文档库 最新最全的文档下载
当前位置:文档库 › 导数的单调性极值最值问题综合汇总

导数的单调性极值最值问题综合汇总

导数的单调性极值最值问题综合汇总
导数的单调性极值最值问题综合汇总

例1. 已知f(x)=e x

-ax-1. (1)求f(x)的单调增区间;

(2)若f(x )在定义域R 内单调递增,求a 的取值范围;

(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由.

解:)(x f '=e x

-a.

(1)若a≤0,)(x f '=e x

-a≥0恒成立,即f(x)在R 上递增.

若a>0,e x

-a≥0,∴e x

≥a,x≥lna.∴f(x)的单调递增区间为(lna,+∞). (2)∵f(x )在R 内单调递增,∴)(x f '≥0在R 上恒成立.

∴e x

-a≥0,即a≤e x

在R 上恒成立.

∴a≤(e x )min ,又∵e x

>0,∴a≤0.

(3)方法一 由题意知e x

-a≤0在(-∞,0]上恒成立.

∴a≥e x 在(-∞,0]上恒成立.∵e x

在(-∞,0]上为增函数.

∴x=0时,e x 最大为1.∴a≥1.同理可知e x

-a≥0在[0,+∞)上恒成立.

∴a≤e x

在[0,+∞)上恒成立.∴a≤1,∴a=1.

方法二 由题意知,x=0为f(x)的极小值点.∴)0('f =0,即e 0

-a=0,∴a=1.

变式训练1. 已知函数f(x)=x 3

-ax-1.

(1)若f(x)在实数集R 上单调递增,求实数a 的取值范围;

(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a 的取值范围;若不存在,说明理由;

(3)证明:f(x)=x 3

-ax-1的图象不可能总在直线y=a 的上方.

(1)解 由已知)(x f '=3x 2

-a,∵f(x)在(-∞,+∞)上是单调增函数,

∴)(x f '=3x 2-a≥0在(-∞,+∞)上恒成立,即a≤3x 2

对x∈R 恒成立.

∵3x 2≥0,∴只需a≤0,又a=0时,)(x f '=3x 2

≥0,

故f(x)=x 3

-1在R 上是增函数,则a≤0.

(2)解 由)(x f '=3x 2-a≤0在(-1,1)上恒成立,得a≥3x 2

,x∈(-1,1)恒成立.

∵-1

-1),

在x∈(-1,1)上,)(x f '<0,即f(x)在(-1,1)上为减函数,∴a≥3. 故存在实数a≥3,使f(x)在(-1,1)上单调递减.

(3)证明 ∵f(-1)=a-2

例2. 已知函数f(x)=x 3

+ax 2

+bx+c,曲线y=f(x )在点x=1处的切线为l:3x-y+1=0,若x=3

2

时,

y=f(x )有极值.

(1)求a,b,c 的值;

(2)求y=f(x )在[-3,1]上的最大值和最小值.

解 (1)由f(x)=x 3+ax 2+bx+c,得)(x f '=3x 2

+2ax+b,

当x=1时,切线l 的斜率为3,可得2a+b=0 ① 当x=32

时,y=f(x)有极值,则

??

? ??'32f =0,可得4a+3b+4=0 ②

由①②解得a=2,b=-4.由于切点的横坐标为x=1,∴f(1)=4. ∴1+a+b+c=4.∴c=5.

(2)由(1)可得f(x)=x 3+2x 2-4x+5,∴)(x f '=3x 2

+4x-4, 令

)

(x f '=0,得x=-2,x=3

2

.

当x 变化时,y,y′的取值及变化如下表:

x -3 (-3,-2) -2

?

?? ?

?

-32,2

32??

?

??1,32

1 y′

+

- 0 +

y

8单调递增

13

单调递减

↘ 27

95

单调递增 ↗

4

∴y=f(x )在[-3,1]上的最大值为13,最小值为

.

27

95

变式训练2. 函数y=x 4

-2x 2

+5在区间[-2,2]上的最大值与最小值.

解 先求导数,得y′=4x 3-4x,令y′=0,即4x 3

-4x=0.解得x 1=-1,x 2=0,x 3=1. 导数y′的正负以及f(-2),f(2)如下表:

x -2 (-2,-1) -1 (-1,0) 0 (0,1) 1 (1,

2) 2 y

- 0 + 0 - 0 +

y 1

3 ↘

4 ↗

5 ↘ 4 ↗ 1

3

从上表知,当x=±2时,函数有最大值13,当x=±1时,函数有最小值4.

例3. 已知函数f(x)=x 2e -ax

(a >0),求函数在[1,2]上的最大值.

解 ∵f(x )=x 2e -ax (a >0),∴)(x f '=2xe -ax +x 2·(-a)e -ax =e -ax (-ax 2

+2x). 令

)

(x f '>0,即e -ax (-ax 2

+2x)>0,得0

a

2.

∴f(x)在(-∞,0),??

? ??+∞,2a 上是减函数,在??

?

?

?a 2,0上是增函数.

①当0<

a

2<1,即a>2时,f(x )在(1,2)上是减函数,

∴f(x )max =f (1)=e -a

. ②当1≤a

2≤2,即1≤a≤2时, f(x)在??

? ??a 2,

1上是增函数,在??

?

??2,2

a 上是减函数,

∴f(x)max =f ??

?

??a 2=4a -2e -2

.

③当

a

2>2时,即0

∴f(x )max =f (2)=4e -2a

.

综上所述,当0

,

当1≤a≤2时,f(x)的最大值为4a -2e -2

,

当a>2时,f(x)的最大值为e -a

.

