文档库 最新最全的文档下载
当前位置:文档库 › 铸铁用湿型砂中加入煤粉有何作用

铸铁用湿型砂中加入煤粉有何作用

铸铁用湿型砂中加入煤粉有何作用
铸铁用湿型砂中加入煤粉有何作用

铸铁用湿型砂中加入煤粉有何作用?

铸铁用湿型砂中加入品质良好的煤粉可以防止铸件产生粘砂,还可使铸件表面粗糙度显著降低。其作用机理主要是:

1、气膜隔离理论

浇注时型砂中的煤粉产生大量的还原性气体,使砂型/金属界面形成一层气膜,阻止铁水钻入型砂的砂粒孔隙中。

2、胶质体封孔理论

型砂中的煤粉受热后成为固、液、气三相的胶质体,胶质体的膨胀能够堵塞砂粒孔隙,阻止铁水钻入砂粒孔隙中。

3、气体防氧化理论

煤粉中的挥发分在高温下气相热解,产生大量的还原性气体,能够防止铁液氧化,避免氧化铁与石英砂产生化学反应。

4、光亮碳防润湿理论

浇注时型砂中的煤粉析出微细晶粒的光亮碳,沉积在砂粒表面,使砂粒不被铁液润湿,避免铁水借助表面张力向砂粒孔隙中渗透。

从其作用机理可知:煤粉的挥发分、光亮碳、焦渣特性是煤粉防粘砂效果的主要影响因素。品质良好的铸造用煤粉应具有以下特点:

1、挥发分为30~38%(质量分数);

2、光亮碳为≥10%(质量分数);

3、焦渣特征为4~6级;

4、灰分≤10%(质量分数);

5、硫分≤1%(质量分数)。

虽然不符合上述要求的煤粉也能用于防止铸件粘砂缺陷,但是在型砂中的加入量需提高,这将使型砂需水量增多,如果用于生产高密度造型铸件和品质要求高的铸件,就会增大产生气孔和砂孔缺陷的倾向。

挥发分过高时,型砂发气量过大,将导致铸件产生气孔缺陷。焦渣特征等级过高时,型砂中焦渣生成量过多,将影响旧砂的回用性。采用高压造型、气冲造型等高密度造型方法时,焦渣特征等级要求应适当降低到2~4级。生产球墨铸铁时,硫分的质量分数应更低,否则可能造成铸件表面球化不良。

根据机械行业标准JB/T9222-1999《湿型铸造用煤粉》规定,湿型用煤粉按其挥发物含量分为3级(见表5.2.5.1),其性能应符合表5.2.5.2的要求。

表5.2.5.1 湿型用煤粉的分级

牌号

性能 SMF25 SMF30 SMF35

挥发分(质量分数 / %)≥25~30 >30~35 >35

表5.2.5.2 湿型用煤粉技术指标

项目指标

灰分(质量分数 / %)≤ 10

硫(质量分数 / %)≤ 2.0

水分(质量分数 / %)≤ 4.0

粒度(通过140号筛的质量分数 / %)≥ 95

但是部分厂家使用情况表明:选用煤粉粒度应根据铸件大小、厚度来确定,如有的企业要求

0.106mm(140目)筛通过率大于85%,有的企业要求0.15mm(100目)通过率为65~70%。欧美各国所用煤粉的粒度比我国粗,铸件的大小、厚薄不同,对煤粉粒度要求也不同。粗粒煤粉浇注时可以保持较长时间的发气,适合厚大铸件使用,有助于改善型砂的透气性;中小铸件则使用较细的煤粉;高紧实度造型不可用极细煤粉,以免因透气性下降过多而使铸件产生缺陷。煤粉的粒度也不可太粗,否则型砂的韧性差,修型困难,靠近浇口处易被冲刷,铸件表面粗糙。

在浇注过程中,煤粉等碳质附加物存在挥发、分解和焦化三个过程。煤粉过量时,易产生大量烟气,并降低砂型透气率和增加需水量,会使铸件出现浇不到、毛刺、冷隔以及气孔等缺陷。煤粉加入量不足则会出现落砂困难、型壁移动、铸件尺寸和质量过大以及粘砂等缺陷。

煤粉的适宜加入量取决于多个因素:铸件壁厚,浇注温度,铁水压头高度,造型方法,型砂透气率,型砂硬度,铸件清理方法等等。例如:手工造型时,煤粉加入量要足够高;但是铸件出现大面积蓝色光亮面时,表明煤粉加入量偏多;手工清理时,铸件表面基本无砂粒,说明煤粉加入量适中;高压造型时,有效煤粉含量可能只需要4~5%,用高效煤粉则只要3~4%,补加量只需0.2~0.4%。

灰铁件型砂中的有效煤粉量不但取决于煤粉本身的品质好坏,也取决于铸件的厚薄大小,还要看铸件的清理方法。例如有的手工造型工厂,只用钢丝刷清理铸件表面,要求刷后即露出光滑蓝色表面,则型砂中必须含有较多的有效煤粉。有的工厂具有强力抛丸设备,铸出后局部表面粘附一薄层砂,也会在随后抛丸清理时完全露出铸件的金属表面。这种情况下,有效煤粉量稍低一些也无妨,甚至不希望铸件表面过分光洁,以免产生侵入气孔缺陷。高压造型和普通机器造型型砂的有效含量分别大约取3.5~5.0%和4.5~6.0%为宜。生产球墨铸铁件时,还要求在浇注时型腔中充满大量还原性气氛,以防止铁液中的镁和硫化镁与型砂水分产生反应导致气孔缺陷,此时要求有效煤粉量应取上限。

目前国内使用较多的煤粉产品只要有两种:一是内蒙“优质煤粉”,由内蒙两种原煤配合磨粉制成,其灰分≤9%、挥发分≥33%、焦渣特征4~5级、光亮碳量为10~13%;另一种是河南“高效煤粉”,由河南优质原煤加入高软化点石油沥青共同磨粉制成,其灰分≤10%、挥发分≥35%、焦渣特征5~6级、光亮碳量为12~15%。“高效煤粉”的两种成分可以取长补短,与天然煤粉相比,“高效煤粉”的挥发分和光亮碳形成能力较强,软化区间加宽,灰分和硫分降低,加人量下降,浇注时烟气减少。

