文档库 最新最全的文档下载
当前位置:文档库 › 稀土科普

稀土科普

稀土科普
稀土科普

稀土资源简介

一、稀土概述

稀土一词是历史遗留下来的名称。稀土元素是从18世纪末叶开始陆续发现,当时人们常把不溶于水的固体氧化物称为土。稀土一般是以氧化物状态分离出来的,又很稀少,因而得名为稀土。稀土元素的发现至今已经经历了一个漫长的时期,人们对稀土元素独特的化学性质和物理性质的认识,也经历了一个逐渐深入的过程,因此能合理充分地应用稀土元素。

1、稀土元素的定义及分布

稀土元素是指周期表中第57(镧)到71(镥)号原子序的镧系元素,以及第三副族中的钪和钇共17个元素,它们在自然界中共同存在,性质非常相似。由于这些元素发现的比较晚,又难以分离出高纯的状态,最初得到的是元素的氧化物,它们的外观似土,所以称它们为稀土元素。除钪和钷外,其余15个元素往往共生。稀土不是土,是一组典型的金属元素。

稀土在地壳中的含量并不稀少,比常见元素铜、锌、锡、铅、镍等元素要多。世界已查明的稀土储量为9860万吨,其中中国占36.52%。我国稀土资源主要分布在具有“稀土之谷”美誉的包头和四川、江西、广东、湖南、广西等地。其中包头为氟碳铈矿与独居石的混合矿,四川为氟碳铈矿,江西、广东等南方五省为世界罕见的离子型矿,湖南有全国最大的独居石矿。

湖南的稀土资源储量在全国处于前列,且稀土矿种齐全。主要有独居石矿及离子吸附型稀土矿。独居石矿储量居全国首位,分布于环洞庭湖地区和岳阳新墙河流域,主要已探明较大矿点有岳阳筻口、华容三朗堰、望湘区(湘阴、岳阳、长沙三县交界之洞庭湖以东区)、临湘詹家桥和平江县南江桥区。离子吸附型稀土矿储量在全国排在第四,沿南岭山脉分布广泛,在株州炎陵、郴州桂东和资兴、永州江华等地都储量丰富,主要矿点有江华姑婆山、炎陵东风和下村、郴州雪化顶和彭公庙等。湖南省有特色矿还有郴州汝城益将稀土钪矿,独立钪矿远景资源量1515吨,伴生钪矿远景资源量4063吨,价值巨大。另外江华、汝城、资兴、炎陵还有褐钇铌矿和磷钇矿。

2、稀土的分类及其冶炼方法

稀土元素分为轻稀土和重稀土。轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。也有的根据稀土元素物理化学性质的相似性和差异性,除钪之外(有的将钪划归稀散元素),划分成三组,即轻稀土组为镧、铈、镨、钕、钷;中稀土组为钐、铕、钆、铽、镝;重稀土组为钬、铒、铥、镱、镥、钇。

稀土元素的冶炼方法分为湿法冶炼和火法冶炼。稀土金属的湿法冶炼分为溶剂萃取法和离子交换法。溶剂萃取法是指借助于有机溶剂的作用,使溶解在水溶液(水相)中的溶质,部分或几乎全部转移到有机溶剂(有机相)中去的过程称为溶剂萃取(被分离元素的溶解度差异)。离子交换法是指离子交换的原理是利用各种稀土元素配合物性质的差别,离子交换树脂上稀土离子先与树脂活性基团的阳离子选择性地进行交换、淋洗;在树脂上稀土离子分步淋洗下来,经过多次这样的过程,性质十分相似的元素得以分开。稀土金属的火法冶炼分为熔盐电解法和金属热还原法。熔盐电解法是指稀土氧化物在熔融状态下通过直流电场的作用,大批量生产混合稀土金属,单一轻稀土金属,镨钕、镝铁、钆铁、钆镁、钇镁等合金的生产方法。目前主要采用氟化物熔盐体系。该方法经济方便、回收率高,可连续生产。金属热还原法是指利用活性较强的还原剂在高温下还原稀土化合物的方法。主要生产单一重稀土金属,钐、铕、镱等高蒸气压金属。稀土金属热还原过程多在保护气氛和真空中进行。生产产品纯度高,主要缺点是非连续化生产,需要钙、镧等还原剂。

3、稀土元素性质的决定因素

稀土元素的性质非常相似,但彼此之间又有一些差别,这都是由它们的原子和离子的电子结构,以及半径大小所决定的。

3.1稀土元素原子和离子的电子结构特征

电子结构特征是由电子组态来描述的。电子组态是由主量子数n和角量子数l所规定的一种原子或离子中电子排布方式。电子组态用符号nl表示。根据能量最低原理,镧系元素原子的基态电子组态由两种类型:[Xe]4f n6s2和[Xe]4f n-15d16s2。当原子受热或电磁辐射的激发,分别失去它们的5d16s2或4f16s2三个外层电子之后,都变成正三价的离子。当4f轨道处于全空、半充满和全充满时,

离子是较稳定的,所以镧、钆、镥的正三价离子是最稳定的。原子序比镧大1或2的铈、镨,比钆大1的铽原子,也倾向于多电离出1或2个4f电子,变成稳定的正4价的离子。原子序比钆、镥小1或2的钐、铕、镱,也倾向于少电离出1或2个电子,变成具有半充满或全充满的4f轨道,形成稳定的正2价的离子。

3.2稀土元素的原子半径和离子半径

镧系元素随着原子序的增加,核电荷相应增加,电子依次填入4f内层,而外层保持不变。因为4f电子的径向分布不可能完全屏蔽核电荷对外层电子的引力,核电荷的增加对外层电子的引力也增大,因而造成镧系元素原子和正三价离子半径也随之减小,这就是“镧系收缩”现象。

3.3稀土元素特性

镧系元素的电子能级极为丰富,13种稀土离子共有1639个能级。当电子从基态能级跃迁到能量较高的能级时,原子则处于激发态。电子跃迁会吸收或辐射光子,由此产生了光学性质。15种镧系元素共存在199177个可能跃迁,因此稀土元素具有十分丰富的光学性质。目前只有48个跃迁已被应用,占总跃迁数的1/4000,开发潜能巨大。特殊的电子结构和稀土原子的大磁矩,决定了它们具有奇特的磁、光、电等性能,是无法替代的。稀土活泼性仅次于碱金属,与镁接近,都是强还原剂;活泼性顺序由Sc、Y、La递增,由La~Lu递减。在不太高的温度下即可与氧、硫、氯、氮等反应,所以在冶金工业中常用作脱硫、脱氧剂。稀土金属与水作用可放出氢,与酸反应更激烈。因此,稀土金属要保存在煤油里。

二、稀土元素的应用

近年来,稀土元素在工业,农业各产业领域以及在科学技术个方面的应用,由少到多,由局限到广泛,由粗放到精细一步步地发展起来。

1、稀土元素在激光和发光材料中的应用

激光和发光材料是由作为基质的化合物和掺杂在其中的激活剂离子组成的,其中基质和激活剂主要是稀土元素离子和化合物。由此可见,在激光和发光工作物质中,稀土元素是很重要的组成元素。

稀土元素在激光和发光材料中的应用主要是利用了其光谱的特性。这一特性主要是由稀土元素的特有的电子组态结构决定的。这类电子组态结构的特点:(1)

4f壳层是深藏在5s5p轨道的里面,电子外壳层对4f电子起着屏蔽作用,使它较少受到外场的影响。化合物中Ln3+离子4f电子能级内的跃迁和发射,都呈锐线状,而且和它们的原子光谱相似;(2)除了4f电子能级内的跃迁辐射之外,因为4f能级和5d及6s能级距离相近,正三价的镧系离子也可以产生4f-5d和4f-6s 能级间的跃迁辐射;(3)由于4f电子受到5s5p轨道的屏蔽,受外场影响小,所以呈球状,化学性质与碱土金属相似。由于镧系离子具有未充满的4f壳层以及4f电子的自旋轨道偶合作用,加上4f、5d、6s电子能量比较相近,产生数目很多的能级。镧系离子的吸收光谱或激发光谱,来源于f组态内的电子跃迁,即f-f跃迁;组态间的能级跃迁,即4f-5d、4f-6s、4f-6p等跃迁;还有电荷迁移跃迁,即配体离子的电子向三价离子的跃迁。从高能级向低能级的跃迁就产生相应的发射光谱。正是由于它们所表现出来的丰富的分离能级和长寿命的激发态,能级之间的跃迁通道可能多达20万个,因此稀土离子可以产生多种的跃迁发射和吸收,可以组成各种光谱的发光材料和激光材料。那些4f能级全空、半空和全满的离子,本身虽然在可见光区没有相应的跃迁吸收和发射,但它们吸收和传递辐射能的能力很强,因此是组成发光材料基质化合物的材料。

2、稀土元素在磁性材料中的应用

稀土金属与某些3d过渡金属生成的金属间化合物,具有优异的永磁特性,最大磁能积是传统的永磁材料的5-10倍。稀土永磁材料可以分为三类:(1)稀土钴永磁材料;(2)稀土铁永磁材料:(3)稀土铁氮系和稀土铁碳系。稀土永磁材料的研制和开发具有重大的学术意义和经济价值。

稀土元素的这些应用都体现了稀土元素的磁性的性质。物质的磁性是物质对外界磁场的反应,从微观角度来看是由于物质中带电粒子的运动所形成的元磁矩,即原子磁矩和分子磁矩,当这些元磁矩取向有序时,物质便产生磁性。由于核的磁效应比电子的磁效应小三个数量级,所以电子时物质磁性的主要负载者。电子的磁矩分别起源于电子的轨道运动和自旋运动。稀土元素三价离子除了La、Lu、Sc、Y都具有不成对的电子,因此都具有顺磁性,而且他们的磁矩比d过渡元素离子的磁矩大。他们的磁矩决定于基态总角动量的大小。由于不成对的4f 电子受到5s5p壳层的屏蔽,化合物中稀土三价离子的磁矩受配位环境的影响较小,与离子的理论磁矩相近。非三价离子的磁矩与等电子的三价离子的磁矩也相

