文档库 最新最全的文档下载
当前位置:文档库 › 高中数学选修2-1圆锥曲线

高中数学选修2-1圆锥曲线

高中数学选修2-1圆锥曲线
高中数学选修2-1圆锥曲线

圆锥曲线

教学目标

1.通过用平面截圆锥面,经历从具体情境中抽象出椭圆、抛物线模型的过程,

掌握它们的定义,并能用数学符号或自然语言的描述。

2.通过用平面截圆锥面,感受、了解双曲线的定义。能用数学符号或自然语言

描述双曲线的定义。

教学重点、难点

重点:椭圆、抛物线、双曲线的定义。

难点:用数学符号或自然语言描述三种曲线的定义

教具

多媒体课件、实物投影仪

内容分析

本节课教材利用平面对圆锥面的不同截法,产生三种不同的圆锥曲线,得出椭圆、双曲线和抛物线的概念。这样既使学生经历概念的形成过程,更有利于从

整体上认识三种圆锥曲线的内在关系。根据问题的难易度及学生的认知水平,

要求学生掌握椭圆、抛物线的定义,对双曲线只要求了解其定义。这是建立在

学生的最近发展区上的形式化的过程,有利于培养学生的数学化能力,提高数

学素养。

学法指导

教学中向学生展示平面截圆锥面得到椭圆的过程,使学生加深对圆锥曲线的理解。对用Dandelin双球发现椭圆的特性(由此形成椭圆的定义),可直接给出

放进双球后的图形,再引导学生发现"到两切点距离之和为定值"的特性,这一内容让学生感知、认同即可,不必对探究、推理过程作过多研究。

教学过程设计

1.问题情境

我们知道,用一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线,当平面与圆锥面的轴垂直时,截得的图形是一个圆,试改变平面的位置,观察截得的图形的变化情况。提出问题:用平面去截圆锥面能得到哪些曲线?2.学生活动

学生讨论上述问题,通过观察,可以得到以下三种不同的曲线:

对于Dandelin双球理论只要让学生感知、认同即可。

3.建构数学

(1)圆锥曲线的定义

椭圆:平面内到两定点的距离和等于常数(大于)的点的轨迹叫做椭圆,两

个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

对于第二种情形,平面与圆锥曲线的截线由两支曲线构成。(类比椭圆的定义)双曲线:平面内到两定点,的距离的差的绝对值等于常数(小于)的点的轨迹叫做双曲线,两个定点,叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。

对于第三种情形,平面与圆锥曲线的截线是一条曲线构成。

抛物线:平面内到一个定点F和一条定直线L(F不在L上)的距离相等的点轨迹叫做抛物线,定点叫做抛物线的焦点,定直线L叫做抛物线的准线。

(2)圆锥曲线的定义式

上面的三个结论我们都可以用数学表达式来体现:设平面内的动点为M。

椭圆:动点M满足的式子:(2a> 的常数)

双曲线:动点M满足的式子:(0<2a< 的常数)

抛物线:动点M满足的式子: =d(d为动点M到直线L的距离)

我们可利用上面的三条关系式来判断动点M的轨迹是什么!

4.数学应用

例1、试用适当的方法作出以两个定点,为焦点的一个椭圆。

思考:在椭圆的定义中,如果这个常数小于或等于,动点的轨迹又如何呢?

例2、已知?ABC中,B(-3,0),C(3,0),且AB,BC,AC成等差数列。(1)求证:点A在一个椭圆上运动;(2)写出这个椭圆的焦点坐标。

略解:由AB,BC,AC成等差数列,可得2BC=AB+AC,即AB+AC=12>BC,由椭圆的定义可得点A在一个椭圆上运动,且以B、C为焦点。

例3、已知定点F和定直线l,F不在直线l上,动圆M过F且与直线l相切,求证:圆心M的轨迹是一条抛物线。

分析:欲证明轨迹为抛物线只需抓住抛物线的定义即可。

变题:已知定点F和定圆C,F在圆C外,动圆M过F且与圆C相切,

探究动圆的圆心M的轨迹是何曲线?