镍、铜、铬、钼、锡、锑在铸铁中的作用

镍、铜、铬、钼、锡、锑在铸铁中的作用 镍、铜、铬、钼、锡、锑在铸铁中的作用: Ni(镍) 1.溶与液体铁及铁素体 2.共晶期间促进石墨化,其作用相当于1/3Si 3.降低奥氏体转变温度,扩大奥氏体区,能细化并增加珠光体 4.Ni<3.0%,珠光体型,可提高强度,主要用作结构材料;Ni3%—8%,马氏体型,主要用作耐磨材料;Ni>12 %,奥氏体型,主要用作耐腐蚀材料等。 5.对石墨粗细影响较小 Cu(铜) 1.在奥氏体中极限溶解量为3.5%(当碳为3.5%) 2.促进共晶阶段石墨化,能力约为硅的1/5 3.降低奥氏体转变临界温度,细化并增加珠光体 4.有弱的细化石墨的作用 5.常用量<1.0% Cr(铬) 1.反石墨化作用属中强,共析转变时稳定珠光体 2.铬是缩小γ区的元素,Cr20%时,γ区消失 3.用量0.15%-30% 4.其用量小于1.0%仍属灰铸铁(可能有少量自由Fe3C出现),但力学性能有所提高。 Mo (钼) 1.Mo<0.6%时,稳定碳化物的作用比较温和,主要作用在于细化珠光体,亦能细化石墨。 2.Mo<0.8%时对铸铁的强化作用较大 3.用Mo作合金化时P量一定要低,否则会出现P- Mo四元共晶,增加脆性 4.Mo>1%时,达到1.8%—2.0%时,可抑制珠光体的转变,而形成针状基体 5.Mo能使“C”曲线右移,并有使形成两个“鼻子”的作用,故易得贝氏体 Sn(锡) 1.为增加珠光体量而加入,一般用量<0.1%,可提高铸铁强度,>0.1%时有可能使铸铁出现脆性 2.Sn >0.1%可出现反球化作用 3.共晶团边界易形成FeSn2的偏析化合物,因此有韧性要求时,注意Sn量的控制 Sb (锑) 1.强烈促进形成珠光体 2.0.002%—0.01%时,对QT有使石墨球细化的作用,尤其对大断面QT件有效 3.其干扰球化的作用可用稀土元素中和 4.HT中的加入量为<0.02%,QT中的加入量0.002%—0.010%

铸铁习题参考答案 (2)

第八章铸铁 习题参考答案 一、解释下列名词 答: 1、石墨化:铸铁中碳原子析出石墨的过程。 石墨化退火(或称高温退火):将温度加热到共析温度以上,使渗碳体分解成石墨的退火。 2、灰口铸铁:碳大部分以游离状态的石墨析出,凝固后断口呈暗灰色。 可锻铸铁:石墨形状为团絮状的灰口铸铁。 球墨铸铁:石墨形状为球状的灰口铸铁。 蠕墨铸铁:石墨形状为蠕虫状的灰口铸铁。 变质铸铁(或称孕育铸铁):变质(孕育)处理后的灰铸铁。 白口铸铁:碳除少量溶于铁素体外,其余全部以化合态的渗碳体析出,凝固后断口呈白亮的颜色。 二、填空题 1、铸铁与钢比较,其成分主要区别是含碳和硅量较高,且杂质元素硫和磷含量较多。 2、化学成分和冷却速度是影响铸铁石墨化的主要因素。 3、白口铸铁中的碳主要以渗碳体形式存在,而灰口铸铁中的碳主要以石墨形式存在,两者比较, 前者的硬度高而脆性大。 4、石墨的存在给灰口铸铁带来一系列的优越性能,如_铸造性能_、_切削加工性_、减摩性_ 、_消震性能良好_、 _缺口敏感性较低_。 5、含碳量为2.5~4.0% 的铸铁,如果全部按Fe-G 相图进行结晶,其石墨化过程可分为如下二个阶段:第一阶段:在1154℃通过共晶反应形成G 共晶。 第二阶段:在1154℃~738℃冷却过程中自奥氏体中析出GⅡ以及在738℃通过共析反应 形成G共析。 6、渗碳体是亚稳定相,高温长时间加热会分解为铁和石墨。 7、灰口铸铁、可锻铸铁及球墨铸铁的石墨形态分别呈片状、团絮状及球状。 8、HT200 是灰铸铁的牌号,其中的碳主要以石墨的形式存在,其形态呈片状,由于它具有良好消震性能性能,在机床业中常用来制造机床床身。 9、球墨铸铁是通过浇铸前向铁水中加入一定量的球化剂进行球化处理,并加入少量

1湿型砂的性能要求

湿型砂的性能 为了保证湿型铸件具有良好的表面质量, 必须使用良好性能的型砂。本文将介绍高质量湿型砂的性能要求、工厂实际应用实例, 并分析型砂性能与铸件品质之间的关系。 一般认为使用造型紧实压力150?400kPa的普通震压式造型机,砂型平面硬度才只有70?80度,垂 直面下端硬度可能只有50?60度,铸件局部极易产生缩孔、缩松、胀砂与粘砂缺陷。由于砂型平均密度仅1 、2?1.3 g/cm 3,称为低密度造型或低压造型。为了克服上述缺点,出现了气动微震造型机,在压实的同时增添了震动作用,改善了砂型紧实时型砂的流动性能,使压实比压几乎相当于提高了一倍,达到400?700kPa 左右,砂型平面硬度大约为80?90 度,平均密度可能在1、4?1.5g/cm 3范围内。密度比较均匀,减少了局部缩松、胀砂与粘砂缺陷。近代化造型机的压实比压有可能提高到700kPa 或稍高,所得到砂型表面硬度大约为90?95 度,平均密度可达1 、5? 1.6g/cm 3,称为高密度造型方法。高密度造型的生产效率高、铸件尺寸精度高,机械加工余量少。应用多触头高压、气冲、挤压(即垂直分型无箱射压造型)、射压、静压等造型机制成砂型都可能达到上述的紧实密度,因而国内外应用日益普遍。为了 具体说明湿型砂的性能与控制范围,本文数据搜集大部分取自上世纪90 年代中外公开发行刊物。还有一部分数据就是由国内各工厂的工程师提供的,凡属未正式发表过的都不注明工厂名称,所列举数据只就是当时情况,并不代表目前实际状况。本文中各种性能排列顺序基本上按照日常检验的顺序与常用性。有关型砂检测方法另有专门文章中介绍。 1 紧实率与含水量 型砂的手感干湿程度就是极为重要的性能,它反映型砂就是否处于最适宜的造型状态。直到1969年才找到如何用数值衡量型砂干湿程度的方法,即测定型砂的紧实率。湿型砂不可太干,紧实率不可过低,因为型砂中膨润土未被充分润湿,性能较为干脆,起模困难,砂型易碎,表面的耐磨强度低,铸件容易生成砂孔与冲蚀缺陷。型砂也不可太湿,紧实率不可过高,否则型砂太粘,造型时型砂容易在砂斗中搭桥与降低造型流动性,还易使铸件产生针孔、气孔、呛火、水爆炸、夹砂、粘砂等缺陷。根据造型方法、操作习惯不同,对型砂的干湿程度要求也不相同。手工造型要求起模性好,希望型砂较湿一些。高密度造型要求型砂具有较高流动性,以便砂型各处紧实均匀,希望型砂稍干一些。型砂紧实率控制应以造型处取样测定为准。从混砂机运送到造型机时紧实率下降幅度因气候温度与湿度状况、运输距离、型砂温度等因素而异。工厂实测经验表明,一般情况下造型机处紧实率可能比混砂机中低2%以上。南方潮 湿阴冷季节,紧实率下降可能不足1%。 以前的论点就是手工造型与震压式机器造型用型砂要求起模性好,最适宜干湿状态下的紧实率大约在50%;高压造型与气冲造型时为45%;射压与挤压造型要求较高的流动性好,紧实率为40%。近年来各国铸造工厂的型砂紧实率都有降低趋势。这就是因为高密度造型设备的起模精度提高,而且砂型各部位硬度均匀分布的要求使型砂的流动性成为更重要的考虑因素。工厂的控制原则大多就是只要不影响起模,就尽量压低紧实率。DISA 公司挤压造型与HWS 公司静压造型都建议用40 2%;AGM 公司要求水平无箱吸压造型用40 5%;GF、BMD 与FA 公司推荐气冲造型用型砂紧实率分别为35~40%、38~42%与36~39%。加拿大矿业能源技术中心1988 年调查76 家各种造型方法的铸铁工厂中铸件品质优良的 高密度造型型砂紧实率为35~45%。日本土芳公司1979~1985 年调查125 种湿型(包括中、高密度造型)铸铁生产线的紧实率平均值为38、0%;1998 年再一次调查94 种型砂紧实率平均值降为35、8%。GF、BMD 与FA 公司推荐气冲造型用型砂紧实率分别为35?40%、38?42%与36?39%。目前铸件品质较好的高密度造型的工厂中,造型机处取样型砂紧实率通常都在34~38% 之间,比起当年有明显的降低趋势。震压造型与气动微震造型的的起模精度稍差,型砂紧实率可能在36?45%。手工造型需要型砂更湿一些,紧实率约在45?55%。 型砂含水量指含有水分的绝对量,它就是紧实率的从变数。当型砂的干湿程度(紧实率)要求确定后