变式训练3. 设函数f(x)=-x(x-a)2

(x∈R ),其中a∈R .

(1)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程; (2)当a≠0时,求函数f(x)的极大值和极小值.

解:(1)当a=1时,f(x)=-x(x-1)2=-x 3+2x 2

-x,

f(2)=-2,)(x f '=-3x 2

+4x-1, =')2(f -12+8-1=-5,

∴当a=1时,曲线y=f(x)在点(2,f(2))处的切线方程为 5x+y-8=0.

(2)f(x)=-x(x-a)2=-x 3+2ax 2-a 2

x,

)(x f '=-3x 2+4ax-a 2

=-(3x-a)(x-a), 令

)

(x f '=0,解得x=

3

a 或x=a.

由于a≠0,以下分两种情况讨论.

①若a>0,当x 变化时,)(x f '的正负如下表:

x

(-∞,

3

a )

3

a (

3

a ,a)

a (a,+∞)

)

(x f '

- 0

+ 0 - f(x)

3

27

4a

-

因此,函数f(x)在x=3

a 处取得极小值f (3

a ),

且f (

3

a )=-

;

27

43

a

函数f(x)在x=a 处取得极大值f(a),且f(a)=0.

②若a<0,当x 变化时,)(x f '的正负如下表:

x

(-∞,a) a (a,3

a )

3

a (

3

a ,+∞

)

(x

f '- 0 + 0 - f (x)

-3

27

4a

因此,函数f(x)在x=a 处取得极小值f(a),且f(a)=0; 函数f(x)在x=3a 处取得极大值f (

3

a ),

且f (

3

a )=-

3

27

4a

.

2

2()()(1)

()x b

f x f x x f x -=

'-已知函数,求导函数,并确

定的单调区间.

2

()ln (2),()

2x

f x x f x a

=--已知函数求函数的单调区间.

()()432

1()

4

127

52()[2]f x x x x cx c c f x a a a <<已知函数=+-+有三个极值点.

证明:-;

若存在实数,使函数在区间,+上

单调递减,求的取值范围.

【解析】(1)证明:依题意,得f '(x)=x3+3x2-9x +c =0有三个互异的实根.

设g(x)=x3+3x2-9x +c ,则g'(x)=3x2+6x -9=3(x +3)(x -1). 当x<-3时,g'(x)>0,则g(x)在(-∞,-3)上为增函数; 当-31时,g'(x)>0,则g(x)在(1,+∞)上为增函数. 所以函数g(x)在x =-3时取极大值,在x =1时取极小值.

当g(-3)≤0或g(1)≥0时,g(x)=0最多只有两个不同实根. 因为g(x)=0有三个不同实根,

所以g(-3)>0且g(1)<0,即-27+27+27+c>0,且1+3-9+c<0, 解得c>-27且c<5,故-27

()()12312312312323127

5()31()()()()()(][]()[2][2](1][2][][2](1]2.11352.

c f x x x x x x x f x x x x x x x f x x x x f x a a a a x a a x x a a x a x x a <<<<<<'∞?∞??∞≤<<当-时,有三个极值点,

不妨设为、、且-,则=---,

所以的单调减区间是-,,,.若在区间,+上单调递减,

则,+-,或,+,.若,+-,,则+由知,-,于是-()23]232[2][2.131

a a x x a x a x x ?≥≤<<若,+,,则且+由知,-

又f '(x)=x3+3x2-9x +c ,

当c =-27时,f '(x)=(x -3)(x +3)2; 当c =5时,f '(x)=(x +5)(x -1)2. 因此,当-27-3且a +2<3, 即-3

故a<-5或-3

反之,当a<-5或-3

总可找到c ∈(-27,5)使函数f(x)在区间[a ,a +2]上单调递减. 综上所述,a 的取值范围是(-∞,-5)∪(-3,1). 【变式练习2】

已知函数f(x)=x3+ax2+3x -1(a>0),若f(x)在其定义域内为增函数,求a 的取值范围. 【例3】

已知x =3是函数f(x)=aln(1+x)+x2-10x 的一个极值点. (1)求a 的值;

(2)求函数f(x)的单调区间;

(3)若直线y =b 与函数y =f(x)的图象有3个交点,求b 的取值范围. 【变式练习3】

已知函数f(x)=ax3-6ax2+b 在[-1,2]上的最大值为3,最小值为-29,求a ,b 的值. 不等式的证明与恒成立问题

()()()2

1

32

32

()e

.21

(4)12()23()()()3

x f x x a x b x x x f x a b f x g x x x f x g x =

-设函数=++已知=-和=为的极值点.

求和的值;讨论的单调性【设-,试比较与例】

的大小.

【变式练习4】

已知函数f(x)=x4+ax3+2x2+b(x ∈R),其中a ,b ∈R.若对于任意的a ∈[-2,2],不等式f(x)≤1在[-1,1]上恒成立,求b 的取值范围.

1.(2010·江苏模拟卷)函数f(x)=x3-15x2-33x +6的单调减区间为________.

()2

2

()'()()100(0)()0____2()____f x xf x f x f x x x f x ->>>R 已知函数是定义在上的奇函数,=,,则不等式的解集是联.

.苏2009·北四市考卷

1.若f(x)=-x2+bln(x +2)在[-1,+∞)上是减函数,则b 的取值范围是_____________.

2.若函数y =x3-ax2+4在(0,2)内单调递减,则实数a 的取值范围为

____________.

3

()1(0)3.12(0)3())()2()0()_____________.()

x

f x e x x x x x f x f x f x f x R ?+

?-+≥??∞≤=+已知函数,下列四个命题中:

①在+上单调递减;②的最大值是;

③方程=有两个不等实根;④在上恒成立.

