文档库 最新最全的文档下载
当前位置:文档库 › 简单数学建模00例

简单数学建模00例

简单数学建模00例
简单数学建模00例

“学”以致用

-----简单数学建模应用问题100例

数学教学过程中学习了一个数学公式后,需要做大量的应用题,通过训练来加深理解所学公式。但是在生活中又有多少实际问题是可以直接套用公式的呢?理想状态下的公式直接运用,在生产及生活中的实例是少之又少。为此学生总感到学了数学没有什么实际用处,所以对学习数学少有兴趣。数学建模的引入对培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径,让中职学生从中体会到数学是来源于生活并应用于生活的.

数学建模是一种思维方式,它是一个动态的过程,通过此过程可以将一个实际的问题,经过模型准备、模型假设、模型构成、模型解析、模型检验与应用等五个具体步骤,转变为可以用数学方法(公式)来解决的,在理想状态下的数学问题,上述的整个流程统称为数学建模

如果想解决某个实际问题(也许它和数学没有直接的关系),可以按下面流程对问题进行数学建模。

一.模型准备先了解该问题的实际背景和建模目的,尽量弄清要建模的问题属于哪一类学科的问题,可能需要用到哪些知识,然后学习或复习有关的知识,为接下来的数学建模做准备.由于人们所掌握的专业知识是有限的,而实际问题往往是多样和复杂的,模型准备对做好数学建模问题是非常重要的.

二.模型假设有了模型准备的基础,要想把实际问题变为数学问题还要对其进行必要合理的简化和假设.明确了建模目的又掌握了相关资料,再去除一些次要因素.以主要矛盾为主来对该实际问题进行适当的简化并提出一些合理的假设。模型假设不太可能一蹴而就,可以在模型的不断修改中得到逐步完善.

三.模型构成在模型假设的基础上,选择适当的数学工具并根据已知的知识和搜集的信息来描述变量之间的关系或其他数学结构(如数学公式、定理、算法等).做模型构

成时可以使用各种各样的数学理论和方法,但要注意的是在保证精度的条件下尽量用简单的数学方法是建模时要遵循的一个原则.

四.模型解析在模型构成中建立的数学模型可以采用解方程、推理、图解、计算机模拟、定理证明等各种传统的和现代的数学方法对其进行求解,其中有些可以借助于计算机软件来做这些工作。

五.模型检验与应用把模型解析得到的结果与实际情况对比,以检验其合理和有效性,检验后获取的正确模型对研究的实际问题给出预报或对类似实际问题进行分析、解释,以供决策者参考称为.

不难发现,在上述的五个步骤中,关键的是第三步“模型构成”——由数字、字母或其它数学符号组成的,描述现实对象数量规律的数学公式、图形或算法。所以说模型构成是数学建模的核心,它和数学的关系最密切。所得出的数学公式、图形或算法称之为数学模型(即解决实际问题的数学描述)。通常所说的数学建模实际上就是:寻找有用的数学模型的过程为了避免作业书写中不必要的繁琐,通常用“分析”,“假设”,“模型”,“解析”,“检验”来表示数学建模的五个不同步骤,虽然每题不一定面面俱到,但假设,模型,解析三个步骤要求明确

第一关:接触数学建模

【1 】一副扑克牌有54张,从中任取

多少张,可以保证一定有5张牌的花色

是一样的?

分析除去大、小鬼还有52张牌,其中4种

花色各13张.运气最好的情况下所取

的5张牌都是同一花色的,哪运气不

佳时至少要取多少张牌,才能保证一定有5张牌的花色是一样的呢?

假设假定至少要取N张,才能保证一定有5张牌的花色是一样的.

模型逆向地思维

解析在运气最不好的情况下,每种花色各4张,再加大、小鬼2张,共取18张是保证一定没有5张牌的花色一样的最大可能。

所以442119

N=?++=张就可以保证一定有5张牌的花色是一样的.

检验在很多情况下采用逆向地思维,可以使解题思路清晰、便捷.

练习题

公园里准备对300棵珍稀树木依次从1—300进行编号,问所有的编号中“1”共会出现的几次?

【2】一只猫发现离它10步远的前方有一只老鼠在奔跑,猫便紧追。猫的步子大,它跑5步的路程,老鼠要跑9步。但是老鼠的动作频率快,猫跑2步的时间,老鼠能跑3步。 请问:按照这种速度,猫能追得上老鼠吗?如果能,它要跑多少步才能追到。

假设 此题两问可归结为一个问题:假定猫跑x 步就能追上老鼠 模型 猫与老鼠之间频率的最小公倍数

解析 由频率关系可知,老鼠跑339?=步时,猫跑了236?=步.

根据路程关系知,猫跑6步其中有1步是追上老鼠的路程

可得本题的数学模型为

1006

x

-= 解得60x =(步)

检验 由此可见,按照现有速度,猫要跑60步才能追得上老鼠.

练习题

现有玩具模型20个,交给小黄加工,规定加工合格一个可得5元,不合格一个扣2元,未完成的不得不扣.最后小黄共得到56元.问小黄在加工玩具模型中不合格的共有几个?

【3】在小傅家门口有一个十字型的交通路口(如图所示),小傅就想了,警察叔叔需要指挥多少种情况的汽车运行线路?

分析此问题需要分是否可以原路调头的情况来讨论.

假设(1)每条线路都有往返双向线

(2)设4条路分别为A,B,C,D;

(3)以A为起始,

A A A

B A

C A D

①如允许原路调头,则有,,,,

A B A C A D

②如不允许原路调头,则有,,,

模型分步乘法计数原理

解析第一步:始线路条数;第二步:终线路条数。

N=?(种可能)

①如允许原路调头:则44=16

N=?(种可能)

②如不允许原路调头,则43=12

检验如果允许汽车原路调头,那么在此交通路口共有16种不同的行车情况;如果不允许汽车原路调头,那么在此交通路口共有12种不同的行车情况。

练习题

铁路京广线(北京—广州)共有36个大站,问用电脑上购票时需要有多少种不同的火车票?

【4】杭州市车辆管理所的工作人员为汽车牌照的事弄得焦头烂额,现在有个问题要请教一

的汽车牌照共有多少块?

分析 由条件知,问题为三个

中各可以填入多少种数字或字母

假设 假定按要求的汽车牌照共有N 种可能,且在第i 个

中共有(1,2,3)i n i =种

字符可以填写.

根据汽车牌照的特点,在每个

中可以填入1~0共10个阿

拉伯数字和A,B,C,D ……,26个英语字母,即36(1,2,3)i n i ==

模型 分步乘法计数原理. 解析 因为各

中填入的字符数符合123N n n n =创

故363636N =创=46656

检验 的汽车牌照共有46656块。不难发现,无论B 和

5在何位置,所得结论不变.

练习题

出租车在开始10千米以内收费10.4元,以后每走1千米,收费1.6元,问走20千米需收多少钱?

【5】把20个苹果全部分给小明、小惠、小曼三人,要求每人最少分3个,可以有多少种不同的分法?

假设先取9个苹果,平均每人3个,剩下的11个再按不同情况讨论.

模型排列数公式

解析可以有:

(11,0,0),(10,1,0),(9,2,0),(9,1,1),(8,3,0),(8,2,1),(7,4,0),(7,3,1),

(7,2,2),(6,5,0),(6,4,1),(6,3,2),(5,5,1),(5,4,2),(5,3,3),

15种不同种类,对每一种类再考虑小明、小惠、小曼的不同次序,用排列

A即可求解.

