库。

?利用HapMap数据库,研究人员通过比较不同个体的基因组序列来确定染色体上共有的变异区域。这将能够发现与人类健康、疾病以及对药物和环境因子的个体反应差异相关的基因。

?人类元基因组计划

?群落中的所有微生物基因组的总称为元基因组.

?不依赖分离培养、直接分析菌群中微生物基因组序列和功能的方法已形成一个新兴的学科---元基因组学(metagenomics)

?对于人体而言,肠道菌群“元基因组”就可以被看作是左右人类健康的“第二个基因组”。

?“人类元基因组” (Human Metagenome ) 指的是人体内共生的菌群基因组的总和,包括肠道、口腔、呼吸道、生殖道等处菌群。

?人类元基因组计划的目标是把人体内共生菌群的基因组序列信息都测定出来,而且还要研究与人体发育和健康有关的基因功能。

?该计划可能发现超过100万个新基因,其工作量至少相当于10 个人类基因组计划。?该计划完成后,将对阐明人类许多疾病的发生机理、研究新药物、控制药物毒性等产生巨大作用。

?癌基因组学

?是在基因组水平上研究癌发生发展过程中各种结构改变和功能改变规律的分支学科。

?目前研究的重点主要有:癌基因组不稳定与癌遗传不稳定性、癌易感基因的筛查和鉴定、基因表达谱与临床表型的关系、表基因效应、癌蛋白质组图谱变化以及通过基因组研究发现新的癌标记物等。

? 2 基因组学的分科

?比较基因组学和进化基因组学

?比较基因组学(Comparative Genomics)是基于基因组图谱和测序基础上,对已知的基因和基因组结构进行比较,来了解基因的功能、表达机理和物种进化的学科。?进化基因组学的研究主要在两个方面上进行。一个是以进化生物学的手段注释基因组,或从基因组水平试图理解生物学功能和生命现象。第二个是依据基因组数据研究基因组自身的进化过程和规律。

?生殖基因组学与营养基因组学

?生殖基因组学是研究和解决诸如生殖细胞的成熟与分化、精卵结合与受精、胚胎着床、生殖激素调控等生殖生物学基本问题的基因组研究分支学科。它对于生殖机理的阐明、人口控制、孕早期检测及出生缺陷的控制具有重要意义。

?营养基因组学是研究营养摄入和人类独特遗传密码的关系的科学,是生物技术、基因组学、医学和营养学等领域专家共同开创的新的健康研究领域。美国《食品物疗法协会杂志》预言,营养基因组学是在人类基因组学基础上崛起的下一个技术领域的商业前沿。

?药物基因组学和化学基因组学

?药物基因组学使用运用最新生物技术与知识,大规模系统地从整个基因组层面去研究不同个体的基因差异与药物效应的关联,侧重于了解有重要功能意义和控制药物代谢与处置的多态性基因,以求探明药理学作用的分子机制以及各种疾病致病的遗传学机理,从而达到精确指导药物开发的目的。

?化学基因组学技术整合了组合化学、基因组学、分子生物学、药物学等领域的相关技术,采用具有生物活性的化学小分子配体作为探针,研究与人类疾病密切相关的基因、蛋白的生物功能。

?为新药开发提供具有高亲和特性的药物先导化合物,加快制药工业的快速发展. ?环境基因组学

?是研究与环境因素相关疾病的遗传密感性,寻找对环境因素损伤易感的基因。区别易感人群,研究易感性基因产物及其对环境暴露的遗传性反应的分子机理。? 2.3.3 系统生物学

?系统生物学由美国科学院院士Leroy Hood 为代表的科学家1999年提出。

?系统生物学是系统论与生物学在功能基因组时代背景下的结合,以生物系统内所有组成成分(基因、mRNA、蛋白质等)及其相互关系为对象,通过大规模动力学分析、抽象出生物系统的设计原理和运行规律。

?系统生物学的主要技术平台有基因组学、转录组学、蛋白质组学、代谢组学、相互作用组学和表型组学等平台,这些高通量的组学实验平台构成了系统生物学这个大科学工程。

?转录组学

?转录组是指细胞、组织或个体所有mRNA的总和,以转录组为对象,开展研究就是转录组学。

?蛋白质组学

?是研究基因组所表达的所有相应的蛋白质的学科。

?代谢组学和代谢物组学

?代谢组是指用来表示生物体代谢物整体。代谢组分析能够提供有关细胞代谢和调控的信息。

?代谢物组学是对一个生物系统的细胞在给定时间和给定条件下所用小分子代谢物质的定量分析研究。

?细胞组学

?细胞组学把基因到蛋白质的整个生命过程中发生变化的信息集成到细胞的结构与功能,以及细胞间相互作用的关系上,从而进行关于细胞生命活动的全方位研究,如细胞的新陈代谢、增殖分化和衰老死亡等的研究。

? 2.3.4 生物信息学

?以核酸、蛋白质等生物大分子数据库为主要对象,以数学、信息学、计算机科学为主要手段,以计算机硬件、软件和计算机网络为主要工具,对浩如烟海的原始数据进行存储、管理、注释、加工,使之成为具有明确生物意义的生物信息。?通过对生物信息的查询、搜索、比较、分析,从中获取基因编码、基因调控、核酸和蛋白质结构功能及其相互关系等理性知识。在大量信息和知识的基础上,探索生命起源、生物进化以及细胞、器官和个体的发生、发育、病变、衰亡等生命科学中重大问题,搞清它们的基本规律和时空联系,建立" 生物学周期表"。?生物信息学的研究内容主要包括基因组序列装配、基因识别、基因进化、mRNA 结构预测、基因芯片设计、蛋白质系列分析、蛋白质结构预测、蛋白质折叠研究、转录调控机制和蛋白质芯片设计等。

基因组主要网站

思考题

1. 基因的本质是什么?你是如何理解基因的?

2. 原核生物基因组和真核生物基因组有什么异同点?

3. 生物体基因组信息具有什么重要内涵和应用前景?

4. 人类基因组计划的研究内容是什么?