其中说法正确的命题序号是写出所有正确命题的序号

4.设函数f(x)=x3-3ax2+3bx 的图象与直线12x +y -1=0相切于点(1,-11). (1)求a ,b 的值;

(2)讨论函数f(x)的单调性.

5.已知函数f(x)=x3+bx2+cx +1在区间(-∞,-2]上单调递增,在区间[-2,2]上单调递减,且b ≥0.

(1)求f(x)的解析式;

(2)设0

高中数学:导数与函数的极值、最值练习

高中数学:导数与函数的极值、最值练习 (时间:30分钟) 1.函数f(x)=ln x-x在区间(0,e]上的最大值为( B ) (A)1-e (B)-1 (C)-e (D)0 解析:因为f′(x)=-1=,当x∈(0,1)时,f′(x)>0;当x∈(1,e]时, f′(x)<0,所以f(x)的单调递增区间是(0,1),单调递减区间是(1,e],所以当x=1时,f(x)取得最大值ln 1-1=-1. 2.(豫南九校第二次质量考评)若函数f(x)=x(x-c)2在x=2处有极小值,则常数c的值为( C ) (A)4 (B)2或6 (C)2 (D)6 解析:因为f(x)=x(x-c)2, 所以f′(x)=3x2-4cx+c2, 又f(x)=x(x-c)2在x=2处有极小值, 所以f′(2)=12-8c+c2=0,解得c=2或6, c=2时,f(x)=x(x-c)2在x=2处有极小值; c=6时,f(x)=x(x-c)2在x=2处有极大值; 所以c=2. 3.函数f(x)=3x2+ln x-2x的极值点的个数是( A ) (A)0 (B)1 (C)2 (D)无数 解析:函数定义域为(0,+∞),且f′(x)=6x+-2=,不妨设g(x)=6x2-2x+1. 由于x>0,令g(x)=6x2-2x+1=0,则Δ=-20<0, 所以g(x)>0恒成立,故f′(x)>0恒成立, 即f(x)在定义域上单调递增,无极值点. 4.(银川模拟)已知y=f(x)是奇函数,当x∈(0,2)时,f(x)=ln x-ax(a>),当x∈(-2,0)时,f(x)的最小值为1,则a的值等于( D ) (A)4 (B)3 (C)2 (D)1 解析:由题意知,当x∈(0,2)时,f(x)的最大值为-1. 令f′(x)=-a=0,得x=,

word完整版导数的单调性与极值题型归纳

导数的应用(单调性与极值) 一、求函数单调区间 3-3x的单调递减区间是________________ x1、函数y= x的单调递增区间是_______________ -3)e(x)=(x2、函数f 3、函数f(x)=ln x-ax(a>0)的单调递增区间为() 11A.(0,) B.(,+∞) aa1B.C.(-∞,) D.(-∞,a) a 4、函数y=x-2sin x在(0,2π)内的单调增区间为________. 2x x5、求函数f(x)=x(e-1)-的单调区间. 2 a6、已知函数f(x)=+x+(a-1)ln x+15a,其中a<0,且a≠-1.讨论函数f(x)的x单调性.

二、导函数图像与原函数图像关系 1 导函数正负决定原函数递增递减导函数大小等于原函数上点切线的斜率 导函数大小决定原函数陡峭平缓 1、若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在区间[a, b]上的图象可能是() 2、若函数y=f(x)的导函数在区间[a,b]上是先增后减的函数,则函数y=f(x)在区间[a,b]上的图象可能是() 2x cos x)·,则函数y=g(g在其任一点+1(x,y)处切线斜率为(x)=3、设曲线yx) (的部分图象可以为

) 的图象,如图所示,则(xx)的导函数f′()f4、函数 ( 0是极小值点B.x=x=1是最小值点 (1,2)上单增在xf D 是极小值点=.C x2 .函数()三、恒成立问题2

123+bx+cxf(x)=x-b-∞,+∞)上是增函数,求.若f(x)1、已知函数在(2; 的取值范围

导数的应用—单调性与极值的习题课

导数的应用—单调性与极值的习题课 【复习目标】 1.理解导数在研究函数的单调性和极值中的作用; 2.理解导数在解决有关不等式、方程的根、曲线交点个数等问题中有广泛的应用。 3.结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的 单调性,会求不超过三次的多项式函数的单调区间; 4.结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三 次的多项式函数的极大值、极小值,体会导数方法在研究函数性质中的一般性和有效性。 【重点难点】 ①利用导数求函数的极值;②利用导数求函数的单调区间;④利用导数证明函数的单调性; ⑤数在实际中的应用;⑥导数与函数、不等式等知识相融合的问题; 【基础过关】1. 函数的单调性 ⑴ 函数y =)(x f 在某个区间内可导,若)(x f '>0,则)(x f 为 ;若)(x f '<0,则) (x f 为 .(逆命题不成立) (2) 如果在某个区间内恒有0)(='x f ,则)(x f . 注:连续函数在开区间和与之相应的闭区间上的单调性是一致的. (3) 求可导函数单调区间的一般步骤和方法: ① 确定函数)(x f 的 ; ② 求)(x f ',令 ,解此方程,求出它在定义区间内的一切实根; ③ 把函数)(x f 的间断点(即)(x f 的无定义点)的横坐标和上面的各个实根按由小到大的顺 序排列起来,然后用这些点把函数)(x f 的定义区间分成若干个小区间; ④ 确定)(x f '在各小开区间内的 ,根据)(x f '的符号判定函数)(x f 在各个相应小开区 间内的增减性. 2.可导函数的极值 ⑴ 极值的概念 设函数)(x f 在点0x 附近有定义,且对0x 附近的所有点都有 (或 ),则称 )(0x f 为函数的一个极大(小)值.称0x 为极大(小)值点. ⑵ 求可导函数极值的步骤: ① 求导数)(x f '; ② 求方程)(x f '=0的 ; ③ 检验)(x f '在方程)(x f '=0的根左右的符号,如果在根的左侧附近为正,右侧附近为负, 那么函数y =)(x f 在这个根处取得 ;如果在根的左侧附近为负,右侧为正,那么函 数y =)(x f 在这个根处取得 . 【基础训练】 例1.如果函数()y f x =的图像如右图,那么导函数, ()y f x =的图像可能是( ) 例2. 曲线x x y ln 22-= 的单调减区间是( )

