文档库 最新最全的文档下载
当前位置:文档库 › 氢气的制取和发电机的冷却

氢气的制取和发电机的冷却

氢气的制取和发电机的冷却
氢气的制取和发电机的冷却

氢气的制取和发电机的冷却

第一节发电机的冷却方式

1. 发电机冷却的重要性

发电机运转时要发生能量消耗,这是有一种能(机械能)转变为另一种能(电能)时所不可避免的。这些损耗的能量,最后都变成了热量,致使发电机的转子、定子、定子绕组等各部件的温度升高。

因为发电机的部件都是有铜质和铁质材料制成的,所以把这种能量消耗叫做铜损和铁损。为了保证发电机能在绕组绝缘材料允许的温度下长期运行,必须及时地把铜损和铁损所产生的热量导出,使发电机各主要部件的温升经常保持在允许的范围内。否则,发电机的温升就会继续升高,使绕组绝缘老化,出力降低,甚至烧坏,影响发电机的正常运行。因此,必须连续不断地将发电机产生的热量导出,这就需要强制冷却。

2. 发电机常用的冷却方式

发电机的冷却是通过冷却介质将热量传导出去来实现的。常用的冷却方式有:

2.1 空气冷却。容量小的发电机(两万千瓦以下)多采用空气冷却,即使空气有发电机内部通过,将热量带出。这种冷却方式效率差,随着发电机容量的增大已逐渐被淘汰。

2.2 水冷却。把发电机转子和定子绕组线圈的铜线作成空心,运行中使高纯度的水通过铜线内部,带出热量使发电机冷却。这种冷却方式比空气冷却效果好,但必须有一套水质处理系统和良好的机械密封装置。目前,大型机组多采用这种冷却方式。

2.3 氢气冷却。氢气对热的传导率是空气的六倍以上,加以它是最轻的一种气体,对发电机转子的阻力最小,所以大型发电机多采用氢气冷却方式,即将氢气密封在发电机内部,使其循环。循环的氢气再由另设的冷却器通水冷却。氢气冷却有可分为氢气与铜线直接接触的内冷式(直接冷却)和氢气不直接与铜线接触的外冷式两种。

当前除了小容量(25MW及以下)汽轮发电机仍采用空气冷却外,功率超过50MW的汽轮发电机都广泛采用了氢气冷却,氢气、水冷却介质混用的冷却方式。在冷却系统中,冷却介质可以按照不同的方式组合,归纳起来一般有以下几种:

2.3.1 定、转子绕组和定子铁芯都采用氢表面冷却,即氢外冷;

2.3.2 定子绕组和定子铁芯采用氢表面冷却,转子绕组采用直接冷却(即氢内冷);

2.3.3 定、转子绕组采用氢内冷,定子铁芯采用氢外冷;

2.3.4 定子绕组水内冷,转子绕组氢内冷,定子铁芯采用氢外冷,即水氢氢冷却方式;

2.3.5 定、转子绕组水内冷,定子铁芯空气冷却,即水水空冷却方式;

2.3.6 定、转子绕组水内冷,定子铁芯氢外冷,即水水氢冷却方式。

我厂2×600MW机组汽轮发电机采用水氢氢冷却方式,即发电机定子绕组采用水内冷,转子绕组采用氢内冷,定子铁芯采用氢外冷。

第二节冷却介质的性能比较

1. 冷却介质的种类和特性

氢冷发电机在正常运行时,使用氢气作为冷却介质,在发电机事故及停机检修时,则采

用空气作为冷却介质,CO

2、N

2

,则是气体置换过程中的中间介质。对于直接冷却的发电机,

除了使用氢气作为冷却介质外,也可以使用水和油。下面分析比较冷却介质的特性:

1.1 空气

空气优点是低廉,所需的附加设备简单,维修方便;缺点是机组的容量受到限制,而且机组容易脏污。

1.2 氢气(H

2

氢气冷却有如下优、缺点:

1.2.1优点:

1.2.1.1 通风损耗低,机械(指发电机转子上的风扇)效率高。这是因为在标准状态下,

氢气的密度是0.08987kg/m3,空气的密度是1.293kg/m3,CO

2的密度是1.977kg/m3,N

2

的密度

是1.25kg/m3。由于空气的密度是氢气的14.3倍,二氧化碳是氢气的21.8倍,氮气是氢气的13.8倍,所以,使用氢气作为冷却介质时,可使发电机的通风损耗减到最小程度。

1.2.1.2散热快、冷却效率高。因为氢气的导热系数是空气的1.51倍,且氢气扩散性好,能将热量迅速导出。因此能将发电机的温升降低10-15℃。

1.2.1.3 危险性小。由于氢气不能助燃,而发电机内充入的氢气中含氧又小于2%,所以一旦发电机绕组被击穿时,着火的危险性很小。

1.2.1.4 清洁。经过严格处理的冷却用的氢气可以保证发电机内部清洁,通风散热效果稳定,而且不会产生由于脏污引起的事故。

1.2.1.5在氢气冷却的发电机,噪音较小,而且绝缘材料不易受氧化和电晕的损坏。

1.2.2 缺点:

1.2.2.1 氢气的渗透性很强,易于扩散泄露,所以发电机的外壳必须很好的密封。

1.2.2.2氢气与空气混合物能形成爆炸性气体,一旦泄露,遇火即能引起爆炸。因此,在用氢冷却的发电机四周严禁明火。

1.2.2.3采用氢气冷却必须设置一套制氢的电解设备和控制系统,这就增加了基建投资及维修费用。

氢气冷却虽有以上一些缺点,但只要严格执行有关的安全规章制度和采取有效的措施还是可靠的,而其高效率冷却则是其它冷却介质无可比拟的,所以大多数发电机还是采用氢冷方式。

1.3 二氧化碳(CO

2

CO

2的密度是空气的1.52倍,显然,使用CO

2

作冷却介质,将会使通风损耗成正比地增加,

发电机的温度也会显著升高。

CO

2的表面散热系数是空气的1.132倍,且有较高的强行对流作用,但CO

2

的传热能力比

空气弱,仅是空气的0.638倍。两项综合比较,用空气冷却和用CO

2

冷却,对发电机的温升影

响基本是一样的。

CO

2

与机壳内的水分化合后,其反应的生成物会在发电机各部分结垢,使通风恶化,并弄

脏机件,对绝缘有腐蚀作用。所以,不允许使用CO

2

作为冷却介质长时间运行。但是,我们可

以利用CO

2

与氢气或空气混合时不会发生爆炸的特点,作为气体置换的中间介质。

1.4 氮气(N

2

氮气的密度、热传导率及表面散热系数都接近空气,所以,作为冷却介质使用时,其允许的最大负荷值与空气冷却时相同。另外,氮气具有比空气轻,比氢气重,并且不助燃的特点,可用来代替二氧化碳作为中间介质使用,这时对其纯度的要求是:氮的含量在96%以上,氧的含量应低于4%。

氮气作为化工副产品,常含有腐蚀性杂质,对发电机的绝缘材料起腐蚀作用,所以,氮气作为发电机的冷却介质不允许长期使用。

2. 氢气和水的特性比较

发电机在采用直接冷却方式时,普遍采用氢气和水作为冷却介质。它们与空气的性能比较如下:

表13-1 空气、氢气及水性能比较

从表中的吸热和散热能力看,液体冷却介质比气体冷却介质好。水具有较高的散热性能、粘度小,能通过小而复杂的截面。水的化学性能稳定,不会燃烧,而且具有价廉的特点。但它增加了水路系统,容易腐蚀铜线和漏水,使运行的可靠性降低。

氢气冷却具有通风功率和励磁功率低;装配方便,结构简单,负荷能力高,温度分布均匀等优点,使运行可靠性大为提高。

第三节电解制氢原理及其系统、设备

1. 电解制氢的原理及其工艺

1.1 制氢原理

高纯度的氢气是通过电解纯水而获得的,由于纯水的导电性能较差,则需加入电解质溶液,以促进水的电解。常用的电解质一般为NaOH或KOH。

将直流电通入加入NaOH水溶液的电解槽中,使水电解成为氢气和氧气。其反应式为:

1.1.1阴极反应:电解液中的H+(水电解后产生的)受阴极的吸引而移向阴极,最后接受电子而析出氢气,其放电反应是:

2H++2e → H

2

1.1.2 阳极反应:电解液中的OH–受阳极的吸引而向阳极移动,最后放出电子生成水和

氧气,其放电反应是: 2OH–-2e → H

2O + 1/

2

O

2

1.1.3 阴、阳极合起来的总反应式为:

2H

2O → 2H

2

↑+ O

2

2.工艺流程

高纯度的氢气是通过电解纯水而获得的,由于纯水的导电性能较差,则需加入电解质溶液,以促进水的电解。电解产生的氢气和氧气,分别进入氢气分离洗涤器和氧气分离洗涤器,使气体与携带的碱液分离;分离出的碱液经过滤、冷却后,通过碱循环泵打至电解槽。分离后的氢气进入冷却器冷却,与氧气一同经气动差压调节后,经冷却、干燥进入贮存罐;氧气经过水封直接排入大气;电解消耗的水经过柱塞泵打入氢、氧分离洗涤器进入电解槽内。

3.氢氧化钠的作用

氢氧化钠等电解质是强的电解质,溶解于水后便电离,其电离反应式为: NaOH = Na+ + OH-这样是水溶液中有了大量的Na+与OH-。促进溶液的导电性能,便于水的电解。

氢氧化钠等电解质在水发生电解时,为何不被电解而仍留在溶液中呢?现简略说明如下: 3.1 金属离子在水溶液中的活泼性是不相同的,我们将它们依活泼性的大小排列起来,

得到下列活动顺序:

K>Na>Ca>Mg>Al>Mn>In>Fe>Ni>Sn>Pb>H>Cu>Hg>Ag>Au 上面排列中,前面的金属比后面的活泼,越往后的金属活泼性越差。

在以上活动次序中,H之所以列为金属,这是因为它能起金属的作用,在水中常成H+存

在,而且确实能被它前面的的金属置换。例如: Zn + H

2SO

4

= ZnSO

4

+H

2

3.2 电极电位。金属的活动次序说明越活泼的金属越容易失去电子,活泼性较差的金属则容易得到电子(前后金属比较而言)。从电化学理论上讲就是:容易得到电子的金属离子与不容易得到电子的金属离子相比较,因前者的电极电位高能得到电子而转为原子,而后者的电极电位低不能得到电子转为原子。这种电位叫“电极电位”。

H+和Na+比较,Na+的电极电位为-2.86,而H+的电极电位为-1.71。所以在同一水溶液中若同时存在Na+和H+时,H+先放电而成H

2

3.3 离子的水化。水是极难电离的,但水中溶解有NaOH时,在Na+的周围。围绕着水的分子而成水合Na+,而且因Na+的作用使水分子有了极性方向。

当Na+带有极性方向的水分子迁向阴极时,H+首先放电而成H+,而Na+则仍存在于水中。

3.4 电解液中加五氧化二钒的作用

电解液配制时,须加入一定量的五氧化二钒(千分之二浓度)。五氧化二钒的加入,可对电极的活化起催化作用,能改变电极表面状态,增加电极的电导率;有利于除去电极表面的气泡,降低电解液的含气度;在铁、镍金属表面产生保护膜,从而起到缓蚀作用。

4. 制氢系统

电解水制取氢气的主要设备为电解槽。在电解槽后连有若干系统,其中主要是氢侧系统、氧侧系统及补给水系统,另外还有碱液系统。

4.1 氢侧系统。由电解槽各间隔分解出来的氢气汇集于总管,经氢侧分离器洗涤器、冷却器、压力调节阀,再经两级干燥吸附后,存入氢罐备用。

4.2 氧侧系统。由电解槽各间隔分解出来的氧气汇集于总管,经氧侧分离器洗涤器、压力调节阀和水封槽后,排放大气或存罐备用。

4.3 补给水系统。在电解水的过程中,水陆续地被消耗掉,所以必须连续不断地补充除盐水。系统通过加水泵将除盐水打至氢分离洗涤器中,来补充电解消耗的除盐水。

4.4 碱液系统。电解氢氧化钠水溶液时,各系统中的分离洗涤器中分离和洗涤下来的NaOH,经过过滤、冷却后重新打回电解槽中,所以从理论上讲, NaOH是不消耗的,但实际上因为泄露、氢和氧的水量携带等,NaOH的浓度在逐渐减小,因此每隔一定时期必须补充碱液。

5. 我厂制氢系统的主要设备

我厂一期4×600MW机组发电机冷却方式为水—氢—氢冷却,氢气由制氢站集中供给。

5.1 系统概述

本期工程设置两套10Nm3/h的水电解制氢装置及相应的设备。设置6台13 m3的贮氢罐。制氢系统设备布置在一独立的建筑区内,水电解制氢装置、氢气干燥装置、闭式除盐冷却水装置及电源控制装置布置在室内,贮氢罐及压缩空气储存罐露天布置。

制氢系统的启动、停止及运行采用微机进行控制。各设备及系统在启停、运行及事故情况下有工艺参数显示,系统各设备的正常启停、安全运行及事故设有报警功能,实现系统及各设备自动控制和连锁功能,包括送、补氢罐的自动切换等,与辅助车间水系统控制室进行通讯,能够执行远方监控。

电解水制氢系统的产品氢气达到如下品质指标:

纯度:≥99.9% 温度:≤40℃湿度:露点≤-50℃绝对湿度:≤0.0949g/ m3H

2水电解制氢系统中的碱液循环次数能达到每小时4~6次以上。制氢系统运行时氢(氧)气压力稳定,其数值随各装置的额定压力和运行情况而定;氢、氧气压差的波动范围小于0.5kPa,必须装设压力调节器。

5.2 系统组成

本工程制氢系统由三套装置组成。分别是制氢装置;氢气充罐及发电机补氢装置;加水、加碱装置。制氢装置主要负责制取氢气,由下述部件组成:电解槽、氢气干燥器、氢分离洗涤器、氧分离洗涤器、氢气气体分离器、氧气气体分离器、排水器、空气过滤器、碱液循环泵等。氢气充罐及发电机补氢装置由:管路、出口减压器、压力开关、压力表等组成。加水、加碱装置由:纯水箱、碱液箱、柱塞式注水泵等组成。

电解槽

电解槽的额定产氢量10Nm3/hr,运行氢压3.2Mpa。电解槽能在1.5~3.2MPa间压力下运行;电解槽的出力能在50%-110%范围内可调。电解槽隔膜的技术说明:气泡不能通过;能被电解液润湿,使溶液中的离子能顺利地通过;有足够的机械强度;在电解液中不被碱液腐蚀,不影响电解液的纯度.且化学稳定性强。

氢气干燥器

配备两套干燥系统,其中一套运行,另一套再生备用;再生方式选用原料气加热再生,

且再生过程中无氢气放空;由下述部件组成:吸附器,工艺管路、阀门及一次仪表等;操作压力与制氢系统的运行压力相匹配;氢气流经该装置的阻力损失小于0.1MPa。

注水泵

注水泵选用柱塞式,且其流量能自动可调节,电机选用防爆电机。

储气罐

设置有8台容积13.9m3氢气储气罐和1台容积为5m3的空气储气罐。

氢气排水水封(2台)

氢气排水水封上设有一根排空管、一根补水管、一根溢流管及一根冷凝水接管。除排空管外,补水管、溢流管及冷凝水管与水封筒体的内接管均采用插入式,且补水管、溢流管的内部管端比冷凝水管的内管端低。

阻火器

一般设在氢气系统的设备放散管及用氢设备的氢气支气管上,以防止回火,阻止火焰蔓延,保证氢氧站及其贮送系统的安全生产及正常供气。

氢气检漏测定仪

该仪器能对两个及以上样点的氢含量进行自动巡回连续分析。当检测出氢气浓度达到某一定值时,能自动送出信号到控制系统,通过控制系统自动启动排风装置工作。当检测出的浓度已超过该定值,达到另一高值时,能送出报警信号,在控制系统中进行声光报警。该设备的测点响应时间不大于10s,巡回周期不大于2min;凡有氢气设备的房间或容易集聚氢气的地方都设置测点。

冷却系统

制氢冷却系统采用除盐水闭式循环冷却方式。该系统主要由螺旋板式换热器、循环冷却水泵、除盐水箱、电控柜、工艺管路、阀门及配件、一次仪表等组成。该系统中除盐水的流量需满足制氢系统冷却水总量的要求,为10m3/h。经循环冷却水泵后的除盐水压力应为0.3MPa 0.5MPa,除盐水入口水温≤45℃,经闭式循环热交换后的除盐冷却水温度应不超过33℃。工业冷却水流量需满足冷却系统设备所需冷却水量的要求,为20m3/h,工业冷却水进口温度≤30℃。循环冷却水泵应为两台,有联锁装置,互为备用。当工作水泵出现故障时备用水泵自动投入,并发出远传报警信号。

氮气系统(氮气瓶两组、8个)