5. 结合你自己的专业,谈谈对后基因组时代生命科学的发展前景。

基因组考研试题及答案解析(华东师范大学)

第一章基因组学 1、学习基因组学所面临的挑战和意义? 全面鉴定人类基因组所编码的结构和功能成分;发展对人类基因组的可遗传变异的详细理解;发展基于基因组学的方法来预测疾病的敏感性和药物反应,疾病的早期检验,以及疾病的分子分类;应用新的基因和代谢通路的知识开发有效的、新的疾病治疗方法发展;理解物种间的进化变异及其机制;关键农作物基因的克隆和功能验证;基于基因组的工具来提高农作物产量,解决世界粮食危机及全球温饱问题。 2、DNA作为遗传物质的优点? 信息量大,集成度高;碱基互补配对,保证精确复制;核糖2’碳位脱氧,在水溶液中稳定 性好;以T取代U,没有C脱氨变U的危险。 3、证明DNA双螺旋的证据? 各种生物物理证据;X射线衍射图谱;碱基比例;模型构建。 4、DNA、RNA的两个重要化学差异有哪些? 碱基组成;链数。 5、原核、真核生物基因组的不同点? 原核生物:基因组为环状双链DNA分子;只有一个复制起始点;具有操纵子结构:指数个功能上相关的基因串联在一起,连同上游的调控区和下游的转录终止信号构成基因的表达单位:一般无重叠基因;基因是连续的,无内含子;编码区在基因组中的比例;基因组中重复 序列很少;具有编码同工酶的基因(isogene):同工酶是指具有相同催化功能而化学结构不 同的酶,它受一个或几个基因座等位基因;分子中有多功能识别区域复制、转录起始区复制、转录终止区 真核生物:体细胞: 两套基因组(二倍体细胞)性细胞: 一套基因组(单倍体细胞);基因组结构复杂,数目庞大, 多个复制起始点;mRNA为单顺反子:真核基因转录产物为单顺反子,即一种基因编码一种多肽链或RNA链,每个基因转录有各自的调节元件;含大量重复 序列;非编码序列占90%以上;基因间有间隔区(spacer DNA),基因为断裂基因(split gene) 即内含子,外显子;功能相关的基因串联在一起形成基因家族 7、真核生物染色体三大要素及功能? 着丝粒:控制细胞分裂时染色体的取向和移动;端粒:防止染色体末端粘连,保证DNA长度稳定;复制原点:起始DNA复制。 8、染色体末端的端粒为什么很重要? 维持染色体结构的完整性,防止染色体被核酸酶降解及染色体间相互融和;防止染色体结构基因在复制时丢失,解决了末端复制的难题。 9、人类基因组中存在哪些类型的重复DNA? 串联重复基因: 6、简述DNA组成基因的两个重要实验? 第二章基因组的复制 1、在Meselson-Stahl的实验前,我们不知道DNA复制是“弥散型”“半保留型”或“全保留型”,描述经几种不同方式复制,子代分子DNA中DNA的区别? 2、什么是半不连续复制模型? 前导链(leading strand):以5’-3’方向连续合成的DNA 链 滞后链(lagging strand):总体上沿着3’到5’方向延伸,但以小片段形式(5¢-3¢)不连续合成,最后共价连接起来 3、为什么需要RNA引物来引发DNA复制呢? (1)RNA引物可以提供3’-OH末端作合成新DNA链起点。

第八章分子生物学常用技术的原理及其应用及人类基因组学

第八章分子生物学常用技术的原理及其应用及人类基因组学 测试题 一、名词解释 1.分子杂交 2.Southernblotting 3.Northernblotting 4.Westernblotting 5.dotblotting 6.DNA芯片技术 7.PCR 8.功能性克隆 9.转基因技术 二、填空题 1.Southernblotting用于研究、Northernblotting用于研究,Westernblotting用于研究。 2.PCR的基本反应步骤包括、和三步。 3.在PCR反应体系中,除了DNA模板外,还需加入、、和。 4.Sange法测序的基本步骤包括、、和。 5.目前克隆致病相关基因的主要策略有、、。 6.血友病第Ⅷ因子基因的首次克隆成功所采用的克隆策略是,而DMD致病基因的克隆所采用的克隆策略是。 三、选择题 A型题 1.经电泳分离后将RNA转移到硝酸纤维素(NC)膜上的技术是: A.SouthernblottingB.Northernblotting

C.WesternblottingD.dotblotting E.insituhybridization 2.不经电泳分离直接将样品点在NC膜上的技术是 A.SouthernblottingB.Northernblotting C.WesternblottingD.Dotblotting E.insituhybridization 3.经电泳分离后将蛋白质转移到NC膜上的技术是 A.SouthernblottingB.Northernblotting C.WesternblottingD.dotblotting E.insituhybridization 4.经电泳后将DNA转移至NC膜上的技术是A.SouthernblottingB.Northernblotting C.WesternblottingD.Easternblotting E.insituhybridization 5.PCR的特点不包括 A.时间短,只需数小时B.扩增产物量大 C.只需微量模板D.用途非常广泛 E.底物必须标记 6.用于PCR的DNA聚合酶必须 A.耐热B.耐高压C.耐酸D.耐碱E.耐低温7.PCR反应过程中,模板DNA变性所需温度一般是A.95?CB.85?CC.75?CD.65?CE.55?C 8.PCR反应过程中,退火温度一般是 A.72?CB.85?CC.75?CD.65?CE.55?C 9.PCR反应过程中,引物延伸所需温度一般是A.95?CB.82?CC.72?CD.62?CE.55?C

第四章 基因与基因组学(答案)