近。稀土金属的4f电子处于内层,其外层三个价电子为传导电子,因此大多数稀土金属的有效磁矩和失去三个电子的三价稀土离子的磁矩几乎相同。

大多数稀土金属呈现顺磁性。钆在0o C时比铁具更强的铁磁性。铽、镝、钬、铒等在低温下也呈现铁磁性,镧、铈的低熔点和钐、铕、镱的高蒸气压表现出稀土金属的物理性质有极大差异。钐、铕、钇的热中子吸收截面比广泛用于核反应堆控制材料的镉、硼还大。稀土金属具有可塑性,以钐和镱为最好。除镱外,钇组稀土较铈组稀土具有更高的硬度。

3、稀土元素在储氢材料中的应用

人们很早就发现,稀土金属与氢气反应生成稀土氢化物REH2,这种氢化物加热到1000o C以上才会分解。而在稀土金属中加入某些第二种金属形成合金后,在较低温度下也可吸放氢气,通常将这种合金称为稀土贮氢合金。

以LaNi5为代表的稀土储氢合金被认为是所有储氢合金中应用性能最好的一类。优点:初期氢化容易,反应速度快,吸-放氢性能优良。20o C时氢分解压仅几个大气压。缺点:镧价格高,循环退化严重,易粉化。采用混合稀土(La,Ce,Sm)Mm替代La可有效降低成本,但氢分解压升高,滞后压差大,给使用带来困难。采用第三组分元素M(Al,Cu,Fe,Mn,Ga,In,Sn,B,Pt,Pd,Co,Cr,Ag,Ir)替代部分Ni是改善LaNi5和MmNi5储氢性能的重要方法。

4、稀土元素在催化剂材料中的应用

镧、铈等轻稀土目前的主要应用领域是用作催化材料。稀土元素具有未充满电子的4f轨道和镧系收缩等特征,表现出独特化学性能,作为催化剂,已在许多重要的化学过程中得到广泛应用,如石油化工、化石燃料的催化燃烧、机动车尾气净化和有毒有害气体的净化、烯烃聚合、碳一化工、燃料电池(固体氧化物燃料电池)等。从20世纪60年代中期开始,国内外对稀土化合物的催化性质进行了广泛的研究,稀土催化材料按其组成大致可分为:稀土复合氧化物,稀土—(贵)金属,稀土-分子筛等。研究表明,稀土在催化剂中的存在可以(1)提高催化剂的储氧能力;(2)提高活性金属的分散度,改善活性金属颗粒界面的催化活性;(3)降低贵金属用量;(4)提高Al2O3等材料的热稳定性;(5)促进水气转化和蒸汽重整反应;(6)提高晶格氧的活动能力等,从而使催化剂的性能得到显著提高。

5、十七种稀土元素的具体应用

1)镧(La)

“镧”这个元素是1839年被命名的,当时有个叫“莫桑德”的瑞典人发现铈土中含有其它元素,他借用希腊语中“隐藏”一词把这种元素取名为“镧”。

镧的应用非常广泛,如应用于压电材料、电热材料、热电材料、磁阻材料、发光材料(兰粉)、贮氢材料、光学玻璃、激光材料、各种合金材料等。镧也应用到制备许多有机化工产品的催化剂中,光转换农用薄膜也用到镧,在国外,科学家把镧对作物的作用赋与“超级钙”的美称。

2)铈(Ce)

“铈”这个元素是由德国人克劳普罗斯,瑞典人乌斯伯齐力、希生格尔于1803年发现并命名的,以纪念1801年发现的小行星——谷神星。

铈有着广泛的应用:(1)铈作为玻璃添加剂,能吸收紫外线与红外线,现已被大量应用于汽车玻璃。不仅能防紫外线,还可降低车内温度,从而节约空调用电。从1997年起,日本汽车玻璃全加入氧化铈,1996年用于汽车玻璃的氧化铈至少有2000吨,美国约1000多吨。(2)目前正将铈应用到汽车尾气净化催化剂中,可有效防止大量汽车废气排到空气中美国在这方面的消费量占稀土总消费量的三分之一强。(3)硫化铈可以取代铅、镉等对环境和人类有害的金属应用到颜料中,可对塑料着色,也可用于涂料、油墨和纸张等行业。目前领先的是法国罗纳普朗克公司。(4)Ce:LiSAF激光系统是美国研制出来的固体激光器,通过监测色氨酸浓度可用于探查生物武器,还可用于医学。铈应用领域非常广泛,几乎所有的稀土应用领域中都含有铈。如抛光粉、储氢材料、热电材料、铈钨电极、陶瓷电容器、压电陶瓷、铈碳化硅磨料、燃料电池原料、汽油催化剂、某些永磁材料、各种合金钢及有色金属等。

3)镨(Pr)

大约160年前,瑞典人莫桑德从镧中发现了一种新的元素,但它不是单一元素,莫桑德发现这种元素的性质与镧非常相似,便将其定名为“镨钕”。“镨钕”希腊语为“双生子”之意。大约又过了40多年,也就是发明汽灯纱罩的1885年,奥地利人韦尔斯巴赫成功地从“镨钕”中分离出了两个元素,一个取名为“钕”,另一个则命名为“镨”。这种“双生子”被分隔开了,镨元素也有了自己施展才华的广阔天地。镨是用量较大的稀土元素,其用于玻璃、陶瓷和磁性材料中。

镨的广泛应用包括:(1)镨被广泛应用于建筑陶瓷和日用陶瓷中,其与陶瓷釉混合制成色釉,也可单独作釉下颜料,制成的颜料呈淡黄色,色调纯正、淡雅。

(2)用于制造永磁体。选用廉价的镨钕金属代替纯钕金属制造永磁材料,其抗氧性能和机械性能明显提高,可加工成各种形状的磁体。广泛应用于各类电子器件和马达上。(3)用于石油催化裂化。以镨钕富集物的形式加入Y型沸石分子筛中制备石油裂化催化剂,可提高催化剂的活性、选择性和稳定性。我国70年代开始投入工业使用,用量不断增大。(4)镨还可用于磨料抛光。另外,镨在光纤领域的用途也越来越广。

4)钕(Nd)

伴随着镨元素的诞生,钕元素也应运而生,钕元素的到来活跃了稀土领域,在稀土领域中扮演着重要角色,并且左右着稀土市场。钕元素凭借其在稀土领域中的独特地位,多年来成为市场关注的热点。金属钕的最大用户是钕铁硼永磁材料。钕铁硼永磁体的问世,为稀土高科技领域注入了新的生机与活力。钕铁硼磁体磁能积高,被称作当代“永磁之王”,以其优异的性能广泛用于电子、机械等行业。阿尔法磁谱仪的研制成功,标志着我国钕铁硼磁体的各项磁性能已跨入世界一流水平。钕还应用于有色金属材料。在镁或铝合金中添加1.5~2.5%钕,可提高合金的高温性能、气密性和耐腐蚀性,广泛用作航空航天材料。另外,掺钕的钇铝石榴石产生短波激光束,在工业上广泛用于厚度在10mm以下薄型材料的焊接和切削。在医疗上,掺钕钇铝石榴石激光器代替手术刀用于摘除手术或消毒创伤口。钕也用于玻璃和陶瓷材料的着色以及橡胶制品的添加剂。随着科学技术的发展,稀土科技领域的拓展和延伸,钕元素将会有更广阔的利用空间。

5)钷(Pm)

1947年,马林斯基(J.A.Marinsky)、格伦丹宁(L.E.Glendenin)和科里尔(C.E.Coryell)从原子能反应堆用过的铀燃料中成功地分离出61号元素,用希腊神话中的神名普罗米修斯(Prometheus)命名为钷(Promethium)。钷为核反应堆生产的人造放射性元素。

钷的主要用途有:(1)可作热源,为真空探测和人造卫星提供辅助能量。

(2)Pm147放出能量低的β射线,用于制造钷电池,作为导弹制导仪器及钟表的电源。此种电池体积小,能连续使用数年之久。此外,钷还用于便携式X-射线

仪、制备荧光粉、度量厚度以及航标灯中。

6)钐(Sm)

1879年,波依斯包德莱从铌钇矿得到的“镨钕”中发现了新的稀土元素,并根据这种矿石的名称命名为钐。

钐呈浅黄色,是做钐钴系永磁体的原料,钐钴磁体是最早得到工业应用的稀土磁体。这种永磁体有SmCo5系和Sm2Co17系两类。70年代前期发明了SmCo5系,后期发明了Sm2Co17系。现在是以后者的需求为主。钐钴磁体所用的氧化钐的纯度不需太高,从成本方面考虑,主要使用95%左右的产品。此外,氧化钐还用于陶瓷电容器和催化剂方面。另外,钐还具有核性质,可用作原子能反应堆的结构材料,屏敝材料和控制材料,使核裂变产生巨大的能量得以安全利用。

7)铕(Eu)

1901年,德马凯(Eugene-AntoleDemarcay)从“钐”中发现了新元素,取名为铕(Europium)。这大概是根据欧洲(Europe)一词命名的。氧化铕大部分用于荧光粉。Eu3+用于红色荧光粉的激活剂,Eu2+用于蓝色荧光粉。现在Y2O2S:Eu3+是发光效率、涂敷稳定性、回收成本等最好的荧光粉。再加上对提高发光效率和对比度等技术的改进,故正在被广泛应用。近年氧化铕还用于新型X射线医疗诊断系统的受激发射荧光粉。氧化铕还可用于制造有色镜片和光学滤光片,用于磁泡贮存器件,在原子反应堆的控制材料、屏敝材料和结构材料中也能一展身手。

8)钆(Gd)