粘土湿型砂的控制要点

粘土湿型砂的控制要点 用粘土粘结砂作造型材料生产铸件,是历史悠久的工艺方法,也是应用范围最广的工艺方法。说起历史悠久,可追溯到几千年以前;论其应用范围,则可说世界各地无一处不用。 值得注意的是,在各种化学粘结砂蓬勃发展的今天,粘土湿型砂仍是最重要的造型材料,其适用范围之广,耗用量之大,是任何其他造型材料都不能与之比拟的。据报道,美国钢铁铸件中,用粘土湿型砂制造的占80%以上;日本钢铁铸件中,用粘土湿型砂制造的占73%以上。 适应造型条件的能力极强,也是粘土湿型砂的一大特点。1890年震压式造型机问世,长期用于手工造型条件的粘土湿型砂,用于机器造型极为成功,并为此后造型作业的机械化、自动化奠定了基础。近代的高压造型、射压造型、气冲造型、静压造型及无震击真空加压造型等新工艺,也都是以使用粘土湿型砂为前提的。 各种新工艺的实施,使粘土湿型砂在铸造生产中的地位更加重要,也使粘土湿型砂面临许多新的问题,促使我们对粘土湿型砂的研究不断加强、认识不断深化。 现今,随着科学技术的速发展,各产业部门对铸件的需求不断增长,同时,对铸件品质的要求也越来越高。现代的铸造厂,造型设备的生产率已提高到前所未有的水平,如果不能使型砂的性能充分适应具体生产条件,或不能有效的控制其稳定、一致,则不用多久就可能将铸造厂埋葬于废品之中。 随着科学技术的发展,目前采用粘土湿型砂的铸造厂,一般都适合其具体条件的砂处理系统,其中包括:旧砂的处理、新砂及辅助材料的加入、型砂的混制和型砂性能的监控。 粘土湿砂系统中,有许多不断改变的因素。如某一种或几种关键性能不能保持在控制范围之内,生产中就可能出现问题。一个有效的砂处理系统,应能监控型砂的性能,如有问题,应能及时加以改正。 由于各铸造厂砂处理系统安排不同,选用的设备也不一样,要想拟定一套通用的控制办法是做不到的。这里,打算提出一些目前已被广泛认同的控制要点。各铸造厂认真地理解了这些要点之后,可根据自己的具体条件确定可行的控制办法。而且,还要随着技术的进步和工厂的实际能力(包括人员和资金)不断改进对型砂系统的控制。 一.旧砂的处理 用粘土湿型砂造型,浇注以后,除贴近铸件的部分型砂中活性膨润土受热失效成为死粘土外,大部分型砂可以回收使用。这是粘土湿型砂的主要优点之一。 配制粘土湿型砂时,旧砂用量一般都在90%以上,如果对旧砂的处理不当,无论怎样加强混砂,无论添加什麽辅助材料,都不可得到好的型砂。所以,对旧砂进行有效的处理,

五大元素对铸件的影响

浅谈五大元素对铸件的影响 摘要:本文主要阐述了碳、硅、锰、硫、磷五大元素在铸件及铸造过程中的影响及作用。 关键词:碳、硅、锰、硫、磷;影响;作用 铸铁的出现,方便了人类,从此我们就离不开了铸铁件,人们就把铸铁件用于制作各种制品,例如:小到螺丝钉、炊具、容器、农业机具等生活用品,大到汽车、飞机、轮船、大炮、坦克等建筑军事器械。铸铁的生产推动了人类社会文明的进步,随着科学技术和我国国民经济的发展,各行各业对铸铁件的质量提出了更高的要求,而铸铁件的铸造技术涉及了物理、化学、冶金、机械等多种学科,影响铸铁件质量的因素很多,因此正确地使用合理的铸造技术是提高铸铁件质量的保证,而影响铸铁件质量铸造过程的主要因素有:冷却速度、化学成分、温度、气体、炉料等,这就要求人们认真考虑这些因素对铸铁件的影响。本人结合几年来的工作经验,现以化学成分为例,浅谈五大元素对铸件的影响。 影响铸件品质的常规元素主要有五种,分别是碳、硅、锰、硫、磷,以上元素我们叫做基本元素或俗称五大元素。它们是直接影响铸件物理性能的一个重要因素。其主要作用如下: 一、碳元素是铸铁中最基本的成分。它不但是区分钢或铁的主要依据,含碳量大于1.7%是铁,低于1.7%的称为钢,而且,在铸造过程中,碳影响着铸件的力学性能。在铸造中适当的碳促进石墨化,减小白口倾向,即减少渗碳体、珠光体、三元磷共晶,增加铁素体,因而降低硬度改善加工性能;碳促进镁吸收率的提高;改善球化,以达到预期效果;碳能改善流动性,增加凝固时的体积膨胀;碳提高吸振性,减摩性,导热性。但碳含量过高引起石墨漂浮,恶化力学性能,过低又易产生缩孔松缩等缺陷。所以,对不同质量要求的铸件,合理选配碳含量一般是提高铸件质量的一种途径,例如:灰铁含碳量大多在2.6%-3.6%,球墨铸铁在3.5%-3.9%。碳对中锰球墨铸铁的力学性能影响不明显,一般碳量高于3.9%时易出现石墨漂浮,影响铸铁质量,碳低于 3.0%时,不利于石墨化故一般控制碳量在3.0%-3.8%为宜。 二、硅元素是铸件中的有益元素,它和碳元素一样,能促进石墨化,以孕育剂的方式添加的硅作用更明显。对于铸态球磨铸件,增加含硅量有双重作用,一

铸造工艺性之粘土型砂的性能

铸造工艺性之粘土型砂的性能 工艺性能:与各铸造工序的操作相关的砂型性能。影响:生产率、劳动强度、同时影响铸件质量、流动性、可塑性、粘膜型、保存性、吸湿性、溃散性、复用性。 工作性能;直接影响铸件质量的型砂性能成为工作性能。如湿强度、干强度、高温强度、热湿拉强度、透气性、发气性、耐火度、退让性、导热性等。 粘土砂的性能,主要取决于粘土和原砂的材料的性质及砂、土、水的配合比例在很大程度还受混制工艺、紧实度、温度等影响。 1.湿强度 在外力作用下,型砂达到破坏时,单位面积上所承受的力称为强度。型砂在湿态势的强度为湿强度。影响:起模、翻转、合型、搬运过程中造成塌箱。而在浇注时,则可能承受不住金属液的冲刷,冲坏铸型表面,使铸件产生砂眼,甚至炮火。 湿强度包括湿压、湿拉、湿剪强度。 湿强度主要取决于粘土的质量和加入量,含水量、原砂的颗粒组成、混砂质量、紧实程度。 (1)原砂在粘土加入量足够的情况下,砂粒越细、越不均匀,则型