第四章基因与基因组学(答案) 一、选择题 (一)单项选择题 1.关于DNA分子复制过程的特点,下列哪项是错误的? A.亲代DNA分子双股链拆开,形成两条模板链 B.新合成的子链和模板链的碱基互补配对 C.复制后新形成的两条子代DNA分子的碱基顺序与亲代的DNA分子完全相同 D. 以ATP、UTP、CTP、GTP和TDP为合成原料 E.半不连续复制 *2.建立DNA双螺旋结构模型的是: A.Mendel B.Morgan C.Hooke D.Watson and Crick E.Sthleiden and Schwann *3.下列哪个不属于基因的功能? A.携带遗传信息 B.传递遗传信息 C.决定性状 D.自我复制 E.基因突变 4.DNA分子中核苷酸顺序的变化可构成突变,突变的机制一般不包括: A.颠换 B.内复制 C.转换 D.碱基缺失或插入 E.不等交换 5.下列哪一种结构与割(断)裂基因的组成和功能的关系最小? A.外显子 B.内含子 C.TATA框 D.冈崎片段 E.倒位重复顺序 *6.在一段DNA片段中发生何种变动,可引起移码突变? A.碱基的转换 B.碱基的颠换 C.不等交换 D.一个碱基对的插入或缺失 E.3个或3的倍数的碱基对插入或缺失 7.从转录起始点到转录终止点之间的DNA片段称为一个: A.基因 B.转录单位 C.原初转录本 D.核内异质RNA E.操纵子 8.在DNA复制过程中所需要的引物是; A.DNA B.RNA C.tRNA D.mRNA E.rRNA 9.下列哪一项不是DNA自我复制所必需的条件? A.解旋酶 B.DNA多聚酶 C.RNA引物 D. ATP、GTP、CTP和TTP及能量 E.限制性内切酶 10.引起DNA形成胸腺嘧啶二聚体的因素是 A.羟胺 B.亚硝酸 C.5-溴尿嘧啶 D.吖啶类 E.紫外线 11.引起DNA发生移码突变的因素是 A.焦宁类 B.羟胺 C.甲醛 D.亚硝酸 E.5-溴尿嘧啶 12.引起DNA分子断裂而导致DNA片段重排的因素 A.紫外线 B.电离辐射 C.焦宁类 D.亚硝酸 E.甲醛 13.可以引起DNA上核苷酸烷化并导致复制时错误配对的因素 A.紫外线 B.电离辐射 C.焦宁类 D.亚硝酸 E.甲醛 14.诱导DNA分子中核苷酸脱氨基的因素 A.紫外线 B.电离辐射 C.焦宁类 D.亚硝酸 E.甲醛 15.由脱氧三核苷酸串联重复扩增而引起疾病的突变为 A.移码突变 B.动态突变 C.片段突变 D.转换 E.颠换 16.在突变点后所有密码子发生移位的突变为 A.移码突变 B.动态突变 C.片段突变 D.转换 E.颠换 *17.异类碱基之间发生替换的突变为 A.移码突变 B.动态突变 C.片段突变 D.转换 E.颠换 18.染色体结构畸变属于 A.移码突变 B.动态突变 C.片段突变 D.转换 E.颠换 *19.由于突变使编码密码子形成终止密码,此突变为 A.错义突变 B.无义突变 C.终止密码突变 D.移码突变 E.同义突变 *20.不改变氨基酸编码的基因突变为 A.同义突变 B.错义突变 C.无义突变 D.终止密码突变 E.移码突变 21.可以通过分子构象改变而导致与不同碱基配对的化学物质为 A.羟胺 B.亚硝酸 C.烷化剂 D.5-溴尿嘧啶 E.焦宁类 *22.属于转换的碱基替换为 A.A和C B.A和T C.T和C D.G和T E.G和C *23.属于颠换的碱基替换为 A.G和T B.A和G C.T和C D.C和U E.T和U (二)多项选择题

基因组学重点整理

生物五界:动物、植物、真菌、原生生物和原核生物;生物三界:真细菌、古细菌、真核生物 具有催化活性的RNA分子称为核酶(ribozyme)核酶催化的生化反应有:自我剪接、催化切断其它RNA、合成多肽键、催化核苷酸的合成 新基因的产生:基因与基因组加倍1)整个基因组加倍;2)单条或部分染色体加倍;3)单个或成群基因加倍。DNA水平转移:原核生物中的DNA水平转移可通过接合转移,噬菌体转染,外源DNA的摄取等不同途径发生,水平转移的基因大多为非必须基因。动物中由于种间隔离不易进行种间杂交,但其主要来源于真核细胞与原核细胞的内共生。动物种间基因转移主要集中在逆转录病毒及其转座成分。 外显子洗牌与蛋白质创新:产生全新功能蛋白质的方式有二种:功能域加倍,功能域或外显子洗牌 基因冗余:一条染色体上出现一个基因的很多复份(复本)当人们分离到某一新基因时,为了鉴定其生物学功能,常常使其失活,然后观察它们对表型的影响。许多场合,由于第二个重复的功能基因可取代失活的基因而使突变型表型保持正常。这意味着,基因组中有冗余基因存在。看家基因很少重复,它们之间必需保持剂量平衡,因此重复的拷贝很快被淘汰。与个体发育调控相关的基因表达为转录因子,具有多功能域的结构。这类基因重复拷贝变异可使其获得不同的表达控制模式,促使细胞的分化与多样性的产生,并导致复杂形态的建成,具有许多冗余基因。 非编码序列扩张方式:滑序复制、转座因子 模式生物海胆、果蝇、斑马鱼、线虫、蟾蜍、小鼠、酵母、水稻、拟南芥等。模式生物基因组中G+C%含量高, 同时CpG 岛的比例也高。进化程度越高, G+C 含量和CpG 岛的比例就比较低 如果基因之间不存在重叠顺序,也无基因内基因(gene-within-gene),那么ORF阅读出现差错的可能只会发生在非编码区。细菌基因组中缺少内含子,非编码序列仅占11%, 对阅读框的排查干扰较少。细菌基因组的ORF阅读相对比较简单,错误的机率较少。高等真核生物DNA的ORF阅读比较复杂:基因间存在大量非编码序列(人类占70%);绝大多数基因内含有非编码的内含子。高等真核生物多数外显子的长度少于100个密码子 内含子和外显子序列上的差异:内含子的碱基代换很少受自然选择的压力,保留了较多突变。由于碱基突变趋势大多为C-T,故A/T的含量内含子高于外显子。由于终止密码子为TAA\TAG\TGA,如果以内含子作为编码序列,3种读码框有很高比例的终止密码子。 基因注释程序编写的依据:1)信号指令,包括起始密码子,终止密码子,终止信号,剪接受体位和供体位,多聚嘧啶序列,分支点保守序列2)内容指令,密码子偏好,内含子和外显子长短 基因功能的检测:基因失活、基因过表达、RNAi干涉 双链DNA的测序可从一端开始,亦可从两端进行,前者称单向测序,后者称双向测序。 要获得大于50 kb的DNA限制性片段必需采用稀有切点限制酶。 酵母人工染色体(YAC)1)着丝粒在细胞分裂时负责染色体均等分配。2)端粒位于染色体端部的特异DNA序列,保持人工染色体的稳定性3)自主复制起始点(ARS)在细胞中启动染色体的复制 合格的STS要满足2个条件:它应是一段序列已知的片段,可据此设计PCR反应来检测不同的DNA片段中是否存在这一顺序;STS必需在染色体上有独一无二的位置。如果某一STS在基因组中多个位点出现,那么由此得出的作图数据将是含混不清的。 遗传图绘制主要依据由孟德尔描述的遗传学原理,第一条定律为等位基因随机分离,第二条定律为非等位基因自由组合,显隐性规律/不完全显性、共显性、连锁 衡量遗传图谱的水平覆盖程度饱和程度 基因类型:transcribed, translatable gene (蛋白基因) ;transcribed but non-translatable gene ( RNA基因)Non- transcribed, non-translatablegene ( promoter, operator ) rRNA基因,tRNA基因, scRNA基因, snRNA基因, snoRNA基因, microRNA基因 基因组(genome):生物所具有的携带遗传信息的遗传物质总和。 基因组学(genomic):用于概括涉及基因作图、测序和整个基因功能分析的遗传学分支。 染色体组(chromosome set):不同真核生物核基因组均由一定数目的染色体组成,单倍体细胞所含有的全套染色体。 比较基因组学(comparative genomics):比较基因组学是基因组学与生物信息学的一个重要分支。通过模式生物基因组与人类基因组之间的比较与鉴别,为分离重要的候选基因,预测新的基因功能,研究生物进化提供依据。(目标)

