文档库 最新最全的文档下载
当前位置:文档库 › 检查可控硅的好坏方法

检查可控硅的好坏方法

检查可控硅的好坏方法
检查可控硅的好坏方法

检查双向晶闸管(可控硅)的好坏方法:(六祖故乡人编)

一、

双向晶闸管作电子开关使用,能控制交流负载(例如白炽灯)的通断,根据白炽灯的亮灭情况,可判断双向晶闸管的好坏。

电路如图1所示。将220V交流电源的任意一端接T2,另一端经过220V、100W白炽灯接T1。触发电路由开关S和门极限流电阻R组成。S选用耐压220VAC的小型钮子开关或拉线开关。R的阻值取100~330Ω,R值取得过大,会减小导通角。

下面个绍检查步骤:

第一步,先将S断开,此时双向晶闸管关断,灯泡应熄灭。若灯泡正常发光,则说明双向晶闸管T1- T2极间短路,管子报废;如果灯泡轻微发光,表明T1-T2漏电流太大,管子的性能很差。出现上述两种情况,应停止试验。

第二步:闭合S,因为门极上有触发信号,所以只需经过几微秒的时间,双向晶闸管即导通通,白炽灯上有交流电流通过而正常发光。具体工作过程分析如下:在交流电的正半周,设Ua>Ub,则T2为正,T1为负,G相对于T2也为负,双向晶闸管按照T2-T1的方向导通。在交流电的负半周,设Ua<Ub,则T2为负,T1为正,G相对于T2也为正,双向晶闸管沿着T1→T2的方向导通。

综上所述,仅当S闭合时灯泡才能正常发光,说明双向晶闸管质量良好。如果闭合时灯泡仍不发光,证明门极已损坏。

(六祖故乡人编)注意事项:

(1)本方法只能检查耐压在400V以下的双向晶闸管。对于耐压值为100V、200V的双向晶闸管,需借助自耦调压器把220V交流电压降到器件耐压值以下。

(2)T1和T2的位置不得接反,否则不能触发双向晶闸管。

(3)具体到Ua、Ub中的哪一端接火线(相线),哪端接零线,可任选。

(4)利用双向晶闸管作电子开关比机械开关更加优越。因为只需很低的控制功率,就能控制相当大的电流,它不存在触点抖动问题,动作速度极快,在关断时也不会出现电弧现象。实际应用时,图5.9.14中的开关S可用固态继电器、干簧继电器、光电继电器等代替。

二、 (1)判别各电极:用万用表R×1或R×10档分别测量双向晶闸管三个引脚间的正、反向电阻值,若测得某一管脚与其他两脚均不通,则此脚便是主电极T2。

找出T2极之后,剩下的两脚便是主电极Tl和门极G3。测量这两脚之间的正、反向电阻值,会测得两个均较小的电阻值。在电阻值较小(约几十欧姆)的一次测量中,黑表笔接的是主电极T1,红表笔接的是门极G。

螺栓形双向晶闸管的螺栓一端为主电极T2,较细的引线端为门极G,较粗的引线端为主电极T1。

(六祖故乡人编)

金属封装(To—3)双向晶闸管的外壳为主电极T2。

塑封(TO—220)双向晶闸管的中间引脚为主电极T2,该极通常与自带小散热片相连。

图5是几种双向晶闸管的引脚排列。

(2)判别其好坏:用万用表R×1或R×10档测量双向晶闸管的主电极T1与主电极T2之间、主电极T2与门极G之间的正、反向电阻值,正常时均应接近无穷大。若测得电阻值均很小,则说明该晶闸管电极问已击穿或漏电短路。

测量主电极T1与门极G之问的正、反向电阻值,正常时均应在几十欧姆(Ω)至一百欧姆(Ω)之间(黑表笔接T1极,红表笔接G极时,测得的正向电阻值较反向电阻值略小一些)。若测得T1极与G极之间的正、反向电阻值均为无穷大,则说明该晶闸管已开路损坏。

(3)触发能力检测:对于工作电流为8 A以下的小功率双向晶闸管,可用万用表R×1档直接测量。测量时先将黑表笔接主电极T2,红表笔接主电极T1,然后用镊子将T2极与门极G短路,给G极加上正极性触发信号,若此时测得的电阻值由无穷大变为十几欧姆(Ω),则说明该晶闸管已被触发导通,导通方向为T2→T1。

再将黑表笔接主电极T1,红表笔接主电极T2,用镊子将T2极与门极G之间短路,给G极加上负极性触发信号时,测得的电阻值应由无穷大变为十几欧姆,则说明该晶闸管已被触发导通,导通方向为T1→T2。

若在晶闸管被触发导通后断开G极,T2、T1极间不能维持低阻导通状态而阻值变为无穷大,则说明该双向晶闸管性能不良或已经损坏。若给G极加上正(或负)极性触发信号后,晶闸管仍不导通(T1与T2间的正、反向电阻值仍为无穷大),则说明该晶闸管已损坏,无触发导通能力。

对于工作电流在8 A以上的中、大功率双向晶闸管,在测量其触发能力时,可先在万用表的某支表笔上串接1~3节1.5 V干电池,然后再用R×1档按上述方法测量。

对于耐压为400 V以上的双向晶闸管,也可以用220 V交流电压来测试其触发能力及性能好坏。

图6是双向晶闸管的测试电路。电路中,FL为60 W/220 V白炽灯泡,VT为被测双向晶闸管,R为100Ω限流电阻,S为按钮。

(六祖故乡人编)将电源插头接入市电后,双向晶闸管处于截止状态,灯泡不亮(若此时灯泡正常发光,则说明被测晶闸管的T1、T2极之间已击穿短路;若灯泡微亮,则说明被测晶闸管漏电损坏)。按动一下按钮S,为晶闸管的门极G提供触发电压信号,正常时晶闸管应立即被触发导通,灯泡正常发光。若灯泡不能发光,则说明被测晶闸管内部开路损坏。若按动按钮s时灯泡点亮,松手后灯泡又熄灭,则表明被测晶闸管的触发性能不良。

三、用万用表测试双向晶闸管的好坏,首先要分清双向晶闸管的控制极G和主电极T1和T2。把万用表拨在R×1或R×10挡,黑表笔接T2,红表笔接T1,然后将T2与G瞬间短路一下,立即离开,此时若表针有较大幅度的偏转,并停留在某一位置上,说明T1与T2

已触发导通;把红、黑表笔调换后再重复上述操作,如果T1、T2仍维持导通,说明这只双向晶闸管是好的,反之则是坏的。双向晶闸管管芯结构如下图。

四、单结晶体管的结构和等效电路

单结晶体管的外形很象晶体三极管,它也有三个电极,称为发射极e,第一基极b1,第二基极b2,又叫双基极二极管。因为只有一个PN结所以又称为单结晶体管。外形及符号如图(a)、(b)所示。图中发射极箭头指向b1,表示经PN结的电流只流向b1极。单结管的等效电路如图(C)所示,rb1表示e与b1之间的等效电阻,它的阻值受e-b1间电压的控制,所以等效为可变电阻。两个基极之间的电阻用Rbb表示,即:Rbb=Rb1+Rb2,Rb1与Rbb的比值称为分压比h=Rb1/Rbb,h一般在0.3~0.8之间。

(六祖故乡人编)

工作原理和特性曲线

伏安特性变化如图所示。

★图中,当VBB固定,等效电路中,A点对b1的电压UA=hVBB为定值。当Ue较小时,Ue

★当Ue增大,Ue=UA时,PN结处于零偏,iE=0。

★Ue继续增大,当Ue>UA,iE开始大于零,由于硅二极管的正向压降为0.7V,所以iE不会有显著的增加,这个电压称为峰值电压UP,对应电流称为峰值电流IP。这一区域称为截止区。