提示:相切须考虑外切和内切。

拓展:此处定点F也可改成定圆(但不宜在课堂上搞得过于复杂,可留作优生

课后思考)

课堂练习

1、已知?ABC中,BC长为6,周长为16,那么顶点A在怎样的曲线上运动?

2、设Q是圆上的动点,另有点A ,线段AQ的垂直平分线l交半径OQ于点P,当Q点在圆周上运动时,则点P的轨迹是何曲线?

5.回顾小结

(1)三种圆锥曲线的定义

(2)三种圆锥曲线的定义式

6.作业布置

(1)《一课三练》

(2)思考:课本第25页3、4

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

2019-2020年高中数学选修2-1圆锥曲线

2019-2020年高中数学选修2-1圆锥曲线 教学目标 (1)通过用平面截圆锥面,经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义; (2)通过用平面截圆锥面,感受、了解双曲线的定义; (3)能用数学符号或自然语言描述双曲线的定义. 教学重点,难点 (1)椭圆、抛物线、双曲线的定义; (2)用数学符号或自然语言描述三种曲线的定义. 教学过程 一.问题情境 1.情境: 我们知道,用一个平面截一个圆锥面,当平面经过圆锥面的顶点时,可得到两条相交直线,当平面与圆锥面的轴垂直时,截得的图形是一个圆,试改变平面的位置,观察截得的图形的变化情况。提出问题: 2.问题: 用平面去截圆锥面能得到哪些曲线?这些曲线具有哪些几何特征? 二.学生活动 学生讨论上述问题,通过观察,可以得到以下三种不同的曲线: 对于第一种情况,可在圆锥截面的两侧分别放置一球,使它们 都与截面相切(切点分别为,),且与圆锥面的侧面相切, 两球与圆锥面的侧面的公共点分别构成圆和圆. (图) 设点是平面与圆锥面的截线上任意一点,过M点作圆锥面的一条母 线,分别交圆,圆与,两点,则和,和分别是上下两球的切线.因 为过球外一点作球的切线长相等,所以,, 所以 12 MF MF MP MQ PQ +=+=. 因为,而,是常数,所以是一个常数.即截线上任意一点到两个定 点,的距离的和等于常数. 可直接给出放进双球后的图形,再由学生发现"到感知、认同即可. 三.建构数学 1.椭圆的定义: 平面内到两定点,的距离和等于常数(大于)的点的轨迹叫做椭圆,两个定点,叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距. 说明: 图

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

高中数学选修2-1 圆锥曲线的定义

高中数学选修2-1 圆锥曲线定义练习卷 一、选择题(本大题共10小题,每小题5分,共50分。在每小题给出 的四个选项中,只有一个选项是符合题目要求的) 1.已知为椭圆的焦点,为椭圆上一点, 垂直于x轴,且,则椭圆的离心率为()A.B.C.D. 2.方程表示的曲线是() A.一条直线和一双曲线B.两条直线 C.两个点D.圆 3.已知点(4,2)是直线被椭圆所截得的线段的中点,则的 方程是() A.B. C.D. 4.若不论k为何值,直线与曲线总有公共点, 则的取值范围是( ) A.B. C. D. 5.过抛物线的焦点作一条直线与抛物线相交于两点,它们的 横坐标之和等于5,则这样的直线() A.有且仅有一条B.有且仅有两条 12 F F , 22 22 1(0) x y a b a b +=>>M 2 MF 12 60 F MF ∠= 1 2232 22 ()(1)0 x y xy -+-= l 22 1 369 x y +=l 20 x y -= 240 x y +-= 2340 x y ++=280 x y +-= (2) y k x b =-+221 x y -= b ([ (22) -,[22] -, 24 y x =A B , 姓 名 : _ _ _ _ _ _ _ _ _ _ 班 级 : _ _ _ _ _ _ _ _ _ _ 考 号 : _ _ _ _ _ _ _ _ _ _ - - - - - - - - - - - 线 - - - - - - - - - - - - - - 内 - - - - - - - - - - - - - - 请 - - - - - - - - - - - - - - 不 - - - - - - - - - - - - - - 要 - - - - - - - - - - - - - - 答 - - - - - - - - - - - - - - 题 - - - - - - - - - - - - - - - - - - - - - - - - - ●