基因组学答案

基因组学答案 名词解释: 1基因组:生物的整套染色体所含有的全部DNA序列 2物理作图;采用分子生物学技术直接将DNA标记,基因或克隆标定在基因组的实际位置所构建的位置图,物理图的距离依作图方法而异,辐射杂种作图的计算单位为厘镭(cR),限制性片段作图与克隆作图的图距单位为DNA的分子长度,即碱基对 3单核苷酸多态性:基因组中单个核苷酸的突变称为点突变 4蛋白质组:基因组表达的最终结果是一组蛋白质 5开放阅读框:所有编码蛋白质的基因都含有开放读框,它们由一系列5指令氨基酸的密码子组成 6兼性异染色质:细胞中非持久性的异染色质,仅在某些细胞或细胞的某一阶段出现 7副突变:指在杂合子中某一等位基因影响同一座位上另一等位基因的表达 8表观遗传:不涉及DNA序列的编译,但基因的表达模式发生了可遗传的改变,并能通过有丝分裂和减数分裂将改变的基因表达模式传递给子细胞或下一代的过程 9染色质重建:染色质由收缩状态向伸展开放状态的转变 10基因组印记:印记基因的表达取决于它是在父源染色体上还是在母源染色体上,来自父源和母源的印记基因有所不同 1C值;指的是一个单倍体基因组中DNA的总量 2限制性片段长度多态性:由于同源染色体同一区段DNA序列的差异,当用限制酶处理时,可产生产生长度不同的限制性片段。3微卫星序列:其重复单位为1-6个核苷酸,由10-50个重复单位串联组成 4遗传作图:采用遗传学分析方法将基因或其它DNA分子标记标定在染色体上构建连锁图称之为遗传连锁图 5基因等高线:指连续分布的具有相似碱基组成的DNA片段,她们在基因组中成片相嵌排列 6组成性异染色质:这是所有细胞中均有的一种持久性的结构,这些染色质不含任何基因,总是保持紧密的组成状态 7基因组:生物的整套染色体所含有的全部DNA序列 8染色体重排:涉及染色体不同区段相对位置的重新排列,是基因组进化的重要途径之一 9转录物组:基因组在整个生命过程中所表达的全部转录产物的总和 10假基因:指来源于功能基因但已使其活性的DNA序列,有沉默的假设基因,也有可转录的假基因 基因组学简答题: 1生物基因中有哪些异常结构基因? 重叠基因、基因内基因、反义基因 2有哪些DNA分子标记? 限制性片段长度多态性、简单序列长度多态性、单核苷 酸多态性 3miRNA的生物学功能有哪些? 1在mRNA翻译起始后干扰翻译的继续进行2在翻译的起始阶段阻止翻译起始复合物的组装3促使mRNA降解4遗传密码有什么特点? 通用性、兼并性、摇摆、偏爱、偏离(课本230) 5真核生物DNA复制有哪些特点? 1互补单链的合成以5’-3’极性方式进行 2DNA两条分子链的合成在时间上和空间上的非对称性的 3RNA其实合成不需要引物,但DNA起始复制需要引物。 4细胞中新链DNA的合成以碱基互补方式进行 6简述高等真核生物基因组序列组成。 高度重复序列,中度重复序列,单一序列,基因主要位于单一序列 7简述细胞器基因组起源的内共生理论 细胞器中基因表达的过程与细菌的情况相似。细胞器基因与细菌基因序列的相似性高于同源核基因。因此内共生学说认为线粒体和叶绿体是游离细菌的化身,他们曾于远古的真核细胞结合,并最终定居在真核细胞中。 8基因租的cpG岛有什么特点? 1)已知的大多数的CPG岛都位于管家基因和大部分阻止专一性表达基因的5’侧翼区以及基因的第一个的外显子区。2)CpG 岛中双碱基CpG均为甲基化。而整个基因组中约60%-80%的CpG 军备甲基化。 9比较遗传图与物理图的组成可以得到什么启示? 1)重组率随让染色体长度的增加而递减,人类的21号染色体的长臂的重组率为1Cm/Mb,短臂侧围2Cm/mb;2)大多数染色体近着丝粒区重组率受到抑制,远着丝粒区重组率趋向增加;3)染色体连锁不平衡的碱基组成和基因组成有明显的特征 10生物进化历程中,新基因有哪些产生方式? 1基因加倍后的趋异2外显子或结构域洗牌3逆转录及其随后的趋异或重排4外源基因水平转移5基因裂变和融合6非编码序列转变为编码序列 论述题: 1叙述真核生物与原核生物基因组的差异。 1)真核基因组指一个五中的单倍体染色体组所含有的整套基因,原核一般只有一个环状DNA分子,其上所含有的基因为一个基因组:2)原核的染色体分子量较小,基因组含有大量单一顺序,真核基因组存在大量非编码序列:3)原核还含有各种质粒和转座因子:4)真核的基因组都是由DNA序列组成,原核基因组还可能由RNA组成 2概述基因组的研究内容 1)以原基因测序为目标的结构基因学;2)以基因功能鉴定为目标的功能基因学 3有哪些试验方法可以研究基因功能 剔除,RNA干扰,过量表达