数公式n

m

①对(11,0,0),(9,1,1),(7,2,2),(5,5,1),(5,3,3)五类,各类可以有3

种次序排法,故共有15种分发法.

A)种次序排法,故共有60种分发法

②对其余的10类,各类可以有6(3

3

检验所以按要求可以有75种不同的分法.

练习题

一个立方体随意翻动,每次翻动朝上一面的颜色与翻动前都不同,那么这个立方体的颜色至少有几种?

【6】有243颗外形一模一样的珠子,其中有一颗稍重一点。用一架没有砝码的天平,至少称几次才能找出这颗珠子来?

分析与假设①将243颗珠子平均分成3份,每份81颗,任取其2份放置在天平两边,若平衡则稍重的一颗在另1份中;若不平衡则稍重的一颗在天平下沉的1

份中.

②在找出含有稍重珠子的一份中(含81颗),再将其81颗珠子平均分成3

份,每份27颗,任取其2份放置在天平两边,若平衡则稍重的一颗在另1份中;

若不平衡则稍重的一颗在天平下沉的1份中.

③在找出含有稍重珠子的一份中(含27颗),再将其27颗珠子平均分

成3份,每份3颗,任取其2份放置在天平两边,若平衡则稍重的一颗在另

1份中;若不平衡则稍重的一颗在天平下沉的1份中.

④在找出含有稍重珠子的一份中(含1颗),再将其3颗珠子平均分成

3份,每份1颗,任取其2颗放置在天平两边,若平衡则另1颗稍重的一颗;

若不平衡则稍重的一颗为天平下沉的1颗.

模型“三分法”

解析按“分析与假设”所述可知,至少称4次才能找出这颗珠子来.

检验此题的关键是珠子的颗数243,可以平均分成3份,每份81颗,而81又可以平均分成3份,每份27颗,而27又可以平均分成3份,每份3颗,而3可以

平均分成3份,每份1颗,最后找出异样的珠子.

练习题

小敏把100只彩色小灯泡串联起彩灯,用来布置教室,可是其中有只小灯泡坏了,这可急坏了小敏。你能用最速捷的方法很快地找出了那只损坏的小灯泡吗?

【7】水果店进了十筐苹果,每筐

10个,共100个,每筐里的苹果重

量都一样,其中有九筐每个苹果的

重量都是1斤,另一筐中每个苹果

的重量都是0.9斤,但是外表完全

一样,用眼看或用手摸无法分辨。

现在要你用一台普通的大秤一次把

这筐重量轻的找出来。你可以办到么?

分析与假设普通的大秤上是有刻度,可以称得具体重量.从这点考虑不妨将十筐苹果进

A i

行标号(1,2,3,4,5,6,7,8,9,10)

i

并取与标号对应的苹果数——1,2,3,4,5,6,7,8,9,10,共计55个,再用所给的

大枰称得这55个苹果的总重量

若此55个苹果重量均为1斤(理想状态),则总重量应为55斤,由题目条

件知其中某一框苹果重量均为0.9斤,假定为第j框时,那么所取苹果数为j

个,大枰称得总重量就要比55斤少j两.

模型等差数列的求和

解析利用框数与所取苹果数的对应关系,考虑大枰称得总重量与理想状态55个苹果的总重量之间的差

按“分析与假设”所述可解得.若大枰称得总重量为54斤3两,比55斤差7

A的这框苹果重量为0.9斤.

两,即得框号为

7

练习题

某单位某月1~12日安排甲、乙、丙三人值夜班,每人值班4天.要求三个人各自值班日期数字之和相等。已知甲头两天值夜班,乙9、10日值夜班,问丙在自己第一天与最后一天值夜班之间,最多有几天不用值夜班?

【8】甲、乙两人去沙漠中探险,他们每天向沙漠深处走20千米,已知每人最多可带一个人4天的食物和水。如果允许将部分食物存放于途中,其中1人最远可深入沙漠多少千米?(要求最后两人返回出发点)

分析与假设要使其中一位探险者尽可能走得远,另一位须先回,留下食物和水给另一位,所以必须分头行动.问题是在何处留下食物和水?

?=千米,但回程就没有食物和水了),

①经过商议让甲走得更远(最远走44080

需要乙在适当的地点留小足够的食物和水.

②第1天乙在10千米处留下1份食物和水,到20千米处吃1份留下1份,第2

天走到30千米处留下1份食物和水后马上往回返,到20千米处再吃1份,第3

天走20千米回出发点.

③第1天甲20千米处吃1份,第2天走到40千米处吃1份,第3天走到60千

米处吃1份,第4天走到65千米处然后往回返,到50千米处吃1份(到此为止

甲自带的食物和水已吃完),第5天走到30千米处吃1份(此处食物和水是乙留

下的),第6天走到10千米处吃1份,然后回出发点

模型错位推进法

解析所谓“错位推进法”对于本题来说,关键点为“乙在30千米和10千米处给甲留下食物和水”,根据分析与假设推知结论——其中的1位沙漠探险家最多可深入沙

漠65千米.

检验从“第6天走到10千米处吃1份,然后回出发点”,感觉似乎还有10千米可以走,但已经回出发点了. 考虑一下甲是否还可以再往前推进5千米呢?

练习题

在一排10个花盆中种植3种不同的花卉,要求每3个相邻的花盆中所种的花的品种各不相同,问共可有多少种不同的种植方法?

【9】家里有两个容积分别为5升和6升的空水壶.问大明怎样用这两个水壶得到3升的水.

分析从5升的满水壶倒出2升即可得到3升的水,问题是如何使6升的水壶空出2 升的空间(即得到4升水),问题是如何使5升的水壶空出1升的空间(即得到

4升水),问题是如何使6升的水壶空出1升的空间(即得到5升水),此问题

不难解决.

假设由上分析可以如下操作:

①将5升的满水壶的水全部倒出6升的空水壶中,在6升的水壶中得到1升

的空间.

②用5升水壶取满水,倒满6升水壶中的1升空间,此时的5升水壶空出了

1升的空间.

③将5升水壶中的4升水倒进6升的空水壶,在6升水壶中的得到2升的空

间.

④用5升水壶取满水,倒满6升水壶中的2升空间,.

此时在5升的水壶里剩下的就是3升的水了.

模型逆向推理综合法

解析按分析及假设即可将问题解决,得到3升的水.

检验逆向推理综合法是一种非常有用的数学思维方法,用途非常广泛.

练习题

某盐溶液的浓度为20%,加水后溶液的浓度稀释为15%.如果再加同样多的水,问溶液的浓度为多少?

【10】箱子里放着一箱梨,第一个人拿了梨总数的一半又多半只,第二个人拿了剩下梨的一半又多半只,第三个人拿了第二次剩下的一半又多半只,第四个人3拿了第三次剩下的一半又多半只,第五个人拿了第四次剩下的一半又多半只。这时箱子里的梨正好拿完,而且每人手里的梨都没有半只的,请问箱子里原来有多少只梨?

假设假定箱子里原来有x只梨,则有条件

①第一个人拿梨数:

11 222

x x+

+=;

②第二个人拿梨数:

1111 ()

2224

x x

x

++ -+=

③第三个人拿梨数:

11111 ()

24228

x x x

x

+++ --+=

④第四个人拿梨数:

111111 ()

2482216

x x x x

x

++++ ---+=

⑤第五个人拿梨数:

1111111 ()

248162232

x x x x x

x

+++++ ----+=

模型解一元一次方程

解析解方程

11111

()(1)31 2481632

x x x +++++=?=

检验按题意验证当箱子里原来有31只梨时,题目条件符合.