提供制氢系统吹扫和置换用气;氮气瓶的最高工作压力为15MPa,容积为40L,气瓶外径

为219mm。

第四节技术指标

1.氢氧化钠的质量标准

电解质NaOH的纯度,直接影响电解后产生气体的品质和对设备的腐蚀。当电解液中含有碳酸盐和氯化物时,会在阳极上发生下列有害反应:

2CO

32- + 4e = 2CO

2

↑+O

2

2Cl- + 2e = Cl

2

这种反应不但消耗了电能,而且因氧气中混入了氯气,而降低其纯度。同时生成的二氧化碳立刻又被碱液吸收,而又复原成碳酸钠,致使CO

3

2-的放电反应反复进行下去,白白地消耗了大量电能。另外,反应生成的氯气,也可被碱液吸收变成次氯酸钠和氯化钠,它们又有被阴极还原的可能,也要消耗电能。

为了提高气体纯度,降低电能消耗,要求氢氧化钠的纯度达到如下要求:

表13-2 氢氧化钠的纯度要求

2.补充水的质量标准

电解液中的杂质除来源于药品外,若补充水不纯净也会带入杂质。常用的补给水是汽轮机的凝结水,其质量要求如下:

外状:透明清洁;

电阻率: >105Ω.cm;

氯离子: <2mg/L;

铁离子: <1mg/L;

悬浮物: <1mg/L。

3.电解液的质量标准

电解液的主要质量指标是NaOH的浓度。在配制和运行监督中,为方便起见,重点是掌握其比重。因为NaOH浓度越高比重越大。其具体标准如下:

NaOH电解液浓度: 20~26%;

含铁量: <3mg/L;

氯离子: <800mg/L。

为碱轻电解槽的腐蚀,在电解液中应加入0.2-0.3%的重铬酸钾或千分之二浓度五氧化二钒。重铬酸钾能在阴极表面生成三氧化铬保护膜,从而保护了阴极,并可防止阳极生成的次氯酸盐和平共处氯酸盐而在阴极上还原而消耗电能;五氧化二钒的加入,可对电极的活化起催化作用,能改变电极表面状态,增加电极的电导率,有利于除去电极表面的气泡,降低电解液的含气度,在铁、镍金属表面产生保护膜,从而起到缓蚀作用。

4.制氢系统中的气体纯度指标

《电业安全工作规程》规定,氢气纯度不低于99.5%,含氧量不应超过0.5%。如果达不到标准,应立即进行处理,直至合格。另外,氢气绝对湿度不大于5克/米3。

5.氢冷发电机内的气体纯度指标

《电业安全工作规程》规定,发电机氢冷系统中氢气纯度应不低于96%,含氧量不大于2%;如果达不到标准,应立即进行处理,直至合格。

6.氢冷发电机内的氢气湿度指标

发电机内氢气在运行氢压下的允许湿度的高限,应按发电机内的最低温度由表13-3查得;允许湿度的低限为露点温度t

d

=-25℃。

供发电机充氢、补氢用的新鲜氢气在常压下的允许湿度为:新建、扩建电厂(站):露

点温度t

d ≤-50℃;已建电厂(站):露点温度t

d

≤-25℃。

表13-3 发电机内最低温度值与允许氢气湿度高限值的关系

7.置换用中间气体的纯度

7.1 氮气纯度不低于95%,水分的含量不大于0.1%。

7.2 二氧化碳气体纯度不低于95%,水分的含量不大于0.1%,并且不得含有腐蚀性的杂质。

8. 电解槽的运行控制标准

8.1 氢气和氧气侧导气管内的温度不得超过80±5℃,一般控制在60±5℃,正常运行中不得低于45℃。

8.2 电解槽的电流只允许在厂家规定范围内变化。

8.3 电解槽的电压范围应控制在厂家规定的范围内,不得起过其最高值,相邻两极电压应控制在1.8-2.4伏,其差值不得超过0.3伏。

8.4 两个压力调节器的水位差不得超过100毫米。

8.5 电解系统的压力和贮氢罐的压力是相等的,其压力允许在1~10公斤/厘米2的范围内变化。

第五节氢冷发电机的气体置换

1. 气体置换的目的和方法

氢气与空气混合气是一种危险性的气体,在混合气体中,氢气含量达4%~76%范围内,就有发生爆炸的危险,严重时可能造成人身伤亡或设备损坏的恶性事故,因此,严禁氢气中混入空气。但在氢冷发电机由运行转入检修,或检修后起动投入运行的过程中,以及在某些故障下,必然存在着由氢气转为空气或由空气转为氢气的过程。这时,如不采取措施,势必造成氢所和空气的混合气体而威胁安全生产。

为防止发电机发生着火和爆炸事故,必须借助于中间气体,使空气与氢气互不接触。这种中间气通常使用既不自燃也不助燃的二氧化碳气体或氮气。这种利用中间气体来排除氢气或空气,或最后用氢气再排除中间气体的作业,叫做“置换”

另一种方法是采用抽真空的办法,将发电机内的气体抽出,以减少互相混杂。

为了便于进行置换和抽真空的操作,在发电机外部装了一套系统,即所谓的氢冷系统。

2. 机内气体的置换

2.1 概述

气体置换应在发电机静止或盘车时进行,同时密封油应投入运行。如出现紧急情况,可在发电机减速时进行气体置换,但不允许发电机充入二氧化碳气体在高速下运行。

2.2 排除发电机内的空气

气体在爆炸范围的上限时,混合气体中氢占76%,空气占24%,而空气中的氧占21%,所以爆炸上限的混合气体中,氧的含量为24%×21% = 5.04%。因此在充氢前,必须用惰性气体排除空气,使气体中氧气含量降低到小于 5.04%。按此规律进行气体置换,发电机内将不存在爆炸性的混合气体。

气体,空气的含量将降低到14%,因此氧的含量也随之降为21充入两倍发电机容积的CO

2

×14% = 3%。在转子静止或盘车时,利用CO

2比重为空气的1.52倍的关系,把CO

2

从机座底

部充入机内,则充入约1.5倍发电机容积的CO

2

就足以排除空气,此时机内只有极少量的空气与二氧化碳混合。从发电机顶部采样,二氧化碳纯度读数应为95%左右。

注:二氧化碳必须在气体状态下充入发电机。

在水冷定子中,应注意防止二氧化碳与水接触,因为水中溶有二氧化碳将急剧增加定子线圈冷却水的导电率。

3.发电机充氢

氢冷发电机在正常运行时,氢气纯度应在95%或以上,在发电机高速旋转气体充分混合下进行气体置换时,把3.5倍发电机容积的氢气充入发电机,则发电机内的氢气纯度将能达到95%,然而在发遇机静止或盘车情况下,从发电机顶部汇流管充氢,只需加入2.5倍发电机容积的氢气,发电机内就能达到95%的氢气纯度,此时取样管路接通到机座的底部汇流管。

4.发电机运行时补氢

氢冷发电机在正常运行期间,当氢侧密封泵运行时,氢气纯度通常保持在96%或以上,当氢侧密封油泵关闭时,氢气纯度通常保持在90%或以上,必须补氢的原因是:

4.1 氢气的泄露。由于发电机运行中氢气的泄露,这就需要补氢以维持氢气压力(称漏补)。

4.2 空气的渗入。由于空气的漏入,因此要求补氢以维持氢气纯度(称纯补)。对于双流密封瓦密封系统,氢侧密封油压跟踪空侧密封油压基本保持相等。理论上,氢侧密封油和空侧密封油之间不能互相交换,但是由于两个油源之间压力上的变化,在双流密封瓦处将发生一些油量交换。进入空侧回油中的氢气,在空侧回油箱内由排烟机排除;进入氢侧回流的空气逸出汇入机内氢气中,时间长将导致氢压和纯度下降,为了保持氢压和纯度便必须漏补和纯补。

5.发电机排氢

发电机的排氢,是通过在机座底部汇流管充入二氧化碳,使氢气从机座顶部汇流管排出去。为了使机内混合气体中的氢气含量降到5%,应充入足够的二氧化碳。排氢应在发电机静止或盘车时进行,需要两倍发电机容积的二氧化碳。充二氧化碳时,纯度风机从发电机机座顶部汇流管采样,充入的二氧化碳应使二氧化碳纯度读数达到95%。

6.发电机排二氧化碳

发电机排氢后,二氧化碳也不宜长时间封闭在机内,如机内需要进行检修,为确保人身安全,必须通入空气把二氧化碳排出。由于空气比二氧化碳轻,可以通过临时橡皮管,二氧化碳排除后即拆除,把经过滤的压缩空气引入机内上方的汇流管,把二氧化碳从底部排出。