★Ue继续增加,Ue>UA,管子转向导通,PN结电流开始显著增加,这时将有大量的空穴进入基区,e、b1间载流子大量增加,使rb1迅速减小,而rb1的减小又使UA降低,导致iE又进一步加大,这种正反馈的过程,使iE急剧增加UA下降,Ue下降,单结管呈现了负阻特性,图中曲线“2”线段,到了“C”点负阻特性结束,C点电压UV称为谷点电压,一般为1~2.5V,对应的电流称为谷点电流Iv,一般为几毫安。

★过了谷点之后,继续增加Ue,iE~Ue曲线形状接近二极管导通时的正向特性曲线。如曲线“3”线段,此时称为饱和区。饱和压降一般小于4~5V。

(六祖故乡人编)★当改变VBB电压,改变了阀值电压UA,曲线的峰点电压也随之改变。

应用

振荡:指在没有输入信号的情况下,电路输出一定频率、一定幅值的电压或电流信号。

如图所示为单结晶体管组成的振荡电路,其工作原理如下:

★当合闸通电时,电容C上的电压为零,管子截止,电源VBB通过电阻R对C充电,随时间增长电容上电压(即)逐渐增大;

★一旦增大到峰点电压UP后,管子进入负阻区,输入端等效电阻急剧减小,使C通过管子的输入回路迅速放电,两端电压随之减小,一旦减小到谷点电压UV后,管子截止;

★电容又开始充电,重复上述过程。

由于充电时间常数远大于放电时间常数,当稳定振荡时,电容上电压的波形如图所示。

单结晶体管具有大的脉冲电流能力而且电路简单,因此在各种开关应用中,在构成定时电路或触发SCR等方面获得了广泛应用。它的开关特性具有很高的温度稳定性,基本上不随温度而变化。

触发电路是晶闸管装置中的控制环节,是装置能否正常工作的关键。对触发电路的要求是:

(六祖故乡人编)与主电路同步,能平稳移相且有足够的移相范围,脉冲前沿陡且有足够的幅值与脉宽,稳定性与抗干扰性能好等。

触发电路根据控制晶闸管的通断状况可分为移相触发与过零触发两类。移相触发就是改变晶闸管每周期导通的起始点即控制角a的大小,以达到改变输出电压、功率的目的;而过零触发是晶闸管在设定的时间间隔内,通过改变导通的周波数来实现电压或功率的控制。

由单结晶体管组成的触发电路,具有简单、可靠、触发脉冲前沿陡、抗干扰能力强以及温度补偿性能好等优点,在单相与要求不高的三相晶闸管装置中得到广泛应用。但单结晶体管触发电路只能产生窄脉冲。对于电感较大的负载,由于晶闸管在触发导通时阳极电流上升较慢,在阳极电流还未到达管子掣住电流IL时,触发脉冲已经消失,使晶闸管在触发期间导通后又重新关断。所以单结晶体管如不采用脉冲扩宽措施,是不宜触发电感性负载的。为了克服单结晶体管触发电路的缺点,在要求较高、功率较大的晶闸管装置中,大多采用晶体管组成的触发电路,其中最常用的是同步信号为正弦波移相与锯齿波移相触发电路两种。EDA中国门户网站o;m%v G L

单结晶体管触发的单向半控桥电路

单结晶体管张弛振荡器怎样实现有效的控制

为了实现整流电路输出电压“可控”,必须使晶闸管承受正向电压的每半个周期内,触发电路发出第一个触发脉冲的时刻都相同,这种相互配合的工作方式,称为触发脉冲与电源同步。

怎样才能做到同步呢?请注意,在这里单结晶体管张弛振荡器的电源是取自桥式整流电路输出的全波脉冲直流电压。在晶闸管没有导通时,张弛振荡器的电容器C被电源充电,UC按指数规律上升到峰点电压UP时,单结晶体管VT导通,在VS导通期间,负载RL上有交流电压和电流,与此同时,导通的VS两端电压降很小,迫使张弛振荡器停止工作。当交流电压过零瞬间,晶闸管VS被迫关断,张弛振荡器得电,又开始给电容器C充电,重复以上过程。这样,每次交流电压过零后,张弛振荡器发出第一个触发脉冲的时刻都相同,这个时刻取决于RP的阻值和C的电容量。调节RP的阻值,就可以改变电容器C的充电时间,也就改变了第一个Ug发出的时刻,相应地改变了晶闸管的控制角,使负载RL上输出电压的平均值发生变化,达到调压的目的。

双向晶闸管的T1和T2不能互换。否则会损坏管子和相关的控制电路。

单结晶体管各管脚的判别方法

(六祖故乡人编)判断单结晶体管发射极E的方法是:把万用表置于R*100挡或R*1K挡,黑表笔接假设的发射极,红表笔接另外两极,当出现两次低电阻时,黑表笔接的就是单结晶体管的发射极。

单结晶体管B1和B2的判断方法是:把万用表置于R*100挡或R*1K挡,用黑表笔接发射极,红表笔分别接另外两极,两次测量中,电阻大的一次,红表笔接的就是B1极。

应当说明的是,上述判别B1、B2的方法,不一定对所有的单结晶体管都适用,有个别管子的E--B1间的正向电阻值较小。不过准确地判断哪极是B1,哪极是B2在实际使用中并不特别重要。即使B1、B2用颠倒了,也不会使管子损坏,只影响输出脉冲的幅度(单结晶体管多作脉冲发生器使用),当发现输出的脉冲幅度偏小时,只要将原来假定的B1、B2对调过来就可以了。

单结晶体管性能好坏的判断

双基极二极管性能的好坏可以通过测量其各极间的电阻值是否正常来判断。用万用表R×1k 档,将黑表笔接发射极E,红表笔依次接两个基极(B1和B2),正常时均应有几千欧至十几千欧的电阻值。再将红表笔接发射极E,黑表笔依次接两个基极,正常时阻值为无穷大。

双基极二极管两个基极(B1和B2)之间的正、反向电阻值均为2~10kΩ范围内,若测得某两极之间的电阻值与上述正常值相差较大时,则说明该二极管已损坏。

五、

检查大功率双向晶闸管触发能力的方法

由于小功率双向晶闸管的触发电流只有几十毫安,因此可用R×1档检查其触发能力。大功率双向晶闸管则不然,例如BA40-700型40A/700V双向晶闸管的IGT=100mA,利用R×1档已无法使管子触发。为此可采用图5.9.13所示电路,给万用表R×1档外接一节1.5V电池E′,将测试电压升到3V,同时增加测试电流(I′M=3V/R0)。

以500型万用表R×1档为例,将E′接在万用表“+”插孔与红表笔之间,这时总电压E+ E′=3V。该电阻档的欧姆中心值R0=10Ω,改装后的短路电流I′M=(E+ E′)/ R0=3V/10Ω=300 mA,实际可提供100 mA左右的测试电流。图1中的虚线表示在测量时T1极与G 极可以短路,也可以开路。具体检查步骤见5.9.7。

注意事项:

本方法对检查大功率单向晶闸管也适用。

六、、、、、、、

应用电路图:

、、、、、、待续。

如何用万用表测试单向可控硅

如何用万用表测试单向可控硅 2008-05-10 02:45 可控硅又叫晶体闸流管,在强电和弱电领域都有极为广泛的应用。其中在弱电领域中应用的可控硅功率比较小,外形像三极管,是电子爱好者常遇到的元件之一。 正确测试可控硅是电子爱好者必须具备的基本技能。如何来测试可控硅呢? 由于万用表是电子爱好者必配工具,这里介绍如何用万用表来测试单向可控硅。 单向可控硅的测试包括两个方面:一是极性的判定;二是触发特性的测试。 一、可控硅极性的判定 单向可控硅是由三个PN结的半导体材料构成,其基本结构、符号及等效电路如图1所示。 可控硅有三个电极:阳极(A)、阴极(K)和控制极(G)。从等效电路上看,阳极(A)与控制极(G)之间是两个反极性串联的PN结,控制极(G)与阴极(K)之间是一个PN结。 根据PN结的单向导电特性,将指针式万用表选择适当的电阻档,测试极间正反向电阻(相同两极,将表笔交换测出的两个电阻值),对于正常的可控硅,G、K之间的正反向电阻相差很大;G、K分别与A之间的正反向电阻相差很小,其阻值都很大。这种测试结果是唯一的,根据这种唯一性就可判定出可控硅的极性。用万用表R×1K档测量可控硅极间的正反向电阻,选出正反向电阻相差很大的两个极,其中在所测阻值较小的那次测量中,黑表笔所接为控制极(G),红表笔所接的为阴极(K),剩下的一极就为阳极(A)。 通过判定可控硅的极性同时也可定性判定出可控硅的好坏。如果在测试中任何两极间的正反向电阻都相差很小,其阻值都很大,说明G、K之间存在开路故障;如果有两极间的正反向电阻都很小,并且趋近于零,则可控硅内部存在极间短路故障。 二、单向可控硅触发特性测试 单向可控硅与二极管的相同之处在于都具有单向导电性,不同之处是可控硅的导通还要受控制极电压控制。 也就是说使可控硅导通必须具备两个条件:阳极(A)与阴极(K)之间应加正向电压,控制极(G)与阴极(K)之间也应加正向电压。当可控硅导通以后,控制极就失去作用。单向可控硅的导通过程可用图2所示的等效电路来说明:PNP管的发射极相当可控硅的阳极(A),NPN管的发射极相当可控硅的阴极(K),PNP管的集电极与NPN管的基极相联后相当于可控硅的控制极(G)。 当在A、K之间加上允许的正向电压时,两只管子均不导通,此时当在G、K之间加上正向电压便形成控制电流流入V2的基极,如此循环直至两管完全导通。当导通后,即使 Ig=O,由于V2有基极电流,且远大于Ig,因此两管仍然导通。要使导通的可控硅截止,必须把A、K正向电压降低到一定值,或反向,或断开。 根据可控硅的导电特性,可用万用表的电阻档进行测试。对小功率可控硅可按图3(a)所示联接电路,在可控硅A、G之间联接一只轻触开关(以便于操作),用万用表的R×1Ω档,

双向可控硅好坏检测方法

双向可控硅好坏检测方法 双向可控硅是在普通可控硅的基础上发展而成的,它不仅能代替两只反极性并联的可控硅,而且仅需一个触发电路,是比较理想的交流开关器件。其英文名称TRIAC即三端双向交流开关之意。 1.双向可控硅的检测 方法一: 测量极间电阻法。将万用表置于皮R×1k档,如果测得T2-T1、T2-G之间的正反向电阻接近∞,而万用表置于R×10档测得T1-G之间的正反向电阻在几十欧姆时,就说明双向可控硅是好的,可以使用;反之,若测得T2-T1,、T2-G之间的正反向电阻较小甚或等于零.而Tl-G之间的正反向电阻很小或接近于零时.就说明双向可控硅的性能变坏或击穿损坏。不能使用;如果测得T1-G之间的正反向电阻很大(接近∞)时,说明控制极G与主电极T1之间内部接触不良或开路损坏,也不能使用。 方法二: 检查触发导通能力。万用表置于R×10档:①如图,1(a)所示,用黑表笔接主电极T2,红表笔接T1,即给T2加正向电压,再用短路线将G与T1(或T2)短接一下后离开,如果表头指针发生了较大偏转并停留在一固定位置,说明双向可控硅中的一部分(其中一个单向可控硅)是好的,如图1(b)所示,改黑表笔接主电极T1,红表笔接T2,即给T1加正向电压,再用短路线将G与T1(或T2)短接一下后离开,如果结果同上,也证明双向可控硅中的另一部分(其中的一个单向可控硅是好的。测试到止说明双向可控硅整个都是好的,即在两个方向(在不同极性的触发电压证)均能触发导通。 图1判断双向可控硅的触发导通能力 方法三: 检查触发导通能力。如图2所示.取一只10uF左右的电解电容器,将万用表置于R×10k档(V电压),对电解电容器充电3~5s后用来代替图1中的短路线,即利用电容器上所充的电压作为触发信号,然后再将万用表置于R×10档,照图2(b)连接好后进行测试。测试时,电容C的极性可任意连接,同样是碰触

第九章 使用万用表检测晶闸管

第九章使用万用表检测晶闸管本章主要介绍数字万用表的检测晶闸管,通过图形带你认识万用表来检测晶闸管。 9.1晶闸管的特点与分类 9.1.1晶闸管的特点 晶闸管(Thyristor)是晶体闸流管的简称,又称做可控硅。晶闸管具有硅整流器件的特性,能在高电压、大电流条件下工作,且其工作过程可以控制。被广泛应用于可控整流、交流调压、无触点电子开关、逆变及变频等电子电路中。 9.1.2晶闸管的分类 晶闸管有多种分类方法。 (一)按关断、导通及控制方式分类 晶闸管按其关断、导通及控制方式可分为普通晶闸管、双向晶闸管、逆导晶闸管、门极关断晶闸管(GTO)、BTG晶闸管、温控晶闸管和光控晶闸管等多种。如图9.1所示。 图9-1 双向晶闸管 (二)按引脚和极性分类 晶闸管按其引脚和极性可分为二极晶闸管、三极晶闸管和四极晶闸管。 (三)按封装形式分类 晶闸管按其封装形式可分为金属封装晶闸管、塑封晶闸管和陶瓷封装晶闸管三种类型。 其中,金属封装晶闸管又分为螺栓形、平板形、圆壳形等多种;塑封晶闸管又分为带散热片型和不带散热片型两种。如图9.2所示。 图9-2 金属封装晶闸管(螺旋形)

(四)按电流容量分类 晶闸管按电流容量可分为大功率晶闸管、中功率晶闸管和小功率晶闸管三种。通常,大功率晶闸管多采用金属壳封装,而中、小功率晶闸管则多采用塑封或陶瓷封装。如图9.3所示。 图9-3 大功率晶闸管 (五)按关断速度分类 晶闸管按其关断速度可分为普通晶闸管和高频(快速)晶闸管。如图9.4所示。 图9-4 高频(快速)晶闸管 9.2 单向晶闸管的检测 9.2.1检测单向晶闸管的操作方法 方法一 (1)将数字万用表置于电阻20kΩ挡,红表笔接阳极A,黑表笔接阴极K,把控制极G悬空,此时晶闸管截止,万用表显示溢出符号“1”,如图9.5所示。 图9-5欧姆档 (2)然后在红表笔与阳极A保持接触的同时,用它的笔尖接触一下控制极G(将A极与G 极短接一下),给晶闸管加上正触发电压,晶闸管立即导通,显示值减小到几百欧至几千欧,若显示值不变,说明晶闸管已损坏。 方法二

可控硅好坏如何测量修订稿

可控硅好坏如何测量 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

一、可控硅的特性 可控硅分单向可控硅、双向可控硅。单向可控硅有阳极A、阴极K、控制极G三个引出脚。双向可控硅有第一阳极A1(T1),第二阳极A2(T2)、控制极G三个引出脚。 只有当单向可控硅阳极A与阴极K之间加有正向电压,同时控制极G与阴极间加上所需的正向触发电压时,方可被触发导通。此时A、K间呈低阻导通状态,阳极 A与阴极K间压降约1V。单向可控硅导通后,控制器G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,单向可控硅继续处于低阻导通状态。只有把阳极A电压拆除或阳极A、阴极K间电压极性发生改变(交流过零)时,单向可控硅才由低阻导通状态转换为高阻截止状态。单向可控硅一旦截止,即使阳极A和阴极K间又重新加上正向电压,仍需在控制极G 和阴极K间有重新加上正向触发电压方可导通。单向可控硅的导通与截止状态相当于开关的闭合与断开状态,用它可制成无触点开关。 双向可控硅第一阳极A1与第二阳极A2间,无论所加电压极性是正向还是反向,只要控制极G和第一阳极 A1间加有正负极性不同的触发电压,就可触发导通呈低阻状态。此时A1、A2间压降也约为1V。双向可控硅一旦导通,即使失去触发电压,也能继续保持导通状态。只有当第一阳极A1、第二阳极A2电流减小,小于维持电流或A1、A2间当电压极性改变且没有触发电压时,双向可控硅才截断,此时只有重新加触发电压方可导通。 二、可控硅的管脚判别 晶闸管管脚的判别可用下述方法:先用万用表R*1K挡测量三脚之间的阻值,阻值小的两脚分别为控制极和阴极,所剩的一脚为阳极。再将万用表置于