练习题

去年某种货物的进价为15元/公斤,今年该货物的进口量增加了一半,进口价增加了20%,问今年该货物的进口价是多少?

第二关:初识数学建模

【11】暑假里,班里共30名学生,其中有姓赵、姓钱、姓孙、姓李、姓周各6位,为了进行社会调查,需要分成15个小组,现要使每个小组的姓都不同,该如何分呢?

分析 题目没有问共有多少种分法,而是问如何分,也就是说只要找出方法即可,如何

描述把事情说清楚是关键.

假设 ①以姓氏赵、钱、孙、李、周分成5组,每组6人,用对应的字符

,,,,(1,2,3,4,5,6)i i i i i A B C D E i =表示.

②用一个大圆作为辅助工具,将其6等分,把(1,2,3,4,5,6)i A i =依次放在圆上

的6个等弧上,再将i B (1,2,3,4,5,6)i =依次放在圆上的6个等弧上,对,,i i i C D E 作同样的操作.此时大圆上已有30个字符(次序以

,,,,(1,2,3,4,5,6)i i i i i A B C D E i =排列).

③从圆上任一字符开始,依次两个一组,两个一组,所得15个小组中每个小组的

姓都不同.

模型 “等分圆特征的利用”.

解析 根据分析、假设的讨论即得问题的解答.

检验 巧妙利用几何图形,借助其几何特征,使问题的讨论更有条理,这也是一种数学

模型.

练习题

100人参加7项活动,要求每人只能参加1项活动,而且每项活动参加的人数都不能相同,问参加人数第四多的活动最多有多少人?

【12】2001个学生排成一排,从左向右1至2报数,与从右向左1至5报数,其中两种报数时都是偶数的共有多少人

分析根据题目中条件的周期性,可采用通过局部(10个)结论推广到全体的方法.

假设不妨取最右端的局部:

…… 2 1 2 1 2 1 2 1 2 1

…1992,1993,1994,1995,1996,1997,1998,1999,2000,2001

… 1 2 3 4 5 1 2 3 4 5

不难得出,在最右的10个数字中满足条件的只有2个.

模型数型结合法

解析

20011

2400

10

-

?=(人)

检验两种报数时多是偶数的共有400人.

练习题

某市将在今年12月举办一个全国招商引资交

流会议,目前确定参加的人数已经达到4300人。在安排会场的时候,负责人打算租用一个设置50 排座位的大剧院,第一排有48个座位,往后每排都比前一排多2人。估算一下这个大剧院是否可用?

【13】小新开着一艘帆船在河里航行,一阵狂风吹来,把小新的草帽吹落水中,6分钟后小新才发现草帽被风吹走了,于是开船返回去追,试问小新需要几分钟方可追上落水的草帽.

分析 此题按帆船逆水与顺水两种情况讨论 假设 ①设船速为x 米/分,水速为y 米/分

②当船顺水行驶时,船6分钟共向前行驶路程为()6,x y +草帽向前漂的路程为

6y ,两者相距6x .

③当船逆水行驶时,船6分钟共向前行驶路程为()6,x y -草帽向后漂的路程为

6y ,两者相距6()66x y y x -+=.

模型 船要追上草帽所需时间=船帽距离/船行速度 解析 船要追上草帽所需时间=6/x x =6(分钟) 检验 由上述推论可知,船往回返到追上草帽所需时间同等于草帽落水到发现草帽落

水所化时间,此结论对判断能否打捞草帽十分有用.

练习题

如左图,有正整数1、2、3、4…16,每一个数在正方形中占有一

小格,图中已填入若干数字,试将其余数字填入正方形的空格处,使每

一行,每一列,每一条对角线上的4个数字的和都相等.

【14】两根同样长的蜡烛,点完粗蜡烛要3小时,点完细蜡烛要1小时。现同时点燃两根蜡烛,一

段时间后同时熄灭,发现粗蜡烛的长度是细蜡烛的3倍。问两根蜡烛燃烧了多长时间?

分析及假设 ①设两根蜡烛额长度为l 厘米,粗、细蜡烛的燃烧速度分别为x y 、(厘米/小时).

则有3y l x ==;

②点燃两根蜡烛一段时间后同时熄灭,粗、细蜡烛的长度分别为R r 、,则3R r =.

模型 代数方法,等量关系叠代 解析 根据条件有:

3l r l r

y x

--= (燃烧时间相同) 化简为4l r =,即细蜡烛燃烧后的长度是原来长度的

14(也即燃烧了3

4

). 所以燃烧的时间为

33

3444

l l

y l ==(小时). 检验 为了明确各量之间的相互关系,在必要的地方可以加注.

练习题

将自然数1—100分别写在完全相同的100张卡片上,然后打乱卡片,先后随机取出4张,问这4张先后取出的卡片上的数字呈增序的几率是多少?

【15】一个十位数字为0的三位数,恰好是各数字之和的34倍.现交换个位于百位数字后得到一个新的三位数,求新数是各数字和的几倍?

假设 三位数可记为0a b .其值为100a b +;则新三位数可记为0b a .其值为100b a + 模型 代数方法

解析 由条件10034(0)2a b a b a b +=++?= 所以

1002016703b a a

a b a

+==++

即新数是各数字和的67倍.

练习题

【16】果农要用绳子捆扎甘蔗,有三种规格的绳子可供选择:长绳子1米,每根可捆扎7根甘蔗;中绳子0.6米,每根可捆扎5根甘蔗;短绳子0.3米,每根可捆扎3根甘蔗.现在有甘蔗46根,问果农共有多少种绳子的取法?其中最节约的是哪一种?

分析 先求三种绳子各需多少根,根据长、中、短绳子的价值(长度于所捆甘蔗的根数

之比),不难发现,用短绳子比较合算.

假设 设所需三种绳子的根数以次为(x 、y 、z ) 模型 求不定方程的自然数解

解析 有条件可得方程4653753467

y z

x y z x --++=?=

要使x 有自然数解需分子4653y z --是7的倍数,按0,7,14,21,28,35,42讨论可得:(0,8,2),(1,6,3),(2,4,4),(3,2,5),(4,0,6). 其中最合算的是(0,8,2),即最合算方法是:用8根中绳子和2根短绳子即可捆扎46根甘蔗.

练习题

从1,2,3,…,30这30个数中,取出若干个数,使其中任意两个数的积都不能被4整除,问最多可取几个数?

数学建模典型例题

一、人体重变化 某人的食量是10467焦/天,最基本新陈代谢要自动消耗其中的5038焦/天。每天的体育运动消耗热量大约是69焦/(千克?天)乘以他的体重(千克)。假设以脂肪形式贮存的热量100% 地有效,而1千克脂肪含热量41868焦。试研究此人体重随时间变化的规律。 一、问题分析 人体重W(t)随时间t变化是由于消耗量和吸收量的差值所引起的,假设人体重随时间的变化是连续变化过程,因此可以通过研究在△t时间内体重W的变化值列出微分方程。 二、模型假设 1、以脂肪形式贮存的热量100%有效 2、当补充能量多于消耗能量时,多余能量以脂肪形式贮存 3、假设体重的变化是一个连续函数 4、初始体重为W0 三、模型建立 假设在△t时间内: 体重的变化量为W(t+△t)-W(t); 身体一天内的热量的剩余为(10467-5038-69*W(t)) 将其乘以△t即为一小段时间内剩下的热量; 转换成微分方程为:d[W(t+△t)-W(t)]=(10467-5038-69*W(t))dt; 四、模型求解 d(5429-69W)/(5429-69W)=-69dt/41686 W(0)=W0 解得: 5429-69W=(5429-69W0)e(-69t/41686) 即: W(t)=5429/69-(5429-69W0)/5429e(-69t/41686) 当t趋于无穷时,w=81; 二、投资策略模型 一、问题重述 一家公司要投资一个车队并尝试着决定保留汽车时间的最佳方案。5年后,它将卖出所有剩余汽车并让一家外围公司提供运输。在策划下一个5年计划时,这家公司评估在年i 的开始买进汽车并在年j的开始卖出汽车,将有净成本a ij(购入价减去折旧加上运营和维修成本)ij