导数应用之极值与最值 学案

导数的应用学案 【教学目的】 1.通过函数图像直观理解导数的几何意义。 2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值;会求闭区间上函数的最大值、最小值。 【重点难点】 ①利用导数求函数的极值;②利用导数求函数的单调区间; ③利用导数求函数的最值;④利用导数证明函数的单调性; ⑤导数与函数、不等式方程根的分布等知识相融合的问题; ⑥导数与解析几何相综合的问题。 【教学过程】 一、准备知识 1.导数的意义 从代数上来说: 从几何上来说: 单调性与导数的关系(注意区间): 2.什么叫光滑(圆滑)曲线:不会出现尖角,导数不会突变。 二.新课教授 1.极值定义: 一般地, 设函数f (x) 在点x0附近有定义, 如果对x0附近的所有的点, 都有f(x)0,在b右侧附近f’(x)<0,那么f(b)是函数f(x)的一个极大值。 2)如果a是f’(x)=0的一个根,并且在a 的左侧附近f’(x)<0,在a 右侧附近f’(x)>0,那么是f(a)函数f(x)的一个极小值。 问:(1)极值点的导数一定是0吗? (2)导数为零的点一定是极值点吗? (3)极大值一定比极小值大吗? 2.如何求极值和最值

导数与单调性极值最基础值习题

导数与单调性极值最基础值习题 评卷人得分 一.选择题(共14小题) 1.可导函数y=f(x)在某一点的导数值为0是该函数在这点取极值的() A.充分条件B.必要条件 C.充要条件?D.必要非充分条件 2.函数y=1+3x﹣x3有( ) A.极小值﹣1,极大值3?B.极小值﹣2,极大值3 C.极小值﹣1,极大值1 D.极小值﹣2,极大值2 3.函数f(x)=x3+ax2﹣3x﹣9,已知f(x)的两个极值点为x1,x2,则x1?x2=() A.9 B.﹣9C.1 D.﹣1 4.函数的最大值为() A.?B.e2C.e D.e﹣1 5.已知a为函数f(x)=x3﹣12x的极小值点,则a=() A.﹣4 B.﹣2 C.4 D.2 6.已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=() A.﹣2或2? B.﹣9或3 C.﹣1或1 D.﹣3或1 7.设函数f(x)=xex,则() A.x=1为f(x)的极大值点 B.x=1为f(x)的极小值点 C.x=﹣1为f(x)的极大值点?D.x=﹣1为f(x)的极小值点 8.函数y=x3﹣2ax+a在(0,1)内有极小值,则实数a的取值范围是() A.(0,3)?B.(0,)?C.(0,+∞)?D.(﹣∞,3) 9.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于() A.11或18?B.11 C.18?D.17或18 10.设三次函数f(x)的导函数为f′(x),函数y=x?f′(x)的图象的一部分如图所

示,则正确的是() A.f(x)的极大值为,极小值为 B.f(x)的极大值为,极小值为 C.f(x)的极大值为f(﹣3),极小值为f(3) D.f(x)的极大值为f(3),极小值为f(﹣3) 11.若f(x)=x3+2ax2+3(a+2)x+1有极大值和极小值,则a的取值范围是( )A.﹣a2或a<﹣1C.a≥2或a≤﹣1?D.a>1或a<﹣2 12.函数y=xe﹣x,x∈[0,4]的最小值为() A.0 B.?C.?D. 13.函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是()A.5,﹣15 B.5,﹣4C.﹣4,﹣15?D.5,﹣16 14.已知f(x)=2x3﹣6x2+m(m为常数)在[﹣2,2]上有最大值3,那么此函数在[﹣2,2]上的最小值是( ) A.﹣37 B.﹣29 C.﹣5 D.以上都不对 评卷人得分 二.填空题(共10小题) 15.函数f(x)=x3﹣3x2+1的极小值点为. 16.已知f(x)=x3﹣ax2﹣bx+a2,当x=1时,有极值10,则a+b=. 17.已知函数f(x)=x(x﹣c)2在x=2处有极大值,则c= . 18.已知函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,则实数a 的取值范围是. 19.已知函数f(x)=x3+mx2+(m+6)x+1既存在极大值又存在极小值,则实数m的