砂质点间的接触面积越大,湿强度越高。 (2)粘土和水分水分适当时,随着粘土量的增加,型砂的湿强度增高。湿强度最大值在水/水+粘土=20%z左右时出现。(3)混砂时间为了保证粘土砂获得一定的强度,混砂时间要充分,钠基膨润土由于吸水时间长,因此比钙基膨润土和普通粘土混砂时间长。 (4)紧实度随着紧实度的提高砂型质点紧密排列,相互接触面积增大,粘土的粘结性能更好的发挥,提高湿强度。 湿强度度对惰性粉末非常敏感,惰性粉末增加,湿强度增加,但是湿拉强度和湿剪强度会降低,砂型发脆,起模时容易损坏型腔。 2.干强度 干强度对于干型、表面干型和干芯在运输、合型及浇注初期有着实际意义通常测定抗弯、抗压、抗拉和抗剪等干强度。砂型烘干后,自由水和吸附水逸失,质点相互靠近,质点间附着力增加,砂型湿强度比干强度有显著增加。 砂粒大小对型砂干强度影响不显著。影响干强度主要是粘土和水分。 在相同的粘土加入量的情况下,一般膨润土砂的干强度高于普通

湿型砂铸铁工厂一些型砂问题和解答

湿型砂铸铁工厂一些型砂问题和解答 D. 铸件夹砂缺陷和膨润土 D-1. 我厂是一家小手工铸铁工厂,用三节化铁炉熔炼。砂子的来源是附近的河沟。没有混砂机,每次浇注落砂后将场地上的散砂用铁锹堆积成长条,均匀地撒一薄★层粘土,用喷壶撒水后过筛即可再造型使用。由于铸件表面经常出现夹砂缺陷,有一位工程师建议用活化膨润土代替普通粘土来防止夹砂缺陷。不知这个意见是否可行? 活化膨润土对防止夹砂缺陷确实有利。但是这种膨润土吸水缓慢而且粘稠,只靠铁锹来手工翻动是难以混合均匀的。因而活化膨润土只适用于有混砂机的铸造工厂。对于你厂来说,要想防止夹砂缺陷,可以精心调制一些掺入少量α-淀粉(或面粉)和煤粉的型砂当作面砂,并经过筛来充分松砂后造型。另外还要注意砂型松紧均匀,浇口分散,砂箱倾斜放置,避免型腔上表面长时烘烤,快速浇注,可能会有效果。 D-2. 我厂是天津的一家台资铸造工厂,使用挤压造型机生产出口铸铁小件。原砂来自内蒙,膨润土用建平产活化土。开始时铸件品质尚好,但是最近铸件靠近内浇道处总是容易产生夹砂缺陷。难道所用的膨润土质量有问题吗?顺便说起,原来我厂混砂用200m深井水,不久前井管被堵。老板为了节约,打了一口20m浅井供水。不知这口井的咸水是不是造成铸件夹砂的原因? 建平各膨润土加工公司的活化土品质对于挤压造型肯定是能够防止夹砂缺陷的。据了解天津郊区的浅井水是含有大量盐分的咸水,这种咸水对活化膨润土有强烈的反活化作用,铸件容易产生夹砂缺陷。工厂应立即改用饮用自来水混砂。我国南方有的挤压造型工厂使用流经工厂外面小河沟的河水混砂,适逢河水上游有化工厂向水中排废水,引起铸件产生夹砂缺陷的原因也是由于废水的反活化效应。 如果对工厂的供水质量产生怀疑,可以取来水样与3g活化膨润土做膨润值对比试验。假如得出膨润值不到30mL,与用蒸馏水(或纯净水)的膨润值70~100mL相比异常低下,表明这种水对活化膨润土有强烈反活化作用,不能用来混制型砂。 D-3. 我厂用Z148造型机生产湿型铸铁件,原砂来自内蒙。膨润土、煤粉、涂料和聚渣剂由当地一家造型材料公司统一供应。使用碾轮混砂机混制单一砂。膨润土的混砂加入量1.3~1.5%,煤粉加入量1.0%。砂芯用冷芯盒粘结剂。型砂湿压强度1.1~1.2kPa。但铸件经常局部多处出现似乎是包砂或铁夹砂缺陷,不知原因为何?应该怎样防治? 如果只是局部小块出现包砂或铁夹砂,似乎不像是机械粘砂缺陷。应当用扁铲翘下一块缺陷块仔细观看,如果缺陷块比较容易翘掉,背后有清晰的脉纹,就可判断是夹砂缺陷。凸起的脉纹是铁水流入砂型表皮的痕迹。则应检查膨润土的膨润值和吸蓝量,看膨润土的质量是否较差,是否为活化膨润土。你厂膨润土的混砂加入量1.3~1.5%,而湿压强度只有1.1~1.3kPa,估计膨润土品质不佳。假如膨润值也低(不到70~100mL),大概膨润土活化处理不足或并非活化膨润土。换用优质活化膨润土后就有可能消除夹砂缺陷。 D-4. 从资料得知活化膨润土的明显优点是型砂的抗夹砂缺陷能力强,而且耐烧损性能好。所以我厂一直使用活化膨润土。但是据说膨润土工厂在加工钙基★膨润土时的碳酸钠加入量不过3~4%。问题是为什么不更多加一些碳酸钠,以使抗夹砂和抗烧损性能更好一些? 用碳酸钠处理钙基膨润土,目的是用碳酸钠中的钠离子代替膨润土中所吸附的钙离子。隨着碳酸钠加入量逐渐增多,混砂后热湿拉强度也隨之提高,亦即膨润土的抗夹砂能力提高。但是,碳酸钠量提高到一定程度后热湿拉强度反而开始下降。这个使热湿拉强度处于峯值的碳酸钠加入量可称为“极限活化量”,意思是活化量不可超过此极限值。曾检验过几十种钙基膨润土的极限活化量,基本上都在5%左右。需要注意的是,随着活化量提高,膨润土的粘滞性也提高。当型砂湿度稍高时韧性显著增大,混砂不易均匀,型砂流动性和紧实性都明显下降,落砂时旧砂块不易破碎。因此,湿型铸铁件用膨润土的碳酸钠加入量大致都在3~4%左