数学建模小实例

数学建模小实例 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

1、司乘人员配备问题 某昼夜服务的公交路线每天各时间区段内需司机和乘务人员如下: 设司机和乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线路至少配备多少名司机和乘务人员 解: 设i x为第i班应报到的人员 i,建立线性模型如下: )6, ( ,2,1 LINGO程序如下: MODEL:

min=x1+x2+x3+x4+x5+x6; x1+x6>=60; x1+x2>=70; x2+x3>=60; x3+x4>=50; x4+x5>=20; x5+x6>=30; END 得到的解为: x1=60,x2=10,x3=50,x4=0,x5=30,x6=0; 配备的司机和乘务人员最少为150人。 2、铺瓷砖问题 要用40块方形瓷砖铺下图所示形状的地面,但当时市场上只有长方形瓷砖,每块大小等于方形的两块。一人买了20块长方形瓷砖,试着铺地面,结果无法铺好。试问是这人的功夫不到家还是这个问题根本无解呢 解答:

3、 棋子颜色问题 在任意拿出黑白两种颜色的棋子共n 个,随机排成一个圆圈。然后在两颗颜色相同的棋子中间放一颗黑色棋子,在两颗颜色不同的棋子中间放一颗白色棋子,放完后撤掉原来所放的棋子,再重复以上的过程,这样放下一圈后就拿走前次的一圈棋子,问这样重复进行下去各棋子的颜色会怎样变化呢 分析与求解: 由于在两颗同色棋子中放一颗黑色棋子,两颗不同色的棋子中间放一颗白色棋子,故可将黑色棋子用1表示,白色棋子用-1表示。这是因为-1×(-1)=1,1×1=1,这代表两颗同色棋子中放一颗黑色棋子;1×(-1)= -1,这代表两颗不同色的棋子中间放一颗白色棋子。 设棋子数为n ,12,,,n a a a 为初始状态。 当n=3时 步数 状态(舍掉偶次项) 0 1a 2a 3a 1 21a a 32a a 13a a 2 31a a 21a a 32a a 3 32a a 31a a 21a a

建立数学建模案例分析

§15.4锁具装箱问题 [学习目标] 1.能表述锁具装箱问题的分析过程; 2.能表述模型的建立方法; 3.会利用排列组合来计算古典概型; 4.会利用Mathematica求解锁具装箱问题。 一、问题 某厂生产一种弹子锁具,每个锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}6个数(单位从略)中任取一数。由于工艺及其它原因,制造锁具时对5个槽的高度有两个要求:一是至少有3个不同的数;二是相邻两槽的高度之差不能为5。满足上述两个条件制造出来的所有互不相同的锁具称为一批。销售部门在一批锁具中随意地抽取,每60个装一箱出售。 从顾客的利益出发,自然希望在每批锁具中不能互开(“一把钥匙开一把锁”)。但是,在当前工艺条件下,对于同一批中两个锁具是否能够互开,有以下实验结果:若二者相对应的5个槽的高度中有4个相同,另一个槽的高度差为1,则可能互开;在其它情况下,不可能互开。 团体顾客往往购买几箱到几十箱,他们会抱怨购得的锁具中出现互开的情形。现请回答以下问题: 1.每批锁具有多少个,能装多少箱? 2.按照原来的装箱方案,如何定量地衡量团体顾客抱怨互开的程度(试对购买一、二箱者给出具体结果)。 二、问题分析与建立模型 因为弹子锁具的钥匙有5个槽,每个槽的高度从{1,2,3,4,5,6}这6个数中任取一数,且5个槽的高度必须满足两个条件:至少有3个不同的数;相邻两槽的高度之差不能为5。所以我们在求一批锁具的总数时,应把问题化为三种情况,即5个槽的高度由5个不同数字组成、由4个不同数字组成、由3个不同数字组成,分别算出各种情况的锁具个数,然后相加便得到一批锁具的总个数。在分别求这三种情况锁具个数的时候,先求出满足第1个条件的锁具个数再减去不满足第2个条件的锁具个数。在求这三种情况锁具个数的时候,主要依靠排列组合的不尽相异元素的全排列公式。 下面用一个5元数组来表示一个锁具: Key=(h1,h2,h3,h4,h5) 其中h i表示第i个槽的高度,i=1,2,3,4,5。此5元数组表示一把锁,应满足下述条件: 条件1:h i∈{1,2,3,4,5,6},i = 1,2,3,4,5。

数学建模典型例题(二)

6 小行星的轨道模型 问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1. 表6.1 坐标数据 由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为 012225423221=+++++y a x a y a xy a x a . 问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据: (x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5). 由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定 系数,将五个点的坐标分别代入上面的方程,得 ???? ?????-=++++-=++++-=++++-=++++-=++++.122212221222122212225554253552251454424344224 135342 3333223125242 232222211514213112211y a x a y a y x a x a , y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a 这是一个包含五个未知数的线性方程组,写成矩阵

数学建模案例分析--对策与决策方法建模6决策树法

§6 决策树法 对较为复杂的决策问题,特别是需要做多个阶段决策的问题,最常用的方法是决策树法。决策树法是把某个决策问题未来发展情况的可能性和可能结果所做的预测用树状图画出来。其步骤如下: 1、用方框表示决策点。从决策点画出若干条直线或折线,每条线代表一个行动方案,这样的直线或折线称为方案枝。 2、在各方案枝的末端画一个园圈,称为状态点,从状态点引出若干直线或折线,每条线表示一个状态,在线的旁边标出每个状态的概率,称为概率枝。 3、把各方案在各个状态下的损益期望值算出标记在概率枝的末端。 4、把计算得到的每个方案的损益期望值标在状态点上,然后通过比较,选出损益期望值最小的方案为最优方案。 例1某厂准备生产一种新产品,产量可以在三种水平n1、n2、n3中作决策。该产品在市场上的销售情况可分为畅销、一般和滞销三种情况,分别为S1、S2、S3。通过调查,预测市场处于这三种情况的概率分别为0.5、0.3、0.2。三种决策在各种不同市场情况下的利润见下表: 表1 基于各种决策的各种市场情况的利润表(万元) 我们可以计算每种决策下利润的期望值: 实行在水平n1下生产的利润的期望值为:90×0.5+30×0.3-60×0.2=42 实行在水平n2下生产的利润的期望值为:60×0.5+50×0.3-10×0.2=43 实行在水平n3下生产的利润的期望值为:10×0.5+9×0.3-6×0.2=6.5 由于在水平n2下生产利润的期望值最大,因而应选择产量水平n2生产。 可以应用决策树帮助解决这样的决策问题,把各种决策和情况画在图1上: 图1