基因组学复习资料整理

基因组学 1. 简述基因组的概念和其对生命科学的影响。 基因组:指一个物种的全套染色体和基因。广义的基因组:核基因组,线粒体基因组,叶绿体基因组等。 基因组计划对生命科学的影响: ①研究策略的高通量,彻底认识生命规律:基因组研究高通量,研究手段和 研究策略的更新,加强了生命科学研究的分工与协作,从不同层次深入研究生命现象。 ②促进了相关学科的发展:分子生物学遗传学生物信息学生物化学细胞生 物学生理学表观遗传学等 ③物种的起源与进化: Ⅰ.重要基因的发掘、分离和利用:遗传疾病相关基因,控制衰老的基因,工业价值的细菌基因,重要农艺性状基因等。 Ⅱ.充分认识生命现象:基因的表达、调控,基因间的相互作用,不同物种基因组的比较研究,揭示基因组序列的共性,探讨物种的起源和进化。 ④伦理学法律问题:伦理问题,知识产权问题,法律问题,社会保险问题。 2. Ac/Ds转座因子 Ac因子有4563bp,它的大部分序列编码了一个由5个外显子组成的转座酶基因,成熟的mRNA有3500bp。该因子本身的两边为11bp的反向重复末端(IR),发生错位酶切的靶序列长度8bp。Ds因子较Ac因子短,它是由Ac因子转座酶基因发生缺失而形成的。不同的Ds因子的长度差异由Ac因子发生不同缺失所致。 Ac/Ds因子转座引起的插入突变方式:玉米Bz基因是使糊粉层表现古铜色的基因,当Ac/Ds转座插入到Bz基因座后,糊粉层无色。当Ac/Ds因子在籽粒发育过程,部分细胞发生转座,使Bz靶基因发生回复突变,从而形成斑点。 Ac/Ds两因子系统遗传特点: 1)Ac具有活化周期效应,有活性的Ac+因子被甲基化修饰后会形成无活性的ac-因子,反之无活性的ac-因子去甲基化成有活性的Ac+因子。 2)Ac与Ds因子有时表现连锁遗传但更多表现独立遗传。 3)Ac对Ds的控制具有负剂量效应。 4)Ac/Ds可引发靶基因表现为插入钝化、活性改变、表达水平改变和缺失突变等。 5)Ds的结构不同,插入同一靶基因的位点可能不同,形成的易变基因的表型也不同。(分子生物学79-81) 3. 正向遗传与反向遗传 正向遗传学研究指从突变体开始的遗传学研究,关心的问题是突变体表型的变化是由哪一个基因功能丧失后引起。 反向遗传学研究指从基因序列开始的遗传学研究,关心的问题是基因功能丧失后会使植物的表型产生什么样的变化。

系统生物学综述doc

系统生物学:整合各种组学的信息和方法 姓名:王玉锋 学号:061023050 20世纪生物学经历了由宏观到微观的发展过程,由形态、表型的描述逐步分解、细化到生物体的各种分子及其功能的研究。70年代出现的基因工程技术极大地加速和扩展了分子生物学的发展;90年代启动的人类基因组计划是生命科学史上第一个大科学工程,开始了对生物全面、系统研究的探索;2003年已完成了人和各种模式生物体基因组的测序,第一次揭示了人类的生命密码。人类基因组计划和随后发展的各种组学技术把生物学带入了系统科学的时代。 系统生物学是在细胞、组织、器官和生物体整体水平研究结构和功能各异的各种分子及其相互作用,并通过计算生物学来定量描述和预测生物功能、表型和行为。也就是说,系统生物学是以整体性研究为特征的一种大科学。系统生物学将在基因组序列的基础上完成由生命密码到生命过程的研究,这是一个逐步整合的过程,由生物体内各种分子的鉴别及其相互作用的研究到途径、网络、模块,最终完成整个生命活动的路线图。 借助于基因组和转录组的序列、功能基因组和蛋白质组的方法,可以绘制特定有机体的转录组图、蛋白质组图、相互作用图谱、表型组图及所有转录物和蛋白的定位图。这种整合的组学信息可以帮助我们消除单种组学研究方法中带来的假阳性和假阴性,给出基因产物及其相互作用和关系的更好的功能性注释,有利于相关的生物性假设的生成。基于这些整合数据的计算学的方法可以模拟生物过程的进程。系统生物学可以被看作是个种组学方法的整合、数据的整合、生物的系统化和模型化。 系统生物学的特点: 和以往系统科学研究复杂系统相比,系统生物学的研究将更为复杂和困难。非生物的复杂系统一般由相对简单的元件组合产生复杂的功能和行为,而生物体是由大量结构和功能不同的元件组成的复杂系统,并由这些元件选择性和非线性的相互作用产生复杂的功能和行为。因此,我们要建立多层次的组学技术平台,研究和鉴别生物体内所有分子,研究其功能和相互作用,在各种技术平台产生的大量数据的基础上,通过计算生物学用数学语言定量描述和预测生物学功能和生物体表型和行为。 系统生物学也将使生物学研究发生结构性的变化。长期以来,生物学研究是在规模较小的实验室进行的,系统生物学研究将由各种组学组成的大科学工程和小型生物学实验室有机结合实施的。系统生物学研究也将在更大范围和更高层次进行学科交叉和国际合作,如人类基因组计划、人类单体型图谱计划、人类表观基因组学计划等。 系统生物学的技术平台: 系统生物学的主要技术平台为基因组学、转录组学、蛋白质组学、代谢组学、相互作用组学和表型组学等。基因组学、转录组学、蛋白质组学、代谢组学分别在DNA、mRNA、蛋白质和代谢产物水平检测和鉴别各种分子并研究其功能。相互作用组学系统研究各种分子间的相互作用,发现和鉴别分子机器、途径和网络,构建类似集成电路的生物学模块,并在研究模块的相互作用基础上绘制生物体的相互作用图谱。表型组学是生物体基因型和表型的桥梁,目前还仅在细胞水平开展表型组学研究。 计算生物学可分为知识发现和模拟分析两部分。知识发现也称为数据开采,是从系统生物学各个组学实验平台产生的大量数据和信息中发现隐含在里面的规律并形成假设。模拟分析是用计算机验证所形成的假设,并对体内、外的生物学实验进行预测,最终形成可用于各种生物学研究和预测的虚拟系统。 系统生物学的工作流程: 系统生物学的基本工作流程有这样四个阶段。首先是对选定的某一生物系统的所有组分进行了解和确定,描绘出该系统的结构,包括基因相互作用网络和代谢途径,以及细胞内和细胞间的作用机理,以此构造出一个初步的系统模型。第二步是系统地改变被研究对象的内部组成成分(如基因突变)或外部生长条件,然后观测在这些情况下系统组分或结构