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

圆锥曲线全部公式及概念

圆锥曲线 1.椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ =??=?离心率c e a == 准线到中心的距离为2a c ,焦点到对应准线的距离(焦准距)2b p c =. 通径的一半(焦参数):2 b a . 2.椭圆22 221(0)x y a b a b +=>>焦半径公式及两焦半径与焦距构成三角形的面积: 21()a PF e x a ex c =+=+,2 2()a PF e x a ex c =-=-;1221tan 2F PF F PF S b ?∠=. 3.椭圆的的内外部: (1)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的内部2200221x y a b ?+<. (2)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的外部2200221x y b ?+>. 4.双曲线22221(0,0)x y a b a b -=>>的离心率c e a ==2a c ,焦点到对应准线 的距离(焦准距)2p c = 通径的一半(焦参数):2 b a 焦半径公式21|()|||a PF e x a ex c =+=+,2 2|()|||a PF e x a ex c =-=-, 两焦半径与焦距构成三角形的面积122 1cot 2 F PF F PF S b ?∠=. 5.双曲线的内外部: (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部2200221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200221x y a b ?-<. 6.双曲线的方程与渐近线方程的关系: (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上;0<λ,焦点在y 轴上). (4) 焦点到渐近线的距离总是b 7.抛物线px y 22 =的焦半径公式: 抛物线2 2(0)y px p =>焦半径02p CF x =+ . 过焦点弦长p x x p x p x CD ++=+++=21212 2. 8.抛物线px y 22 =上的动点可设为P ),2(2 y p y 或2 (2,2)P pt pt P (,)x y ,其中 22y px = . 9.二次函数22 24()24b ac b y ax bx c a x a a -=++=++(0)a ≠的图象是抛物线:(1)顶点坐标为 24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a -+-;(3)准线方程是2414ac b y a --=. 10.以抛物线上的点为圆心,焦半径为半径的圆必与准线相切;以抛物线焦点弦为直径的圆,必与准线相切;以抛物线的焦半径为直径的圆必与过顶点垂直于轴的直线相切.

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中数学圆锥曲线小结论

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为 直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.

高考★圆锥曲线★的基本公式推导(学长整合版)

圆锥曲线的几大大题特征公式:焦半径、准线、弦长、切线方程、弦中点公式、极线方程 /*另外,针对“计算不好”的同学,本人提供“硬解定理”供大家无脑使用。具体的请参考本目录下的【硬解定理的推导和使用】文章。*/ 圆锥 曲线 的切 线 方程 在 历年高考题中出现,但是在高中教材及资料都涉及较少。本文主要探索圆锥曲线的切线方程及其应用。从而为解这一类题提供统一、清晰、简捷的解法。 【基础知识1:切线方程、极线方程】 【1-0】公式小结:x 2换成xx 0,y 2换成yy 0,x 换成(x+x 0)/2,y 换成(y+y 0)/2. 【1-1】 椭圆的切线方程 : ①椭圆 12222=+b y a x 上一点),(00y x P 处的切线方程是 12020=+b yy a xx 。 ②过椭圆 12222=+b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=+b yy a xx 。 ③椭圆122 22=+b y a x 与直线0=++C Bx Ax 相切的条件是02 2222=-+C b B a A (也就是下篇文档所讲的硬解定理公式△=0的充要条件) 【1-2】双曲线的切线方程: ①双曲线12222=-b y a x 上一点),(00y x P 处的切线方程是 12020=-b yy a xx 。 ②过椭圆 12222=-b y a x 外一点),(00y x P 所引两条切线的切点弦方程是 12020=-b yy a xx 。 ③椭圆122 22=-b y a x 与直线0=++C Bx Ax 相切的条件是022222=--C b B a A 【1-3】抛物线的切线方程: ② 物线 px y 22 = 上一点),(00y x P 处的切线方程是 )(200x x p yy += ②过抛物线 px y 22 =外一点 处所引两条切线是)(200x x p yy += ③抛物线 px y 22=与直线0=++C Bx Ax 相切的条件是AC pB 22 = 【1-4】 基础知识的证明: 【公式一:曲线C 上切点公式证明】 1、第1种证明思路:过曲线上一点的切线方程 设曲线C 上某一点处 ),(00y x P 的 切 线 方 程 为)(00x x k y y -=-, 联立方程,令 0=?,得到k 的表达式,再代入原始式,最后得切线方程式1)()(22 02202020=+= +b y a x b yy a xx (注: k 的表达式可以在草稿中巧用点差法求,具体见下) 2、第2种证明思路:点差法(求斜率,其余跟第一种方法一样) 证明:设某直线与曲线C 交于M 、N 两点坐标分别为),(11y x 、),(22y x ,中点P ),(00y x