(整理)用万用表检测双向可控硅

精品文档 精品文档用万用表检测双向可控硅 双向可控硅是一种使用较广泛的硅晶体闸流管。利用双向可控硅可以实现交流无触点控制,具有无火花、动作快、寿命长、可靠性高等优点,较多的使用在电机调速、调光、调温、调压及各种电器过载自动保护电路中。 双向可控硅由五层半导体材料、三个电极构成,三个电极分别为第一阳极(又称主电极)T1、第二阳极(又称主端子)T2和门极G,其特点是触发后可双向导通。目前双向可控硅的型号、规格繁多,其外型及引脚排列随生产厂家的不同而不同,一般情况下不易直接判断出其管脚及好坏,我们可用万用表对双向可控硅进行简单检测。 一、 二、电极的确定 首先,把万用表置于R×10Ω档,测双向可控硅能相互导通的两个电极,这两个电极对第三个电极都不导通,则第三个电极为第一阳极T1。 其次,把万用表置于R×1Ω档,测余下两个电极的正反向电阻,取其中电阻小的一次,黑表笔所接的是第二阳极T2,红表笔所接的是门极G。 三、触发性能的检测 双向可控硅有四种触发方式,即T1+G+、T1+G-、T1-G+、T1-G-,其中T1-G+触发方式灵敏度较低,所需门极触发功率较大,实际使用时只选其余三种组合。而T1+G+、T1-G-触发形式的可靠性较高,较常使用,检测触发性能时可只检测这两种形式。 用万用表检测双向可控硅的触发性能,可按下列步骤进行: 把万用表置于R×1Ω档,先检查T1+G+形式的触发能力。用万用表黑表棒与T1极接触,红表棒与T2极接触,万用表指针应停在无穷大处。保持黑表棒与T1极接触、红表棒与T2极接触,用万用表黑表棒同时接触门极,则指针应有较大幅度的偏转;再松开黑表棒与门极的接触,指针读数不变,说明T1+G+触发性能良好。然后检查T1-G-形式的触发能力:黑表棒与T2极接触,红表棒与T1极接触,万用表指针应停在无穷大处。保持黑表棒与T2极接触、红表棒与T1极接触,用红表棒接触门极,指针应有较大幅度的偏转,再松开红表棒与门极的接触,指针读数不变,说明T1-G-触发性能良好。 由于万用表R×1Ω档的电池只有1.5V,对于维持电流较大的大功率双向可控硅不能可靠的触发、维持,可在万用表的外部串入1~2节干电池后再用上述方法检测。 四、单向、双向可控硅的判别 有的单向可控硅阳极与阴极正反向也都相互导通,初学者判断时可能误判断为双向可控硅,而检测它的T1-G-触发性能不好导致误判断。那么,如何区别单向、双向可控硅呢? 把万用表打到R×10Ω档,测出相互导通的两个电极。然后测量这两个电极的正反向电阻。若正向、反向电阻差不多,则为双向可控硅(见附图1);若正向、反向电阻差别较大,则为单向可控硅(见附图2)。

可控硅资料及工作原理和测试方法

可控硅資料/及工作原理和測試方法BTA06-400BW 6A 400V 50mA TO-220AB BTA06-400C 6A 400V 25mA TO-220AB BTA06-400CW 6A 400V 35mA TO-220AB BTA06-400TW 6A 400V 5mA TO-220AB BTA06-400E 6A 400V 5~10mA TO-220AB BTA06-400D 6A 400V 1~5mA TO-220AB BTA06-400SAP 6A 400V 5~10mA TO-220 BTA06-600B 6A 600V 35~50mA TO-220AB BTA06-600BW 6A 600V 50mA TO-220AB BTA06-600C 6A 600V 25mA TO-220AB BTA06-600CW 6A 600V 35mA TO-220A BTA06-600SW 6A 600V 10mA TO-220AB BTA06-600TW 6A 600V 5mA TO-220AB BTA06-600E 6A 600V 5~10mA TO-220AB BTA06-600D 6A 600V 1~5mA TO-220AB BTA06-600SAP 6A 600V 5~10mA TO-220AB BTA06-700B 6A 700V 35~50mA TO-220AB BTA06-700BW 6A 700V 50mA TO-220AB

BTA06-700C 6A 700V 25mA TO-220AB BTA06-700CW 6A 700V 35mA TO-220AB BTA06-700SW 6A 700V 10mA TO-220AB BTA06-700TW 6A 700V 5mA TO-220AB BTA06-700E 6A 700V 5~10mA TO-220AB BTA06-700D 6A 700V 1~5mA TO-220AB BTA06-700SAP 6A 700V 5~10mA TO-220AB BTA06-800B 6A 800V 35~50mA TO-220AB BTA06-800BW 6A 800V 50mA TO-220AB BTA06-800C 6A 800V 25mA TO-220AB BTA06-800CW 6A 800V 35mA TO-220AB BTA06-800SW 6A 800V 10mA TO-220AB BTA06-800TW 6A 800V 5mA TO-220AB BTA06-800E 6A 800V 5~10mA TO-220AB BTA06-800D 6A 800V 1~5mA TO-220AB BTA06-800SAP 6A 800V 5~10mA TO-220AB BTB06-400B 6A 400V 35~50mA TO-220A BTB06-400BW 6A 400V 50mA TO-220AB BTB06-400C 6A 400V 25mA TO-220AB

用万用表检测单向可控硅

用万用表检测单向可控硅 江苏省泗阳县李口中学沈正中 可控硅又叫晶体闸管、晶体闸流管,在电子电路中有着广泛的应用,外形像三极管,如图1所示。 使用可控硅前必需要 进行测试,如何用万用表来 测试单向可控硅,单向可控 硅的检测包括两个方面:一 是极性判定;二是触发特性 检测。 1、可控硅极性的判定 单向可控硅是由三个PN结的半导体材料构成,其基本结构、符号及等效电路如图2所示。 可控硅有三个电极:阳极A、 阴极K和控制极G。从等效电路上 看,阳极A与控制极G之间是两 个反极性串联的PN结,控制极G 与阴极K之间是一个PN结。根据 PN结的单向导电特性,将指针式万用表选择适当的电阻档,测试极间正反向电阻(相同两极,将表笔交换测出的两个电阻值),对于正常的可控硅,G、K之间的正反向电阻相差很大;G、K分别与A之间的正反向电阻相差很小,其阻值都很大。这种测试结果是唯一的,根据这种唯一性就可判定出可控硅的极性。用万用表R×1K档测量可

控硅极间的正反向电阻,选出正反向电阻相差很大的两个极,其中在所测阻值较小的那次测量中,黑表笔所接为控制极G,红表笔所接的为阴极K,剩下的一极就为阳极A。通过判定可控硅的极性同时也可定性判定出可控硅的好坏。如果在测试中任何两极间的正反向电阻都相差很小,其阻值都很大,说明G、K之间存在开路故障;如果有两极间的正反向电阻都很小,并且趋近于零,则可控硅内部存在极间短路故障。 2、单向可控硅触发特性测试 单向可控硅与二极管的相同之处在于都具有单向导电性,不同之处是可控硅的导通还要受控制极电压控制。也就是说使可控硅导通必须具备两个条件:阳极A与阴极K之间应加正向电压,控制极G与阴极K之间也应加正向电压。当可控硅导通以后,控制极就失去作用。单向可控硅的导通过程可用图3所 示的等效电路来说明:PNP管的发射极 相当可控硅的阳极A,NPN管的发射极 相当可控硅的阴极K,PNP管的集电极 与NPN管的基极相联后相当于可控硅的 控制极G。当在A、K之间加上允许的 正向电压时,两只管子均不导通,此时 当在G、K之间加上正向电压便形成控 制电流流入V2的基极,如此循环直至两管完全导通。当导通后,即使Ig=O,由于V2有基极电流,且远大于Ig,因此两管仍然导通。要使导通的可控硅截止,必须把A、K正向电压降低到一定值,或反向,或断开。