基因组学试题

基因组学试题 1、什么是基因组(5分)?什么是转录组(5份)?说明基因组 合的关系和异同(10分)基因组是生物体(细胞或病毒)中所有的DNA的总和, 包括所有的基因和基因间区域,包 括染色体之外的遗传物质,如线粒体、叶绿体、质粒等。 基因组:物种内恒定(♀/♂),生物体或细胞内恒定,没有时空变化(?)。事实上有特例,1、盲鳗(Hugfish) ,性细胞和体细胞DNA 量差异; 2、部分昆虫,性细胞和体细胞染色体数目差异; 3、动物雌雄个体差异 转录组: ?生物体、组织、细胞不同生长发育阶段的转录产物不同。 ?生物体不同组织、同一组织不同细胞的转录产物不同。 ?生物体、组织、细胞不同环境、不同生理状态下的转录产物 不同。 ?转录产物中包含大量不翻译蛋白的RNA,如rRNA; sRNA 2、简述原核生物基因组和真核生物基因组的特点和差异(10分)原核生物基因组 ?一条环状DNA; ?只有一个复制起始点; ?有操纵子(Operon)结构

1.结构基因为多顺反子,若干个功能相关的功能基因串联在一起, 手统一调控区调控。 2.数个操纵子还可以受同一个调节基因(regulaterygene),即调节 子(regulon)调控。 ?结构基因无重叠现象,基因组中任何一段DNA不会用于编码2种蛋白质 ?基因是连续的,无内含子,转录后不剪接; ?重复序列少,蛋白质基因一般为单拷贝基因,但编码rRNA的基因一般为多拷贝,有利于核糖体快速组装。 真核生物基因组 ?复杂的染色体结构,一般有多条染色体 ?每条染色体上有多个复制起始点; ?基因组中有大量的重复序列(轻度、中度、高度重复); ?基因是不连续的,有内含子,转录后经过剪接加工成成熟RNA;?有许多来源相同、结构相似、功能相关的基因组成的单一基因簇,或基因家族 ?有细胞器基因,真核生物除具有核基因外,还有存在于线粒体和叶绿体中基因,编码同功酶等。 3、什么是遗传图谱(5分)?遗传图谱在基因组研究中的意义 何在(15分)?采用遗传学分析方法将基因或其它DNA标记

麻省理工大学课件:系统微生物学11-基因组学I(笔记)

20.106J – Systems Microbiology Lecture 11 Prof. DeLong ?Chapter 15 – Brock Genomics o DNA sequencing technology – things have really changed. There’s a real race going on for who can develop the best technology Human genome project: only around 30,000 genes in the human code. The day is not at all far off when doctors will read people’s genomes to discover what their inherent risks are. The human genome project involved two main groups – one more commercially based (J. Craig Venter – Celera), and one more public, open source, with funding from NIH (Francis Collins – NHGRI). Also the Sanger Centre, Whitehead Institute… The human genome project drove innovation in biotechnology. Two major technological benefits: o Stimulated development of high throughput methods – the assembly line. It’s not just the individual with a pipette any more – it’s more like a factory approach (which matters for the social aspect of how science works). However, this might work back in the other direction as efficient machines develop… o Reliance on computational tools for data mining and visualization of biological information Biology is rapidly becoming informational science – bioinformatics and computational biology. DNA sequencing o Sanger’s technique Uses primer extension and DNA polymerase Dideoxynucleotides halt the replication at particular base pairs. Then you run for length on a slab gel, and you can tell which base pairs are at which locations, reading off the sequence and recording them manually. o Later people realized that you can use fluorescent labels instead of radiolabels. This meant that you didn’t have to deal with radioactivity It also meant that you could run them all in one lane. Instead of a slab gel, people use a thin tube, with a fluorescence detector automatically reading the wavelengths as they come out the other end. This method is fast and accurate

基因组学(结构基因组学和功能基因组学).

问:基因组学、转录组学、蛋白质组学、结构基因组学、功能基因组学、比较基因组学研究有哪些特点? 答:人类基因组计划完成后生物科学进入了人类后基因组时代,即大规模开展基因组生物学功能研究和应用研究的时代。在这个时代,生命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。以功能基因组学为代表的后基因组时代主要为利用基因组学提供的信息。 基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学(struc tural genomics和以基因功能鉴定为目标的功能基因组学(functional genomics。结构基因组学代表基因组分析的早期阶段,以建立生物体高分辨率遗传、物理和转录图谱为主。功能基因组学代表基因分析的新阶段,是利用结构基因组学提供的信息系统地研究基因功能,它以高通量、大规模实验方法以及统计与计算机分析为特征。 功能基因组学(functional genomics又往往被称为后基因组学(postgenomics,它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质的研究转向多个基因或蛋白质同时进行系统的研究。这是在基因组静态的碱基序列弄清楚之后转入基因组动态的生物学功能学研究。研究内容包括基因功能发现、基因表达分析及突变检测。 基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及mRNA差异显示等,但这些技术不能对基因进行全面系统的分析。新的技术应运而生,包括基因表达的系统分析,cDNA微阵列,DNA芯片等。鉴定基因功能最有效的方法是观察基因表达被阻断或增加后在细胞和整体水平所产生的表型变异,因此需要建立模式生物体。 功能基因组学