图中的方框(□)称为决策点,圆圈(○)称为状态点,从方框出发的线段称为对策分支,表示可供选择的不同对策。在圆圈下面的线段称为概率分支,表示在此种对策下可能出现的各种情况。在概率分支上注明了该情况出现的概率。在每一个概率分支的末端注明了对应对策和对应情况下的收益(利润)。在计算时,我们把相应的期望值写在相应的状态点旁边,再由比较大小后选择最优决策,在图上用∥表示舍弃非最优的对策,并在决策点上注明最优决策所对应的期望利润。 图2 利用决策树还可以解决多阶段的决策问题。 例2 某公司在开发一种新产品前通过调查推知,该产品未来的销售情况分前三年和后三年两种情况。因此生产该产品有两种可供选择的方案:建造大厂和建造小厂。如果建造大厂,投资费用5000万元,当产品畅销时,每年可获利2000万元,当产品滞销时,每年要亏损120万元。如果建造小厂,投资费用1000万元,当产品畅销时,每年可获利300万元,当产品滞销时,每年仍可获利150万元。若产品畅销可考虑在后三年再扩建,扩建投资需2000万元,随后三年每年可获利1000万元;也可不再扩建。预测这六年该产品畅销的概率为0.6,滞销的概率为0.4。试分析该公司开发新产品应如何决策? 根据问题的各种情况可以画出决策树如下:这是一个两阶段的决策问题。注意到图中有两个决策点,反映建小厂的方案中可以分成前三年和后三年两个阶段,并在后三年还要做出一次决策。 图3 把各种数据填到图适当的位置后,由后向前计算获利的期望值。由图可见应采用决策:建造大厂。 500 900 1000*3=3000 300*3=900 6.5

数学建模案例分析

案例分析1: 自行车外胎的使用寿命 问题: 目前,自行车在我国是一种可缺少的交通工具。它小巧、灵活、方便、易学,而且价格适中,给广大居民带来了不小的益处。但是,自行车也有令人头痛的地方,最常见的问题莫过于扎胎了。扎胎的原因有很多,但相当一部分是由于外胎磨损,致使一些玻璃碴、小石子很容易侵入、扎破内胎。为了减少不必要的麻烦,如何估计自行车外胎的寿命,及时更换? 分析: 分析角度:由于题目里未明确指出我们是应从厂家角度,还是应从用户角度来考虑这个问题,因此需要我们自己做出合理判断。若从厂家角度,我们面对的应当是一大批自行车外胎的平均寿命的估计。这样的估计要求一定精确度和相对明确的使用环境;而从用户角度来说,面对的仅是个人的一辆车,不需要很高的精确度,这样的寿命估计更简单,易于随时了解,下面仅从用户角度进行分析。 产品的使用者需要了解产品的寿命,是基于安全性及更换的费用来考虑的。我们将这两个标准作为主要标准来分析,首先值得注意的两个关键性问题是如何定义寿命、何时为寿命的终止。寿命的定义要做到科学,直观,有可比性,在航空工业中航天飞机的使用寿命是用重复使用的次数来衡量,而工厂机器设备的寿命则以连续工作的时间来定义。本题外胎的寿命亦可用时间来表征,但由于外胎的寿命直接与其磨损速度相关;而磨损速度又与使用频率及行驶速度相互联系,致使外胎的寿命不一定与使用时间成正比(这种非正比关系使我们不能拿一辆—天跑200公里的自行车与一天只跑1公里的自行车进行寿命比较),降低了可比性。如换成自行车的路程寿命来比较,就好得多。产品寿命是在安全性和更换费用相互制约下达到的一个点,在这个点上,外胎的安全系数降到用户不可接受的最低值,更换费用(寿命越长,在一定意义上更换费用越低)也达到了最大限度的节省。 弄清了上面两个问题后,我们继续明确建立模型需要解决哪些问题及建立模型的重点难点。 自行车使用过程中,一来影响因素多,二来这些因素之间彼此相关,十分复杂,要做到比较准确地估计使用寿命,不但要对外胎的性能有相当的了解,而且对使用环境更不能忽视。当然我们由于是站在用户角度上来考虑的,相对地就可忽略一些次要的影响因素。 这样的数学模型面对着两个主要问题。一、自行车使用寿命与外胎厚度的关系,二、外胎能够抵御小石子破坏作用的最小厚度。后者可处理得相对简略些(如只考虑一块具有一般特征的小石子对外胎的破坏作用),而重点(也是难点)是第一个问题。车重、人重、轮胎性质(力学的、热学的、甚至化学的)和自行车使用频率等都左右着它们的关系。这么多相关因素,不必一一都加以考虑(用户是不会在意这么多的),有些因素,可以先不考虑,在模型的改进部分再作修改,采取逐步深入的方法,如:摩擦损耗有滑动摩擦和滚动摩擦损耗两种,由于滚动摩擦占用的时间(或路程)显然占绝对优势,因此可重点考虑。但滑动摩擦造成的一次损坏又比滚动摩擦大,在刹车使用过频的情况下,就不能不考虑了。 最后,需对得出的结果用简单清晰的文字进行说明,以供用户参考。 案例分析2:城市商业中心最优位置分析 问题: 城市商业中心是城市的基本构成要素之一。它的形成是一个复杂的定位过程。商业中心的选址涉及到各种因素制约,但其中交通条件是很重要的因素之一。即商业中心应位于城市“中心”,如果太偏离这一位置,极有可能在城市“中心”地带又形成一个商业区,造成重复建设。 某市对老商业中心进行改建规划,使居民到商业中心最方便。如果你是规划的策划者,如何建立一个数学模型来解决这个问题。

2003全国大学生数学建模竞赛B题优秀论文(出题人亲作)

2003高教社杯全国大学生数学建模竞赛 B 题参考答案 注意:以下答案是命题人给出的,仅供参考。各评阅组应根据对题目的理解及学生的解答,自主地进行评阅。 问题分析: 本题目与典型的运输问题明显有以下不同: 1. 运输矿石与岩石两种物资; 2. 产量大于销量的不平衡运输; 3. 在品位约束下矿石要搭配运输; 4. 产地、销地均有单位时间的流量限制; 5. 运输车辆每次都是满载,154吨/车次; 6. 铲位数多于铲车数意味着最优的选择不多于7个产地; 7. 最后求出各条路线上的派出车辆数及安排。 运输问题对应着线性规划,以上第1、2、3、4条可通过变量设计、调整约束条件实现; 第5条使其变为整数线性规划;第6条用线性模型实现的一种办法,是从1207 10 C 个整数规划中取最优的即得到最佳物流;对第7条由最佳物流算出各条路线上的最少派出车辆数(整数),再给出具体安排即完成全部计算。 对于这个实际问题,要求快速算法,计算含50个变量的整数规划比较困难。另外,这是一个二层规划,第二层是组合优化,如果求最优解计算量较大,现成的各种算法都无能为力。于是问题变为找一个寻求近优解的近似解法,例如可用启发式方法求解。 调用120次整数规划可用三种方法避免:(1)先不考虑电铲数量约束运行整数线性规划,再对解中运量最少的几个铲位进行筛选;(2)在整数线性规划的铲车约束中调用sign 函数来实现;(3)增加10个0-1变量来标志各个铲位是否有产量。 这是一个多目标规划,第一问的目标有两层:第一层是总运量(吨公里)最小,第二层是出动卡车数最少,从而实现运输成本最小。第二问的目标有:岩石产量最大;矿石产量最大;运量最小,三者的重要性应按此序。 合理的假设主要有: 1. 卡车在一个班次中不应发生等待或熄火后再启动的情况; 2. 在铲位或卸点处因两条路线(及以上)造成的冲突时,只要平均时间能完成任务即 可,不进行排时讨论; 3. 空载与重载的速度都是28km/h ,耗油相差却很大,因此总运量只考虑重载运量; 4. 卡车可提前退出系统。 符号:x ij ~ 从i 号铲位到j 号卸点的石料运量 单位 吨; c ij ~ 从i 号铲位到j 号卸点的距离 公里; T ij ~ 从i 号铲位到j 号卸点路线上运行一个周期平均所需时间 分; A ij ~ 从i 号铲位到j 号卸点最多能同时运行的卡车数 辆; B ij ~ 从i 号铲位到j 号卸点路线上一辆车最多可以运行的次数 次; p i ~ i 号铲位的矿石铁含量。 % p =(30,28,29,32,31,33,32,31,33,31) q j ~ j 号卸点任务需求 吨 q =(1.2,1.3,1.3,1.9,1.3)*10000