导数的单调性及极值问题

二轮复习导数 (一) 2015. 02. 07 一、 运用导数研究函数的单调性 单调区间: (1) 求单调区间 (2)已知单调区间 (3)在某区间上不单调 运用导数求函数单调区间的思维流程图: 答题步骤: 第一步:求定义域; 第二步:求)(x 'f ; 第三步:令)(x 'f =0,求相应的导函数零点值;(是一次型还是二次型?是否有解?有几个解) 第四步:列表分析函数的单调性, (列表实际上就是画数轴,也可以认为是穿根解不等式,首先要做的是比较根的大小以及根于定义域边界的大小) 第五步:由表格写结论。 例1:(2012西城一模)已知函数()e (1)ax a f x a x =?++,其中1-≥a . 求)(x f 的单调区间. 解:2 (1)[(1)1] ()e ax x a x f x a x ++-'=,0x ≠.……………6分 ①当1-=a 时,令()0f x '=,解得1x =-. )(x f 的单调递减区间为(,1)-∞-;单调递增区间为(1,0)-,(0,)+∞.……8分 当1a ≠-时,令()0f x '=,解得1x =-,或1 1 x a = +. ②当01<<-a 时,)(x f 的单调递减区间为(,1)-∞-,1 ( ,)1 a +∞+; 单调递增区间为(1,0)-,1 (0, )1 a +.………10分 ③当0=a 时,()f x 为常值函数,不存在单调区间.…………11分 ④当0a >时,)(x f 的单调递减区间为(1,0)-,1 (0, )1 a +; 单调递增区间为(,1)-∞-,1 ( ,)1 a +∞+.…………13分

1)分类讨论的特点:二次项系数不确定 ,一元二次方程根的大小确定 。 例2:(2012-2013朝阳第一学期期末)已知函数1 ()()2ln ()f x a x x a x =--∈R .求函数()f x 的单调区间. 解:函数()f x 的定义域为(0,)+∞.222 122()(1)ax x a f x a x x x -+'=+-= (1)当0a ≤时,2()20h x ax x a =-+<在(0,)+∞上恒成立, 则()0f x '<在(0,)+∞上恒成立,此时()f x 在(0,)+∞上单调递减.……………4分 (2)当0a >时,244a ?=-, (ⅰ)若01a <<, 由()0f x '>,即()0h x >,得1x a <或1x a +>;………………5分 由()0f x '<,即()0h x -, .......................................2分 令()0f x '=,得到121 2,0x x a = -= , 由12a ≥可知120a -≤ ,即10x ≤....................5分 ① 即12a =时,121 20x x a =-==.所以,2 '2 ()0,(1,)2(1) x f x x x =-≤∈-+∞+,............6分 故()f x 的单调递减区间为(1,)-+∞ . ................................7分 ② 当 112a <<时,1 120a -<-<,即1210x x -<<=, 所以,在区间1 (1,2)a --和(0,)+∞上,'()0f x <;........8分在区间1(2,0)a -上,'()0f x >..........9分 故 ()f x 的单调递减区间是1 (1,2)a --和(0,)+∞,单调递增区间是1(2,0)a -. .........10分 ③当1a ≥时,11 21x a = -≤-,

《函数的单调性与极值》教学案设计

《函数的单调性与极值》教学案设计 教学目标:正确理解利用导数判断函数的单调性的原理; 掌握利用导数判断函数单调性的方法; 教学重点:利用导数判断函数单调性; 教学难点:利用导数判断函数单调性 教学过程: 一 引入: 以前,我们用定义来判断函数的单调性.在假设x 10时,函数y=f(x) 在区间(2,∞+)内为增函数;在区间(∞-,2)内, 切线的斜率为负,函数y=f(x)的值随着x 的增大而减小,即/y <0时,函数y=f(x) 在区间 (∞-,2)内为减函数. 定义:一般地,设函数y=f(x) 在某个区间内有导数,如果在这个区间内/y >0,那么函数y=f(x) 在为这个区间内的增函数;,如果在这个区间内/ y <0,那么函数y=f(x) 在为这个区间内的减函数。 例1 确定函数422+-=x x y 在哪个区间内是增函数,哪个区间内是减函数。 例2 确定函数76223+-=x x y 的单调区间。 y

2 极大值与极小值 观察例2的图可以看出,函数在X=0的函数值比它附近所有各点的函数值都大,我们说f(0)是函数的一个极大值;函数在X=2的函数值比它附近所有各点的函数值都小,我们说f(0)是函数的一个极小值。 一般地,设函数y=f(x)在0x x 及其附近有定义,如果)(0x f 的值比0x 附近所有各点的函数值都大,我们说f(0x )是函数y=f(x)的一个极大值;如果)(0x f 的值比0x 附近所有各点的函数值都小,我们说f(0x )是函数y=f(x)的一个极小值。极大值与极小值统称极值。 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点: (ⅰ)极值是一个局部概念。由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小。并不意味着它在函数的整个的定义域内最大或最小。 (ⅱ)函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个。 (ⅲ)极大值与极小值之间无确定的大小关系。即一个函数的极大值未必大于极小值,如下图所示,

第三十九讲:函数的极值最值与导数

第三十九讲 函数的极值、最值与导数 一、引言 1.用导数求函数的极大(小)值,求函数在连续区间上的最大最小值,或利用求导法解决一些实际应用问题是函数内容的继续与延伸,这种解决问题的方法使复杂问题变得简单化,因而已逐渐成为高考试题的又一热点. 2.考纲要求:了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值和极小值,能求出最大值和最小值;会利用导数解决某些实际问题. 3.考情分析:2010年高考预测对本专题内容的考查将继续以解答题形式与解析几何、不等式、平面向量等知识结合,考查最优化问题,加强了能力考查力度,使试题具有更广泛的实际意义,更体现了导数作为工具分析和解决一些函数性质问题的方法. 二、考点梳理 1.函数的极值: 一般地,设函数()y f x =在0x x =及其附近有定义,如果)(0x f 的值比0x 附近所有各点的函数值都大,我们说()0f x 是函数()y f x =的一个极大值;如果)(0x f 的值比0x 附近所有各点的函数值都小,我们说()y f x =是函数()y f x =的一个极小值.极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 理解极值概念要注意以下几点: (1)极值是一个局部概念.由定义可知,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小. (2)函数的极值不是唯一的.即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值.如下图所示,1x 是极大值点,4x 是极小值点,而4()f x >)(1x f . 2.函数极值的判断方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,