1880年,瑞士的马里格纳克(G.deMarignac)将“钐”分离成两个元素,其中一个由索里特证实是钐元素,另一个元素得到波依斯包德莱的研究确认,1886年,马里格纳克为了纪念钇元素的发现者研究稀土的先驱荷兰化学家加多林(GadoLinium),将这个新元素命名为钆。

钆在现代技革新中将起重要作用。它的主要用途有:(1)其水溶性顺磁络合物在医疗上可提高人体的核磁共振(NMR)成像信号。(2)其硫氧化物可用作特殊亮度的示波管和x射线荧光屏的基质栅网。(3)在钆镓石榴石中的钆对于磁泡记忆存储器是理想的单基片。(4)在无Camot循环限制时,可用作固态磁致冷介质。

(5)用作控制核电站的连锁反应级别的抑制剂,以保证核反应的安全。(6)用作钐钴磁体的添加剂,以保证性能不随温度而变化。另外,氧化钆与镧一起使用,有

助于玻璃化区域的变化和提高玻璃的热稳定性。氧化钆还可用于制造电容器、x 射线增感屏。在世界上目前正在努力开发钆及其合金在磁致冷方面的应用,现已取得突破性进展,室温下采用超导磁体、金属钆或其合金为致冷介质的磁冰箱已经问世。

9)铽(Tb)

1843年瑞典的莫桑德(KarlG.Mosander)通过对钇土的研究,发现铽元素(Terbium)。铽的应用大多涉及高技术领域,是技术密集、知识密集型的尖端项目,又是具有显著经济效益的项目,有着诱人的发展前景。其主要应用如下:(1)荧光粉用于三基色荧光粉中的绿粉的激活剂,如铽激活的磷酸盐基质、铽激活的硅酸盐基质、铽激活的铈镁铝酸盐基质,在激发状态下均发出绿色光。(2)磁光贮存材料,近年来铽系磁光材料已达到大量生产的规模,用Tb-Fe非晶态薄膜研制的磁光光盘,作计算机存储元件,存储能力提高10~15倍。(3)磁光玻璃,含铽的法拉第旋光玻璃是制造在激光技术中广泛应用的旋转器、隔离器和环形器的关键材料。特别是铽镝铁磁致伸缩合金(TerFenol)的开发研制,更是开辟了铽的新用途,Terfenol是70年代才发现的新型材料,该合金中有一半成份为铽和镝,有时加入钬,其余为铁,该合金由美国依阿华州阿姆斯实验室首先研制,当Terfenol置于一个磁场中时,其尺寸的变化比一般磁性材料变化大,这种变化可以使一些精密机械运动得以实现。铽镝铁开始主要用于声纳,目前已广泛应用于多种领域,从燃料喷射系统、液体阀门控制、微定位到机械致动器、机构和飞机太空望远镜的调节机翼调节器等领域。

10)镝(Dy)

1886年,法国人波依斯包德莱成功地将钬分离成两个元素,一个仍称为钬,而另一个根据从钬中“难以得到”的意思取名为镝(dysprosium)。镝目前在许多高技术领域起着越来越重要的作用。

镝的最主要用途是:(1)作为钕铁硼系永磁体的添加剂使用,在这种磁体中添加2-3%左右的镝,可提高其矫顽力,过去镝的需求量不大,但随着钕铁硼磁体需求的增加,它成为必要的添加元素,品位必须在95~99.9%左右,需求也在迅速增加。(2)镝用作荧光粉激活剂,三价镝是一种有前途的单发光中心三基色发光材料的激活离子,它主要由两个发射带组成,一为黄光发射,另一为蓝光发

射,掺镝的发光材料可作为三基色荧光粉。(3)镝是制备大磁致伸缩合金铽镝铁(Terfenol)合金的必要的金属原料,能使一些机械运动的精密活动得以实现。(4)镝金属可用做磁光存贮材料,具有较高的记录速度和读数敏感度。(5)用于镝灯的制备,在镝灯中采用的工作物质是碘化镝,这种灯具有亮度大、颜色好、色温高、体积小、电弧稳定等优点,已用于电影、印刷等照明光源。(6)由于镝元素具有中子俘获截面积大的特性,在原子能工业中用来测定中子能谱或做中子吸收剂。(7)Dy3Al5O12还可用作磁致冷用磁性工作物质。随着科学技术的发展,镝的应用领域将会不断的拓展和延伸。

11)钬(Ho)

十九世纪后半叶,由于光谱分析法的发现和元素周期表的发表,再加上稀土元素电化学分离工艺的进展,更加促进了新的稀土元素的发现。1879年,瑞典人克利夫发现了钬元素并以瑞典首都斯德哥尔摩地名命名为钬(holmium)。

钬的应用领域目前还有待于进一步开发,用量不是很大。目前钬的主要用途有:(1)用作金属卤素灯添加剂,金属卤素灯是一种气体放电灯,它是在高压汞灯基础上发展起来的,其特点是在灯泡里充有各种不同的稀土卤化物。目前主要使用的是稀土碘化物,在气体放电时发出不同的谱线光色。在钬灯中采用的工作物质是碘化钬,在电弧区可以获得较高的金属原子浓度,从而大大提高了辐射效能。(2)钬可以用作钇铁或钇铝石榴石的添加剂;(3)掺钬的钇铝石榴石(Ho:YAG)可发射2μm激光,人体组织对2μm激光吸收率高,几乎比Nd:YAG高3个数量级。所以用Ho:YAG激光器进行医疗手术时,不但可以提高手术效率和精度,而且可使热损伤区域减至更小。钬晶体产生的自由光束可消除脂肪而不会产生过大的热量,从而减少对健康组织产生的热损伤,据报道美国用钬激光治疗青光眼,可以减少患者手术的痛苦。我国2μm激光晶体的水平已达到国际水平,应大力开发生产这种激光晶体。(4)在磁致伸缩合金Terfenol-D中,也可以加入少量的钬,从而降低合金饱和磁化所需的外场。(5)另外用掺钬的光纤可以制作光纤激光器、光纤放大器、光纤传感器等等光通讯器件在光纤通信迅猛的今天将发挥更重要的作用。

12)铒(Er)

1843年,瑞典的莫桑德发现了铒元素(Erbium)。铒的光学性质非常突出,一

直是人们关注的问题:(1)Er3+在1550nm处的光发射具有特殊意义,因为该波长正好位于光纤通讯的光学纤维的最低损失,铒离子(Er3+)受到波长980nm、1480nm的光激发后,从基态4I15/2跃迁至高能态4I13/2,当处于高能态的Er3+再跃迁回至基态时发射出1550nm波长的光,石英光纤可传送各种不同波长的光,但不同的光光衰率不同,1550nm频带的光在石英光纤中传输时光衰减率最低(0.15分贝/公里),几乎为下限极限衰减率。因此,光纤通信在1550nm处作信号光时,光损失最小。这样,如果把适当浓度的铒掺入合适的基质中,可依据激光原理作用,放大器能够补偿通讯系统中的损耗,因此在需要放大波长1550nm 光信号的电讯网络中,掺铒光纤放大器是必不可少的光学器件,目前掺铒的二氧化硅纤维放大器已实现商业化。据报道,为避免无用的吸收,光纤中铒的掺杂量几十至几百ppm。光纤通信的迅猛发展,将开辟铒的应用新领域。(2)另外,掺铒的激光晶体及其输出的1730nm激光和1550nm激光对人的眼睛安全,大气传输性能较好,对战场的硝烟穿透能力较强,保密性好,不易被敌人探测,照射军事目标的对比度较大,已制成军事上用的对人眼安全的便携式激光测距仪。

(3)Er3+加入到玻璃中可制成稀土玻璃激光材料,是目前输出脉冲能量最大,输出功率最高的固体激光材料。(4)Er3+还可做稀土上转换激光材料的激活离子。(5)另外铒也可应用于眼镜片玻璃、结晶玻璃的脱色和着色等。

13)铥(Tm)

铥元素是1879年瑞典的克利夫发现的,并以斯堪迪那维亚(Scandinavia)的旧名Thule命名为铥(Thulium)。其主要应用包括:(1)铥用作医用轻便X光机射线源,铥在核反应堆内辐照后产生一种能发射X射线的同位素,可用来制造便携式血液辐照仪上,这种辐射仪能使铥-169受到高中子束的作用转变为铥-170,放射出X射线照射血液并使白血细胞下降,而正是这些白细胞引起器官移植排异反应的,从而减少器官的早期排异反应。(2)铥元素还可以应用于临床诊断和治疗肿瘤,因为它对肿瘤组织具有较高亲合性,重稀土比轻稀土亲合性更大,尤其以铥元素的亲合力最大。(3)铥在X射线增感屏用荧光粉中做激活剂LaOBr:Br(蓝色),达到增强光学灵敏度,因而降低了X射线对人的照射和危害,与以前钨酸钙增感屏相比可降低X射线剂量50%,这在医学应用具有重要现实的意义。(4)铥还可在新型照明光源金属卤素灯做添加剂。(5)Tm3+加入到玻璃中可制成稀土

玻璃激光材料,这是目前输出脉冲量最大,输出功率最高的固体激光材料。Tm3+也可做稀土上转换激光材料的激活离子。

14)镱(Yb)

1878年,查尔斯(JeanCharles)和马利格纳克(G.deMarignac)在“铒”中发现了新的稀土元素,这个元素由伊特必(Ytterby)命名为镱(Ytterbium)。