全国数学建模大赛题目

2010高教社杯全国大学生数学建模竞赛题目 A题储油罐的变位识别与罐容表标定 通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。 许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。按照有关规定,需要定期对罐容表进行重新标定。图1是一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。图2是其罐体纵向倾斜变位的示意图,图3是罐体横向偏转变位的截面示意图。 请你们用数学建模方法研究解决储油罐的变位识别与罐容表标定的问题。 (1)为了掌握罐体变位后对罐容表的影响,利用如图4的小椭圆型储油罐(两端平头的椭圆柱体),分别对罐体无变位和倾斜角为α=4.10的纵向变位两种情况做了实验,实验数据如附件1所示。请建立数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm的罐容表标定值。 (2)对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。请利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据你们所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。 附件1:小椭圆储油罐的实验数据 附件2:实际储油罐的检测数据 地平线油位探针

数学建模案例分析-- 插值与拟合方法建模1数据插值方法及应用

第十章 插值与拟合方法建模 在生产实际中,常常要处理由实验或测量所得到的一批离散数据,插值与拟合方法就是要通过这些数据去确定某一类已经函数的参数,或寻求某个近似函数使之与已知数据有较高的拟合精度。插值与拟合的方法很多,这里主要介绍线性插值方法、多项式插值方法和样条插值方法,以及最小二乘拟合方法在实际问题中的应用。相应的理论和算法是数值分析的内容,这里不作详细介绍,请参阅有关的书籍。 §1 数据插值方法及应用 在生产实践和科学研究中,常常有这样的问题:由实验或测量得到变量间的一批离散样点,要求由此建立变量之间的函数关系或得到样点之外的数据。与此有关的一类问题是当原始数据 ),(,),,(),,(1100n n y x y x y x 精度较高,要求确定一个初等函数)(x P y =(一般用多项式或分段 多项式函数)通过已知各数据点(节点),即n i x P y i i ,,1,0,)( ==,或要求得函数在另外一些点(插值点)处的数值,这便是插值问题。 1、分段线性插值 这是最通俗的一种方法,直观上就是将各数据点用折线连接起来。如果 b x x x a n =<<<= 10 那么分段线性插值公式为 n i x x x y x x x x y x x x x x P i i i i i i i i i i ,,2,1,,)(11 1 11 =≤<--+--= ----- 可以证明,当分点足够细时,分段线性插值是收敛的。其缺点是不能形成一条光滑曲线。 例1、已知欧洲一个国家的地图,为了算出它的国土面积,对地图作了如下测量:以由西向东方向为x 轴,由南向北方向为y 轴,选择方便的原点,并将从最西边界点到最东边界点在x 轴上的区间适当的分为若干段,在每个分点的y 方向测出南边界点和北边界点的y 坐标y1和y2,这样就得到下表的数据(单位:mm )。 根据地图的比例,18 mm 相当于40 km 。

数学建模优化问题经典练习

1、高压容器公司制造小、中、大三种尺寸的金属容器,所用资源为金属板、劳 万元,可使用的金属板有500t,劳动力有300人/月,机器有100台/月,此外,不管每种容器制造的数量是多少,都要支付一笔固定的费用:小号为100万元,中号为150万元,大号为200万元,现在要制定一个生产计划,使获得的利润为最大, max=4*x1+5*x2+6*x3-100*y1-150*y2-200*y3; 2*x1+4*x2+8*x3<=500; 2*x1+3*x2+4*x3<=300; 1*x1+2*x2+3*x3<=100; @bin(y1); @bin(y2); @bin(y3); y1+y2+y3>=1; Global optimal solution found. Objective value: 300.0000 Extended solver steps: 0 Total solver iterations: 0 Variable Value Reduced Cost X1 100.0000 0.000000 X2 0.000000 3.000000 X3 0.000000 6.000000 Y1 1.000000 100.0000 Y2 0.000000 150.0000 Y3 0.000000 200.0000 Row Slack or Surplus Dual Price 1 300.0000 1.000000 2 300.0000 0.000000 3 100.0000 0.000000 4 0.000000 4.000000 5 0.000000 0.000000

matlab数学建模实例

第四周 3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj() for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769; if (abs(x1)<1.0e-8) x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20; k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1; end x1 k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0); k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10; x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1; end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

数学模型经典例题

一、把椅子往地面一放,通常只有三只脚着地,放不稳,然而只需稍挪动几次,就可以使四只脚同时着地放稳了,就四脚连线成长方形的情形建模并加以说明。(15分) 解:一、模型假设: 1. 椅子四只脚一样长,椅脚与地面的接触可以看作一个点,四脚连线呈长方形。 2. 地面高度是连续变化的,沿任何方向都不会出现间断,地面可以看成一张光滑曲面。 3. 地面是相对平坦的,使椅子在任何位置至少有三只脚同时着地。 (3分) 二、建立模型: 以初始位置的中位线为坐标轴建立直角坐标系,用θ表示椅子绕中心O 旋转的角度,椅子的位置可以用θ确定: ()f θ记为A 、B 两点与地面的距离之和 ()g θ记为C 、D 两点与地面的距离之和 由假设3可得,()f θ、()g θ中至少有一个为0。 由假设2知()f θ、()g θ是θ的连续函数。 (3分) 问题归结为: 已知()f θ和()g θ是θ的连续函数,对任意θ, ()()0f g θθ=,且设()()00,00g f =>。证明存在0θ, 使得()()000f g θθ== (3分) 三、模型求解: 令()()()h f θθθ=-g 若()()000f g =,结论成立 若()()000f g 、不同时为,不妨设()()00,00g f =>,椅子旋转()180π或后,AB 与CD 互换,即()()0,0g f ππ>=,则()(0)0,0h h π><。 (3分) 由f g 和的连续性知h 也是连续函数。根据连续函数的基本性质,必存在 ()000θθπ<<使000()0,()()h f g θθθ==即。 最后,因为00()()0f g θθ=,所以00()()0f g θθ==。 (3分) 图 5

数学建模题目及其答案(疾病诊断)

数学建模疾病的诊断 现要你给出疾病诊断的一种方法。 胃癌患者容易被误诊为萎缩性胃炎患者或非胃病者。从胃癌患者中抽 取5人(编号为1-5),从萎缩性胃炎患者中抽取5人(编号为6-10),以及非胃病者 中抽取5人(编号为11-15),每人化验4项生化指标:血清铜蓝蛋白( X)、 1 蓝色反应( X)、尿吲哚乙酸(3X)、中性硫化物(4X)、测得数据如表1 2 所示: 表1. 从人体中化验出的生化指标