湿型砂有效煤粉量(及英文摘要)-铸铁

湿型砂的有效煤粉含量 于震宗 (清华大学机械工程系北京100084) 摘要:发气量试验方法的优点是能够迅速和准确地确定型砂中有效煤粉的具体含量。国外常用的灼减量等方法则只能大致估计型砂的抗粘砂能力如何。简易形式的发气量测定仪可以方便地自行组装,并且具有良好的使用效果。 关键词:湿型砂;有效煤粉含量; 铸铁件 Effective Coal Dust Content of Green Molding Sand Yu Zhenzong (Tsinghua University, Beijing 100084, China) Abstract: The gas evolution test method has advantage of determining the effective coal dust content in green sand rapidly and accurately. The LOI and other test methods common used in foreign countries can only roughly estimate the tendency to prevent the sand burning-on defect. A simple gas evolution test apparatus can be easily constructed by DIY, it works quite satisfactorily. Key words: green molding sand; effective coal dust content; iron castings 用来生产铸铁件的湿型砂中通常都要加入煤粉。煤粉所起的作用是防止铸铁件表面粘砂和改善表面光洁程度,而且能够减轻夹砂倾向。煤粉还有利于防止球墨铸铁件皮下气孔缺陷。型砂中原来含有的煤粉中有一部分经浇注铁液的加热作用变成不起作用的焦炭。混制湿型砂时需要补充加入适量的新煤粉,新加入煤粉量取决于旧砂中含有多少有效煤粉,以及型砂应当含有多少有效煤粉。但是多年来人们不掌握如何测定型砂和旧砂中的有效煤粉含量。 1 国外估计型砂中煤粉量的方法 国外工厂为了估计湿型砂抗机械粘砂能力,应用最普遍的办法是测定灼减量(即LOI)。实验方法是将型砂试料装入敞开的瓷坩埚中,在规定温度的马福炉内加热。使挥发性物质和可燃物质跑掉或烧掉,以总共减少重量比值为灼减量。美国规定在坩埚中称量25g烘干型砂,放置到982℃马福炉中加热2~3h[1]。德国规定称量5g型砂在850℃马福炉中加热至少3h[2]。Buhr测得76家加拿大灰铁和球铁铸造厂型砂灼减量在1~10%[3];Bruemmer 测得105家欧洲铸铁厂的型砂灼减量在1.0~15.0%范围内[4]。各厂的型砂灼减量控制范围相差非常悬殊。其原因主要是测得的灼减量除了包含了煤粉以外,还包括煤粉受热丧失挥发分后形成的焦炭状物质。由于各厂型砂中积累的焦炭状物质数量多少不等,使得测出灼减量有很大差异。因而也就无法从灼减量推算出型砂中含有多少有效煤粉。还有极个别工厂试图使用定碳仪测定型砂含碳量来判断抗粘砂能力,也存在同样缺点。

球化剂在铸铁中的作用

球化剂在铸铁中起什么作用 球化剂在铸铁中起什么作用 球墨铸铁问世至今已有52年,其发展迅速之快令人惊讶,即使在经济不景气的情况下,球铁仍然有所发展,有人称球墨铸铁为不适当退却中的胜利者,指出:球墨铸铁由于其高强度、高韧性和低价格,所以在材料市场上仍占有重要的地位,尽管几年来钢铁铸造总产量有所下降,但球铁产量并未下降,奥——贝球铁的出现增强了球铁的竞争地位。 1.球铁的生产和研究现状 1. 1常规球铁 目前常规球铁——即以铁素体和珠光体为基体的球铁仍占球铁产量中的绝大部分比例,因此注意提高常规球铁的性能和质量,在保持球铁的竞争地位中起了重要的作用。 1.1.1对影响球铁质量的因素加强控制 球铁的组织与性能取决于铸铁的成份和结晶条件以及所用球化剂的质量,研究认为为了确保球铁的机械性能,必须针对铸件具体壁厚、浇注温度、所用球化剂、球化处理工艺、冷却参数的优化以及有效的排渣措施进行严格控制,而适当的降低碳当量,合金化和热处理是改善球铁的有效措施。 1.1.2有效控制铁素体球铁和球光体球铁的生产[2] 控制球铁基体的主要因素有铸铁的成份、所用球化剂、孕育剂的类型,加入方法以及冷却条件等。 铸态铁素体球铁的成份控制 微过共晶成份,其中碳稍高,但不出现石墨漂浮,含硅稍低,孕育剂硅量应少于3%,锰越低越好,应使Mn<0.04%,硫、磷应低,使S≤0.02%、P≤0.02%,这是因为硅可改善球铁组织和相应的塑性,Si=3.0~3.5%可得到全部铁素体组织。有研究指出,Si=2.6~2.8%时,铸铁具有最高的延伸率和冲击韧性,但硅在铁中的显微偏析随着含磷量的增加,这种偏析越严重,并对机械性能有不良影响,特别是当温度低于零度时影响更大,而含硫低可以选用低镁低稀土球化剂球化,并减少“黑斑”缺陷的产生,而“黑斑”主要是镁、铈硫化物和氧化物的聚集物,此外也要用低硅球化剂以保证可以进行多次孕育。

灰铸铁中锰、硫的特性及作用

1.灰铸铁中锰、硫的特性及作用 灰铸铁中的锰、硫是一对非常特殊的元素,由于锰、硫要形成MnS夹杂物,这就使得锰、硫的作用变得有些特殊。 ⑴锰我们一直把锰作为一个合金化元素来用,认为加锰能提高灰铸铁的强度和硬度,这种观点很少有人怀疑过。但是,通过试验却发现事实并非如此。在碳硅量高,硫量也较高的前提下,加锰后灰铸铁的性能并没有提高,反而下降。由于加锰反而使性能降低,因此,在碳硅量高、硫量也较高的情况情况下,w(Mn)控制在0.4%~0.5%的范围内有利于生产高强度灰铸铁。 ⑵硫灰铸铁中的硫究竟是有利还是有害,对硫的认识经过了一个逐步提高的过程;从认为硫是有害元素,到灰铸铁中要加入一定量的硫来改善切削性能,改善孕育效果和石墨形态。我们逐步认识了灰铸铁中硫在一定含量范围内是有利的,这个w(S)范围是0.08%~0.12%。 灰铁液中的硫过低是不利的:石墨形态差,孕育的效果也不好。但对于这一点,仍有很多人认识不足。当w(S)小于0.05%时,一定要进行增硫处理,否则,孕育效果差。 许多人已经知道灰铸铁中加硫会发改善切削性能,而除此之外,加硫还能提高灰铸铁的性能⑴改善石墨形态是提高切削性能的重要措施。 石墨是灰铸铁切削过程中裂纹扩展及断屑的重要因素,因此改善石墨形态是提高切削能最重要的措施。冲天炉熔炼要做到高温熔炼,因为高温熔炼促进增碳的最好措施也能减少铁液氧化倾向。因此热风冲天炉是必要的硬件条件;对于电炉熔炼,增碳工艺是最好的工艺,也是改善切削性能的最重要的措施。 ⑵随流孕育很重要,但要适量,不能过量。 随流孕育也改善石墨形态的重要手段,而且建议使用进口的随流孕育剂,但是随流孕育不能过量。我们很多人只看到随流孕育的好处,但是加入量太大,会增加铁素体的数量,提高材料的韧性,这对高速切削的断屑性能是不利的。 ⑶合金化不能以加铜为主,要适当增加微小硬质点的数量。 这也是我们以前走过了弯路后得到的经验,对硬质点的过分担心缘于我们推理的错误,认为刀具一定要切过硬质点,而硬质点又是那么硬,所以要打刀。实际上分布在晶间的微小硬质点增加了材料的断屑性能,适当提高了材料的脆性,这一点也是使高速切削性能提高的重大突破。多加铜会提高材料的韧性,并不能改善决屑性能。 ⑷原材料中要严格控制有害元素的含量。 ⑵提高原铁液的硅量,控制孕育量。 灰铸铁中的硅一部分是原铁液中的硅,一部分是孕育带入的硅。 许多人喜欢原铁液中的硅低点,然后用很大的孕育量孕育,这种做法并不科学:大量的孕育是不可取的,这会增大收缩倾向。孕育是为了增加结晶核心的数量,促进石墨化,少量的孕育(0.2%~0.4%)就可以达到这个目的。从工艺控制来说,孕育量应该相应稳定,不能有过大的变化。这就要求原铁液的硅量也要相应稳定。提高原铁液的硅量,既可以减少白口和收缩倾向,又能发挥硅固溶强化基体的作用,性能反而不降低。目前比较科学的做法是提高灰铸铁原铁液的含硅量,孕育量控制在0.3%左右,这样可以发挥硅的固溶强化作用,对提高强度有利,也对减少铸件收缩有利。 ⑶合金化的方法对铁液收缩有很大影响。 合金化能有效提高铸铁的性能,我们常用的合金元素是铬、钼、铜、锡、镍。 铬:铬能有效地提高灰铸铁的性能,随着加入量的增加,性能会一直提高。铬的白口倾向比较大,这是大家最顾忌的问题。加入量太大,会出现碳化物。至于铬量的上限如何控制,不同的加铬工艺,上限有所不同,如果铬加入到原铁液中,其上限不要超过0.35%,提高原铁