单向可控硅的原理及测试

单向可控硅的原理及测试 可控硅的意思:可控的硅整流器,其整流输出电压是受控的,常与移相或过零触发电路配合,应用于交、直流调压电路。可控硅是在晶体管基础上发展起来的一种集成式半导体器件。单向可控硅的等效原理及测量电路见下图1: A K G P N P N K G G K G A 图1 可控硅器件等效及测量电路 单向可控硅为具有三个PN 结的四层结构,由最外层的P 层、N 层引出两个电极——阳极A 和阴极K ,由中间的P 层引出控制极G 。电路符号好像为一只二极管,但好多一个引出电极——控制极或触发极G 。SCR 或MCR 为英文缩写名称。 从控制原理上可等效为一只PNP 三极管与一只NPN 三极管的连接电路,两管的基极电流和集电极电流互为通路,具有强烈的正反反馈作用。一旦从G 、K 回路输入NPN 管子的基极电流,由于正反馈作用,两管将迅即进入饱合导通状态。可控硅导通之后,它的导通状态完全依靠管子本身的正反馈作用来维持,即使控制电流(电压)消失,可控硅仍处于导通状态。控制信号U GK 的作用仅仅是触发可控硅使其导通,导通之后,控制信号便失去控制作用。 单向可控硅的导通需要两个条件: 1)、A 、K 之间加正向电压; 2)、G 、K 之间输入一个正向触发电流信号,无论是直流或脉冲信号。 若欲使可控硅关断,也有两个关断条件: 1)、使正向导通电流值小于其工作维持电流值; 2)、使A 、K 之间电压反向。 可见,可控硅器件若用于直流电路,一旦为触发信号开通,并保持一定幅度的流通电流的话,则可控硅会一直保持开通状态。除非将电源开断一次,才能使其关断。若用于交流电路,则在其承受正向电压期间,若接受一个触发信号,则一直保持导通,直到电压过零点到来,因无流通电流而自行关断。在承受反向电压期间,即使送入触发信号,可控硅也因A 、K 间电压反向,而保持于截止状态。

怎样用万用表测量可控硅的各电极

怎样用万用表测量可控硅的各电极 1.单向可控硅的检测 万用表选用电阻R×1档,用红黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑笔接的引脚为控制极G,红笔接的引脚为阴极K,另一空脚为阳极A。此时将黑表笔接已判断了的阳极A,红表笔仍接阴极K。此时万用表指针应不动。用短接线瞬间短接阳极A和控制极G,此时万用表指针应向右偏转,阻值读数为10欧姆左右。如阳极A接黑表笔,阴极K接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏。 2.双向可控硅的检测 用万用表电阻R×1档,用红黑两表笔分别测任意两引脚正反向电阻,结果其中两组读数为无穷大。若一组为数十欧姆时,该组红黑表笔所接的两引脚为第一阳极A1和控制极G,另一空脚即为第二阳极A2。确定A、G极后,再仔细测量A1、G极间正反向电阻,读数相对较小的那次测量的黑表笔所接的引脚为第一阳极A1,红表笔所接引脚为控制极G。将黑表笔接已确定了的第二阳极A2,红表笔接第一阳极A1,此时万用表指针应不发生偏转,阻值为无穷大。再用短接线将A2、G极瞬间短接,给G极加上正向触发电压,A2、A1间阻值约为10欧姆左右。随后断开A2、G极短接线,万用表读数应保持10欧姆左右。互换红黑表笔接线,红表笔接第二阳极A2,黑表笔接第一阳极A1。同样万用表指针应不发生偏转,阻值为无穷大。用短接线将A2、G极间再次瞬间短接,给G极加上负向的触发电压,A1、A2间阻值也是10欧姆左右。随后断开A2、G极间短接线,万用表读数应不变,保持10欧姆左右。符合以上规律,说明被测双向可控硅管未损坏且三个引脚极性判断正确。 检测较大功率可控硅管,需要在万用表黑笔中串接一节1.5V干电池,以提高触发电压。

怎样用万用表测量可控硅

用万用表测量可控硅 可控硅分单向可控硅和双向可控硅两种,都是三个电极。单向可控硅有阴极(K)、阳极(A)、控制极(G)。双向可控硅等效于两只单项可控硅反向并联而成。即其中一只单向硅阳极与另一只阴极相边连,其引出端称T2极,其中一只单向硅阴极与另一只阳极相连,其引出端称T2极,剩下则为控制极(G)。 1、单、双向可控硅的判别:先任测两个极,若正、反测指针均不动(R×1挡),可能是A、K或G、A极(对单向可控硅)也可能是 T 2、T1或T2、G极(对双向可控硅)。若其中有一次测量指示为几十至几百欧,则必为单向可控硅。且红笔所接为K极,黑笔接的为G极,剩下即为A极。若正、反向测批示均为几十至几百欧,则必为双向可控硅。再将旋钮拨至R×1或R×10挡复测,其中必有一次阻值稍大,则稍大的一次红笔接的为G极,黑笔所接为T1极,余下是T2极。 2、性能的差别:将旋钮拨至R×1挡,对于1~6A单向可控硅,红笔接K极,黑笔同时接通G、A极,在保持黑笔不脱离A极状态下断开G极,指针应指示几十欧至一百欧,此时可控硅已被触发,且触发电压低(或触发电流小)。然后瞬时断开A极再接通,指针应退回∞位置,则表明可控硅良好。 对于1~6A双向可控硅,红笔接T1极,黑笔同时接G、T2极,在保证黑笔不脱离T2极的前提下断开G极,指针应指示为几十至一百多欧(视可控硅电流大小、厂家不同而异)。然后将两笔对调,重复上述步骤测一次,指针指示还要比上一次稍大十几至几十欧,则表明可控硅良好,且触发电压(或电流)小。若保持接通A极或T2极时断开G极,指针立即退回∞位置,则说明可控硅触发电流太大或损坏。可按图2方法进一步测量,对于单向可控硅,闭合开关K,灯应发亮,断开K灯仍不息灭,否则说明可控硅损坏。 对于双向可控硅,闭合开关K,灯应发亮,断开K,灯应不息灭。然后将电池反接,重复上述步骤,均应是同一结果,才说明是好的。否则说明该器件已损坏。

用万用表测试可控硅

用万用表测试可控硅 小功率可控硅,由于所需的触发电流较小,故可以只用万用表来测试。 一、单向可控硅的测试 1.极性的判别 用万用表的R×100欧姆档,分别测量各管脚间的正反向电阻。如果测得其中两管脚的电阻较大(约为80KΩ),而对换表笔再测这两个管脚的电阻值又较小(约为2KΩ),这时,黑表笔所接的一极为控制极G,红表笔所接的一极为阴极K,余者为阳极A。 2.质量的判别 用万用表的R×10欧姆档,黑表笔接A极,红表笔接K极。用黑表笔在保持和A极相接的情况下和G极接触,这样就给G极加上一触发电压。这时由万用表可以看到,可控硅的阻值明显变小,说明可控硅可能由于触发而处于通态。仍保持黑表笔和A极相接,断开和G极的接触,如果可控硅仍处于通态,则说明可控硅是好的,否则,一般是可控硅损坏。 二、可控硅的测试 由于双向可控硅相当于两个单向可控硅的反极性并联而成,又G极靠近T1极,由于工艺方面的原因,G极和T1极间的正向电阻都很小,一般为100Ω左右。另外,双向可控硅具有四种触发状态,只要满足任何一种触发状态,双向可控硅便可触发导通。 极性的判别: 用万用表的R×1K或R×100欧姆档,分别测量各管脚间的正反向电阻,如果测得其中两管脚的电阻很小(约为100Ω左右),即为T1极和G极,余者为T2极。 T1极和G极的区分:

任选其中一极为T1,将万用表调至R×1欧姆档,不用分表笔的正负,分别将两表笔接至T2极和T1极(假设)。用和T2相接的表笔在保持和T2相接的情况下,和G(假设)相接。这时会看到可控硅阻值明显变小,说明双向可控硅可能因触发而导通,再大保持该表笔和T2相接的情况下和G极(假设)断开,如果双向可控硅仍处于通态,则对换两表笔,重复上述步骤,如果仍能使可控硅处于通态,则假设是正确的。否则假设是错误的。这样就应该对换假设的两极再重复上述的步骤。

用数字万用表测可控硅的好坏

用数字万用表测可控硅的好坏 一、单向可控硅的引脚区分 对可控硅的引脚区分,有的可从外形封装加以判别,如外壳就为阳极,阴极引线比控制极引线长。从外形无法判断的可控硅,可用万用表R×100或R×1K挡,测量可控硅任意两管脚间的正反向电阻,当万用表指示低阻值(几百欧至几千欧的范围)时,黑表笔所接的是控制极G,红表笔所接的是阴极C,余下的一只管脚为阳极A。 二、单向可控硅的性能检测 可控硅质量好坏的判别可以从四个方面进行。第一是三个PN结应完好;第二是当阴极与阳极间电压反向连接时能够阻断,不导通;第三是当控制极开路时,阳极与阴极间的电压正向连接时也不导通;第四是给控制极加上正向电流,给阴极与阳极加正向电压时,可控硅应当导通,把控制极电流去掉,仍处于导通状态。用万用表的欧姆挡测量可控硅的极间电阻,就可对前三个方面的好坏进行判断。具体方法是:用R×1k或R×10k挡测阴极与阳极之间的正反向电阻(控制极不接电压),此两个阻值均应很大。电阻值越大,表明正反向漏电电流愈小。如果测得的阻值很低,或近于无穷大,说明可控硅已经击穿短路或已经开路,此可控硅不能使用了。 用R×1k或R×10k挡测阳极与控制极之间的电阻,正反向测量阻值均应几百千欧以上,若电阻值很小表明可控硅击穿短路。 用R×1k或R×100挡,测控制极和阴极之间的PN结的正反向电阻在几千欧左右,如出现正向阻值接近于零值或为无穷大,表明控制极与阴极之间的PN结已经损坏。反向阻值应很大,但不能为无穷大。正常情况是反向阻值明显大于正向阻值。 万用表选电阻R×1挡,将黑表笔接阳极,红表笔仍接阴极,此时万用表指针应不动。红表笔接阴极不动,黑表笔在不脱开阳极的同时用表笔尖去瞬间短接控制极,此时万用表电阻挡指针应向右偏转,阻值读数为10欧姆左右。如阳极接黑表笔,阴极接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏。 四、可控硅的使用注意事项 选用可控硅的额定电压时,应参考实际工作条件下的峰值电压的大小,并留出一定的余量。 1、选用可控硅的额定电流时,除了考虑通过元件的平均电流外,还应注意正常工作时导通角的大小、散热通风条件等因素。在工作中还应注意管壳温度不超过相应电流下的允许值。 2、使用可控硅之前,应该用万用表检查可控硅是否良好。发现有短路或断路现象时,应立即更换。 3、严禁用兆欧表(即摇表)检查元件的绝缘情况。 4、电流为5A以上的可控硅要装散热器,并且保证所规定的冷却条件。为保证散热器与可控硅管心接触良好,它们之间应涂上一薄层有机硅油或硅脂,以帮于良好的散热。 5、按规定对主电路中的可控硅采用过压及过流保护装置。 6、要防止可控硅控制极的正向过载和反向击穿。 用数字万用表测量可控硅的好坏(KP型号 300A 1600V) 2010-6-22 00:19 提问者:limenghou | 悬赏分:50 | 浏览次数:2396次 你好,能否告诉我,如何用数字万用表测量可控硅的好坏,我的这个元件是 KP型号 300A 1600V,网上都基本上没有说清楚,我有急用,谢谢了,还有他们所说的用电池灯泡来测量的具体方式是什么(比如用好大电池,多少伏,用多少伏的灯泡。。。)谢谢了

可控硅的测试方法

可控硅的测试方法 This model paper was revised by the Standardization Office on December 10, 2020

可控硅的测试方法 双向可控硅的极性判断方法:T1(A1)为第一阳极,T2(A2)为第二阳极,G为控制极。 测试结果为:T2与其他2个脚均不导通,通常T2极和可控硅背部的散热片是导通的,其余的两个引脚则为T1极与G极,用指针万用表的R×1或R×10档测量这两个引脚;在正反测量阻值较小的那次中,红表笔接的为可控硅G极,黑表笔接的为T1极。 将黑表笔接T2极,红表笔接T1极,此时万用表指针应该不发生偏转,阻值为无穷大,再用短接线将T2极与G极瞬间短接,这样做的目的是给G极加上正向触发电压,T1(A1)、T2(A2)两极之间阻值由无穷大变为导通,随后断开T2极与G极之间的短接线,万用表指针仍然停留在原来偏转位置,即撤掉可控硅的触发电压后,可控硅仍然维持导通。 然后互换表笔接线,红表笔接T2极,黑表笔接T1极,同样的读数为无穷大,此时将T2极与G极瞬间短接,T1极与T2极之间的阻值将一样会维持导通,(除非T1与T2断开) 单向可控硅的三个引脚分别是阳极(A)、阴极(K)和控制极(G) 用指针式万用表电阻档R×1或R×10档,找出正反电阻有差别的两极,这时候测得电阻阻值读数较小的那次中,黑表笔接的为该单向可控硅的控制极(G)极,红表笔接的为阴极(K)极,另外的一个脚即为阳极(A)极。(如果三个脚之间的电阻值都很小,几乎接近0欧姆,那么这只管子已击穿损坏),如果阳极(A)接黑表笔,阴极(K)接红表笔,万用表指针产生偏转的话,同样的这只管子已损坏。