* 根据数据,试给出鉴别胃病的方法。 论文题目:胃病的诊断 摘要 在临床医学中,诊断试验是一种诊断疾病的重要方法。好的诊断试验方法将对临床诊断的正确性和疾病的治疗效果起重要影响。因此,对于不同疾病不断发现新的诊断试验方法是医学进步的重要标志。传统的诊断试验方法有生化检测、DNA检测和影像检测等方法。而本文则通过利用多元统计分析中的判别分析及SPSS软件的辅助较好地解决了临床医学中胃病鉴别的问题。在临床医学上,既提高了临床诊断的正确性,又对疾病的治疗效果起了重要效果,同时也减轻了病人的负担。 判别分析是在分类确定的条件下,根据某一研究对象的各种特征值判别其类型归属问题的一种多变量统计分析方法。 其基本原理是按照一定的判别准则,建立一个或多个判别函数,用研究对象的大量资料确定判别函数中的待定系数,并计算判别指标。 , 首先,由判别分析定义可知,只有当多个总体的特征具有显著的差异时,进行判别分析才有意义,且总体间差异越大,才会使误判率越小。因此在进行判别分析时,有必要对总体多元变量的均值进行是否不等的显著性检验。 其次,利用判别分析中的费歇判别和贝叶斯判别进行判别函数的建立。 最后,利用所建立的判别函数进行回判并测得其误判率,以及对其修正。 本文利用SPSS软件实现了对总体间给类变量的均值是否不等的显著性检验并根据样本建立了相应的费歇判别函数和贝叶斯判别函数,最后进行了回判并测得了误判率,从而获得了在临床诊断中模型,给临床上的诊断试验提供了新方法和新建议。 关键词:判别分析;判别函数;Fisher判别;Bayes判别 一问题的提出 在传统的胃病诊断中,胃癌患者容易被误诊为萎缩性胃炎患者或非胃病患者,为了

经典的数学建模例子1

经典的数学建模例子 一、摘要 SARS SARS就是传染性非典型肺炎,全称严重急性呼吸综合症(Severe Acute Respiratory Syndromes),简称SARS,是一种因感染SARS相关冠状病毒而导致的以发热、干咳、胸闷为主要症状,严重者出现快速进展的呼吸系统衰竭,是一种新的呼吸道传染病,传染性极强、病情进展快速。 当一种传染病流行的时候,会给人们的工作学习带来很大的不变,能有效地进行隔离、预防,会大大减少人员的得病率,当一种传染病开始流行时,在一定的条件下其趋势就像真菌的繁殖曲线,如果能通过计算预测但大概推算出其发病率高峰时期,及时的隔离预防。那会给社会人力带来很大的方便,当年SARS的爆发给我们带来和大的不便和损失,因此本论文就以SARS为例,来研究传染病的传播规律、为预测和控制传染病蔓延创造条件和帮助。 1 二、正文 1、模型的背景问题描述 SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。 要求:(1)建立传染病传播的指数模型,评价其合理性和实用性。 (2)建立一个适合的模型,说明为什么优于问题1中的模型;特别要说明怎样才能 3 建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。表中提供的数据供参考。 (3)说明建立传染病数学模型的重要性。 2、模型假设 (一)答;

数学建模案例分析--灰色系统方法建模2灰色预测模型GM(1-1)及其应用

§2 灰色预测模型GM(1,1)及其应用 蠕变是材料在高温下的一个重要性能。处于高温状态下的材料长期受到载荷作用时,即使其载荷较低,并且在短时间的高温拉伸试验中材料不发生变形,但在此情况下仍会有微小的蠕变,极端的情况下,甚至会使材料发生破坏。高温材料多应用于各种车辆的发动机及冶金厂中各种设备上,如果因蠕变引起破坏,可能造成很大的事故。 为了保证设备的安全可靠,在某一使用温度下,预先知道该材料对不同载荷应力下断裂的时间是很重要的。过去,人们都是通过蠕变试验测量断裂时间。而做蠕变试验时,需要很长时间才能得到结果,即使通过试验得出的数据,也只是对某几个具体试样而言,存在很大的偶然性,不能代表普遍的规律。如果将实测的数据用灰色系统理论来处理,可以预测在某一温度下的任何载荷应力的断裂时间。 一、灰色预测模型GM (1,1) 建模步骤如下: (1)GM (1,1)代表一个白化形式的微分方程: u aX dt dX =+)1() 1( (1) 式中,u a ,是需要通过建模来求得的参数;) 1(X 是原始数据) 0(X 的累加生成(AGO )值。 (2)将同一数据列的前k 项元素累加后生成新数据列的第k 项元素,这就是数据处理。表示为: ∑==k n n X k X 1 )0() 1()()( (2) 不直接采用原始数据) 0(X 建模,而是将原始的、无规律的数据进行加工处理,使之变得较有规 律,然后利用生成后的数据列来分析建模,这正是灰色系统理论的特点之一。 (3)对GM (1,1),其数据矩阵为 ???? ?? ? ? ?+--+-+-=1)]()1([5.01)]3()2([5.01)]2()1([5.0)1()1()1()1()1()1(N X N X X X X X B (3) 向量T N N X X X Y )](,),3(),2([)0()0()0( = (4)作最小二乘估计,求参数u a , N T T Y B B B u a 1)(?-=??? ? ??=α (4) (5)建立时间响应函数,求微分方程(1)的解为 a u e a u X t X at +-=+-))1(()1(?)0()1( (5)

一些基本的数学建模示例

1.3 一些基本的数学建模示例 1.3.1椅子的摆放问题 1.3.2 双层玻璃的功效问题 1.3.3 搭积木问题 1.3.4 四足动物的身长和体重关系问题 1.3.5 圆杆堆垛问题 1.3.6 公平的席位分配问题 1.3.7 中国人重姓名问题 1.3.8实物交换问题 椅子能在不平的地面上放稳吗?下面用数学建模的方法解决此问题。 模型准备 仔细分析本问题的实质,发现本问题与椅子腿、地面及椅子腿和地面是否接触有关。如果把椅子腿看成平面上的点,并引入椅子腿和地面距离的函数关系就可以将问题1与平面几何和连续函数联系起来,从而可以用几何知识和连续函数知识来进行数学建模。为讨论问题方便,我们对问题进行简化,先做出如下3个假设: 模型假设 1、椅子的四条腿一样长,椅子脚与地面接触可以视为一个点,四脚连线是正方形(对椅子的假设) 2、地面高度是连续变化的,沿任何方向都不出现间断。(对地面的假设) 3、椅子放在地面上至少有三只脚同时着地,(对椅子和地面之间关系的假设) 根据上述假设做本问题的模型构成: 模型构成Array用变量表示椅子的位置,引入平面图形及坐 标系如图1-1。图中A、B、C、D为椅子的四只脚, 坐标系原点选为椅子中心,坐标轴选为椅子的四 只脚的对角线。于是由假设2,椅子的移动位置 可以由正方形沿坐标原点旋转的角度θ来唯一表 示,而且椅子脚与地面的垂直距离就成为θ的函 数。注意到正方形的中心对称性,可以用椅子的 相对两个脚与地面的距离之和来表示这对应两 个脚与地面的距离关系,这样,用一个函数就可 以描述椅子两个脚是否着地情况。本题引入两个 函数即可以描述椅子四图 1-1

数学建模spss-时间预测-心得总结及实例

《一周总结,底稿供参考》 我们通过案例来说明: 假设我们拿到一个时间序列数据集:某男装生产线销售额。一个产品分类销售公司会根据过去10 年的销售数据来预测其男装生产线的月销售情况。 现在我们得到了10年120个历史销售数据,理论上讲,历史数据越多预测越稳定,一般也要24个历史数据才行! 大家看到,原则上讲数据中没有时间变量,实际上也不需要时间变量,但你必须知道时间的起点和时间间隔。 当我们现在预测方法创建模型时,记住:一定要先定义数据的时间序列和标记!