用导数解决函数的单调性、极值、最值的方法步骤

用导数解决函数的单调性、极值、最值的方法步骤 (833200)新疆奎屯市第一高级中学 特级教师 王新敞 极值是一个局部概念 由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小 并不意味着它在函数的整个的定义域内最大或最小函数的极值不是唯一的 即一个函数在某区间上或定义域内极大值或极小值可以不止一个极大值与极小值之间无确定的大小关系 即一个函数的极大值未必大于极小值. 函数的极值点一定出现在区间的内部,区间的端点不能成为极值点 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点 用导数判别f (x 0)是极大、极小值的思路: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值 求函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ) (2)求方程f ′(x )=0的根 (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f (x )在这个根处无极值在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值;在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值. 函数的最值是比较整个定义域内的函数值得出的,函数的极值是比较极值点附近函数值得出的. 函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个 利用导数求函数的最值步骤:⑴求)(x f 在(,)a b 内的极值;⑵将)(x f 的各极值与 )(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值 例1 求列函数的极值:(1)22)2()1(--=x x y ;(2)21 22 -+= x x y 解:(1)2 / 2 2 )2)(75)(1()(,)2()1()(---=∴--=x x x x f x x x f 令0)(/ =x f ,得驻点2,5 7 ,1321== =x x x

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

利用导数研究函数的单调性和极值(答案)

小题快练 1.(2013全国Ⅰ卷理)设曲线1 1 x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .1 2 - D .2- 2.(2013全国Ⅰ卷改编)设函数2 )1()(x e x x f x --=,则函数()f x 的单调递增区间 为 ,单调递减区间为 . 【解析】(Ⅰ) 当1k =时, ()()21x f x x e x =--,()()()1222x x x x f x e x e x xe x x e '=+--=-=- 令()0f x '=,得10x =,2ln 2x = 当x 变化时,()(),f x f x '的变化如下表: 右表可知,函数f x 的递减区间为0,ln 2,递增区间为,0-∞,ln 2,+∞. 3.(2013湖北理)若f(x)=2 1ln(2)2 x b x - ++∞在(-1,+)上是减函数,则b 的取值范围是(C ) A.[-1,+∞] B.(-1,+∞) C.(-∞,-1) D.(-∞,-1) 4.已知函数x bx ax x f 3)(2 3 -+=在1±=x 处取得极值. (1)讨论)1(f 和)1(-f 是函数f (x )的极大值还是极小值; (2)过点)16,0(A 作曲线y= f (x )的切线,求此切线方程. (1)解:323)(2-+='bx ax x f ,依题意,0)1()1(=-'='f f ,即 ?? ?=--=-+. 0323, 0323b a b a 解得0,1==b a . ∴)1)(1(333)(,3)(2 3 -+=-='-=x x x x f x x x f . 令0)(='x f ,得1,1=-=x x . 若),1()1,(∞+--∞∈Y x ,则0)(>'x f ,故 f (x )在)1,(--∞上是增函数, f (x )在),1(∞+上是增函数. 若)1,1(-∈x ,则0)(<'x f ,故f (x )在)1,1(-上是减函数. 所以,2)1(=-f 是极大值;2)1(-=f 是极小值. (2)解:曲线方程为x x y 33 -=,点)16,0(A 不在曲线上. 设切点为),(00y x M ,则点M 的坐标满足03 003x x y -=. 因)1(3)(2 00-='x x f ,故切线的方程为))(1(3020 0x x x y y --=- 注意到点A (0,16)在切线上,有 )0)(1(3)3(16020030x x x x --=-- 化简得83 0-=x ,解得20-=x . 所以,切点为)2,2(--M ,切线方程为0169=+-y x .

(完整版)导数与极值、最值练习题

三、知识新授 (一)函数极值的概念 (二)函数极值的求法:(1)考虑函数的定义域并求f'(x); (2)解方程f'(x)=0,得方程的根x (可能不止一个) (3)如果在x 0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x )是 极大值;反之,那么f(x )是极大值 题型一图像问题 1、函数() f x的导函数图象如下图所示,则函数() f x在图示区间上() (第二题图) A.无极大值点,有四个极小值点 B.有三个极大值点,两个极小值点 C.有两个极大值点,两个极小值点 D.有四个极大值点,无极小值点 2、函数() f x的定义域为开区间() a b ,,导函数() f x '在() a b ,内的图象如图所示,则函数() f x在 开区间() a b ,内有极小值点() A.1个 B.2个 C.3个 D.4个 3、若函数2 () f x x bx c =++的图象的顶点在第四象限,则函数() f x '的图象可能为() D. C. B. A. 4、设() f x '是函数() f x的导函数,() y f x ' =的图象如下图所示,则() y f x =的图象可能是() C. A.