高中数学选修圆锥曲线复习

1 / 8 选修2-1圆锥曲线与方程(复习) 编者:史亚军 1. 掌握椭圆、双曲线、抛物线的定义及标准方程;椭圆、双曲线、抛物线的几何性质; 2. 能解决直线与圆锥曲线的一些问题; 3.激情投入,积极思考,勇于发言,培养科学的态度和正确的价值观。 学习重点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 学习难点:椭圆、双曲线、抛物线的定义、标准方程及几何性质 使用说明: (1)快速阅读教材第二章和所学导学案; (2)用严谨认真的态度完成导学案中要求的内容,用红色笔画出疑惑之处,并尝试完成下 列问题,总结规律方法; (3)不做标记的为C 级,标记★为B 级,标记★★为A 级。 预习案(20分钟) 一.知识再现 问题1:回忆椭圆、双曲线、抛物线的第一定义及标准方程? (1)椭圆的定义: 椭圆的标准方程: (2)双曲线的定义: 双曲线的标准方程: (3)抛物线的定义: 抛物线的标准方程: 组长评价: 教师评价:

问题2:根据下面的标准方程,作出相应椭圆、双曲线、抛物线的图形,并说明图像具有的几何性质? (1)2212516x y += (2)22 12516 x y -= (3)28y x = 问题3:回忆椭圆、双曲线、抛物线的第二定义? 一动点M 到定点F 的距离和它到一条定直线l 的距离的比是一个常数e , 如果常数e ∈ ,那么这个点的轨迹是椭圆; 如果常数e ∈ ,那么这个点的轨迹是双曲线; 如果常数e = ,那么这个点的轨迹是抛物线; 其中定点叫做焦点,定直线叫做准线,常数e 就是离心率。 请用第二定义推导焦半径公式:(12,F F 分别为左右焦点) (1)点P 是椭圆上一动点:1PF = ;2PF = ; (2)点P 是双曲线左支上一动点:1PF = ;2PF = ; (3)点P 是抛物线上一动点:1PF = ;2PF = ;

高中数学选修圆锥曲线基本知识点与典型题举例

高中数学选修圆锥曲线基本知识点与典型题举例 一、椭圆 1.椭圆的定义: 第一定义:平面内到 点的轨迹叫做椭圆,这两个定点叫做椭圆的 ,两焦点的距离叫做 第二定义: 平面内到 的距离之比是常数 的点的轨迹是椭圆,定点叫做椭圆的焦点,定直线l 叫做椭圆的 ,常数e 叫做椭圆的离心率. 2.椭圆的标准方程及其几何性质(如下表所示) 标准方程 图形 顶点 对称轴 焦点 焦距 离心率 例1. F 1,F 2是定点,且|F 1F 2|=6,动点M 满足|MF 1|+|MF 2|=6,则M 点的轨迹方程是( ) (A)椭圆 (B)直线 (C)圆 (D)线段 例2. 已知ABC ?的周长是16,)0,3(-A ,B )0,3(, 则动点的轨迹方程是( ) (A) 1162522=+y x (B))0(1162522≠=+y y x (C)1251622=+y x (D))0(125 162 2≠=+y y x