也可以打开机座顶部的人孔,用压缩空气或风扇把空气打入机内驱出二氧化碳。

如果须立即通过人孔观察或进入机内检查,应采取预防措施防止吸入二氧化碳,不允许用固定的压缩空气连接管来清除二氧化碳气体和氢气,因为如果不小心空气漏入氢气内,就会带来危害,造成产生爆炸性混合气体的可能性。

发电机原理图解

固定磁场交流发电机原理模型 发电机是根据电磁感应原理来发电的,发电机首先要有磁 场,现在用一对磁铁来产生发电机的磁场,磁力线从北极到南 极。 在磁场内放入矩形线圈,线圈两端通向两个滑环,滑环通过 电刷连接到输出线上,输出线端连有负载电阻。 当线圈旋转时,根据电磁感应原理,线圈两端将会产生感应 电动势,当磁场是均匀的,矩形线圈作匀速旋转时,感应电势 按正弦规律变化,在负载电阻上有正弦交流电通过。动画中绿 色小球运动的方向表示感应电流的方向、运动的速度表示感应 电流的大小。 旋转磁场交流发电机原理模型 在这个模型中磁场是不动的,线圈在磁场中旋转产生感应电 势。在实际发电机中产生感应电势的线圈是不运动的,运动的 是磁场。产生磁场的是一个可旋转的磁铁,也就是转子,线圈 在磁铁外围,与磁铁转轴同一平面。当磁铁旋转时产生旋转磁 场,线圈切割磁力线产生感应电动势。 由于空气的磁导率太低,在旋转磁铁的外围安上环型铁芯, 也就是定子,可大大加强磁铁的磁感应强度。在定子铁芯的内 圆有一对槽,线圈嵌装在槽内。为了看清线圈电流与转子的运 动关系,把定子变成半透明的。当磁铁旋转时,线圈切割磁力 线感生交流电流。 真正发电机的转子是电磁铁,转子上绕有励磁线圈,通过滑 环向励磁线圈供电来产生磁场。把定子与线圈安在转子外围, 一个单相交流发电机原理模型就组成了。 转子作匀速旋转时,线圈就感生交流电流,画面中绿色小球 运动的方向表示感应电流的方向、运动的速度表示感应电流的 大小。 三相交流发电机原理模型

实际应用的都是三相交流发电机,其定子铁芯的内圆均匀分布着6个槽,嵌装着三个相互间隔120度的同样线圈,分别称之为A相线圈、B相线圈、C相线圈。装上转子就组成了一台三相交流发电机原理模型。 画面中的三相交流发电机采用星形接法,三个线圈的公共点引出线是中性线,每个线圈的引出线是相线。 当转子匀速旋转时三个线圈顺序切割磁力线,都会感生交流电动势,其幅度与频率相同。由于三个线圈相互间隔120度,它们感应电势的相位也相差120度。在画面上有每根相线的输出电势波形。 汽轮发电机的构造 这里介绍汽轮发电机的构造,是由蒸汽轮机或燃气轮机推动的发电机。发电机主要由转子与定子组成,由于汽轮机的转速很高,故汽轮发电机的转子是两极的,额定转速每分钟3000转,输出50赫兹的三相交流电。 这是转子铁芯构造示意图,在铁芯圆周上开有一些槽,嵌有励磁绕组,在圆周两侧各有一段槽距大的面称为大齿,就是磁极(图1所示)。励磁绕组两端通过集电环(滑环)接到励磁电源,在转子圆周两侧就形成北极与南极,旋转时就产生旋转磁场。 由于转子圆周上没有凸出的磁极(不像原理模型中的转子),称之为隐极式转子。 图2为嵌有励磁绕组的转子模型,为降低发电机的温度,在转子两端还装有风扇。 定子铁芯由导磁良好的硅钢片叠成,在铁芯内圆均匀分布着许多槽(图3所示)。 在槽内嵌放定子的三相绕组。每相绕组由多个线圈组成,按一定规律对称排列。(图4所示)。使定子铁芯透明可看清绕组的分布(图4所示)。 转子插在定子内部,定子与转子的相对位置如图5所示。 定子固定在发电机的机座(外壳)内,转子由机座两端的轴承支撑,可在定子内自由旋转。集电环在机壳外侧,和碳刷架一同装在隔音罩内。在发电机外壳下方有发电机出线盒,发出的三相交流电从这里引出(图6所示)图7是发电机外观图 下载动画可观看发电机结构动画。 多磁极发电机原理模型 多磁极发电机的转子有多对磁极, 图1是有3对磁极的转子模型。由于每个磁极都是从转子上明显凸起,称之为凸极式转子。每个磁极上都 绕有励磁线圈,形成南北相间的6个磁极,励磁电源通过滑环向励磁线圈供电。 该模型的转子有3对磁极,旋转一周磁场将循环3个周期,每旋转120度磁场变化1个周期。定子内园周有 18个槽

发电机氢气冷却系统

毕业设计(论文) ` 题目发电机氢气冷却系统报告 院系自动化系 专业班级自动化专业1302班 学生姓名杨晓丹 指导教师马进

发电机氢气冷却系统报告 摘要 发电机在运行的过程中由于能量转换、电磁作用和机械摩擦会产生一定的热量。为了使发电机温度不超过与绝缘耐热等级相应的极限温度,应采取冷却措施使这些部件有效地散热。氢气比重小、比热大、导热系数较大、化学性质较稳定,是冷却发电机转子常用的介质。氢气在发电机的腔室内循环,依次穿过冷热风室,由冷却器冷却。发电机中的氢气容易发生泄漏,需要在轴与静密封瓦之间形成油膜封住气体。在发电机检修后,发电机内充满空气,为防止氢气与空气混合产生安全隐患,充入氢气时应先做气密实验,再从下至上向发电机内充满二氧化碳,最后从上至下向发电机内充满氢气。 关键词:发电机;氢气冷却;气体置换;密封油系统

Report of hydrogen cooling system for generator Abstract Generator in the process of running due to energy conversion, electromagnetic and mechanical friction generates heat.Hydrogen cooling system is used to limited the generator temperature exceed the limiting temperature of thermal class for electric machine insulation.Because of Hydrogen gas has small specific gravity,large specific heat,large coefficient of thermal conductivity and relatively stable chemical properties,it is the commonly used medium cooling generator rotor.Hydrogen is circulated in the generator hydrogen and cooled by corner cooler.In order to limite hydrogen leakage,oil seals the space between the shaft and static seal tile.After the generator maintenance, air is full of inside the generators.There was a safe hidden trouble if hydrogen is mixed into the oxygen.Carbon is blowed from the from the bottom to the full of generator to replace air after Sealing experiment was passed.And hydrogen is blowed from the from the full to the bottom of generator to replace carbon. Keywords:Generator;Hydrogen cooling;Gas replacement;Seal oil system

《发电机氢气系统》word版

600MW发电机氢气系统 一、发电机本体通风结构简介 1 发电机基本构成 图发电机结构原理图

图发电机剖视图 汽轮发电机主要由定子、转子、端盖和轴承等部件组成,具体的发电机结构见图4-11和图4-12所示。 2 发电机冷却方式 发电机的发热部件,主要是定子绕组、定子铁芯(磁滞与涡流损耗)和转子绕组。必须采用高效的冷却措施,使这些部件所发出的热量散发除去,以使发电机各部分温度不超过允许值。 我厂发电机采用水-氢-氢冷却方式,即发电机定子绕组及引线是水内冷,发电机的转子绕组是氢内冷,转子本体及定子铁芯是氢表冷。为此,发电机还设有定子内冷水冷却系统,发电机氢冷系统和为防止氢气从轴封漏出的密封油系统。 3 发电机定子 发电机定子主要由机座、定子铁芯、定子绕组、端盖等部分组成。 1)机座与端盖 机座是用钢板焊成的壳体结构,它的作用主要是支持和固定定子铁芯和定子绕组。此外,机座可以防止氢气泄漏和承受住氢气的爆炸力。 在机壳和定子铁芯之间的空间是发电机通风(氢气)系统的一部分。由于发电机定子采用径向通风,将机壳和铁芯背部之间的空间沿轴向分隔成若干段,每段形成一个环形小风室,各小风室相互交替分为进风区和出风区。这些小室用管子相互连通,并能交替进行通风。氢气交替地通过铁芯