5、 已知函数 () f x 的导函数 () f x '的图象如右图所示,那么函数()f x 的图象最有可能的是( ) -1 1 f '(x ) y x O 6、()f x '是()f x 的导函数,()f x '的图象如图所示,则()f x 的图象只可能是( ) 2x O 22D. C. B. A. O x O x x O x y 7、如果函数 () y f x =的图象如图,那么导函数()y f x '=的图象可能是( ) y y y x x x y x D C A x y y=f(x)

导数的单调性及极值

导数的单调性及极值 1.已知函数()cos x f x xe =(e 为自然对数的底数),当[],x ππ∈-时, ()y f x =的图象大致是() A. B. C. D. 2.函数x y xe -=,[0,4]x ∈的最小值为( ) A .0 B .1e C.44e D .22 e 3.已知函数()y f x =的图象是下列四个图象之一,且其导函数'()y f x =的图象如图所示, 则该函数的图象是( ) A . B . C. D . 4.函数32()f x x bx cx d =+++图象如图,则函数222log ()33 c y x bx =++的单调递减区间为( ) A.(,2]-∞- B.[3,)+∞ C.[2,3]-- D.1[,2+∞) 5.函数()f x 的定义域为开区间(,)a b ,导函数'()f x 在(,)a b 内的图象如图所示,则函数()f x 在开区间(,)a b 内有极小值点( ) A .1个 B .2个 C. 3个 D .4个 6.对于R 上可导的任意函数()f x ,若满足10'() x f x -≤,则必有( ) A .(0)(2)2(1)f f f +> B .(0)(2)2(1)f f f +≤ C .(0)(2)2(1)f f f +< D .(0)(2)2(1)f f f +≥

7.已知R 上的可导函数()f x 的图象如图所示,则不等式() ()2230x x f x '-->的解集为 A .() (),21,-∞-+∞ B .()(),21,2-∞- C .()()(),11,13,-∞--+∞ D .()()(),11,02,-∞--+∞ 8.已知函数1)6()(23++++=x a ax x x f 有极大值和极小值,则实数a 的取值范围是 A .21<<-a B .63<<-a C .3-a D .1-a 9.若函数12 3)(23++-=x x a x x f 在区间)3,21(上单调递减,则实数a 的取值范围为 A.)310,25( B.),310(+∞ C.),3 10[+∞ D.),2[+∞ 10.已知函数()321f x x ax x =-+--在(),-∞+∞上是单调函数,则实数a 的取值范围是() A .(),3,?-∞+∞? B . (() ,3,-∞+∞ C .?? D .( 11.设3 21()252 f x x x x =--+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的取值范围为 A.7m > B.15727m > C.157727m << D.7m < 12.已知函数()33f x x x =-,若对于区间[]3,2-上任意的12,x x 都有()()12f x f x t -≤,则实数t 的最 小值是( ) A .0 B .10 C .18 D .20 13.已知()f x 是定义在()0+∞, 上的可导函数,其导函数为()'f x ,且当0x >时,恒有()()'l n 0f x x x f x +<,则使得()0f x >成立的x 的取值范围是( ) A .()01, B .()1+∞, C .()()011+∞,, D .? 14.已知函数)(x f 是定义在R 上的奇函数,0)1(=f ,当0>x 时,有0)()(2>-'x x f x f x 成立,则不等 式0)(>?x f x 的解集是( ) (A )),1()1,(+∞?--∞ (B ))1,0()0,1(?- (C )),1(+∞ (D )),1()0,1(+∞?- 15.已知函数

第二章 第十一节 第二课时 导数与函数的极值、最值

课时规范练 A 组 基础对点练 1.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则( ) A .a <-1 B .a >-1 C .a >-1e D .a <-1e 解析:∵y =e x +ax ,∴y ′=e x +a . ∵函数y =e x +ax 有大于零的极值点, 则方程y ′=e x +a =0有大于零的解, ∵x >0时,-e x <-1,∴a =-e x <-1.选A. 答案:A 2.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则f (2)等于( ) A .11或18 B .11 C .18 D .17或18 解析:∵函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,∴f (1)=10,且f ′(1)=0,f ′(x )=3x 2+2ax +b , 即????? 1+a +b +a 2=10,3+2a +b =0,解得????? a =-3,b =3,或????? a =4, b =-11. 而当????? a =-3, b =3 时,f ′(x )=3x 2-6x +3=3(x -1)2,x ∈(-∞,1),f ′(x )>0,x ∈(1,+∞),f ′(x )>0, 故舍去. ∴f (x )=x 3+4x 2-11x +16,∴f (2)=18.选C. 答案:C 3.(2019·岳阳模拟)下列函数中,既是奇函数又存在极值的是( ) A .y =x 3 B .y =ln(-x )

C.y=x e-x D.y=x+2 x 解析:A、B为单调函数,不存在极值,C不是奇函数,故选D. 答案:D 4.若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,若t=ab,则t的最大值为() A.2 B.3 C.6 D.9 解析:∵f(x)=4x3-ax2-2bx+2,∴f′(x)=12x2-2ax-2b,又∵f(x)在x=1处有极值,∴f′(1)=12-2a-2b=0?a+b=6,∵a>0,b>0,a+b≥2ab,∴ab≤9,当且仅当a=b=3时等号成立.故选D. 答案:D 5.已知f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是() A.-37 B.-29 C.-5 D.以上都不对 解析:f′(x)=6x2-12x=6x(x-2), 所以f(x)在[-2,0]上单调递增,在(0,2]上单调递减. 所以x=0为极大值点,也为最大值点. 所以f(0)=m=3,所以m=3.所以f(-2)=-37,f(2)=-5. 所以最小值是-37. 答案:A 6.设函数f(x)=ax2+bx+c(a,b,c∈R).若x=-1为函数f(x)e x的一个极值点,则下列图象不可能为y=f(x)图象的是()