例3. 若F (c ,0)是椭圆22 221x y a b +=的右焦点,F 与椭圆上点的距离的最大值为M ,最小值为m ,则椭圆上与F 点的距离等于 2 M m +的点的坐标是( ) (A)(c ,2b a ±) 2 ()(,)b B c a -± (C)(0,±b ) (D)不存在 例4 设F 1(-c ,0)、F 2(c ,0)是椭圆22x a +2 2y b =1(a >b >0)的两个焦点,P 是以F 1F 2为直径的圆与椭圆的一个交点,若∠PF 1F 2=5 ∠PF 2F 1,则椭圆的离心率为( ) (A)32 (B)63 (C)22 (D)23 例5. P 点在椭圆 120 452 2=+y x 上,F 1、F 2是两个焦点,若21PF PF ⊥,则P 点的坐标是 . 例6. 写出满足下列条件的椭圆的标准方程: (1)长轴与短轴的和为18,焦距为6; . (2)焦点坐标为)0,3(-,)0,3(,并且经过点(2,1); . (3)椭圆的两个顶点坐标分别为)0,3(-,)0,3(,且短轴是长轴的3 1 ; ____. (4)离心率为2 3 ,经过点(2,0); 二、双曲线 1.双曲线的定义: 第一定义:平面内到 等于定值 的点的轨迹叫做双曲线,这两个定点叫做双曲线的 ,两焦点的距离叫做双曲线的 第二定义: 平面内到 距离之比是常数 的点的轨迹是双曲线,定点叫做双曲线的焦点,定直线l 叫做双曲线的 ,常数e 叫做双曲线的离心率 标准方程

高考的数学中圆锥曲线重要结论地最全的总结

高考数学圆锥曲线重要结论 一、定义:第一定义:平面内到两定点F1(-c,0),F2(c,0)的距离和为定值(大于两定点间的距离|F1F2|)2a的点的轨迹叫椭圆,两定点叫椭圆的焦点,两焦点间的距离叫焦距,与坐标轴的交点叫顶点。 第二定义:平面内到一个定点F的距离与到定直线1的距离比为常数e(0

高中数学+选修2-1+(精)几类很经典的圆锥曲线问题

几类圆锥曲线问题 一、弦长问题 圆锥曲线的弦长求法 设圆锥曲线C ∶f(x ,y)=0与直线l ∶y=kx+b 相交于A(11,y x )、B(22,y x )两点,则弦长|AB|为: (2)若弦AB 过圆锥曲线的焦点F ,则可用焦半径求弦长,|AB|=|AF|+|BF|. 例1 过抛物线2 4 1x y - =的焦点作倾斜角为α的直线l 与抛物线交于A 、B 两点,旦|AB|=8,求倾斜角α. 分析一:由弦长公式易解.解答为: ∵ 抛物线方程为y x 42 -=, ∴焦点为(0,-1). 设直线l 的方程为y-(-1)=k(x-0),即y=kx-1. 将此式代入y x 42 -=中得:0442 =-+kx x .∴k x x x x 442121-=+-=, 由|AB|=8得:()()41441822 -??--?+=k k ∴1±=k 又有1tan ±=α得:4π α= 或4 3πα= . 分析二:利用焦半径关系.∵2 ,221p y BF p y AF +-=+ -= ∴|AB|=-(1y +y 2)+p=-[(kx 1-1)+(kx 2-1)]+p=-k(1x +x 2)+2+p .由上述解法易求得结果,可由同学们自己试试完成. 二、最值问题 方法1:定义转化法 ①根据圆锥曲线的定义列方程;②将最值问题转化为距离问题求解. 例2、已知点F 是双曲线x 24-y 2 12=1的左焦点,定点A 的坐标为(1,4),P 是双曲线右支上的动点,则|PF |+ |PA |的最小值为________. 解析 如图所示,根据双曲线定义|PF |-|PF ′|=4, 即|PF |-4=|PF ′|.又|PA |+|PF ′|≥|AF ′|=5, 将|PF |-4=|PF ′|代入,得|PA |+|PF |-4≥5, 即|PA |+|PF |≥9,等号当且仅当A ,P ,F ′三点共线, 即P 为图中的点P 0时成立,故|PF |+|PA |的最小值为9.故填9.