晶闸管测试方法

(一)单向晶闸管的检测 1.判别各电极根据普通晶闸管的结构可知,其门极G与阴极K极之间为一个PN结,具有单向导电特性,而阳极A与门极之间有两个反极性串联的PN结。因此,通过用万用表R×100A或R×1k档测量普通晶闸管各引脚之间的电阻值,即能确定三个电极。 具体方法是:将万用表黑表笔任接晶闸管某一极,红表笔依次去触碰另外两个电极。若测量结果有一次阻值为几千欧姆(kΩ),而另一次阻值为几百欧姆(Ω),则可判定黑表笔接的是门极G。在阻值为几百欧姆的测量中,红表笔接的是阴极K,而在阻值为几千欧姆的那次测量中,红表笔接的是阳极A,若两次测出的阻值均很大,则说明黑表笔接的不是门极G,应用同样方法改测其它电极,直到找出三个电极为止。 也可以测任两脚之间的正、反向电阻,若正、反向电阻均接近无穷大,则两极即为阳极A 和阴极K,而另一脚即为门极G。 普通晶闸管也可以根据其封装形式来判断出各电极。例如: 螺栓形普通晶闸管的螺栓一端为阳极A,较细的引线端为门极G,较粗的引线端为阴极K。平板形普通晶闸管的引出线端为门极G,平面端为阳极A,另一端为阴极K。 金属壳封装(TO–3)的普通晶闸管,其外壳为阳极A。 塑封(TO–220)的普通晶闸管的中间引脚为阳极A,且多与自带散热片相连。图8-15为几种普通晶闸管的引脚排列。 2.判断其好坏用万用表R×1k档测量普通晶体管阳极A与阴极K之间的正、反向电阻,正常时均应为无穷大(∞)若测得A、K之间的正、反向电阻值为零或阻值较小,则说明晶闸管内部击穿短路或漏电。 测量门极G与阴极K之间的正、反向电阻值,正常时应有类似二极管的正、反向电阻值(实际测量结果较普通二极管的正、反向电阻值小一些),即正向电阻值较小(小于2 kΩ),反向电阻值较大(大于80 kΩ)。若两次测量的电阻值均很大或均很小,则说明该晶闸管G、K 极之间开路或短路。若正、反电阻值均相等或接近,则说明该晶闸管已失效,其G、K极间PN结已失去单向导电作用。 测量阳极A与门极G之间的正、反向电阻,正常时两个阻值均应为几百千欧姆(kΩ)或无穷大,若出现正、反向电阻值不一样(有类似二极管的单向导电),则是G、A极之间反向串联的两个PN结中的一个已击穿短路。 3.触发能力检测对于小功率(工作电流为5A以下)的普通晶闸管,可用万用表R×1档测量。测量时黑表笔接阳极A,红表笔接阴极K,此时表针不动,显示阻值为无穷大(∞)。用镊子或导线将晶闸管的阳极A与门极短路(见图8-16),相当于给G极加上正向触发电压,此时若电阻值为几欧姆至几十欧姆(具体阻值根据晶闸管的型号不同会有所差异),则表明晶闸管因正向触发而导通。再断开A极与G极的连接(A、K极上的表笔不动,只将G极的触发电压断掉),若表针示值仍保持在几欧姆至几十欧姆的位置不动,则说明此晶闸管的触发性能良好。 对不求甚解作电流在5A以上的中、大功率普通晶闸管,因其通态压降VT、维持电流IH及门极触发电压VG均相对较大,万用表R×1档所提供的电流偏低,晶闸管不能完全导通,故检测时可在黑表笔端串接一只200Ω可调电阻和1~3节1.5V干电池(视被测晶闸管的容量而定,其工作电流大于100A的,应用3节1.5V干电池),如图8-17所示。 也可以用图8-18中的测试电路测试普通晶闸管的触发能力。电路中,VT为被测晶闸管,HL为6.3V指示灯(手电筒中的小电珠),GB为6V电源(可使用4节1.5V干电池或6V 稳压电源),S为按钮,R为限流电阻。 当按钮S未接通时,晶闸管VT处于阻断状态,指示灯HL不亮(若此时HL亮,则是VT 击穿或漏电损坏)。按动一下按钮S后(使S接通一下,为晶闸管VT的门极G提供触发电

可控硅测量方法

可控硅测量方法 可控硅简介 可控硅分单向可控硅、双向可控硅。单向可控硅有阳极A、阴极K、控制极G三个引出脚。双向可控硅有第一阳极A1(T1),第二阳极A2(T2)、控制极G三个引出脚。 当单向可控硅阳极A与阴极K之间加有正向电压,同时控制极G与阴极间加上所需的正向触发电压时,方可被触发导通。此时A、K间呈低阻导通状态,阳极A与阴极K间压降约1V。单向可控硅导通后,控制极G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,单向可控硅继续处于低阻导通状态。只有把阳极A电压拆除或阳极A、阴极K间电压极性发生改变(交流过零)时,单向可控硅才由低阻导通状态转换为高阻截止状态。单向可控硅一旦截止,即使阳极A和阴极K间又重新加上正向电压,仍需在控制极G和阴极K间重新加上正向触发电压方可导通。单向可控硅的导通与截止状态相当于开关的闭合与断开状态,用它可制成无触点开关。 双向可控硅第一阳极A1与第二阳极A2间,无论所加电压极性是正向还是反向,只要控制极G和第一阳极A1间加有正负极性不同的触发电压,就可触发导通呈低阻状态。此时A1、A2间压降也约为1V。双向可控硅一旦导通,即使失去触发电压,也能继续保持导通状态。只有当第一阳极A1、第二阳极A2电流减小,小于维持电流或A1、A2间当电压极性改变且没有触发电压时,双向可控硅才截断,此时只有重新加触发电压方可导通。 单向可控硅的检测 1、极性判断 用指针式万用表选电阻R×1Ω挡或R×100Ω挡,用红、黑两表笔分别测任意两引脚间正反向电阻值至找出读数为数十欧姆(阻值最小)的一对引脚,此时黑表笔的引脚为控制极G,红表笔的引脚为阴极K,另一空脚为阳极A。 2、判断可控硅的好坏 a)方法一 将黑表笔接已判断了的阳极A,红表笔仍接阴极K。此时万用表指针应不动。用短线瞬间短接阳极A和控制极G,此时万用表电阻挡指针应向右偏转,阻值读数为10欧姆左右。此时可控硅已被触发,且触发电压低(或触发电流小)。然后瞬时断开A极再接通,指针应退回∞位置,则表明可控硅良好。 如阳极A接黑表笔,阴极K接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏。 检测较大功率可控硅时,需要在万用表黑表笔中串接一节1.5V干电池,以提高触发电压。 b)方法二 用电阻R×1K档,正、反向测量A、K之间的电阻值,均接近无穷大;用电阻R×10Ω档测量G、K之间的电阻,从十几欧姆至百欧姆,功率越大欧姆值越小。这种测量方式是有局限性的,当A、K之间已呈故障开路状态时,则无法测出好坏。有的G、K间电阻值极小,也难以判别两控制极是否已经短路。 c)方法三 较为准确的测量方法,如下图,为可控硅连接上电源和负载,才能得出好坏的结论。方法是:将可控硅接入电路,可控硅因无触发信号输入,小灯泡HL1无电流通路不发光;将A、G短接一下再断开,可控硅受触发而导通,并能维持导通(灯泡的额定电流应大于100mA),

万用表如何判断可控硅好与坏

一、怎样判断可控硅的好坏 普通二极管的检测(包括检波二极管、整流二极管、阻尼二极管、开关二极管、续流二极管)是由一个PN结构成的半导体器件,具有单向导电特性。通过用万用表检测其正、反向电阻值,可以判别出二极管的电极,还可估测出二极管是否损坏。 1.极性的判别将万用表置于R×100档或R×1k档,两表笔分别接二极管的两个电极,测出一个结果后,对调两表笔,再测出一个结果。两次测量的结果中,有一次测量出的阻值较大(为反向电阻),一次测量出的阻值较小(为正向电阻)。在阻值较小的一次测量中,黑表笔接的是二极管的正极,红表笔接的是二极管的负极。 2.单负导电性能的检测及好坏的判断通常,锗材料二极管的正向电阻值为1kΩ左右,反向电阻值为300左右。硅材料二极管的电阻值为5 kΩ左右,反向电阻值为∞(无穷大)。正向电阻越小越好,反向电阻越大越好。正、反向电阻值相差越悬殊,说明二极管的单向导电特性越好。 若测得二极管的正、反向电阻值均接近0或阻值较小,则说明该二极管内部已击穿短路或漏电损坏。若测得二极管的正、反向电阻值均为无穷大,则说明该二极管已开路损坏。3.反向击穿电压的检测二极管反向击穿电压(耐压值)可以用晶体管直流参数测试表测量。其方法是:测量二极管时,应将测试表的“NPN/PNP”选择键设置为NPN状态,再将被测二极管的正极接测试表的“C”插孔内,负极插入测试表的“e”插孔,然后按下“V”键,测试表即可指示出二极管的反向击穿电压值。 也可用兆欧表和万用表来测量二极管的反向击穿电压、测量时被测二极管的负极与兆欧表的正极相接,将二极管的正极与兆欧表的负极相连,同时用万用表(置于合适的直流电压档)监测二极管两端的电压。如图4-71所示,摇动兆欧表手柄(应由慢逐渐加快),待二极管两端电压稳定而不再上升时,此电压值即是二极管的反向击穿电压。 4.中、小功率三极管的检测 A 已知型号和管脚排列的三极管,可按下述方法来判断其性能好坏 (a) 测量极间电阻。将万用表置于R×100或R×1K挡,按照红、黑表笔的六种不同接法进行测试。其中,发射结和集电结的正向电阻值比较低,其他四种接法测得的电阻值都很高,约为几百千欧至无穷大。但不管是低阻还是高阻,硅材料三极管的极间电阻要比锗材料三极管的极间电阻大得多。 (b) 三极管的穿透电流ICEO的数值近似等于管子的倍数β和集电结的反向电流ICBO的乘积。ICBO随着环境温度的升高而增长很快,ICBO的增加必然造成ICEO的增大。而ICEO 的增大将直接影响管子工作的稳定性,所以在使用中应尽量选用ICEO小的管子。 通过用万用表电阻直接测量三极管e-c极之间的电阻方法,可间接估计ICEO的大小,具体方法如下: 万用表电阻的量程一般选用R×100或R×1K挡,对于PNP管,黑表管接e极,红表笔接c 极,对于NPN型三极管,黑表笔接c极,红表笔接e极。要求测得的电阻越大越好。e-c 间的阻值越大,说明管子的ICEO越小;反之,所测阻值越小,说明被测管的ICEO越大。一般说来,中、小功率硅管、锗材料低频管,其阻值应分别在几百千欧、几十千欧及十几千欧以上,如果阻值很小或测试时万用表指针来回晃动,则表明ICEO很大,管子的性能不稳定。 (c) 测量放大能力(β)。目前有些型号的万用表具有测量三极管hFE的刻度线及其测试插座,可以很方便地测量三极管的放大倍数。先将万用表功能开关拨至挡,量程开关拨到ADJ位