镱的主要用途有:(1)作热屏蔽涂层材料。镱能明显地改善电沉积锌层的耐蚀性,而且含镱镀层比不含镱镀层晶粒细小,均匀致密。(2)作磁致伸缩材料。这种材料具有超磁致伸缩性即在磁场中膨胀的特性。该合金主要由镱/铁氧体合金及镝/铁氧体合金构成,并加入一定比例的锰,以便产生超磁致伸缩性。(3)用于测定压力的镱元件,试验证明,镱元件在标定的压力范围内灵敏度高,同时为镱在压力测定应用方面开辟了一个新途径。(4)磨牙空洞的树脂基填料,以替换过去普遍使用银汞合金。(5)日本学者成功地完成了掺镱钆镓石榴石埋置线路波导激光器的制备工作,这一工作的完成对激光技术的进一步发展很有意义。另外,镱还用于荧光粉激活剂、无线电陶瓷、电子计算机记忆元件(磁泡)添加剂、和玻璃纤维助熔剂以及光学玻璃添加剂等。

15)镥(Lu)

1907年,韦尔斯巴赫和尤贝恩(G.Urbain)各自进行研究,用不同的分离方法从“镱”中又发现了一个新元素,韦尔斯巴赫把这个元素取名为Cp(Cassiopeium),尤贝恩根据巴黎的旧名lutece将其命名为Lu(Lutetium)。后来发现Cp和Lu是同一元素,便统一称为镥

镥的主要用途有:(1)制造某些特殊合金。例如镥铝合金可用于中子活化分析。(2)稳定的镥核素在石油裂化、烷基化、氢化和聚合反应中起催化作用。(3)钇铁或钇铝石榴石的添加元素,改善某些性能。(4)磁泡贮存器的原料。(5)一种复合功能晶体掺镥四硼酸铝钇钕,属于盐溶液冷却生长晶体的技术领域,实验证明,掺镥NYAB晶体在光学均匀性和激光性能方面均优于NYAB晶体。(6)经国外有关部门研究发现,镥在电致变色显示和低维分子半导体中具有潜在的用途。此外,镥还用于能源电池技术以及荧光粉的激活剂等。

16)钇(Y)

1788年,一位以研究化学和矿物学、收集矿石的业余爱好者瑞典军官卡尔·阿

雷尼乌斯(KarlArrhenius)在斯德哥尔摩湾外的伊特必村(Ytterby),发现了外观象沥青和煤一样的黑色矿物,按当地的地名命名为伊特必矿(Ytterbite)。1794年芬兰化学家约翰·加多林分析了这种伊特必矿样品。发现其中除铍、硅、铁的氧化物外,还含有38%的未知元素的氧化物枣“新土”。1797年,瑞典化学家埃克贝格(AndersGustafEkeberg)确认了这种“新土”,命名为钇土(Yttria,钇的氧化物之意)。

钇是一种用途广泛的金属,主要用途有:(1)钢铁及有色合金的添加剂。FeCr 合金通常含0.5-4%钇,钇能够增强这些不锈钢的抗氧化性和延展性;MB26合金中添加适量的富钇混合稀土后,合金的综合性能得到明显的改善,可以替代部分中强铝合金用于飞机的受力构件上;在Al-Zr合金中加入少量富钇稀土,可提高合金导电率;该合金已为国内大多数电线厂采用;在铜合金中加入钇,提高了导电性和机械强度。(2)含钇6%和铝2%的氮化硅陶瓷材料,可用来研制发动机部件。(3)用功率400瓦的钕钇铝石榴石激光束来对大型构件进行钻孔、切削和焊接等机械加工。(4)由Y-Al石榴石单晶片构成的电子显微镜荧光屏,荧光亮度高,对散射光的吸收低,抗高温和抗机械磨损性能好。(5)含钇达90%的高钇结构合金,可以应用于航空和其它要求低密度和高熔点的场合。(6)目前倍受人们关注的掺钇SrZrO3高温质子传导材料,对燃料电池、电解池和要求氢溶解度高的气敏元件的生产具有重要的意义。此外,钇还用于耐高温喷涂材料、原子能反应堆燃料的稀释剂、永磁材料添加剂以及电子工业中作吸气剂等。

17)钪(Sc)

1879年,瑞典的化学教授尼尔森(L.F.Nilson,1840~1899)和克莱夫(P.T.Cleve,1840~1905)差不多同时在稀有的矿物硅铍钇矿和黑稀金矿中找到了一种新元素。他们给这一元素定名为“Scandium”(钪),钪就是门捷列夫当初所预言的“类硼”元素。他们的发现再次证明了元素周期律的正确性和门捷列夫的远见卓识。钪比起钇和镧系元素来,由于离子半径特别小,氢氧化物的碱性也特别弱,因此,钪和稀土元素混在一起时,用氨(或极稀的碱)处理,钪将首先析出,故应用“分级沉淀”法可比较容易地把它从稀土元素中分离出来。另一种方法是利用硝酸盐的分极分解进行分离,由于硝酸钪最容易分解,从而达到分离的目的。用电解的方法可制得金属钪,在炼钪时将ScCl3、KCl、LiCl共熔,以熔融的锌

为阴极电解之,使钪在锌极上析出,然后将锌蒸去可得金属钪。另外,在加工矿石生产铀、钍和镧系元素时易回收钪。钨、锡矿中综合回收伴生的钪也是钪的重要来源之一。钪在化合物中主要呈3价态,在空气中容易氧化成Sc2O3而失去金属光泽变成暗灰色。

钪的主要用途有:(1)钪能与热水作用放出氢,也易溶于酸,是一种强还原剂。(2)钪的氧化物及氢氧化物只显碱性,但其盐灰几乎不能水解。钪的氯化物为白色结晶,易溶于水并能在空气中潮解。(3)在冶金工业中,钪常用于制造合金(合金的添加剂),以改善合金的强度、硬度和耐热和性能。如,在铁水中加入少量的钪,可显著改善铸铁的性能,少量的钪加入铝中,可改善其强度和耐热性。

(4)在电子工业中,钪可用作各种半导体器件,如钪的亚硫酸盐在半导体中的应用已引起了国内外的注意,含钪的铁氧体在计算机磁芯中也颇有前途。(5)在化学工业上,用钪化合物作酒精脱氢及脱水剂,生产乙烯和用废盐酸生产氯时的高效催化剂。(6)在玻璃工业中,可以制造含钪的特种玻璃。(7)在电光源工业中,含钪和钠制成的钪钠灯,具有效率高和光色正的优点。(8)自然界中钪均以45Sc 形式存在,另外,钪还有9种放射性同位素,即40~44Sc和46~49Sc。其中,46Sc作为示踪剂,已在化工、冶金及海洋学等方面使用。在医学上,国外还有人研究用46Sc来医治癌症。

稀土矿产地质勘查规范附录

表B.1 稀土矿产资源/储量规模划分标准表 附录C 确定勘查类型的主要因素及工程间距的确定 C.1 稀土内生矿床勘查类型划分 C.1.1 矿体延展规模:分为大、中、小三类,其具体划分及类型系数如下: 表C.1 矿体规模划分及类型系数表 C.1.2 矿体形态复杂程度 a)简单,类型系数0.6,矿体形态为层状、似层状、大透镜状,产状稳定,内部结构简单,内部无夹石或很 少夹石,基本无分枝复合。 b)较简单,复杂程度属中等,类型系数0.4,矿体形态为似层状、透镜状、规则脉状,局部有分枝复合现象, 产状较稳定,内部结构较简单,内部有夹石。 c)复杂,类型系数0.2,矿体形态有脉状、带状、小透镜状、网脉状、网脉浸染状、具分枝复合现象,膨大 缩小,尖灭侧现,产状不稳定或极不稳定,内部结构复杂或极复杂。 C.1.3 构造影响程度 a)小,类型系数0.3,矿体基本无断层破坏或岩脉穿插,构造对矿体形状影响很小。 b)中等,类型系数0.2,偶有断层破坏或岩脉穿插矿体,构造对矿体形状影响明显。 c)大,类型系数0.1,有或常有断层,岩脉破坏矿体,对矿体错动距离大,严重影响矿体形态。 C.1.4 矿体厚度稳定程度:按厚度变化系数及矿体类型系数大致分为稳定、较稳定和不稳定三种,如下: C.1.5 稀土组分分布均匀程度,根据稀土主元素品位变化系数划分为均匀、较均匀、不均匀三种,相应类型系数如下:

表C.3 有用组分分布均匀程度 C.2 风化壳离子吸附型稀土矿床勘查类型划分 C.2.1 矿体延展规模:按面积分为大中小三类及类型系数列于表C.4 表C.4 矿体规模及类型系数表 a)连续,其含矿率为大于90%,相应的类型系数为0.3. b)较连续,其含矿率在90%-70%,相应的类型系数为0.2。 c)不连续,其含矿率为小于70%,相应的类型系数0.1。 C.2.3 矿体形态复杂程度: a)简单(矿体边界模数大于0.6),似层状,成片连续分布,偶有夹石或风化球,相应的类型系数为0.9。 b)较简单(矿体边界模数0.3-0.6),似层状至透镜状,成片连续至较连续分布,常有夹石或风化球,相应的 类型系数为0.6。 c)复杂(矿体边界模数小于0.3),透镜状,较零散分布,类型系数为0.3。 C.2.4 厚度稳定程度 a)稳定,厚度变化系数为小于60%,类型系数为0.6。 b)较稳定,厚度变化系数60%-120%,类型系数为0.4。 c)不稳定,厚度变化系数大于120%,类型系数为0.2。 C.2.5 稀土组分分布均匀程度 a)均匀,品味变化系数小于30%,类型系数为0.3。 b)较均匀,品味变化系数30%-60%,类型系数为0.2。 c)不均匀,品味变化系数大于60%,类型系数为0.1。 C.3 勘查工程间距的确定 C.3.1 勘查工程的布置原则 C.3.1.1 一般是以一定的几何形态的网格控制矿体,并根据工程密度估算不同类别的矿产资源/储量。勘查工程间距,系指用勘查工程控制矿体的实际距离,内生矿床地表槽、井探工程间距比深部勘查工程加密一倍。勘探工程的布置应视矿体在山头、山腰、山脚的分布规律,采用相对均衡的工程间距。 C.3.1.2 对于风化壳离子吸附型稀土矿床一般采用勘探线与地形相结合的方法,地形较平坦,沟谷不发育时可采用勘探网法,勘探线应尽量垂直山脊走向,当山脊较长且走向变化明显时,应分段取不同方向的勘探线,勘查工程的布置应视矿体在山头、山腰、山脚的分布规律,采用相对均衡的工程间距。地形很复杂的部位,应适当加密控制。 C.3.2 施工原则 应按照由已知到未知,有表及里,由浅入深、由稀到密的原则进行,基准孔、参数孔、沿走向和倾向的主导剖面应优先施工。 C.3.3 勘查各阶段工程间距(密度) C.3.3.1 预查阶段:勘查工程极少,无间距要求。