导数用于单调性和极值问题

专题十四、导数用于单调性和极值问题 题型一 利用导数判断函数的单调性 1.证明:函数f (x )=sin x x 在区间??? ?π2,π上单调递减. 题型二 利用导数求函数的单调区间 2.求下列函数的单调区间. (1)f (x )=x 3-x ;(2)y =e x -x +1. ! 3.求函数y =x 2-ln x 2的单调区间. 题型三 已知函数单调性求参数的取值范围 4.已知函数f (x )=x 2+a x (x ≠0,常数a ∈R ).若函数f (x )在x ∈[2,+∞)上是单调递增的,求a 的取值范围. 5.(1)已知函数f (x )=x 3+bx 2+cx +d 的单调减区间为[-1,2],求b ,c 的值. (2)设f (x )=ax 3+x 恰好有三个单调区间,求实数a 的取值范围. … 题型四 用单调性与导数关系证不等式 6.当x >0时,证明不等式ln(x +1)>x -1 2x 2. 7.当0<x <π2时,求证:x -sin x <1 6x 3. ; 题型五、函数的极值问题 8.下列函数存在极值的是( ) A .y =2x B .y =1x C .y =3x -1 D .y =x 2 9.设函数f (x )=2 x +ln x ,则( ) A .x =1 2为f (x )的极大值点 B .x =1 2为f (x )的极小值点

C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点 … 10.若函数y =f (x )是定义在R 上的可导函数,则f ′(x 0)=0是x 0为函数y =f (x )的极值点的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 11.函数y =x ·e x 的最小值为________. 12.若函数f (x )=x x 2+a (a >0)在[1,+∞]上的最大值为33,则a 的值为________. 题型六、利用极值求参数范围 13.已知函数f (x )=a sin x -b cos x 在x =π4时取得极值,则函数y =f (3π 4-x )是( ) A .偶函数且图象关于点(π,0)对称 … B .偶函数且图象关于点(3π 2,0)对称 C .奇函数且图象关于点(3π 2,0)对称 D .奇函数且图象关于点(π,0)对称 14.已知函数f (x )=x 3+ax 2+bx +c ,f (x )在x =0处取得极值,并且在区间[0,2]和[4,5]上具有相反的单调性. (1)求实数b 的值; (2)求实数a 的取值范围. 题型七、导数用于解决实际问题 15.用边长为48cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊成铁盒.所做的铁盒容积最大时,在四角截去的正方形的边长为( ) ? A .6 B .8 C .10 D .12 16.一工厂生产某型号车床,年产量为N 台,分批进行生产,每批生产量相同,每批生产的准备费为C 2元,产品生产后暂存库房,然后均匀投放市场(指库存量至多等于每批的生产量).设每年每台的库存费为C 1元,求在不考虑生产能力的条件下,每批生产该车床________

导数与函数的单调性、极值、最值

§3.2 导数与函数的单调性、极值、最值 1.函数的单调性 在某个区间(a,b),如果f′(x)>0,那么函数y=f(x)在这个区间单调递增;如果f′(x)<0,那么函数y=f(x)在这个区间单调递减. 2.函数的极值 (1)判断f(x0)是极值的法 一般地,当函数f(x)在点x0处连续时, ①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值; ②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值. (2)求可导函数极值的步骤 ①求f′(x); ②求程f′(x)=0的根; ③检查f′(x)在程f′(x)=0的根的左右两侧导数值的符号.如果左正右负,那么f(x)在 这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值. 3.函数的最值 (1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值. (2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函 数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值. (3)设函数f(x)在[a,b]上连续,在(a,b)可导,求f(x)在[a,b]上的最大值和最小值的步 骤如下: ①求f(x)在(a,b)的极值; ②将f(x)的各极值与f(a),f(b)进行比较,其中最大的一个是最大值,最小的一个是最小 值. 1.判断下面结论是否正确(请在括号中打“√”或“×”) (1)f′(x)>0是f(x)为增函数的充要条件. ( ×)

(2)函数在某区间上或定义域极大值是唯一的. ( × ) (3)函数的极大值不一定比极小值大. ( √ ) (4)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的充要条件. ( × ) (5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值. ( √ ) (6)函数f (x )=x sin x 有无数个极值点. ( √ ) 2. 函数f (x )=x 2 -2ln x 的单调减区间是 ( ) A .(0,1) B .(1,+∞) C .(-∞,1) D .(-1,1) 答案 A 解析 ∵f ′(x )=2x -2x =2(x +1)(x -1) x (x >0). ∴当x ∈(0,1)时,f ′(x )<0,f (x )为减函数; 当x ∈(1,+∞)时,f ′(x )>0,f (x )为增函数. 3. (2013·)已知e 为自然对数的底数,设函数f (x )=(e x -1)(x -1)k (k =1,2),则 ( ) A .当k =1时,f (x )在x =1处取到极小值 B .当k =1时,f (x )在x =1处取到极大值 C .当k =2时,f (x )在x =1处取到极小值 D .当k =2时,f (x )在x =1处取到极大值 答案 C 解析 当k =1时,f ′(x )=e x ·x -1,f ′(1)≠0. ∴x =1不是f (x )的极值点. 当k =2时,f ′(x )=(x -1)(x e x +e x -2) 显然f ′(1)=0,且x 在1的左边附近f ′(x )<0, x 在1的右边附近f ′(x )>0, ∴f (x )在x =1处取到极小值.故选C. 4. 函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞)

相关文档
相关文档 最新文档