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

高考数学圆锥曲线的常用公式及结论(非常推荐)

高考数学常用公式及结论 圆锥曲线 1.椭圆22 221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=??=?. 2.椭圆22 221(0)x y a b a b +=>>焦半径公式 )(21c a x e PF +=,)(2 2x c a e PF -=. 3.椭圆的的内外部 (1)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的内部22 00221x y a b ?+<. (2)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的外部22 00221x y a b ?+>. 4. 椭圆的切线方程 (1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=. (2)过椭圆22 221(0)x y a b a b +=>>外一点00(,)P x y 所引两条切线的切点弦方程 是 00221x x y y a b +=. (3)椭圆22 221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是 22222A a B b c +=.

5.双曲线22 221(0,0)x y a b a b -=>>的焦半径公式 21|()|a PF e x c =+,2 2|()|a PF e x c =-. 6.双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部22 00221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部22 00221x y a b ?-<. 7.双曲线的方程与渐近线方程的关系 (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-22 22 b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦 点在x 轴上,0<λ,焦点在y 轴上). 8. 双曲线的切线方程 (1)双曲线22 221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是 00221x x y y a b -=. (2)过双曲线22 221(0,0)x y a b a b -=>>外一点00(,)P x y 所引两条切线的切点弦 方程是 00221x x y y a b -=.

高中数学圆锥曲线问题常用方法经典例题(含答案)

专题:解圆锥曲线问题常用方法(一) 【学习要点】 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则 有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)

高中数学 圆锥曲线题型总结

直线和圆锥曲线常考题型 运用的知识: 1、中点坐标公式:1212,y 22 x x y y x ++= =,其中,x y 是点 1122(,)(,)A x y B x y ,的中点坐标。 2、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上, 则 1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一, AB === = 或者 AB === = 3、两条直线111222: ,:l y k x b l y k x b =+=+垂直:则121k k =- 两条直线垂直,则直线所在的向量120v v = 4、韦达定理:若一元二次方程2 0(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a +=-=。 常见的一些题型: 题型一:数形结合确定直线和圆锥曲线的位置关系 例题1、已知直线:1l y kx =+与椭圆22 : 14x y C m +=始终有交点,求m 的取值范围 解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆22 : 14x y C m +=过动点04m ±≠(,且,如果直线 :1l y kx =+和椭圆22 :14x y C m + =14m ≥≠,且,即14m m ≤≠且。 规律提示:通过直线的代数形式,可以看出直线的特点: :101l y kx =+?过定点(,) :(1)1l y k x =+?-过定点(,0) :2(1)1l y k x -=+?-过定点(,2) 题型二:弦的垂直平分线问题 例题2、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在, 求出0x ;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。