19 稀土矿产地质勘查规范

稀土矿产地质勘查规范 1 范围 本标准为稀土矿产资源勘查工作规定了勘查的目的任务、勘查研究程度,勘查类型及工程密度、深度,勘查工作质量,可行性评价及矿产资源/储量估算要求。 2 规范性引用文件 DZ/T 0033-2002 固体矿产勘查/矿山闭坑地质报告编写规范 3 勘查的目的任务 3.1 预查 预查通过区域资料的综合研究、类比及初步野外观测、极少量的工程验证,初步了解预查区内矿产资源远景,提出可供普查的矿化潜力较大的地区,并为发展地区经济提供参考资料。3.2 普查 普查是通过对矿化潜力较大的地区开展地质、物探、化探工作和取样工程,以及进行可行性评价的概略研究,对已知矿化区做出初步评价,对有详查价值地段圈出详查区范围,为发展地区经济提供基础资料。 3.3 详查 详查是对详查区采用各种勘查方法和手段,进行系统的工作和取样,并通过预可行性研究,做出是否具有工业价值的评价,圈出勘探区范围,为勘探提供依据,并为制订矿山总体规划、项目建议书提供资料。 3.4 勘探 勘探是对已知具有工业价值的矿区或经详查圈出的勘探区,通过应用各种勘查手段和有效方法,加密各种采样工程及可行性研究,为矿山建设在确定矿山生产规模、产品方案、开采方式、开拓方案、矿石加工选冶工艺、矿山总体布置、矿山建设设计等方面提供依据。 4 勘查研究程度 4.1 地质研究程度 4.1.1 预查阶段 全面收集地质、矿产、物探等各种有关信息及研究成果,通过(1:50000)~(1:25000)比例尺的路线抵制踏勘,初步查明与稀土成矿有关的地层、构造、岩浆岩、区域变质作用等成矿条件。 4.1.2 普查阶段 对选定的普查区,通过(1:25000)~(1:50000)比例尺的地质填图和露头检查,应大致查明区内与稀土成矿有关的地层、构造等成矿地质条件及主要矿产。 4.1.3 详查阶段 4.1.3.1 区域地质 基本查明与稀土成矿有关的地层、构造、岩浆岩等变质作用等成矿地质条件及主要矿产。4.1.3.2 矿区地质 通过(1:10000)~(1:2000)地质填图,基本查明成矿地质条件,描述矿床的地址模型。4.1.3.3 矿体地质 通过系统取样工程和有效的物探、化探工作,控制矿体的总体分布范围,基本控制主要矿体的矿体特点、空间分布,基本圈定并连接矿体,基本查明主矿体数量、赋存部位、分布范围、规模、品位,以及轻、中、重稀土及变化规律,矿体中夹石及顶底板岩性的分布情况,断层、岩浆岩、岩脉、硅化裂隙带及风化球对矿体的影响程度。 4.1.4 勘探阶段

中国稀土行业发展现状分析

中国稀土行业发展现状分析 目前中国的稀土储量约占世界总储量的23%。中国的稀土资源主要有以下特点: 1、资源赋存分布“北轻南重”。轻稀土矿主要分布在内蒙古包头等北方地区 和四川凉山,离子型中重稀土矿主要分布在江西赣州、福建龙岩等南方地区。 2、资源类型较多。稀土矿物种类丰富,包括氟碳铈矿、独居石矿、离子型矿、磷钇矿、褐钇铌矿等,稀土元素较全。离子型中重稀土矿在世界上占有重要地位。 3、轻稀土矿伴生的放射性元素对环境影响大。轻稀土矿大多可规模化工业性开采,但钍等放射性元素处理难度较大,在开采和冶炼分离过程中需重视对人类健康和生态环境的影响。 4、离子型中重稀土矿赋存条件差。离子型稀土矿中稀土元素呈离子态吸附于土壤之中,分布散、丰度低,规模化工业性开采难度大。 20世纪70年代末实行改革开放以来,中国稀土工业迅速发展。稀土开采、冶炼和应用技术研发取得较大进步,产业规模不断扩大,基本满足了国民经济和社会发展的需要。 形成完整的工业体系。中国已形成内蒙古包头、四川凉山轻稀土和以江西赣州为代表的南方五省中重稀土三大生产基地,具有完整的采选、冶炼、分离技术以及装备制造、材料加工和应用工业体系,可以生产400多个品种、1000多个规格的稀土产品。2011年,中国稀土冶炼产品产量为9.69万吨,占世界总产量的90%以上。 市场环境逐步完善。中国不断推进稀土行业改革,推动形成投资主体多元、企业自主决策、价格供求决定的稀土市场体系。最近几年,中国稀土行业投资快速增长,市场规模不断扩大,国有、民营、外资等多种经济成分并存,稀土市场规模目前已接近千亿元人民币。市场秩序逐步改善,企业间的兼并重组逐步推进,稀土行业“小、散、乱”的局面得到了初步改观。 科技水平进一步提高。经过多年发展,中国建立起较为完整的研发体系,在稀土采选、冶炼、分离等领域开发了多项具有国际先进水平的技术,独有的采选工艺和先进的分离技术为稀土资源的开发利用奠定了坚实基础。稀土新材料产业得到稳步发展,实现了稀土永磁材料、发光材料、储氢材料、催化材料等新材料的产业化,为改造提升传统产业和发展战略性新兴产业提供了支持。

粤北离子吸附型稀土矿床特征分析

粤北离子吸附型稀土矿床特征分析 发表时间:2019-01-02T10:37:51.623Z 来源:《防护工程》2018年第28期作者:刘天祥[导读] 文章在室内外实验与勘测的基础上,探明了矿体的分布特征和矿石的质量特征,为区域找矿提供了借鉴。 刘天祥 甘肃智广地质工程勘察设计有限公司甘肃兰州 730000 摘要:文章在室内外实验与勘测的基础上,探明了矿体的分布特征和矿石的质量特征,为区域找矿提供了借鉴。关键词:离子型稀土矿;特征;成因;粤北 1引言 离子吸附型稀土矿是稀土矿床中很重要的一种类型,主要分布在南方各省,和燕山期花岗岩有关。粤北某离子吸附型稀土矿床位于广东省南雄市境内,矿产类型属花岗岩风化壳离子吸附型矿床,矿体呈似层状赋存于燕山三期花岗岩体风化壳中。通过进行稀土分量化验分析,其中La、Nd、Y、Ce、Sm等5种元素氧化物含量占稀土总量的82%,与区域离子风化型稀土矿类似。 2矿体特征 矿体总体受地形地貌控制,均分布于丘陵地段。形态简单,主要有似层状、纺锤状、长轴状等,规模较大,连续性中等,矿体的长轴方向基本与山脊一致,矿体在平面上的形态随地形变化而变化,呈面状展布,矿体边界随沟谷形态变化。因局部基岩出露及风化壳受地表径流冲刷切割破坏,使得矿体的连续性受到破坏。 在勘查区内共圈定3个矿体,编号分别为V1、V2、V3,矿体分布总面积13km2。矿体厚度值0.50~16.00m之间,主要集中在4.00~12.00m之间。矿体厚度的变化与风化壳厚度变化呈正相关关系,一般来讲,风化壳厚度大,矿体也厚,反之,风化壳厚度薄,矿体也薄。风化壳的厚度主要受制于地形的制约,一般是山脊较厚,延伸至山腰、山脚时,逐渐变薄。矿体具体特征见表1。表1 粤北某矿区稀土矿体特征一览表 3矿石质量特征 3.1矿石成分 根据风化程度和矿化情况,可以将花岗岩风化壳离子吸附型稀土矿床的矿石分为腐殖土矿石、全风化花岗岩矿石和强风化花岗岩矿石。这三种矿石均为松散矿石,其中强风化花岗岩矿石是主要矿石类型。 矿体系由成矿母岩风化而成,由于在整个风化过程中基岩不断解离,稀土元素随大气降雨下渗迁移、吸附并富集成矿,故与原岩矿物成分不尽相同。主要矿物为高岭土类粘土矿物、含中粗、中细粒石英及长石残余颗粒、云母等。造岩矿物:主要为中粗-中细粒石英、长石、云母及暗色副矿物等。石英呈不规则粒状,粒度一般1—3 mm,含量20%—40%。长石多表现为高岭土化长石、残余长石颗粒,粒度多大于2 mm以上,含量2%—5%,从地表往地下含量增多。云母类有黑云母、水云母,多呈片状,粒度1 mm左右,含量3%—5%。暗色副矿物含量较少,主要是褐帘石、榍石、黄铁矿以及其它金属矿物等。次生矿物:主要矿物为高岭土类粘土矿物,含量一般40%以上。从地表往地下,含量逐渐减少。在风化壳离子吸附型稀土矿床中,粘土矿物是稀土元素的吸附剂,矿石中的稀土元素大多吸附在粘土矿物中,是提取稀土的主要矿物。根据前人的研究成果,电子显微镜下观察和X射线粉晶衍射结果,粘土矿物主要有高岭石、埃洛石、伊利石、少量蒙脱石等。在镜下,高岭石为片状、埃洛石为管状。粘土矿物多少与稀土元素含量特别是离子相稀土具有非常密切的关系。 3.2矿石结构构造 风化后的岩石,仍可观察到原岩的残余结构、构造特征。如不挖动,仍可保持原岩之花岗结构,中风化层原地可保持块状构造。全风化层则为松散土状和散沙构造,长石全部风化为高岭土,局部可见其花岗结构。强风化层介于两者之间,靠近全风化层偏松散,靠近中风化层较致密。 3.3矿石化学成分 矿石(或风化壳)的化学成分:Si02 含量均低于70%,Al203 含量20%—30%,Na20含量普遍偏低,K20含量也较少。客观地反映了风化壳成分与花岗岩成分的变化。 矿区主要有用组份为稀土,3个矿体单工程稀土氧化物(离子相)品位值0.040%—0.146%。矿体平均品位0.065%—0.070%。品位变化系数29%—43%,显示矿区稀土组分分布较均匀,品位变化稳定,详见表2。 表2矿体稀土组分分布均匀程度一览表 矿体编号平均质量分数(%)品位变化系数(%)类型系数组分分布均匀程度