粘土湿型砂特点与缺陷分析与控制

粘土湿型砂特点及缺陷分析与控制 摘要:湿型砂作为现阶段主要的铸铁件生产手段,在铸造中占主要的地位,只有控制好型砂性能才能有效的保证铸造生产过程的稳定性,提高铸件质量。本文介绍了有关粘土湿型砂的特点和生产过程中需要注意的问题,对生产过程中经常遇到的铸件缺陷作了分析并提出了防止措施。 关键词:粘土湿型砂膨润土煤粉缺陷 一、粘土湿型砂概述 用粘土粘结砂作造型材料生产铸件,是历史悠久的工艺方法,也是应用围最广的工艺方法。在各种化学粘结砂蓬勃发展的今天,粘土湿型砂仍是最重要的造型材料,其适用围之广,耗用量之大,是任何其他造型材料都不能与之比拟的。据报道,美国钢铁铸件中,用粘土湿型砂制造的占80%以上;日本钢铁铸件中,用粘土湿型砂制造的占73%以上。 1、粘土湿型砂特点 湿型铸造法的基本特点是砂型(芯)无需烘干,不存在硬化过程。其主要优点是生产灵活性大,生产率高,生产周期短,便于组织流水生产,易于实现生产过程的机械化和自动化;材料成本低;节省了烘干设备、燃料、电力及车间生产面积;延长了砂箱使用寿命等。但是,采用湿型铸造,也容易使铸件产生一些铸造缺陷,如:夹砂、结疤、鼠尾、粘沙、气孔、砂眼、胀砂等。随着铸造科学技术的发展,对金属与铸型相互作用原理的理解更加深刻;对型砂质量的控制更为有效;加上现代化砂处理设备使型砂质量得到了一定保证;先进的造型机械使型砂紧实均匀,起模平稳,铸型的质量较高,促进了湿型铸造方法应用围的扩大。 2、湿型粘土砂的组成 湿型砂是由原砂、粘土、附加物及水按一定配比组成的。 2.1粘土 粘土是湿型砂的主要粘结剂。粘土被水湿润后具有粘结性和可塑性,烘干后硬结,具有干强度。而硬结的粘土加水后又能恢复粘结性和可塑性,因而具有较好的复用性。粘土主要是由细小结晶质的粘土矿物所组成的土状材料。铸造工作者通常根据所含粘土矿物种类不同将所采用的粘土分为铸造用粘土和铸造用膨润土两类。膨润土主要是由蒙脱石组矿物组成的,主要用于湿型铸造的型砂粘结剂。铸造用粘土主要含有高岭石或依利石类矿物。 2.2附加物 型砂中除了含有原砂、粘土和水等材料以外,通常还加入一些附加物如煤粉、渣油、淀粉等,目的是使型砂具有特定的性能,并改善铸件的表面质量。 在铸铁用湿型砂中加入煤粉,可以防止铸件表面产生粘砂缺陷,并能改善铸件的表面光洁程度。湿型铸铁件所用型砂中煤粉的含量常在3~8%(质量分数)围,根据铸件大小和

铌在铸铁中的作用

铌在铸铁中的作用 用作铸铁和钢添加剂的标准Nb化合物是w (Nb)约66%的铌铁合金,其成分相当于介金属间化合物FeNb,后者在Fe-Nb相图中称为μ相。铌铁的熔点较高,其固相线和液相线温度分别为1 580℃和1 630℃,铸造厂的典型熔炼温度是1 400℃因此这种合金不能熔化,只能溶解,即使用于炼钢也是如此。铸铁生产与炼钢相比,除了熔炼温度较低之外,溶解机理也不相同,使溶解反应过程变慢。可加入细颗粒铌铁,也可采用喷射粉状铌铁的方式,加速溶解。 图1所示为Fe +C -NbC的平衡相图,其含碳量为4.24%。该图显示,加入很少量(质量分数<0.1%)的Nb)对凝固温度和凝固顺序没有影响,此时,NbC将在共晶反应过程中产生。但是,w(Nb)量稍微提高到0.1 %~0.2%时,将会在铁液中产生初生NbC,这些NbC析出物能为共晶反应,也即液相向奥氏体+石墨(或渗碳体)转变,提供非均匀形核核心。这一机理可说明加Nb后共晶团细化的原因。如果、w(Nb)量超过微合金化的范围(>0.2%)咐,这种初生碳化物在更高的温度就己形成,因而它们会变得较粗大,NbC尺寸为2μm~8μm ,多数在5μm左右,可以提高耐磨性以及硬度和强度。 图1 Fe-C-NbC二元相图的富铁角落 研究表明,铌对基体组织的作用主要在于细化奥氏体组织。当铌固溶于奥氏体时,在晶界处极易产生内吸附,当凝固时,奥氏体晶界处的铌偏聚,阻碍了晶粒界面的推移,从而抑制了奥氏体的长大。另外,当铌含量提高到超过固溶度以后,又会在晶界处形成偏聚析出的碳化物NbC,这部分铌碳化物尽管尺寸极其细小,但是它可作为晶核起到孕育的作用,故能有效抑制奥氏体的长大。 当然,铌对共晶碳化物分布和尺寸也有很大的影响,由于铌在奥氏体或共晶碳化物中的溶解度有限,所以绝大多数铌形成了铌的碳化物NbC。而NbC又先于共晶碳化物析出,导致液相中的碳含量也随之降低。相应的共晶碳化物的数量也随之降低。随着铌的加入,碳化物不仅得到极大的细化,而且其大小和分布更加均匀。