高中数学《圆锥曲线方程》重要公式

高中数学《圆锥曲线方程》重要公式 1.椭圆22 221(0)x y a b a b +=>>焦半径公式 )(21c a x e PF +=,)(2 2x c a e PF -= 2.椭圆22 221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=??=? . 3.椭圆的的内外部 (1)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的内部22 00 221x y a b ? +<. (2)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的外部2200 22 1x y a b ? +>. 4. 椭圆的切线方程 (1)椭圆22 221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=. (2)椭圆22 221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是 22222A a B b c +=. (3)过椭圆22 221(0)x y a b a b +=>>外一点00(,)P x y 所引两条切线的切点弦方程是 00221x x y y a b +=. 5.双曲线22 221(0,0)x y a b a b -=>>的焦半径公式 21|()|a PF e x c =+,2 2|()|a PF e x c =-. 6.双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部22 00 221x y a b ? ->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部2200 2 21x y a b ? -<. 7.双曲线的方程与渐近线方程的关系 (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-2222b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦点在x 轴上,0<λ,焦点在y 轴上). 8. 双曲线的切线方程 (1)双曲线22 221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是00221x x y y a b -=.

高二数学第二章圆锥曲线习题及答案

高二数学第二章圆锥曲 线习题及答案 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

(数学选修1-1)第二章 圆锥曲线[提高训练C 组]及答案 一、选择题 1.若抛物线x y =2上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( ) A .1(,4 B .1(,8 C .1(4 D .1(8 2.椭圆 124 492 2=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直, 则△21F PF 的面积为( ) A .20 B .22 C .28 D .24 3.若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在 抛物线上移动时,使MA MF +取得最小值的M 的坐标为( ) A .()0,0 B .?? ? ??1,21 C .() 2,1 D .()2,2 4.与椭圆14 22 =+y x 共焦点且过点(2,1)Q 的双曲线方程是( ) A .1222=-y x B .1422=-y x C .13 322=-y x D .1222 =-y x 5.若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点, 那么k 的取值范围是( ) A .(315,315- ) B .(3 15 ,0) C .(0,315-) D .(1,3 15 -- ) 6.抛物线22x y =上两点),(11y x A 、),(22y x B 关于直线m x y +=对称, 且2 1 21-=?x x ,则m 等于( ) A .23 B .2 C .2 5 D .3

高中数学圆锥曲线的知识点总结

高考数学圆锥曲线部分知识点梳理 一、方程的曲线: 在平面直角坐标系中,如果某曲线C (看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程 (,)0f x y =的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标 的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系:若曲线C 的方程是(,)0f x y =,则点000(,)P x y 在曲线C 上?00(,)0f x y =;点000(,)P x y 不在曲线C 上?00(,)0f x y ≠. 两条曲线的交点:若曲线1C ,2C 的方程分别为1(,)0f x y =,2(,)0f x y =,则点000(,)P x y 是1C ,2C 的交点 ?{ ),(0),(002001==y x f y x f 方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没 有交点. 二、圆: 1、定义:点集{|}M OM r =,其中定点O 为圆心,定长r 为半径. 2、方程:(1)标准方程:圆心在(,)C a b ,半径为r 的圆方程是2 2 2 ()()x a y b r -+-= 圆心在坐标原点,半径为r 的圆方程是2 2 2x y r += (2)一般方程:①当22 40D E F +->时,一元二次方程2 20x y Dx Ey F ++++=叫做圆的一般方程,圆心为 )2 ,2(E D -- 半径是2. 配方,将方程22 0x y Dx Ey F ++++=化为 22224()()224 D E D E F x y +-+++= ②当2 2 40D E F +-=时,方程表示一个点)2 ,2(E D -- ③当2 2 40D E F +-<时,方程不表示任何图形. (3)点与圆的位置关系 已知圆心(,)C a b ,半径为r ,点M 的坐标为00(,)x y ,则||MC r < ?点M 在圆C 内,||MC r =?点M 在圆C 上,||MC r >?点M 在圆C 外,其中||MC = (4)直线和圆的位置关系:①直线和圆有相交、相切、相离三种位置关系:直线与圆相交?有两个公共点;直线与圆相切?有一个公共点;直线与圆相离?没有公共点. ②直线和圆的位置关系的判定:(i)判别式法;(ii)利用圆心(,)C a b 到直线0Ax By C ++=的距离 2 2 B A C Bb Aa d +++= 与半径r 的大小关系来判定.

相关文档
相关文档 最新文档