稀土矿用途及分类

稀土矿的用途和分类 稀土的分类 1)轻稀土(又称铈组):镧、铈、镨、钕、钷、钐、铕、钆。 2)重稀土(又称钇组):铽、镝、钬、铒、铥、镱、镥、钪、钇。 铈组与钇组之别,是因为矿物经分离得到的稀土混合物中,常以铈或钇比例多的而得名。 稀土金属(rare earth metals)又称稀土元素,是元素周期表ⅢB族中钪、钇、镧系17种元素的总称,常用R或RE表示。它们的名称和化学符号是钪(Sc)、钇(Y)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)。它们的原子序数是21(Sc)、39(Y)、57(La)到71(Lu)。 铥的主要用途有以下几个方面: (1)铥用作医用轻便X光机射线源,铥在核反应堆内辐照后产生一种能发射X射线的同位素,可用来制造便携式血液辐照仪上,这种辐射仪能使铥-169受到高中子束的作用转变为铥-170,放射出X 射线照射血液并使白血细胞下降,而正是这些白细胞引起器官移植排异反应的,从而减少器官的早期排异反应。 (2)铥元素还可以应用于临床诊断和治疗肿瘤,因为它对肿瘤组织具有较高亲合性,重稀土比轻稀土亲合性更大,尤其以铥元素的亲合力最大。 (3)铥在X射线增感屏用荧光粉中做激活剂LaOBr:Br(蓝色),

达到增强光学灵敏度,因而降低了X射线对人的照射和危害,与以前钨酸钙增感屏相比可降低X射线剂量50%,这在医学应用具有重要现实的意义。 (4)铥还可在新型照明光源金属卤素灯做添加剂。 (5)Tm3+加入到玻璃中可制成稀土玻璃激光材料,这是目前输出脉冲量最大,输出功率最高的固体激光材料。Tm3+也可做稀土上转换激光材料的激活离子。 镱(Yb)年,查尔斯(Jean Charles)和马利格纳克(G.de Marignac)在"铒"中发现了新的稀土元素,这个元素由伊 特必(Ytterby)命名为镱(Ytterbium)。 镱的主要用途有(1)作热屏蔽涂层材料。镱能明显地改善电沉积锌层的耐蚀性,而且含镱镀层比不含镱镀层晶粒细小,均匀致密。(2)作磁致伸缩材料。这种材料具有超磁致伸缩性即在磁场中膨胀的特性。该合金主要由镱/铁氧体合金及镝/铁氧体合金构成,并加入一定比例的锰,以便产生超磁致伸缩性。(3)用于测定压力的镱元件,试验证明,镱元件在标定的压力范围内灵敏度高,同时为镱在压力测定应用方面开辟了一个新途径。(4)磨牙空洞的树脂基填料,以替换过去普遍使用银汞合金。(5)日本学者成功地完成了掺镱钆镓石榴石埋置线路波导激光器的制备工作,这一工作的完成对激光技术的进一步发展很有意义。另外,镱还用于荧光粉激活剂、无线电陶瓷、电子计算机记忆元件(磁泡)添加剂、和玻璃纤维助熔剂以及光学玻璃添加剂等。

中国稀土资源概况

中国稀土资源概况 --我国稀土资源与地质科学发展述评 稀土元素作为新材料、新技术革命的战略资源在原始地幔和超基性岩中含量甚微,不易富集成具有工业意义的稀土矿床。而在地壳及其发展演化形成的花岗岩类、碳酸岩类、碱性岩类岩石中则大量富集,常形成具有工业意义的大-超大型矿床。中国地处欧亚板块、太平洋板块和南亚(印度)板块构造作用中间区,沿板块边缘构造活动带或板内裂谷带,组成大陆地壳的物质发生多期重熔、分异、迁移、富集,从而形成多种成因类型的稀土矿床。 中国是世界上稀土资源最丰富的国家,全国已有22个省(区)先后发现一批稀土矿床,主要分布在内蒙、江西、广东、广西、四川、山东等地。 自1927年丁道衡教授发现白云鄂博铁矿,1934年何作霖教授发现白云鄂博铁矿中含有稀土元素矿物以来,中国地质科学工作者不断探索和总结中国地质构造演化、发展的特点,运用和创立新的成矿理论,在全国范围内发现并探明了一批重要稀土矿床。20世纪50年代初期发现并探明超大型白云鄂博铁铌稀土矿床,20世纪60年代中期发现江西、广东等地的风化淋积型(离子吸附型)稀土矿床,20世纪70年代初期发现山东微山稀土矿床,20世纪80年代中期发现四川凉山"牦牛坪式"大型稀土矿床等。这些发现和地质勘探成果为中国稀土工业的发展提供了最可靠的资源保证,同时还总结出中国稀土资源具有成矿条件好、分布面广、矿床成因类型多、资源潜力大、有价元素含量高、综合利用价值大等最基本的特点。 中国稀土矿床在地域分布上具有面广而又相对集中的特点。截止目前为止,地质工作者已在全国三分之二以上的省(区)发现上千处矿床、矿点和矿化产地,除内蒙古的白云鄂博、江西赣南、广东粤北、四川凉山为稀土资源集中分布区外,山东、湖南、广西、云南、贵州、福建、浙江、湖北、河南、山西、辽宁、陕西、新疆等省区亦有稀土矿床发现,但是资源量要比矿化集中富集区少得多。全国稀土资源总量的98%分布在内蒙、江西、广东、四川、山东等地区,形成北、南、东、西的分布格局,并具有北轻南重的分布特点。 中国稀土资源的时代分布,主要集中在中晚元古代以后的地质历史时期,太古代时期很少有稀土元素富集成矿,这与活动的中国大陆板块演化发展历史有关。中晚元古代时期华北地区北缘西段形成了巨型的白云鄂博铁铌稀土矿床;早古生代(寒武系)形成了贵州织金等地的大型稀土磷块岩矿床;晚古生代有花岗岩型和碱性岩型稀土矿床形成;中生代花岗岩型和碱性岩型稀土矿床广布于中国南方;新生代(喜山期)有碱性花岗岩和英碱岩稀土矿床的形成;第四纪有中国南方风化淋积型稀土

2020年稀土行业市场分析调研报告

2020 年稀土行业市场分 析调研报告 2020 年 1 月

目录 1. 稀土行业概况及市场分析 (5) 1.1 稀土市场规模分析 (5) 1.2 中国稀土行业市场驱动因素分析 (5) 1.3 稀土行业特征分析 (5) 1.4 稀土行业结构分析 (6) 1.5 稀土行业 PEST 分析 (7) 1.6 稀土行业国内外对比分析 (9) 2. 稀土行业存在的问题分析 (11) 2.1 政策体系不健全 (11) 2.2 基础工作薄弱 (11) 2.3 地方认识不足,激励作用有限 (11) 2.4 产业结构调整进展缓慢 (11) 2.5 技术相对落后 (12) 2.6 隐私安全问题 (12) 2.7 与用户的互动需不断增强 (13) 2.8 管理效率低 (14) 2.9 盈利点单一 (14) 2.10 过于依赖政府,缺乏主观能动性 (15) 2.11 法律风险 (15) 2.12 供给不足,产业化程度较低 (15) 2.13 人才问题 (16) 2.14 产品质量问题 (16)

3. 稀土行业政策环境 (17) 3.1 行业政策体系趋于完善 (17) 3.2 一级市场火热,国内专利不断攀升 (17) 3.3 “十三五”期间稀土建设取得显著业绩 (18) 4. 稀土产业发展前景 (19) 4.1 中国稀土行业市场规模前景预测 (19) 4.2 稀土进入大面积推广应用阶段 (19) 4.3 政策将会持续利好行业发展 (19) 4.4 细分化产品将会最具优势 (20) 4.5 稀土产业与互联网等产业融合发展机遇 (20) 4.6 稀土人才培养市场大、国际合作前景广阔 (21) 4.7 巨头合纵连横,行业集中趋势将更加显著 (22) 4.8 建设上升空间较大,需不断注入活力 (22) 4.9 行业发展需突破创新瓶颈 (23) 5. 稀土行业发展趋势 (24) 5.1 宏观机制升级 (24) 5.2 服务模式多元化 (24) 5.3 新的价格战将不可避免 (24) 5.4 社会化特征增强 (24) 5.5 信息化实施力度加大 (25) 5.6 生态化建设进一步开放 (25) 5.7 呈现集群化分布 (26) 5.8 各信息化厂商推动"稀土"建设 (27)

稀土发光材料的研究现状与应用(综述)