这时候你要决定你的时间序列数据的开始时间,时间间隔,周期!在我们这个案例中,你要决定季度是否是你考虑周期性或季节性的影响因素,软件能够侦测到你的数据的季节性变化因子。

定义了时间序列的时间标记后,数据集自动生成四个新的变量:YEAR、QUARTER、MONTH 和DATE(时间标签)。 接下来:为了帮我们找到适当的模型,最好先绘制时间序列。时间序列的可视化检查通常可以很好地指导并帮助我们进行选择。另外,我们需要弄清以下几点: ?此序列是否存在整体趋势?如果是,趋势是显示持续存在还是显示将随时间而消逝??此序列是否显示季节变化?如果是,那么这种季节的波动是随时间而加剧还是持续稳定存在? 这时候我们就可以看到时间序列图了! 我们看到:此序列显示整体上升趋势,即序列值随时间而增加。上升趋势似乎将持续,即为线性趋势。此序列还有一个明显的季节特征,即年度高点在十二月。季节变化显示随上升序列而增长的趋势,表明是乘法季节模型而不是加法季节模型。

此时,我们对时间序列的特征有了大致的了解,便可以开始尝试构建预测模型。时间序列预测模型的建立是一个不断尝试和选择的过程。 spss提供了三大类预测方法:1-专家建模器,2-指数平滑法,3-ARIMA ?指数平滑法 指数平滑法有助于预测存在趋势和/或季节的序列,此处数据同时体现上述两种特征。创建最适当的指数平滑模型包括确定模型类型(此模型是否需要包含趋势和/或季节),然后获取最适合选定模型的参数。

matlab数学建模实例

第四周3. 中的三个根。 ,在求8] [0,041.76938.7911.1-)(2 3=-+=x x x x f function y=mj()for x0=0:0.01:8 x1=x0^3-11.1*x0^2+38.79*x0-41.769;if (abs(x1)<1.0e-8)x0 end end 4.分别用简单迭代法、埃特金法、牛顿法求解方程,并比较收敛性与收敛速度(ε分别取10-3、10-5、10-8)。 简单迭代法: function y=jddd(x0) x1=(20+10*x0-2*x0^2-x0^3)/20;k=1; while (abs(x1-x0)>=1.0e-3) x0=x1; x1=(20+10*x0-2*x0^2-x0^3)/20;k=k+1;end x1k 埃特金法: function y=etj(x0) x1=(20-2*x0^2-x0^3)/10;x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=1; while (abs(x3-x0)>=1.0e-3) x0=x3; x1=(20-2*x0^2-x0^3)/10;x2=(20-2*x1^2-x1^3)/10; x3=x2-(x2-x1)^2/(x2-2*x1+x0);k=k+1;end 2 ,020102)(023==-++=x x x x x f

x3 k 牛顿法: function y=newton(x0) x1=x0-fc(x0)/df(x0); k=1; while(abs(x1-x0)>=1.0e-3) x0=x1; x1=x0-fc(x0)/df(x0);k=k+1; end x1 k function y=fc(x) y=x^3+2*x^2+10*x-20; function y=df(x) y=3*x^2+4*x+10; 第六周 1.解例6-4(p77)的方程组,分别采用消去法(矩阵分解)、Jacobi迭代法、Seidel迭代法、松弛法求解,并比较收敛速度。 消去法: x=a\d 或 [L,U]=lu(a); x=inv(U)inv(L)d Jacobi迭代法: function s=jacobi(a,d,x0) D=diag(diag(a)); U=-triu(a,1); L=-tril(a,-1); C=inv(D); B=C*(L+U); G=C*d; s=B*x0+G; n=1; while norm(s-x0)>=1.0e-8 x0=s; s=B*x0+G;

经典的数学建模例子

一、摘要 SARS SARS就是传染性非典型肺炎,全称严重急性呼吸综合症(Severe Acute Respiratory Syndromes),简称SARS,是一种因感染SARS相关冠状病毒而导致的以发热、干咳、胸闷为主要症状,严重者出现快速进展的呼吸系统衰竭,是一种新的呼吸道传染病,传染性极强、病情进展快速。 当一种传染病流行的时候,会给人们的工作学习带来很大的不变,能有效地进行隔离、预防,会大大减少人员的得病率,当一种传染病开始流行时,在一定的条件下其趋势就像真菌的繁殖曲线,如果能通过计算预测但大概推算出其发病率高峰时期,及时的隔离预防。那会给社会人力带来很大的方便,当年SARS的爆发给我们带来和大的不便和损失,因此本论文就以SARS为例,来研究传染病的传播规律、为预测和控制传染病蔓延创造条件和帮助。 1

二、正文 1、模型的背景问题描述 SARS(Severe Acute Respiratory Syndrome,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。

要求:(1)建立传染病传播的指数模型,评价其合理性和实用性。 (2)建立一个适合的模型,说明为什么优于问题1中的模型;特别要说明怎样才能 3

建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。表中提供的数据供参考。 (3)说明建立传染病数学模型的重要性。 2、模型假设 (一)答; 从上列图表可知道在4月20到5月7日期已确诊的发病人总数呈指数增长趋势5月20到6月1日增长缓慢,6月1日到6月12日总数几乎不变。其形式与生物学中真菌繁殖总数相似。 从表格和准备中,作如下假设。 1、不考虑SARS在人体中的潜伏期,也就是说当人一旦传染就表现出来立即就具有传染 性。 2、当健康者满足一地条件时,健康者才被传染。 3、整个发病期间为自然状态也就是无人为外界干扰,政府等其它形式进行隔离预防。 4、忽略特殊情况,如个别人体质弱或强的。 假定初始时刻得病例数为M0。平均每位病人每天可传染N个人,可传染他人的时间为T 天。则在T天内,病例数目的增长随着时间t(单位天)的关系是; M(t)=M0(1+N)t 如果不考虑对传染期的限制则病例数将按照指数规律增长考虑,当传染期T的作用后,变化将显著偏离指数规律,增长速度会放慢。把达到T天的病例从可以引发直接传染的基数中去掉,为了方便,从开始到高峰期间,均采用同样的N值,(从拟合这一阶段的数据库定出),到达高峰之后在10天的范围内逐步调整N值,到比较小,然后保持不变,拟合后在控制阶段的全部数据。 评价及其合理性和实用性; 本模型主要有三个参数M0、N、T,且都具有实际意义。T可理解为平均每个病人在被发现前后可以造成直接传染的期限,在此期限后失去传染能力,可能原因是被隔离、病愈或死去等等。N表示某种社会条件下平均每位病人每天传播的人数(但并非文中所述的一个病人的感染他人的平均概率)。整个模型抓住了SARS传播过程中两个主要特征:传染期T和传染率N,反映了SARS的传播过程。使人很容易理解该模型。 模型灵活 通过调整M0、N、T值,就可以描述不同地区,不同环境下SARS的初期传播规律预测准确 通过模型对表格的调查结果进行了分析,得到的预测值与实际统计数据较接近。可大致预测出疫情的爆发点和发展趋势。 预期模型的缺点: 1、对于如何确定对于三个参数M0、N、T,未给出一般的原则或算法,只能通过对 于已发病地区的数据进行拟合得出。按照作者的表述,N值是以病发高峰为界取各段的平均值作为传染概率,虽然简化了运算,但是在现实情况下,不同地区的N值是不同的。在实际应用中,如果没有一定量的数据,是无法得出N值的。在我们对该模型

相关文档