灰铸铁中各元素作用

灰铸铁中各元素作用 1、碳、硅 碳、硅都是强烈地促进石墨化的元素,可用碳当量来说明他们对灰铸铁金相组织和力学性能的影响。提高碳当量促使石墨片变粗、数量增加,强度硬度下降。相反降低碳当量可减少石墨数量、细化石墨、增加初析奥氏体枝晶数量,从而提高灰铸铁的力学性能。 但是降低碳当量会导致铸造性能下降。 2、锰:锰本身是稳定碳化物、阻碍石墨化的元素,在灰铸铁中具有 稳定和细化珠光体作用,在 Mn=0.5%~1%范围内,增加锰量,有利于强度、硬度的提高。 3、磷:铸铁中含磷量超过0.02%,就有可能出现晶间磷共晶。磷在奥 氏体中的溶解度很小,铸铁凝固时,磷基本上都留在液体中。共晶凝固接近完成时,共晶团之间剩余的液相成分接近三元共晶成(Fe-2%、C-7%、P)。此液相约在955℃凝固。 铸铁凝固时,钼、铬、钨和钒都偏析于富磷的液相中,使磷共晶的量增多。铸铁中含磷量高时,除磷共晶本身的有害作用外,还会使金属基体中所含的合金元素减少,从而减弱合金元素的作用。 磷共晶液体在凝固长大的共晶团周围呈糊状,凝固收缩很难得到补给,铸件出现缩松的倾向较大。 4、硫:降低铁液流动性,增加铸件热裂倾向,是铸件中的有害元素。 很多人认为硫含量越低越好,实则不然,当硫含量≤0.05%时,此种铸铁对我们使用的普通孕育剂来说不起作用,原因是孕育衰

退的很快,常常在铸件中产生白口。 5、铜:铜是生产灰铸铁最常加入的合金元素,主要原因是由于铜熔 点低(1083℃),易熔解,合金化效果好,铜的石墨化能力约为硅的1/5,因此能降低铸铁的白口倾向,同时铜也能降低奥氏体转变的临界温度,因此铜能促进珠光体的形成,增加珠光体的含量,同时能细化珠光体和强化珠光体及其中的铁素体,因而增加铸铁的硬度及强度。但是并非铜量越高越好,铜的适宜加入量为0.2%~0.4%当大量地加铜时,同时又加入锡和铬的做法对切削性能是有害的,它会促使基体组织中产生大量的索氏体组织。 6、铬:铬的合金化效果是非常强烈的,主要是因为加铬使铁水白口 倾向增大,铸件易收缩,产生废品。所以,应对铬量加以控制。 一方面希望铁水中含有一定量的铬,以提高铸件的强度和硬度; 另一方面又将铬严格控制在下限,以防止铸件收缩而造成废品率增加。传统的经验认为,原铁水铬量超过0.35%时,将对铸件产生致命的影响。 7、钼:钼是典型的化合物形成元素,是很强的珠光体稳定元素,它 能细化石墨,在ωMo<0.8%时,钼能细化珠光体,同时能强化珠光体中的铁素体,从而能有效地提高铸铁的强度和硬度。

灰铸铁五大元素的作用和对机械性能的影响

灰铸铁五大元素的作用和对机械性能的影响 产品机械性能是各国检验产品质量的重要指标,同时也是产品使用性能直接相关,为提高灰铸铁的性能,常采用的措施:选择合理的化学成分,改变炉料组成,孕育处理,铁液合金化等措施或几种措施结合,但是化学成分一般作为生产行为,标准中一般不做强制要求,要想得到一定的性能有多种配料方法。 灰铸铁中主要有五大元素碳、硅、锰、硫、磷,化学成分合理的选配是上述措施最重要和最经济的方法。 碳、硅及碳当量:碳、硅是铸铁的主要组成元素,又都是强烈促进石墨化的元素,一般情况下碳和硅含量越高,越有利于石墨化。为了简化和避免使用多元合金相图,可以将碳、硅等元素,按照其对共晶点实际碳量的影响,将这些元素的量折算成对碳量的增减,谓之碳当量,以CE表示,为简化计算一般只考虑硅、磷的影响,因此简化公式:CE%=C%+1/3(Si+P)%。因此碳当量的变化对机械性能有最直接影响,碳当量提高,促使石墨片变粗,数量增多,强度和硬度下降,碳当量降低,石墨数量减少,石墨片细化,由于增加初析奥氏体枝晶量,从而是提高铸件力学性能的措施,但同时导致铸件铸造性能降低,铸件断面敏感性增大,铸件内应力增加,硬度上升增加加工困难。一般碳的质量分数大多2.6%-3.6%,硅的质量分数大多1.2%-3.0%。 锰、硫本身是稳定碳化物、阻碍石墨化的元素。但两者共同存在时,会结合成MnS 及S化合物,以颗粒状分布于基体中,这些化合物的熔点在1600°C以上,不仅无阻碍石墨化的元素,而且还可作为石墨化的非自

发性晶核。一般硫的质量分数大多0.06%-0.15%,锰的质量分数大多0.4%-1.2%。 磷使铸铁的共晶点左移,作用程度与硅相似,但磷在铸铁中形成低熔点二元、三元磷共晶,虽然提高耐磨性,但随磷量增加铸件脆性增加致密性降低,磷的质量分数大多小于0.2%。

铬在铸铁中的作用

第六章合金元素在铸铁中的作用及合金铸铁 在铸铁中加入一定的合金元素可以改变铸铁的铸态或热处理后的组织,从而改变其物理性能和化学性能。我们把含有一定数量的合金元素,从而具有特定的物理或化学性能的铸铁称为合金铸铁。本章主要介绍合金铸铁中常见合金元素在铸铁中的作用及合金铸铁的组织及性能特点。 第一节铬在铸铁中的作用及铬系耐磨铸铁 一、铬对铁碳相图的影响及含铬碳化物 为了更好地了解铬在铸铁中的作用,首先介绍有关相图。图6—1是Fe-Cr 二元相图。在Fe-Cr相图中,γ相区接近于环弧状,与Fe-C相图的γ相区相比,其温度范围要小一些,而成分范围更大一些。在该相图中存在着σ相区,这种相为脆性相。

图6—1 Fe-Cr二元相图 1──非平衡磁性转变线2──平衡磁性转变线 图6—2为杰克逊(Jackson)用热分析法得到的Fe-C-Cr三元相图的液相面投影图。 6—2 Fe-C-Cr三元合金的液相面图 该图表明,Fe-C-Cr合金凝固时,随合金成分的不同,可以析出α、γ、K1、K2、K C五种不同的相。在这五种相中,α和γ是固溶体相,其余三个相为结构不同的碳化物相,它们分别为: K 1=(Cr,Fe) 23 C 6 K 2 =(Cr,Fe) 7 C 3 K C =(Cr,Fe) 3 C

按照杰克逊所提出的相图,在准稳态时Fe-Cr-C三元合金有三个包共晶反应和一个包共析反应,即 1449℃时, L+K 1→α+K 2 1292℃时, L+α→γ+K 2 1184℃时, L+K 2→γ+K C 795℃时, γ+K 2→α+K C 这三种碳化物的晶体结构类型及其溶解碳和铬的能力见表6—1。由图6—2可以看出,铬对铁碳合金中碳化物的相结构有重要影响。当铬含量很低时,铁碳合金中的碳化物为K C;铬含量较高时,碳化物主要为K2;而只有当铬含量大于60%时,才可以在很窄的含碳量范围里析出K1相。这些碳化物可以和γ相形成共晶体,如果合金是亚共晶成分,则凝固时先析出γ相,当铁液成分达到共晶成分时,析出γ相和碳化物共晶体;如果合金是过共晶成分,则先析出碳化物,然后析出共晶体。 表6—1 Fe-C-Cr中碳化物结构类型及其溶解碳铬能力