稀土发光材料的研究现状与应用 材化092 班…指导老师:…. (陕西科技大学材料科学与工程学院陕西西安710021) 摘要稀土元素包括元素周期表中的镧系元素(Ln)和钪(Sc)、钇(Y),共17个元素。由于稀土离子的4f电子在不同能级之间的跃迁产生的丰富的吸收和发射光谱,使其在发光材料中具有广泛的应用。稀土元素的特殊原子结构导致它们具有优异的发光特性,用于制造发光材料、电光源材料和激光材料,其合成的发光材料充分应用在照明、显示、医学、军事、安全保卫等领域中。稀土元素在我国的储量丰富,约占全世界的40%。本文综述了稀土发光材料的发光机理、发光特性、化学合成方法、主要应用领域以及稀土矿藏的开采方面存在的问题,并预测了今后深入研究的方向。 关键词稀土,发光材料, 应用 Current Research and Applications of rare earth luminescent materials Abstract Rare earth elements, including the lanthanides (Ln) and scandium (Sc) , yttrium (Y)of the periodic table, a total of 17 elements. a plenty of absorption and emission spectra in the light-emitting materials produced by the 4f electrons of rare earth ions transiting between different energy levels lead to a wide range of applications of rare earth luminescent materials. Special atomic structure of rare earth elements lead to their excellent luminescence properties, which is used in the manufacture of luminescent materials, the electric light materials and laser materials, 1 / 8

“八〇一”稀有稀土矿床碱性花岗岩的含矿性、矿化规律及成因分析

八〇一 稀有稀土矿床碱性花岗岩的 含矿性二矿化规律及成因分析 朱京占,张国辉,杜青松,和静 (内蒙古自治区矿产实验研究所,内蒙古呼和浩特010031) 摘要:内蒙古通辽市扎鲁特旗与碱性花岗岩有关的 八〇一 特大型稀有稀土矿床位于巴尔哲北北东向背斜构造部位,以N b二Y二T a为主,伴生B e等多种稀有稀土元素三含矿岩体为普遍矿化的燕山期碱性花岗岩,且碱性花岗岩体与 八〇一 稀有稀土矿床具有生成关系三通过对碱性花岗岩的岩石特征及含矿性二含矿元素的变化规律二岩石化学成分与稀有元素的关系二矿化元素的富集规律及矿床成因进行综合分析,认为 八〇一 稀有稀土矿床为碱性花岗岩岩浆晚期分异交代型矿床三 关键词:稀有稀土矿;碱性花岗岩体;成因类型 中图分类号:P618.7文献标识码:A 文章编号:1009-6248(2013)04-0207-08 O r eP o t e n t i a l i t y,M i n e r a l i z a t i o nL a w s a n dG e n e s i s o f A l k a l i n eG r a n i t e i n801R a r eR E ED e p o s i t Z HUJ i n g-z h a n,Z H A N G G u o-h u i,D U Q i n g-s o n g,H EJ i n g (I n n e rM o n g o l i a n M i n e r a l sE x p e r i m e n tR e s e a r c hI n s t i t u t e,H u h h o t010031,C h i n a) A b s t r a c t:R e l a t e d t o a l k a l i n e g r a n i t e,t h e801o v e r s i z e r a r eR E Ed e p o s i t l i e s i n B a?e r z h e a n t i c l i n e o fN N E d i r e c t i o n,Z h a l u t et e r r i t o r y o f T o n g l i a o C i t y,I n n e r M o n g o l i a.M a i n l y c o m p o s e do f n i o b i u m(N b),y t t r i u m(Y),t a n t a l u m(T a),t h e d e p o s i t a l s o c o n t a i n s v a r i o u s r a r eR E Es u c h a s b e r y l l i u m(B e)a n ds oo n.T h eo r e-b e a r i n g r o c ki s m i n e r a l i z e da l k a l i n e g r a n i t ef o r m e dd u r i n g Y a n s h a n i a n,a n di t so r eb o d y h a s g e n e r a t i o nr e l a t i o n s w i t ht h e801r a r e R E E d e p o s i t s.T h e a u t h o rh a s c o m p r e h e n s i v e l y a n a l y z e d t h e a l k a l i n e g r a n i t e f r o m p e r s p e c t i v e s o f p e t r o l o g i c a l c h a r a c-t e r i s t i c s,o r e p o t e n t i a l i t y,t h ev a r i a t i o nl a w o fo r e-b e a r i n g e l e m e n t s,t h er e l a t i o n s h i p b e t w e e n r o c kc h e m i c a l c o m p o s i t i o n a n d r a r e e l e m e n t s,t h e e n r i c h m e n t p a t t e r n s o fm i n e r a l i z a t i o n e l e m e n t s a n d g e n e s i s o f d e p o s i t,a n d c o n c l u d e d t h a t801R E E d e p o s i t s b e l o n g t o l a t e m a g m a t i c d i f f e r e n t i a t i o nm e t a s o m a t i c d e p o s i t s o f a l k a l i n e g r a n i t e. K e y w o r d s:R E Ed e p o s i t;a l k a l i n e g r a n i t e;g e n e t i c t y p e 八〇一 稀有二稀土矿床是原吉林省区调队进行1?20万区测时发现的,原吉林省化探大队对该矿进行过普查评价工作,确定 八〇一 稀有二稀土矿是钠长石化碱性花岗岩型矿床三但对稀有元素的变化规律及矿床成因缺乏进一步的了解三2002年,内蒙古矿产实验研究所通过对矿区的勘探工作,对 八〇一 稀有二稀土矿床有了进一步的认识,并在此基础上,在同一成矿带内的燕山期碱性花岗岩中,又发现石灰窑大型稀有金属矿床三通过对 八〇一 含矿碱性花岗岩的岩石特征二岩石化 收稿日期:2013-03-19;修回日期:2013-07-31 基金项目:内蒙古自治区地质矿产勘查项目(09-1-k c042)资助 作者简介:朱京占(1964-),男,1987年毕业于河北地质学院,获学士学位,高级工程师,长期从事地质矿产勘查工作三E-m a i l:1912511807@q q.c o m

中国稀土分布概况和我国稀土资源与地质科学发展述评和世界稀土资源分布

中国稀土分布概况 中国的稀土资源主要分布在内蒙、江西、广东、广西、四川、山东等地。自1927年丁道衡教授发现白云鄂博铁矿,1934年何作霖教授发现白云鄂博铁矿中含有稀土元素矿物以来,中国地质科学工作者不断探索和总结中国地质构造演化、发展的特点,运用和创立新的成矿理论,在全国范围内发现并探明了一批重要稀土矿床。20世纪50年代初期发现并探明超大型白云鄂博铁铌稀土矿床,20世纪60年代中期发现江西、广东等地的风化淋积型(离子吸附型)稀土矿床,20世纪70年代初期发现山东微山稀土矿床,20世纪80年代中期发现四川凉山"牦牛坪式"大型稀土矿床等。这些发现和地质勘探成果为中国稀土工业的发展提供了最可靠的资源保证,同时还总结出中国稀土资源具有成矿条件好、分布面广、矿床成因类型多、资源潜力大、有价元素含量高、综合利用价值大等最基本的特点。 截止目前为止,地质工作者已在全国三分之二以上的省(区)发现上千处矿床、矿点和矿化产地,除内蒙古的白云鄂博、江西赣南、广东粤北、四川凉山为稀土资源集中分布区外,山东、湖南、广西、云南、贵州、福建、浙江、湖北、河南、山西、辽宁、陕西、新疆等省区亦有稀土矿床发现,但是资源量要比矿化集中富集区少得多。全国稀土资源总量的98%分布在内蒙、江西、广东、四川、山东等地区,形成北、南、东、西的分布格局,并具有北轻南重的分布特点。 中国稀土资源的时代分布,主要集中在中晚元古代以后的地质历史时期,太古代时期很少有稀土元素富集成矿,这与活动的中国大陆板块演化发展历史有关。中晚元古代时期华北地区北缘西段形成了巨型的白云鄂博铁铌稀土矿床;早古生代(寒武系)形成了贵州织金等地的大型稀土磷块岩矿床;晚古生代有花岗岩型和碱性岩型稀土矿床形成;中生代花岗岩型和碱性岩型稀土矿床广布于中国南方;新生代(喜山期)有碱性花岗岩和英碱岩稀土矿床的形成;第四纪有中国南方风化淋积型稀土矿床的形成。中国稀土矿床成矿时代之多、分布时限之长是世界上其他国家所没有的。但我国稀土资源最主要的富集期是中晚元古代和中-新生代,其他时代的稀土矿床一般规模较小。 我国稀土资源的勘查与开发研究,始于20世纪50年代初期至80年代末发现并探明了一批重要稀土矿床。据有关地质勘探和矿山生产部门提供的数据统计,截止2000年底全国已探明稀土资源量(REO)超过10000万吨,预测资源远景量大于21000万吨,显示出我国稀土资源的巨大潜力。我国西部地区是轻稀土资源的最主要分布区,仅内蒙古的白云鄂博矿区地表至地下200m范围内已探明稀土资源量约10000万吨,平均含稀土氧化物(REO)3%~5%,预测全区稀土资源量超过13500万吨;中国南方的风化淋积型稀土矿已探明资源量正式公布的数字为150万吨,另有调查资料统计,南方七省区(江西、广东、广西、湖南、云南、福建、浙江)已探明稀土资源量840万吨,预测资源远景为5000万吨,表明我国南方中重稀土资源潜力巨大。另外,四川凉山州的冕宁和德昌县境内已探明稀土资源量约250万吨,于冕宁花岗岩体东西两侧及其以南地区成矿条件有利,是寻找单一氟碳铈矿的最佳有望区,预测稀土资源丰富。 我国稀土资源与地质科学发展述评 作者为已故地质专家侯宗林先生,原中国稀土学会地质、采矿、选矿专业委员会主任,原天津地质研究院院长 稀土元素作为新材料、新技术革命的战略资源在原始地幔和超基性岩中含量甚微,不易富集成具有工业意义的稀土矿床。而在地壳及其发展演化形成的花岗岩类、碳酸岩类、碱性岩类岩石中则大量富集,常形成具有工业意义的大-超大型矿床。中国地处欧亚板块、太平洋板块和南亚(印度)板块构造作用中间区,沿板块边缘构造活动带或板内裂谷带,组成大陆地壳的物质发生多期重熔、分异、迁移、富集,从而形成多种成因类型的稀土矿床。 中国是世界上稀土资源最丰富的国家,全国已有22个省(区)先后发现一批稀土矿床,主要分布在内蒙、江西、广东、广西、四川、山东等地。 自1927年丁道衡教授发现白云鄂博铁矿,1934年何作霖教授发现白云鄂博铁矿中含有稀土元素矿物以来,中国地质科学工作者不断探索和总结中国地质构造演化、发展的特点,运用和创立新的成矿理论,在全国