的外侧和内侧,再集中起来通过冷却器,从而有效地防止热应力和局部过热。

图4-14 机座弹性隔振结构 4 发电机通风系统 发电机以氢气作为主要冷却介质,采用径向多流式密闭循环通风方式运行,定子绕组采用单独的水冷却系统,而氢气冷却系统,包括风扇盒氢气冷却器完整地置于发电机内部。 1)定子通风系统 发电机定子铁芯沿轴向分为15个风区,7个进风区和8个出风区相间布置。装在转子上的两个轴流风扇(汽、励侧各一)将风分别鼓入气隙和铁芯背部,进入背部的气流沿铁芯径向风道冷却进风区铁芯后进入气隙;少部分风进入转子槽内风道,冷却转子绕组;其它大部分再折回铁芯,冷却出风区的铁芯,最后从机座风道进入冷却器;被冷却器冷却后的氢气进入风扇前再循环。这种交替进出的径向多流通风保证了发电机铁芯和绕组的均匀冷却,减少了结构件热应力和局部过热。为了防止风路的短路,常在定转子之间气隙中冷热风区间的定子铁芯上加装气隙隔环,以避免由转子抛出的热风吸入转子再循环。

发电机氢油水系统

发电机氢油水系统

发电机氢油水控制系统 目录 第一部分:发电机氢气控制系统 第二部分:发电机密封油控制系统 第三部分:发电机定子线圈冷却水控制系统 第四部分:氢油水控制系统主要测点

第一部分发电机氢气控制系统 1. 用途与功能 发电机氢气控制系统专用于氢冷汽轮发电机,具有以下功能: a. 使用中间介质(一般为CO2)实现发电机内部气体置换; b. 通过压力调节器自动保持发电机内氢气压力在需要值; c. 通过氢气干燥器除去机内氢气中的水份; d. 通过真空净油型密封油系统,以保持机内氢气纯度在较高水平; e. 采用相应的表计对机内氢气压力、纯度、温度以及油水漏入量进行监测显示,超限时发出报警信号。 2. 主要技术参数 2.1 发电机内额定运行参数: a. 氢气压力:0.5MPa.(g) b. 氢气温度:46℃ c. 氢气纯度:98% d. 氢气耗量:19m3/d 2.2 对供给发电机的氢气要求 a. 压力不高于3.2MPa.(g) b. 纯度不低于98% c. 露点温度.≤–20℃ 2.3 发电机充氢容积150m3 3. 工作原理 3.1 发电机内空气和氢气不允许直接置换,以免形成具有爆炸浓度的混合气体。通常应采用CO2气体作为中间介质实现机内空气和氢气的置换。本氢气控制系统设置有专用管路、CO2控制排、置换控制阀和气体置换盘用以实现机内气体间接置换。 3.2 发电机内氢气不可避免地会混合在密封油中,并随着密封油回油被带出发电机,有时还可能出现其他漏气点。因此机内氢压总是呈下降趋势,氢压下降可能引起机内温度上升,故机内氢压必须保持在规定的范围之内,本控制系统在氢气的控制排中设置有两套氢气减压器,用以实现机内氢气压力的自动调节。 3.3 氢气中的含水量过高对发电机将造成多方面的不良影响,通常均在机外设置专用的氢气干燥器,它的进氢管路接至转子风扇的高压侧,它的回氢管路接至风扇的低压侧,从而使机内部份氢气不断地流进干燥器内得到干燥。

发电机氢系统介绍

发电部培训专题(发电机氢系统简介修改版)*本介绍参照了技术协议部分内容

1发电机氢气系统简介说明: 1.1发电机由于存在着损耗的原因,会导致发电机本体及线圈发热,如果不 及时将这些热量及时释放掉,将会导致发电机绝缘老化,影响发电机使用寿命,甚至引发其它恶性的电气事故的发生。因此大、小发电机都有自己的一套冷却装置。 1.2大型发电机是一种高电压、大电流的电气设备,因此对于它的冷却方式 的选择,是确保发电机安全运行的一项重要手段,发电机根据容量等技术参数选择不同的冷却方式,如空冷、氢冷、水氢氢、双水内冷等。在这些方式中,双水内冷冷却效果是最好的,但由于双水内冷存在着连接部件漏水这一难以解决的问题,在我国80年代投产的多台引进的捷克机组中多次发生此类事故,所以目前我国发电机至今仍多采用的是氢气冷却这种方式,我厂发电机用的是水-氢-氢冷却方式。 1.3之所以目前多采用氢气冷却的原因是氢气有着以下优点: a.氢气比重比较小,相对于其它气体来说它的阻力损耗比较小。 b.氢气是不助燃的气体。 c.氢气比热较其它气体来说大一些。 d.氢气化学价比较稳定。 1.4但用氢气冷却这种方式也存在很大的缺点: a.它是可燃物,使的生产危险点控制更加严格。 b.它需要专用的密封装置,增加了系统的复杂性。

2主要技术参数 2.1发电机内额定运行参数: a.氢气压力:0.414MPa. b.氢气温度:不大于46℃ c.氢气纯度:大于98% d.氢气耗量:小于13~19立方米/天 e.氢气含氧量:小于2% f.氢气含水量:不大于25克/立方米 2.2对供给发电机的氢气要求 a.供氢气压力不高于3.2MPa.(g) b.供氢气纯度不低于99.5% c.氢气露点温度.≤–21℃ 2.3置换时的损耗值: 备注 序号内容单位数 值 1 发电机充氢容积立方米117 2 驱赶机内空气时耗用二氧化碳立方米300 CO2纯度98% 以上 3 驱赶机内二氧化碳时耗用的氢气立方米300

发电机原理概述

1.概述 电能是现代社会最主要的能源之一。发电机是将其他形式的能源转换成电能的机械设备,它由水轮机、汽轮机、柴油机或其他动力机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由发电机转换为电能。发电机在工农业生产,国防,科技及日常生活中有广泛的用途。 发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,其构造的一般原则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到能量转换的目的。 发电机的分类可归纳如下: 直流发电机、交流发电机;同步发电机、异步发电机(很少采用) 交流发电机还可分为单相发电机与三相发电机。 2.结构及工作原理 发电机通常由定子、转子、端盖、机座及轴承等部件构成。 定子由机座.定子铁芯、线包绕组、以及固定这些部分的其他结构件组成。 转子由转子铁芯(有磁扼.磁极绕组)滑环、(又称铜环.集电环).风扇及转轴等部件组成。 由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定子中旋转,做切割磁力线的运动,从而产生感应电势,通过接线端子引出,接在回路中,便产生了电流。 汽轮发电机与汽轮机配套的发电机。为了得到较高的效率,汽轮机一般做成高速的,通常为3000转/分(频率为50赫)或3600转/分(频率为60赫)。核电站中汽轮机转速较低,但也在1500转/分以上。高速汽轮发电机为了减少因离心力而产生的机械应力以及降低风摩耗,转子直径一般做得比较小,长度比较大,即采用细长的转子。特别是在3000转/分以上的大容量高速机组,由于材料强度的关系,转子直径受到严格的限制,一般不能超过1.2米。而转子本体的长度又受到临界速度的限制。当本体长度达到直径的6倍以上时,转子的第二临界速度将接近于电机的运转速度,运行中可能发生较大的振动。所以大型高速汽轮发电机转子的尺寸受到严格的限制。10万千瓦左右的空冷电机其转子尺寸已达到上述的极限尺寸,要再增大电机容量,只有靠增加电机的电磁负荷来实现。为此必须加强电机的冷却。所以5~10万千瓦以上的汽轮发电机都采用了冷却效果较好的氢冷或水冷技术。70年代以来,汽轮发电机的最大容量已达到130~150万千瓦。从1986年以来,在高临界温度超导电材料研究方面取得了重大突破。超导技术可望在汽轮发电机中得到应用,这将在汽轮发电机发展史上产生一个新的飞跃。 3.水轮发电机 由水轮机驱动的发电机。由于水电站自然条件的不同,水轮发电机组的容量和转速的变化范围很大。通常小型水轮发电机和冲击式水轮机驱动的高速水轮发电机多采用卧式结构,而大、中型代速发电机多采用立式结构(见图)。由于水电站多数处在远离城市的地方,通常需要经过较长输电线路向负载供电,因此,电力系统对水轮发电机的运行稳定性提出了较高的要求:电机参数需要仔细选择;对转子的转动惯量要求较大。所以,水轮发电机的外型与汽轮发电机不同,它的转子直径大而长度短。水轮发电机组起动、并网所需时间较短,运行调度灵活,它除了一般发电以外,特别适宜于作为调峰机组和事故备用机组。水轮发电机组的最大容量已达70万千瓦。 柴油发电机由内燃机驱动的发电机。它起动迅速,操作方便。但内燃机发电成本较高,所以柴油发电机组主要用作应急备用电源,或在流动电站和一些大电网还没有到达的地区使用。柴油发电机转速通常在1000转/分以下,容量在几千瓦到几千千瓦之间,尤以200千瓦以下的机组应用较多。它制造比较简单。柴油机轴上输出的转矩呈周期性脉动,所以发电机是在剧烈振动的条件下工作。因此,柴油发电机的结构部件,特别是转轴要有足够的强度和刚度,以防止这些部件因振动而断裂。此外,为防止因转矩脉动而引起发电机旋转角速度不均匀,造成电压波动,引起灯光闪烁,柴油发电机的转子也要求有较大的转动惯量,而且应使轴系的固有扭振频率与柴油机的转矩脉动中任一交变分量的频率相差20%以上,以免发生共振,造成断轴事故。 柴油发电机组主要由柴油机、发电机和控制系统组成,柴油机和发电机有两种连接方式,一为柔性连接,即用连轴器把两部分对接起来,二为刚性连接,用高强度螺栓将发电机钢性连接片和柴油机飞轮盘连接而成,目前使用刚性连接比较多一些,柴油机和发电机连接好后安装在公共底架上,然后配上各种传感器,如水温传感器,通过这些传感器,把柴油机的运行状态显示给操作员,而且有了这些传感器,就可以设定一个上限,当达到或超过这个限定值时控制系统会预先报警,这个时候如果操作员没有采取措施,控制系统会自动将机组停掉,柴油发电机组就是采取这种方式起自我保护作用的。传感器起接收和反馈各种信息的作用,真正显示这些数据和执行保护功能的是机组本身的控制系统。 4.风力发电机原理 是将风能转换为机械功的动力机械,又称风车。广义地说,它是一种以太阳为热源,以大气为工作介质的热能利用发动机。风力发电利用的是自然能源。相对柴油发电要好的多。但是若应急来用的话,还是不如柴油发电机。风力发电不可视为备用电源,但是却可以长期利用。 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三公尺的微风速度(微风的程度),便可以开始发电。 风力发电正在世界上形成一股热潮,为风力发电没有燃料问题,也不会产生辐射或空气污染。