比较基因组学

比较基因组学 摘要:比较基因组学是在基因组图谱和测序的基础上, 利用某个基因组研究获得的信息推测其他原核生物、真核生物类群中的基因数目、位置、功能、表达机制和物种进化的学科。该学科在后基因组时代是一门重要的工具学科。通过不同物种间的基因组序列比较, 可以发现生物体中蕴涵的大量生物学信息,其发展及所取得的成果与序列的积累相同步, 尤其是人类全基因组序列的分析与比较使比较基因组学成为整个生物学领域最新、最重要、进展最快和影响最大的学科之一。 关键词:比较基因组学;同源性;单核苷酸多态性;拷贝数多态性 世界范围内的多物种基因组计划和各类测序工作已经形成了海量的序列数据资源,它们正在使基因组研究发生革命性变化,信息和新技术的迅速发展也表明:分子遗传革新将是今后几十年的发展方向。尤其是从整体上而不是仅仅从某个或少数几个基因入手来研究生物体基因组的机能,己经在短短几年迅速发展壮大起来,比较基因组学已成为解读海量基因组序列数据及其相关生物学含义的强有力工具。通过物种之间的一比较能够了解基因组的进化,从而加速对人类基因结构和功能的了解。为阐明基因表达机制提供重要线索。达到从根本上了解认识生命的起源,物种及个体差异的原因,疾病产生的机制以及长寿、衰老等困扰着人类的最基本的生命现象,最终解析生命奥秘。 比较基因组学是通过对不同物种的基因组数据进行比较分析,揭示彼此的相似性和差异性,以了解不同物种进化上的差异,综合这些信息能进一步帮助我们了解物种形成的机制、基因或基因组上非编码区的功能。 1、种间比较基因组学 比较基因组学的基础是相关生物的相似性,序列间有显著的相似性即意味着序列之间有同源关系。同源是指被比较的物种是由共同的祖先经过自然选择进化而来。同源又可分为两种:直系同源和旁系同源直系同源的序列因物种形成而被区分开,若一个基因原先存在于某个物种,而该物种分化为了两个物种,那么新物种中的基因是直系同源的;旁系同源的序列因基因繁殖而被区分开,若生物体中的某个基因被复制了,那么两个副本序列就是旁系同源的。直系同源体通常有相同或相似的功能,但旁系同源体则不一定:由于缺乏原始的自然选择的力量,一繁殖出的基因副本可以自由的变异并获得新的功能。所有现代物种都是由相关的物种演化而来,现代的每一个基因都是由其它基因演化而来的。每一个基因都可以在其相关物种中找到直系同源基因,大部分的基因都可以在同一物种中找到旁系同源基因。如果两个物种非常相近,它们的基因组相关性就越高,基因组会表现出同线性,即基因序列的部分或全部保守。这样就可以利用模式基因组之间编码顺序上和结构上的同源性,通过已知基因组作图信息定位另外基因组中的基因,从而揭示基因潜在的功能、阐明物种进化关系及基因组的内在结构。 此外比较基因组分析还扩展到对序列相似性的分析、基因位置的比较、基因编码区长度或外显子数的变异、基因组上非编码区的比例、进化关系较远的物种间高度保守区域的比较

基因组学技术与原理v2

第2代测序技术 共同点:1、首先也是将基因组DNA随机切割成小片段DNA分子,然后在体外给这些小片段分子的末端连接上接头制成文库,也可以使用配对标签(mate-paired tag)制成跨步文库(jumping libraries)。2、通过原位polon、微乳液PCR(emulsion PCR)或桥式PCR(bridge PCR)等方法获得测序模板。这些方法有一个共同点,那就是任何一个小片段DNA分子的PCR扩增产物都是在空间上聚集的:原位polony法和桥式PCR法中所有的产物都集中在平板的某处,在微乳液PCR法(emulsion PCR)中所有的产物都集中在微珠的表面。3、真正的测序反应本身和传统测序法一样,是由重复的聚合酶促反应和最后的荧光读取分析反应组 一、ABI SOLiD技术平台 SOLiD使用连接法测序获得基于“双碱基编码原理”的SOLiD颜色编码序列,随后的数据分析比较原始颜色序列与转换成颜色编码的参考序列,把SOLiD颜色序列定位到reference上,同时校正测序错误,并可结合原始颜色序列的质量信息发现潜在SNP位点。 (1) 测序实验流程: 1、文库制备:随机片段文库、末端配对文库 2、模板磁珠制备:油包水微型反应体系; DNA片段在磁珠上扩增 3、磁珠固定:磁珠随机固定在测序玻片表面;可增大每个测序玻片上的磁珠密度 4、边连接边测序:四色荧光标记寡核苷酸;边连接边测序 5、测序引物重置:每一个模板选用5个引物进行连接反应测序 (2) 技术特点: 高通量,SOLiD 4.0每个测序反应能够获得50G的数据量; 高准确性,每个DNA碱基检测2次,增加了序列读取的准确性; 高稳定性,测序时采用连接反应,有效地解决了多聚核苷酸序列难读取的问题; 系统中两个独立控制的流动池和条码标定技术运用可以在单个测序中做很多不同的样品。 (3)详细过程 1. SOLiD文库构建 使用SOLiD测序时,可根据实际需要,制备片段文库(fragment library)或末端配对文库(mate-paired library)。制备片段文库就是在短DNA片段(60~110 bp)两端加上SOLiD接头(P1、P2 adapter)。而制备末端配对文库,先通过DNA环化、Ecop15I酶切等步骤截取长DNA片段(600bp到10kb)两末端各25 bp进行连接,然后在该连接产物两端加上SOLiD接头。两种文库的最终产物都是两端分别带有P1、P2 adapter的DNA双链,插入片段及测序接头总长为120~180 bp。 2 油包水PCR 文库制备得到大量末端带P1、P2 adapter但内部插入序列不同的DNA双链模板。和普通PCR一样,油包水PCR 也是在水溶液进行反应,该水相含PCR所需试剂,DNA模板及可分别与P1、P2 adapter结合的P1、P2 PCR引物。但与普通PCR不同的是,P1引物固定在P1磁珠球形表面 (SOLiD将这种表面固定着大量P1引物的磁珠称为P1磁珠)。PCR反应过程中磁珠表面的P1引物可以和变性模板的P1 adapter负链结合,引导模板合成,这样一来,P1引物引导合成的DNA链也就被固定到P1磁珠表面了。 油包水PCR最大的特点是可以形成数目庞大的独立反应空间以进行DNA扩增。其关键技术是“注水到油”,基本过程是在PCR反应前,将包含PCR所有反应成分的水溶液注入到高速旋转的矿物油表面,水溶液瞬间形成无数个被矿物油包裹的小水滴。这些小水滴就构成了独立的PCR反应空间。理想状态下,每个小水滴只含一个DNA模板和一个P1磁珠,由于水相中的P2引物和磁珠表面的P1引物所介导的PCR反应,这个DNA模板的拷贝数量呈指数级增加,PCR反应结束后,P1磁珠表面就固定有拷贝数目巨大的同来源DNA模板扩增产物。 3. 含DNA模板P1磁珠的固定 SOLiD测序反应在SOLiD玻片表面进行。含有DNA模板的P1磁珠共价结合在SOLiD玻片表面。磁珠是SOLiD测序的最小单元。每个磁珠SOLiD测序后形成一条序列。 4. SOLiD双碱基编码原理及测序流程 SOLiD“双碱基编码原理”实质上是阐明了荧光探针的颜色类型与探针编码区碱基对的对应关系。SOLiD连接反应的底物是8碱基单链荧光探针混合物。连接反应中,这些探针按照碱基互补规则与单链DNA模板链配对。探针5’末端可分别标记“CY5,Texas Red,CY3,6-FAMTM”4种颜色的荧光染料,并且这四种颜色用数字“3,2,1,0”示