球化剂在铸铁中起什么作用

球化剂在铸铁中起什么作用 球墨铸铁问世至今已有52年,其发展迅速之快令人惊讶,即使在经济不景气的情况下,球铁仍然有所发展,有人称球墨铸铁为不适当退却中的胜利者,指出:球墨铸铁由于其高强度、高韧性和低价格,所以在材料市场上仍占有重要的地位,尽管几年来钢铁铸造总产量有所下降,但球铁产量并未下降,奥——贝球铁的出现增强了球铁的竞争地位。 1.球铁的生产和研究现状 1. 1常规球铁 目前常规球铁——即以铁素体和珠光体为基体的球铁仍占球铁产量中的绝大部分比例,因此注意提高常规球铁的性能和质量,在保持球铁的竞争地位中起了重要的作用。 1.1. 1对影响球铁质量的因素加强控制 球铁的组织与性能取决于铸铁的成份和结晶条件以及所用球化剂的质量,研究认为为了确保球铁的机械性能,必须针对铸件具体壁厚、浇注温度、所用球化剂、球化处理工艺、冷却参数的优化以及有效的排渣措施进行严格控制,而适当的降低碳当量,合金化和热处理是改善球铁的有效措施。 1.1.2有效控制铁素体球铁和球光体球铁的生产[2] 控制球铁基体的主要因素有铸铁的成份、所用球化剂、孕育剂的类型,加入方法以及冷却条件等。 铸态铁素体球铁的成份控制 微过共晶成份,其中碳稍高,但不出现石墨漂浮,含硅稍低,孕育剂硅量应少于3%,锰越低越好,应使Mn<0.04%,硫、磷应低,使S≤0.02%、P≤0.02%,这是因为硅可改善球铁组织和相应的塑性,Si=3.0~3.5%可得到全部铁素体组织。有研究指出,Si=2.6~2.8%时,铸铁具有最高的延伸率和冲击韧性,但硅在铁中的显微偏析随着含磷量的增加,这种偏析越严重,并对机械性能有不良影响,特别是当温度低于零度时影响更大,而含硫低可以选用低镁低稀土球化剂球化,并减少“黑斑”缺陷的产生,而“黑斑”主要是镁、铈硫化物和氧化物的聚集物,此外也要用低硅球化剂以保证可以进行多次孕育。 对珠光体球铁而言,在生产时铸铁成份中锰可提高至0.8~1.0%,有些铸件如果是用作耐磨性曲轴时,锰可提高至1.2~1.35%,生产铸态珠光体元素铜。加入量大于 1.8%时,它阻碍石墨球化,但促进基体完全珠光体化,一般球铁中铜含量应小于 1.5%,锡是强烈的珠光体化元素,其对硬度的影响大于铜和锰,但Sn≥1.0%时使石墨畸变,因此其含量应限制在0.08%以下。 1.1.3 稀土在球铁中的作用 稀土能促进镁合金的球化效果(球化率和球的圆整度),它对壁厚球铁件中防止球状石墨畸变的效果受到了重视,这也是国内外球化剂中都包含稀土的主要原因之一。 在铸件中有些元素能破坏和阻碍石墨球化,这些元素即所谓的球化干扰元素,干扰元素分为两类,一是消耗球化元素型干扰元素,它们与镁、稀土生成MgS、MgO、MgSe、RE2O3、RE2S3、RE2Te3等,使球化元素降低从而破坏了球状石墨形成;另一类是晶间偏析型干扰元素,包括锡、锑、砷、铜、钛、铝等在共晶结晶时,这些元素富集在晶界,促进使碳在共晶后期形成畸形的枝晶状石墨,球化

湿型砂

半型砂箱 基本简介 高密度造型方法(或称高紧实度造型,包括多触头高压、气冲、挤压、射压、静压、真空吸压等造型方法)的生产效率高、铸件品质较好,因而国内应用日益普遍。高密度造型对型砂品质的要求比较严格。本文用表格仅列举出作者搜集的一些比较典型的国内外铸造工厂实际应用的和部分设备公司推荐的高密度砂型的型砂性能,并在以下段落中加以评论。受纸张宽度限制,只在表格中列出几种主要的和经常测定的性能。数据搜集来源一部分为近年来中外公开发行刊物,在表格最右侧注明刊物名称和出版年月或期号。另一部分是由各公司或工厂的工程师最近提供的。在表中只标明数据获得日期而不具体注明工厂名称。所列举数据只是当时情况,并不代表目前的实际状况。表中工厂编号A、B、C分别代表国外工厂(或外资厂)、合资厂、本国厂。符号中―○‖—造型机处取样;―●‖—混砂机处取样;―□‖—型砂含泥量;―*‖—旧砂含泥量。 1、紧实率和含水量 湿型砂不可太干,否则膨润土未被充分润湿,起模困难,砂型易碎,表面的耐磨强度低,铸件容易生成砂孔和冲蚀缺陷。型砂也不可太湿,过湿型砂易使铸件产生针孔、气孔、呛火、水爆炸、夹砂、粘砂等缺陷,而且型砂太粘、型砂在砂斗中搭桥、造型流动性降低,砂型的型腔表面松紧不均,还可能导致造型紧实距离过大和压头陷入砂箱边缘以内而损伤模具和砂型吃砂量过小。表明型砂干湿状态的参数有两种:紧实率和含水量。附表中国内各厂的紧实率和含水量除特别注明外,取样地点可能都在混砂机处。但是型砂紧实率和含水量的控制应以造型处取样测定为准。从混砂机运送到造型机时紧实率和含水量下降幅度因气候温度和湿度状况、运输距离、型砂温度等因素而异。如果只根据混砂机处取样检测结果控制型砂的湿度,就要增多少许以补偿紧实率和水分的损失。 多年前的观点认为手工造型和震压式机器造型造型机处最适宜干湿状态的紧实率约在45~50%;高压造型和气冲造型为40~45%;挤压造型要求流动性好,紧实率为35~40%。由表中可以看出铸件品质较好的工厂的高密度造型的型砂紧实率通常在25~45%范围内,比起当年有明显降低。这是由于高密度造型设备的起模精度提高,而且砂型各部位硬度均匀分布的要求使型砂的流动性成为重要因素。工厂的控制原则大多是只要能够保证起模,就尽量降低紧实率。比较理想的造型机处型砂紧实率集中于34~38%之间,不可高于40%,也避免低于32%。 从减少铸件气孔缺陷的角度出发,要求最适宜干湿状态下型砂的含水量尽可能低。高强度型砂的膨润土加入量多,型砂中含有多量灰分,所购入煤粉和膨润土的品质低劣而需要增大加入量,混砂机的加料顺序不良、揉捻作用不强、刮砂板磨损、混砂时间太短,以致型砂中存在多量不起粘结作用的小粘土团块,都会提高型砂的含水量。根据资料,世界各国高密度造型工厂造型机处的型砂含水量基本上都是分布在2. 5~4.2%之间,比较集中于2.8~3.5%。如果生产的铸件具有大量树脂砂芯(如发动机铸件),型砂含水量大多偏于下限,这是由于大量树脂砂芯溃散后混入型砂使含泥量下降和型砂吸水量降低。 我国有些铸造工厂的型砂含水量很高:如表中C-8厂实测高达5.0%,可能与旧砂含泥量高达16.7~1 8.0%有关。 型砂的(紧实率)/(含水量)比值可表示每1%型砂含水量能够形成多少紧实率,最好在10~12。由几家外商独资或合资企业的检验结果计算比值大多在10~12.7范围内。曾测定三家乡镇铸造厂的比值只有5.0~8.5之间,说明型砂中吸水物质过多。

相关文档