(整理)发电机氢气系统.

第十二章发电机氢气系统 第一节氢气控制系统 一、作用 用以置换发电机内气体,有控制地向发电机内输送氢气,保持机内氢气压力稳定,监视机内有关氢压、温度及纯度以及液体的泄漏干燥机内氢气。 二、主要技术参数 1、发电机内: 额定氢压:0.414Mpa 允许最大氢压:0.42Mpa 氢气纯度:>96% 氢气湿度:<1g/m3(标准大气压下) 2、发电机及氢气管路系统(不包括制氢站储氢设备及氢母管)漏气量<19m3/24h。 三、系统设备介绍 1、供气装置(气体控制站): 氢气供气装置提供必须的阀门,压力表,调节器和其它设备将氢气送进发电机,它还提供用以自动调节机内氢气压力或手动调节的阀门,或者是借助于压力调节器手动调节机内所需氢气压力值。 二氧化碳供气装置在气体置换期间将二氧化碳充入发电机。 氢气是通过设置在发电机内顶部汇流管道进入发电机内,并均匀地分布到各地方;二氧化碳是通过发电机底部管道进入发电机并均匀分布到各地方。 2、氢气干燥器: 本系统配置冷凝式氢气干燥器,正常时,一台运行,一台备用,用以干燥发电机内氢气。干燥器内氢气流动是靠发电机转子上的风扇前后压力进行的。 3、液体检漏器(液位信号器): 液体检漏器是指装在发电机壳和主出线盒下面的浮子控制开关,它可指示出发电机内可能存在的冷却器泄漏或冷凝成的液体以及由于调整不当而进入机内的密封油,在机壳的底部,每端机壳端环上设有开口,将收集起的液体排到液体检漏器。每个检漏器装有一根回气管通到机壳,使得来自发电机机壳的排水管不能通大气;回气管和水管都装有截止阀,另外,为了能排除积聚的液体,检漏器底部还装有排放阀。 4、氢气纯度检测设备: 在发电机里,氢气纯度由纯度差压变送器,氢气压力变送器等氢气测量组件测定。 用一负荷非常小,以至运转速度几乎不变的感应马达,驱动纯度风机使从发电机内抽出的气体循环流动,因此,纯度风机产生的压力直接反映出取样气体的密度。氢气纯度差压变送器

发电机原理

<一> 发电机概述
发电机是将其他形式的能源转换成电能的机械设备,它由水轮机、汽轮机、柴油机或其他动力 机械驱动,将水流,气流,燃料燃烧或原子核裂变产生的能量转化为机械能传给发电机,再由 发电机转换为电能。发电机在工农业生产,国防,科技及日常生活中有广泛的用途。
发电机的形式很多,但其工作原理都基于电磁感应定律和电磁力定律。因此,其构造的一般原 则是:用适当的导磁和导电材料构成互相进行电磁感应的磁路和电路,以产生电磁功率,达到 能量转换的目的。
发电机已实施出口产品质量许可制度,未取得出口质量许可证的产品不准出口。
<二>发电机的分类可归纳如下:
发电机分:直流发电机和交流发电机 交流发电机分:同步发电机和异步发电机(很少采用) 交流发电机还可分为单相发电机与三相发电机。
<三>发电机结构及工作原理
发电机通常由定子、转子、端盖及轴承等部件构成。
定子由定子铁芯、线包绕组、机座以及固定这些部分的其他结构件组成。
转子由转子铁芯(或磁极、磁扼)绕组、护环、中心环、滑环、风扇及转轴等部件组成。
由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定子中旋转,做切割磁力线的 运动,从而产生感应电势,通过接线端子引出,接在回路中,便产生了电流。
柴油发电机工作原理
柴油机驱动发电机运转,将柴油的能量转化为电能。
在柴油机汽缸内,经过空气滤清器过滤后的洁净空气与喷油嘴喷射出的高压雾化柴油 充分混 合,在活塞上行的挤压下,体积缩小,温度迅速升高,达到柴油的燃点。柴油被点燃,混合气 体剧烈燃烧,体积迅速膨胀,推动活塞下行,称为‘作功’。各汽缸按一定顺序依次作功,作用 在活塞上的推力经过连杆变成了推动曲轴转动的力量,从而带动曲轴旋转。
将无刷同步交流发电机与柴油机曲轴同轴安装,就可以利用柴油机的旋转带动发电机的转子, 利用‘电磁感应’原理,发电机就会输出感应电动势,经闭合的负载回路就能产生电流。
这里只描述发电机组最基本的工作原理。要想得到可使用的、稳定的电力输出,还需要一系列 的柴油机和发电机控制、保护器件和回路。

发电机氢气系统

发电机氢气系统简介说明 1、 发电机由于存在着损耗的原因,会导致发电机本体及线圈发热,如果不及时将这些热量 释放掉,将会导致发电机绝缘老化,影响发电机使用寿命,甚至引发其它恶性的电气事故的发生。因此发电机都有自己的一套冷却装置。 2、采用氢气冷却的优点: a. 氢气比重比较小,相对于其它气体来说它的阻力损耗比较小。 b. 氢气是不助燃的气体。 c. 氢气比热较其它气体来说大一些。 d. 氢气化学价比较稳定。 缺点: a. 它是可燃物,使得生产危险点控制更加严格。 b. 它需要专用的密封装置,增加了系统的复杂性。 3、氢气控制系统设计参数为: 额定氢气压力:0.4MPa(表压) 氢气纯度:≥98%正常, ≤95%报警 氢气湿度(露点):-5℃~-25℃(氢气压力在0.4MPa时)。 4、发电机气体置换采用中间介质置换法: 发电机置换分为:空气向氢气置换及氢气向空气置换两种。目前基本采用的是中 间置换法。中间置换法的中间介质为二氧化碳气体。气体置换应在发电机静止、 盘车或转速不超过1000r/min的情况下进行。充氢前先用中间介质(二氧化碳) 排除发电机及系统管路内的空气,当中间气体的纯度超过95%后, 才可充入氢气 排除中间气体,最后置换到氢气状态。这一过程所需的中间气体为发电机和管道 容积的1.5倍,所需氢气约为发电机和管道容积2~3倍。发电机由充氢状态置换 到空气状态时,其过程与上述类似,先向发电机引入中间气体排除氢气,使中间 气体含量超过95%, 方可引进空气排除中间气体。当中间气体含量低于15%以后, 可停止排气。此过程所需气体为发电机和管道容积的1.5~2倍。 5、气体置换作业时几点注意事项: 1)密封油系统必须保证供油的可靠性,且油/气压差维持在0.056MPa左右。 2)发电机转子处于静止状态。(盘车状态也可进行气体置换,但耗气量将大幅增加)。 3)氢气置换时必须注意浮子油箱油位及发电机油水检测器油位。严防发电机内进油和跑氢事故的发生。