基因组学与蛋白质组学复习要点(答案)

一、名词: Gene 遗传学概念:基因是世代相传的,基因决定了遗传性状的表达,基因的颗粒性主要表现在世代相传的行为和功能表达上具有相对的独立性,基因呈直线排列在染色体上。 分子生物学概念:合成有功能的蛋白质或RNA所必需的全部DNA(部分RNA病毒除外),即一个基因不仅包括编码蛋白质或RNA的核酸序列,还应包括为保证转录所必需的调控序列。 genome 细胞或生物体中,一套完整单体的遗传物质的总和,即某物种单倍体的总DNA。对于二倍体高等生物来说,其配子的DNA总和即一组基因组,二倍体有两份同源基因组。 Protein 生物体中广泛存在的一类生物大分子,由核酸编码的α氨基酸之间通过α氨基和α羧基形成的肽键连接而成的肽链,经翻译后加工而生成的具有特定立体结构的、有活性的大分子。 Proteome (1)由一个基因组所表达的全部相应的蛋白质。(2)在一定条件下,存在于一个体系(包括细胞、亚细胞器、体液等)中的所有蛋白质。 exon 外显子(expressed region)是真核生物基因的一部分,它在剪接(Splicing)后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质 古细菌 定义1:常生活于热泉水、缺氧湖底、盐水湖等极端环境中的原核生物。具有一些独特的生化性质,如膜脂由醚键而不是酯键连接。在能量产生与新陈代谢方面与真细菌有许多相同之处,而复制、转录和翻译则更接近真核生物。古核生物与真核生物可能共有一个由真细菌的祖先歧化而来的共同祖先。所属学科:生物化学与分子生物学(一级学科);总论(二级学科)定义2:现今最古老的生物群,为地球原始大气缺氧时代生存下来的活化石。为单细胞生物,无真正的核,染色体含有组蛋白,RNA聚合酶组成比细菌的复杂,翻译时以甲硫氨酸为蛋白质合成的起始氨基酸,细胞壁中无肽聚糖,不同于真细菌,核糖体蛋白与真核细胞的类似。许多种类生活在极端严酷的环境中。与真核生物、原核生物并列构成现今生物三大进化谱系。 多聚酶链式反应(PCR) 多聚酶链式反应(PCR):一种体外扩增DNA的方法。PCR使用一种耐热的多聚酶,以及两个含有20个碱基的单链引物。经过高温变性将模板DNA分离成两条链,低温退火使得引物和一条模板单链结合,然后是中温延伸,反应液的游离核苷酸紧接着引物从5…端到3?端合成一条互补的新链。而新合成的DNA又可以继续进行上述循环,因此DNA的数目不断倍增。 基因芯片(DNA微阵列)

基因组编辑三大技术

基因组编辑三大技术:CRISPR、TALEN和ZFN[创新技巧] 摘要: 最近出现的新工具让研究人员能够在几乎任何物种中实现精确的修饰,有着核苷酸水平的精确度,也有着令人难以置信的速度。大部分是在特定的位置引入双链DNA断裂,然后由细胞进行修复。区别在于如何引入断裂,以及新序列靶定的难易程度。 在过去,如果你想在模式生物中进行复杂的基因组修饰,你几乎只能选择小鼠。 首先,你要设计一个打靶载体,将其引入小鼠胚胎干细胞,并将这些经过修饰的细胞注射到小鼠囊胚。接着是孕育、出生、筛选,等待所需的幼崽成长到性成熟,交配和杂交,之后是更多孕育、更多筛选,一直下去。 复杂的项目也许需要一年或更长时间才能完成。它几乎只对小鼠起作用。原因还不是很清楚,也许小鼠胚胎干细胞有着特别活跃的同源重组系统。大鼠和人类则不是这样。 不过好消息是,最近出现的新工具让研究人员能够在几乎任何物种中实现精确的修饰,有着核苷酸水平的精确度,也有着令人难以置信的速度。大部分是在特定的位置引入双链DNA 断裂,然后由细胞进行修复。区别在于如何引入断裂,以及新序列靶定的难易程度。 锌指核酸酶(ZFN) 第一个使用定制DNA核酸内切酶的基因组编辑策略就是锌指核酸酶(zinc-finger nucleases,简称ZFN)。 锌指蛋白是转录因子;每个指模块识别3-4个碱基的序列,将这些模块混合搭配,研究人员或多或少能靶定他们希望的任何序列。Sigma-Aldrich公司将ZFN技术商业化,推出CompoZr ZFN试剂平台。 ZFN是异源二聚体,其中每个亚基含有一个锌指结构域和一个FokI核酸内切酶结构域。FokI 结构域必须二聚化才有活性,确保必须存在两个相邻的DNA结合事件才能实现双链断裂,从而增加了目标特异性。 切割事件使得大部分基因组编辑技术得以实现。在双链断裂后,细胞试图修复它。最简单的方法是非同源末端接合(NHEJ),其中细胞基本上磨平断裂DNA的两端,再将其彼此拉近,这往往产生移码。另一种方法是同源定向修复(HDR)。细胞试图利用另一条染色体上对应的DNA序列作为模板来修复断裂。通过提供自己的模板,用户可促使系统在不经意间插入所需的序列。 ZFN技术由Sangamo生物科学公司所拥有,被用来开发治疗产品。不过,对于科研方面的应用,Sangamo则授权给了Sigma-Aldrich。

相关文档