可控硅的检测方法.doc

可控硅(晶闸管)的检测方法 2009-04-22 10:28:47 作者:佚名来源:电子之都浏览次数:77 网友评论1 条 可控硅(SCR)国际通用名称为Thyyistoy,中文简称晶闸管。它能在高电压、大电流条件下工作,具有耐压高、容量大、体积小等优点,它是大功率开关型半导体器件,广泛应用在电力、电子线路中。 1. 可控硅的特性。 可控硅分单向可控硅、双向可控硅。单向可控硅有阳极A、阴极K、控制极G三个引出脚。双向可控硅有第一阳极A1(T1),第二阳极A2(T2)、控制极G三个引出脚。 只有当单向可控硅阳极A与阴极K之间加有正向电压,同时控制极G与阴极间加上所需的正向触发电压时,方可被触发导通。此时A、K间呈低阻导通状态,阳极A与阴极K间压降约1V。单向可控硅导通后,控制器G即使失去触发电压,只要阳极A和阴极K之间仍保持正向电压,单向可控硅继续处于低阻导通状态。只有把阳极A电压拆除或阳极A、阴极K 间电压极性发生改变(交流过零)时,单向可控硅才由低阻导通状态转换为高阻截止状态。单向可控硅一旦截止,即使阳极A和阴极K间又重新加上正向电压,仍需在控制极G和阴极K间有重新加上正向触发电压方可导通。单向可控硅的导通与截止状态相当于开关的闭合与断开状态,用它可制成无触点开关。 双向可控硅第一阳极A1与第二阳极A2间,无论所加电压极性是正向还是反向,只要控制极G和第一阳极A1间加有正负极性不同的触发电压,就可触发导通呈低阻状态。此时A1、A

2间压降也约为1V。双向可控硅一旦导通,即使失去触发电压,也能继续保持导通状态。只有当第一阳极A1、第二阳极A2电流减小,小于维持电流或A1、A2间当电压极性改变且没有触发电压时,双向可控硅才截断,此时只有重新加触发电压方可导通。 2. 单向可控硅的检测。 万用表选电阻R*1Ω挡,用红、黑两表笔分别测任意两引脚间正反向电阻直至找出读数为数十欧姆的一对引脚,此时黑表笔的引脚为控制极G,红表笔的引脚为阴极K,另一空脚为阳极A。此时将黑表笔接已判断了的阳极A,红表笔仍接阴极K。此时万用表指针应不动。用短线瞬间短接阳极A和控制极G,此时万用表电阻挡指针应向右偏转,阻值读数为10欧姆左右。如阳极A接黑表笔,阴极K接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏。 3. 双向可控硅的检测。 用万用表电阻R*1Ω挡,用红、黑两表笔分别测任意两引脚间正反向电阻,结果其中两组读数为无穷大。若一组为数十欧姆时,该组红、黑表所接的两引脚为第一阳极A1和控制极G,另一空脚即为第二阳极A2。确定A1、G极后,再仔细测量A1、G极间正、反向电阻,读数相对较小的那次测量的黑表笔所接的引脚为第一阳极A1,红表笔所接引脚为控制极G。将黑表笔接已确定的第二阳极A2,红表笔接第一阳极A1,此时万用表指针不应发生偏转,阻值为无穷大。再用短接线将A2、G极瞬间短接,给G极加上正向触发电压,A2、A1间阻值约10欧姆左右。随后断开A2、G间短接线,万用表读数应保持10欧姆左右。互换红、黑表笔接线,红表笔接第二阳极A2,黑表笔接第一阳极A1。同样万用表指针应不发生偏转,阻值为无穷大。用短接线将A2、G极间再次瞬间短接,给G极加上负的触发电压,A1、A 2间的阻值也是10欧姆左右。随后断开A2、G极间短接线,万用表读数应不变,保持在10

用数字万用表测可控硅的好坏

用数字万用表测可控硅的好坏 、单向可控硅的引脚区分 对可控硅的引脚区分,有的可从外形封装加以判别,如外壳就为阳极,阴极引线比控制极引线长。从外形无法判断的可控硅,可用万用表R X100或R X1K挡, 测量可控硅任意两管脚间的正反向电阻,当万用表指示低阻值(几百欧至几千欧的范围)时,黑表笔所接的是控制极G,红表笔所接的是阴极C,余下的一只管脚为阳极A。 二、单向可控硅的性能检测 可控硅质量好坏的判别可以从四个方面进行。第一是三个PN 结应完好;第二是当阴极与阳极间电压反向连接时能够阻断,不导通;第三是当控制极开路时,阳极与阴极间的电压正向连接时也不导通;第四是给控制极加上正向电流,给阴极与阳极加正向电压时,可控硅应当导通,把控制极电流去掉,仍处于导通状态。 用万用表的欧姆挡测量可控硅的极间电阻,就可对前三个方面的好坏进行判 断。具体方法是:用R X k或R X0k挡测阴极与阳极之间的正反向电阻(控制极不接电压),此两个阻值均应很大。电阻值越大,表明正反向漏电电流愈小。如果测得的阻值很低,或近于无穷大,说明可控硅已经击穿短路或已经开路,此可控硅不能使用了用RX1k或R X IOk挡测阳极与控制极之间的电阻,正反向测量阻值均应几百千欧以上,若电阻值很小表明可控硅击穿短路。

用R X1k 或R X1OO 挡,测控制极和阴极之间的PN 结的正反向电阻在几千欧左右,如出现正向阻值接近于零值或为无穷大,表明控制极与阴极之间的PN 结已经损坏。反向阻值应很大,但不能为无穷大。正常情况是反向阻值明显大于正向阻值。 万用表选电阻R X1 挡,将黑表笔接阳极,红表笔仍接阴极,此时万用表指针应不动。红表笔接阴极不动,黑表笔在不脱开阳极的同时用表笔尖去瞬间短接控制极,此时万用表电阻挡指针应向右偏转,阻值读数为1O 欧姆左右。如阳极接黑表笔,阴极接红表笔时,万用表指针发生偏转,说明该单向可控硅已击穿损坏。 四、可控硅的使用注意事项 选用可控硅的额定电压时,应参考实际工作条件下的峰值电压的大小,并留出一定的余量。 1 、选用可控硅的额定电流时,除了考虑通过元件的平均电流外,还应注意正常工作时导通角的大小、散热通风条件等因素。在工作中还应注意管壳温度不超过相应电流下的允许值。 2、使用可控硅之前,应该用万用表检查可控硅是否良好。发现有短路或断路现 象时,应立即更换。 3、严禁用兆欧表(即摇表)检查元件的绝缘情况。

相关文档