发电机氢气系统安全运行分析示范文本

发电机氢气系统安全运行分析示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

发电机氢气系统安全运行分析示范文本使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 丹河发电有限公司1,2号发电机的定子绕组、转子绕 组及铁芯均采用氢内冷的冷却方式。氢气由装在转子两端 的风扇强制循环,并通过设置在定子机座上部的6组氢气 冷却器进行冷却。氢气系统由发电机定子外壳、端盖、氢 气冷却器、密封瓦以及氢气管路构成全封闭气密结构。 发电机漏氢的途径,归纳起来有2种:一是漏到大气 中,二是漏到发电机油水系统中。前者可以通过各种检漏 方法找到漏点加以消除,如发电机端盖、出线罩、发电机 机座、氢气管路系统、测温元件接线柱板等处的漏氢;后 者如氢气通过密封瓦漏入密封油系统等,基本属于“暗 漏”,漏点位置不明,检查处理较为复杂,且处理时间较 长。影响发电机冷风器冷却效果的因素也很多,如冷却水

发电机氢系统改造-安全技术措施方案

整体解决方案系列 发电机氢系统改造-安全 技术措施 (标准、完整、实用、可修改)

编号: FS-QG-58177发电机氢系统改造-安全技术措施 Gen erator hydroge n system tran sformatio n-safety tech ni cal measures 说明:为明确各负责人职责,充分调用工作积极性,使人员队伍与目标管理科学化、制度化、规范化,特此制定 一、安全措施: 1、办理工作票并认真履行工作票开收工手续。 2、办理动火工作票并认真落实各项防火措施。 3、认真组织施工人员学习氢系统改造安全技术措施。 4、明确施工组成员,尤其是焊割工。 5、每班工作结束离开现场前应检查有无遗留火种。 6、进行钳工、电火焊作业时应正确佩带和使用各种劳动保护。 7、进行管路搬运、敷设工作时,应相互配合好,避免机械伤害。如周围有带电设备应按安规要求保持足够的安全距 离。 &文明施工,保证施工现场清洁,工具、材料、气瓶、电缆摆放有序,符合有关规定。因施工需要移开的各种人行通道盖板应作好围栏和警示牌,施工结束后立即恢复。

二、技术措施: 1、组织施工人员学习8号发电机氢系统改进变更申请,主要了解和掌握改造目的及氢系统改造前后系统图。 2、组织施工人员学习《发电机检修规程》中“氢系统检修标准”。 3、管路敷设过程中应随时做好吹扫工作,防止管路内有遗留物造成堵塞。 4、进行管路敷设焊接过程中,应注意防止阀门因过热造成密封层损从而失去密封效果。 5、及时与相关专业运行、热工、化学及电气继电班作好沟通协商工作。 6、安全阀应校验合格,安装中避免油污及较大振动,安全阀门口应光滑平整、无损伤。安全阀由对厂房内排放改为用管接至排空管上。 7、厂房外排空管出口上方应加装阻火器,并做好防雨水等措施,刷漆并做标志。 8、空气干燥器委托修造分场加工并进行打压试验出具试

发电机氢气泄漏原因分析及防范措施通用版

解决方案编号:YTO-FS-PD335 发电机氢气泄漏原因分析及防范措施 通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

发电机氢气泄漏原因分析及防范措 施通用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 1、发电机本体方面 发电机本体在安装过程中必须严格按照制造厂图纸说明书和《电力建设施工及验收技术规范》(以下简称《规范》)做好以下现场试验: ①发电机定子绕组水路水压试验。该试验必须在电气主引线及柔性连接线安装后进行,主要检查定子端部接头、绝缘引水管、汇水管、过渡引线及排水管等处有无渗漏现象。②发电机转子气密性试验。试验时特别要用无水乙醇检查导电螺钉处是否有渗漏现象。③氢气冷却器水压试验。④发电机定子单独气密性试验。试验时用堵板封堵密封瓦座,试验范围包括:定子、出线瓷套管、出线罩、测温元件接线柱板、氢冷器、氢冷器罩、端盖、机座等。试验介质应为无油、干净、干燥的压缩空气或氮气,试验压力为0.3Mpa,历时24小时,要求漏气量小于 0.73m3/24h(或漏氢率小于0.3%)。 2、发电机外端盖方面

电动机和发电机原理

电动机 奥斯特实验说明:通电导线周围存在磁场,对磁体有磁力作用 1.磁场对通电导线的作用 (1)猜想: 通电导线在磁场中会受到力的作用。 (2)设计实验: 实验结论:通电导体在磁场中会受到力的作用。 2、通电导体在磁场中所受力的方向与哪些因素有关呢? 实验结论: (1.通电导线在磁场中受到___的作用 (2.通电导线在磁场中受到力的方向和__________ 有关 (3.通电导线在磁场中受到力的方向和_________有关 (4.只改变___________ 或___________通电导线受到力的方向_________,如果________改变电流方向和磁场方向则受到力的方向________ 电动机原理: 思考:假如不是一根通电导线而是一个通电线圈放在磁场中又会怎样?如下图 此时线圈能否一直转下去?为什么?如果不行,如何才能让它一直保持一定的顺时针或逆时针方向转?

即相当于思考如何才能使得: 靠近S极的线圈受到的力始终向上 靠近N极的线圈受到的力始终向下,那么线圈就可以持续沿顺时针方向转动. 思:讨论: 怎样实现上面的情况? 及时改变电流方向或磁场方向,(即越过平衡位置)从而改变受力方向 A、B是电刷 作用:与半环接触,使电源和线圈 组成闭合电路。 E、F是换向器(两个半圆铜环): 作用:及时改变线圈中的电流方向, 使受力方向总是相同,线圈一直转动下 去。 实际的电动机是利用换向器使它连续转动的.: 1.原理:当线圈转到另一半和电刷接触时就改变了电流方向,从而受力方向改变使线圈连续转到下去. 2.作用:当线圈转过平衡位置,及时改变线圈电流方向,使线圈得以连续转动. 总结:1.电动机主要由转子和定子组成,是利用通电线圈在磁场里受力而转动的原理制成 2.电动机:把电能转化为动能 理解概念:直流电和交流电 练: 1.要改变直流电动机的转动方向,应采取的方法是[ ] A.增强磁极的磁性 B.加大通电电流 C.改变线圈中的电流方向 D.将磁铁的磁极对调 2、关于通电导体在磁场里受力方向与电流方向和磁感线方向之间的关系,下列说法中错误的是[ ] A.电流方向改变时,导体受力方向改变 B.磁场方向改变时,导体受力方向改变 C.电流方向和磁场方向同时改变,导体的受力方向改变 D.电流方向和磁场方向同时改变,导体的受力方向不变 电动机是利用制成的!

防止发电机氢气系统爆炸和着火事故措施详细版

文件编号:GD/FS-9569 (解决方案范本系列) 防止发电机氢气系统爆炸和着火事故措施详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

防止发电机氢气系统爆炸和着火事 故措施详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 1、运行中氢冷发电机及其氢系统范围内严禁烟火,如需进行动火作业或检修试验等工作时,事先必须检测漏氢情况,对气体取样分析,确认气体混合比在安全范围内,方可办理动火工作票,经审查批准后,由专人监护下方可工作,上述工作如需超过 4h,应重新进上述检测化验工作。 2、运行中的发电机附近严禁放置易燃易爆物品并且禁止在充氢管道上搭接电焊机地线。 3、为防止氢冷发电机的氢气漏入封闭母线发生氢爆事故,在发电机出线箱与封闭母线连接处应装设隔氢装置,并在适当地点设置排气孔。还应加装漏氢

监测报警装置,当氢气含量超过1%时,应停机找漏消缺。 4、发电机运行中应检查排烟风机可靠运行,并且定期从排烟机出口和主油箱取样,监视其中含氢量是否超过规定值(2%),如超过时应查明原因,并及时消除。 5、交、直流密封油泵应定期进行联动试验。 6、密封油系统差压阀必须保证动作灵活、可靠,密封瓦间隙必须调整合格。 7、运行人员发现补氢异常增大,则应迅速联系维检部汽机检修人员查清漏点,及时消除。 8、机内氢气纯度应不低于96%,含氧量应不大于2%。超过这些限度时应排氢,然后再充入纯净的氢气,直到氢气纯度合格。 9、发电机供气系统、密封油系统检修完闭,气

发电机漏氢处理及氢气冷却器更换施工技术方案

1号发电机漏氢处理及氢气冷却器更换施工技术方案 批准:王喜丰 审定:康龙 复审:陆永辉 初审:浦占财 编制:吕长辉 编制单位:电气检修分场 日期:二○○四年十二月十七日

1号发电机漏氢处理及氢气冷却器更换施工技术方案 1 运行现状 长期以来,一号发电机励侧氢气冷却器入口氢气温度持续偏高,影响一号发电机组的出力,尤其进入到十一月份,1号发电机漏氢量持续超标,经检查为发电机励侧第一分支和汽侧第四分支氢气冷却器铜管漏泄,其中汽侧第四分支氢气冷却器铜管漏泄严重。为改善一号发电机组的运行工况,特编制本方案。 2 励侧入口氢气温度持续偏高原因分析 从发电机氢气冷却器方面找原因,影响入口风温偏高有: 2.1 发电机氢气冷却器冷却铜管内管束个别有弯曲的,冷却器铜管由于弯曲或内部产生结垢,影响水流通进而导致散热不良。 2.2 冷却器铜管涨口处或铜管本身存在漏泄点,运行时氢气渗漏到冷却水中,影响冷却效果。 3 漏氢处理办法 针对发电机氢气冷却器铜管漏泄、氢气进入到冷却水中及运行中励侧氢气入口温度高,影响发电机安全稳定运行的缺陷,利用一号机组脱备进行检查处理。 3.1应具备的条件 关闭一号发电机25-1、25-2来氢门,并加死垫;发电机氢气置换成氮气完毕,经化验合格;发电机内气体全部开放;关闭一号发电机氢气冷却器进水及回水阀门。根据检查冷却器铜管漏泄程度即:漏泄的铜管数量和铜管弯曲程度,决定是否更换冷却器。

3.2 不更换氢气冷却器 气体置换合格后,拆除发电机冷却器两侧水室盖板,将氮气压力提升至0.3MPa,从冷却器两侧铜管处检查漏泄,如果铜管漏泄数量不超过本组冷却铜管总数的5%(即153根×5%=7根),可以不更换冷却器;然后排空发电机内的氮气,空气含量合格后,拆开冷却器两侧人孔盖板,进入发电机内检查冷却铜管是否有弯曲现象,经过检查铜管没有弯曲的,不更换冷却器;对漏泄的铜管,用准备好的紫铜楔,在管两侧堵死。如果冷却器铜管弯曲现象较严重,更换冷却器。 3.3 更换冷却器 根据进入发电机内检查情况,冷却器铜管弯曲较严重,应该更换氢气冷却器。更换冷却器的施工技术方案,见以下所述。 4 冷却器更换前应做的工作 4.1 核对备用氢气冷却器的互换性,并校对冷却器进、出口法兰与连接管路是否匹配,必要时进行改进。 4.2 对备用氢气冷却器解体清扫检查,做防腐刷漆、密封试验(按额定工作水压的1.2倍进行)合格后运抵检修现场,放到专用支架上。 4.3 备好更换冷却器的密封备件(冷却器进水箱与机座的刚性密封连接即橡胶垫密封,另一侧回水箱端板与机座的挠性密封连接即采用由橡胶垫和1mm不锈钢板组成)。 4.4 准备好更换所用的起吊用具、防护设施,如斤不落、钢丝绳、塑料布及放置冷却器的支架等。 4.5 所有参加更换冷却器的检修人员,应熟悉安全技术措施方案,技术交

发电机氢气系统查漏管理规定

发电机氢气系统查漏管理规定 (2013年第一版) 目录 1.目的 2.引用文件 3.适用范围 4.管理规定细则 5.工作要求细则(危险点预防与控制) 6.作业指导细则 7.查漏记录表 8.漏氢量计算方法及标准

1.目的 1、为通过有效的管理制度管理,促进员工能规范作业,保证安全生产,特制定本制度。 2、避免发电机在运行过程中因系统漏氢引发爆炸事故。 3、及时发现发电机存在的内漏缺陷,保证安全运行。 4、保证发电机使用寿命。 2.引用文件 1、?汽轮发电机漏水、漏氢的检验? 2、?汽轮发电机运行规程? 3.适用范围 电气、汽机及热工专业。 4.管理规定细则 1)、发电机漏氢找漏由电气班负责协调,汽机班、热工班配合并具体实施。 2)、各班需设查漏专责负责人。 3)、各班技术人员负责技术监督和管理,电气班负责现场组织实施。 4)、电气专工和汽机专工负责现场技术监督,并与电气点检和汽机点检负责人汇报并协调整体工作。 5)、发电机漏氢量核实由电气班专责人计算(每一周计算一次),并确定是否超标。 6)、电气班核实漏氢量大时,连续查找。 5.工作要求细则(危险点预防与控制) 1)、在运行的发电机上找漏,必须保证人身和设备安全情况下进行。 2)、发电机漏氢找漏工作负责人必须是有经验的、熟悉发电机和氢气管道结构的人、并经安规考试合格的人来承担。并且至少有两人以上工作。 3)、发电机找漏工作人员必须熟悉发电机现场,并了解发电机检修规程和运行规程。 4)、发电机找漏工作人员必须熟悉氢气气体的性质和氢气找漏的有关规定。 5)、工作人员进入现场必须严禁烟火,发现现场附近有烟火的必须立即让其无条件停止并隔离。 6)、工作人员必须穿联体工作服(防静电),穿绝缘鞋,带安全帽。不准带打火机、

最新发电机原理

发电机原理

发电机原理(即电磁感应定律)、右手定则) 收藏人:阳光青春 2013-11-03 | 阅:1 转:7 | 分享 | 来源 发电机 一.高分必知: 1.发电机原理:电磁感应 电磁感应定律:闭合电路的部分导体在磁场中切割磁感线运动时,导体中就会产生电流,这种现象叫做电磁感应现象,产生的电流叫做感应电流。 电磁感应现象是由英国物理学家法拉第经过长达10年的探索,通过实验得出的,所以该原理也叫做法拉第电磁感应定律。 ★特别提醒: ①影响感应电流大小的因素:切割磁感线的速度、磁场强弱、切割磁感线的角度。 ②影响感应电流方向的因素:切割磁感线的方向、磁场方向。

③大小和方向随时间做周期性变化的电流,叫做交流电;交流发电机发出的是交流电;交流电的周期:在交流电路中,电流经历1个周期性变化所用的时间,符号:T,单位:秒,符号:s。 交流电的频率:每秒电流发生周期性变化的次数,符号:f,单位:赫兹,符号:Hz. 我国所用的交流电周期为0.02s,频率为50Hz. 2.右手定则:伸出右手,使大拇指跟其余四指垂直,并且都跟手掌在同一个平面内,把右手放入磁场中,让磁感线垂直穿入手掌,大拇指指向导体切割磁感线运动方向,则四指所指的方向就是感应电流的方向。(左右手定则可简记为“左 力右电”) 3.能量转化:机械能→电能 二.高分必练: 1.1(09江苏)在如图所示的实验装置中,用棉线将铜棒ab悬挂于磁铁N、S极之间,铜棒的两端通过导线连接到电流表上.当ab做切割磁感线运动时,能观察到电流表的指针发生偏转.利用这一现象所揭示的原理,可制成的设备是( ) A.电熨斗 B.电动机 C.电磁继电器 D.发电机 【解析】解答:D

发电机氢气系统安全运行分析简易版

A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编订:XXXXXXXX 20XX年XX月XX日 发电机氢气系统安全运行 分析简易版

发电机氢气系统安全运行分析简易 版 温馨提示:本解决方案文件应用在对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 丹河发电有限公司1,2号发电机的定子绕 组、转子绕组及铁芯均采用氢内冷的冷却方 式。氢气由装在转子两端的风扇强制循环,并 通过设置在定子机座上部的6组氢气冷却器进 行冷却。氢气系统由发电机定子外壳、端盖、 氢气冷却器、密封瓦以及氢气管路构成全封闭 气密结构。 发电机漏氢的途径,归纳起来有2种:一 是漏到大气中,二是漏到发电机油水系统中。 前者可以通过各种检漏方法找到漏点加以消 除,如发电机端盖、出线罩、发电机机座、氢

气管路系统、测温元件接线柱板等处的漏氢;后者如氢气通过密封瓦漏入密封油系统等,基本属于“暗漏”,漏点位置不明,检查处理较为复杂,且处理时间较长。影响发电机冷风器冷却效果的因素也很多,如冷却水局部短路、传热效果差等。下面结合发电机氢气系统的结构,对检修过程中影响到漏氢、冷风器冷却效果的关键部位及应把好的质量关进行分析说明。 1 机壳结合面 机壳结合面主要包括:端盖与机座的结合面、上下端盖的结合面、固定端盖的螺孔、出线套管法兰与套管台板的结合面及进出风温度计的结合面。 (1) 端盖与机座的结合面及上下端盖的结

相关文档