2018年稀土行业深度分析报告

2018年稀土行业深度分析报告

正文目录 一、稀土是应用广泛的工业“味精” (5) 1.1 稀土简介:品类多,储量大,应用广 (5) 1.2 行业发展:政府扮演重要角色 (6) 1.3 产业链:产值超700 亿元 (7) 二、全球需求稳中有升,我国需求较快增长 (8) 2.1 永磁材料是最大下游,中日为全球主要消费国 (8) 2.2 全球需求稳中有升 (10) 2.3 永磁材料需求旺盛,我国稀土需求持续增长 (10) 2.4 出口保持增长,海外需求回暖 (19) 三、行业整治,供给收缩有望持续 (20) 3.1 轻稀土占比高,中国储量居首 (20) 3.2 海外产量较小,增长空间有限 (21) 3.3 行业整治,稀土供需格局逐步好转 (22) 四、投资建议 (29) 五、风险提示 (30)

图表目录 图表1 稀土的分类及用途 (5) 图表2 轻稀土应用领域更广泛 (5) 图表3 常见 4 种稀土原矿类型 (6) 图表4 政府在行业发展中扮演重要角色 (6) 图表5 稀土产业链示意图 (7) 图表6 白云鄂博矿稀土生产流程图 (7) 图表7 稀土产业链总产值超700 亿元(亿元) (8) 图表8 磁体是全球稀土消费主要的下游 (9) 图表9 中国和日本是最大的稀土消费国 (9) 图表10 中国稀土消费结构 (9) 图表11 日本稀土消费结构 (9) 图表12 美国稀土消费结构 (9) 图表13 欧洲稀土消费结构 (9) 图表14 稀土下游应用需求测算汇总(千吨) (10) 图表15 我国新能源汽车销量高速增长 (11) 图表16 我国新能源汽车份额占全球比重超6 成 (11) 图表17 我国新能源汽车对钕铁硼永磁材料需求测算 (12) 图表18 我国风电累计装机容量不断增长(亿千瓦) (12) 图表19 我国新增风电装机容量稳定增长 (13) 图表20 我国风力发电对钕铁硼永磁材料需求测算 (13) 图表21 我国变频压缩机销量稳定增长 (14) 图表22 我国变频压缩机对钕铁硼永磁材料需求测算 (14) 图表23 我国节能电梯保持稳定增长 (15) 图表24 我国节能电梯对钕铁硼永磁材料需求测算 (15) 图表25 我国汽车产量稳定增长 (16) 图表26 我国汽车对钕铁硼永磁材料需求测算 (16) 图表27 我国工业机器人密度预计2020 年达到150 台/万人(台/万人) (17) 图表28 我国工业机器人对钕铁硼永磁材料需求测算 (17) 图表29 我国智能手机出货量稳定增长 (18) 图表30 我国智能手机对钕铁硼永磁材料需求测算 (18) 图表31 国内钕铁硼永磁材料需求测算汇总(吨) (18) 图表32 国内稀土需求预计保持7.8%的增速 (19) 图表33 美国经济于2015 年探底后开始复苏 (20) 图表34 欧盟经济稳中有升 (20)

稀土元素性质的决定因素和体现

稀土元素性质的决定因素和体现 吴秀萍 上海交通大学 F0511002班 5051109030 摘要:稀土元素的性质十分相似,这与它们原子和离子特有的电子结构和半径大小有关,稀土元素在各方面的应用充分体现了它们的性质。 关键词:电子组态磁性光谱特性 引言:稀土元素的发现至今已经经历了一个漫长的时期,人们对稀土元素独特的化学性 质和物理性质的认识,也经历了一个逐渐深入的过程,因此能合理充分地应用稀土元素。 1 稀土元素的定义 稀土元素是指周期表中第57(镧)到71(镥)号原子序的镧系元素,以及第三副族中的钪和钇共17个元素,它们在自然界中共同存在,性质非常相似。由于这些元素发现的比较晚,又难以分离出高纯的状态,最初得到的是元素的氧化物,它们的外观似土,所以称它们为稀土元素。[1] 2 稀土元素性质的决定因素 稀土元素的性质非常相似,但彼此之间又有一些差别,这都是由它们的原子和离子的电子结构,以及半径大小所决定的。 2.1 稀土元素原子和离子的电子结构特征 电子结构特征是由电子组态来描述的。电子组态是由主量子数n和角量子数l所规定的一种原子或离子中电子排布方式。电子组态用符号 nl表示。根据能量最低原理,镧系元 素原子的基态电子组态由两种类型:[Xe]4f6s和[Xe]4f5d6s。 当原子受热或电磁辐射的激发,分别失去它们的5d6s或4f6s三个外层电子之后,都变成正三价的离子。当4f轨道处于全空、半充满和全充满时,离子是较稳定的,所以镧、钆、镥的正三价离子是最稳定的。原子序比镧大1或2的铈、镨,比钆大1的铽原子,也倾向于多电离出1或2个4f电子,变成稳定的正4价的离子。原子序比钆、镥小1或2的钐、铕、镱,也倾向于少电离出1或2个电子,变成具有半充满或全充满的4f轨道,形成稳定的正2价的离子。 2.2 稀土元素的原子半径和离子半径 镧系元素随着原子序的增加,核电荷相应增加,电子依次填入4f内层,而外层保持不变。因为4f电子的径向分布不可能完全屏蔽核电荷对外层电子的引力,核电荷的增加对外层电子的引力也增大,因而造成镧系元素原子和正三价离子半径也随之减小,这就是“镧系收缩”现象。 3 稀土元素的应用 近年来,稀土元素在工业,农业各产业领域以及在科学技术个方面的应用,由少到多,由局限到广泛,由粗放到精细一步步地发展起来。 3.1 稀土元素在激光和发光材料中的应用

稀土发光材料的发光机理及其应用

万方数据

万方数据

万方数据

万方数据

万方数据

稀土发光材料的发光机理及其应用 作者:谢国亚, 张友, XIE Guoya, ZHANG You 作者单位:谢国亚,XIE Guoya(重庆邮电大学移通学院,重庆,401520), 张友,ZHANG You(重庆邮电大学数理学院,重庆,400065) 刊名: 压电与声光 英文刊名:Piezoelectrics & Acoustooptics 年,卷(期):2012,34(1) 被引用次数:2次 参考文献(19条) 1.周贤菊;赵亮;罗斌过渡金属敏化稀土化合物近红外发光性能研究进展[期刊论文]-重庆邮电大学学报(自然科学版) 2007(06) 2.段昌奎;王广川稀土光谱参量的第一性原理研究[期刊论文]-重庆邮电大学学报(自然科学版) 2011(01) 3.周世杰;张喜燕;姜峰轻稀土掺杂对TbFeCo材料磁光性能的影响[期刊论文]-重庆工学院学报 2004(05) 4.CARNALL W T;GOODMAN G;RAJNAK K A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 1989(07) 5.LIU Guokui;BERNARD J Spectroscopic properties of rare earths in optical materials 2005 6.DUAN Changkui;TANNER P A What use are crystal field parameters? A chemist's viewpoint[外文期刊] 2010(19) 7.蒋大鹏;赵成久;侯凤勤白光发光二极管的制备技术及主要特性[期刊论文]-发光学报 2003(04) 8.黄京根节能灯用稀土三基色荧光粉 1990(05) 9.VERSTEGEN J M P J A survey of a group of phosphors,based on hexagonal aluminate and gallate host lattices 1974(12) 10.PAN Yuexiao;WU Mingmei;SU Qiang Tailored photoluminescence of YAG:Ce phosphor through various methods 2004(05) 11.KIM J S;JEON P E;CHOI J C Warm-whitelight emitting diode utilizing a single-phase full-color Ba3MgSi2O8:Eu2+,Mn2+ phosphor[外文期刊] 2004(15) 12.苏锵;梁宏斌;王静稀土发光材料的进展与新兴技术产业[期刊论文]-稀土信息 2010(09) 13.SIVAKUMAR S;BOYER J C;BOVERO E Upconversion of 980 nm light into white light from SolGel derived thin film made with new combinations of LaF3:Ln3+ nanoparticles[外文期刊] 2009(16) 14.WANG Jiwei;TANNER P A Upconversion for white light generation by a single compound[外文期刊] 2010(03) 15.QUIRINO W G;LEGNANI C;CREMONA M White OLED using β-diketones rare earth binuclear complex as emitting layer[外文期刊] 2006(1/2) 16.BUNZLI J C G;PIGUET C Taking advantage of luminescent lanthanide ions 2005 17.WANG Leyu;LI Yadong Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals[外文期刊] 2007(04) 18.LINDA A;BRYAN V E;MICHAEL F Downcoversion for solar cell in YF3:Pr3+,Yb3+ 2010(05) 19.TENG Yu;ZHOU Jiajia;LIU Jianrong Efficient broadband near-infrared quantum cutting for solar cells 2010(09) 引证文献(2条) 1.杨志平.梁晓双.赵引红.侯春彩.王灿.董宏岩橙红色荧光粉Ca3Y2(Si3O9)2:Eu3+的制备及发光性能[期刊论文]-硅酸盐学报 2013(12) 2.严回.孙晓刚.王栋.吕萍.郑长征C24H16N7O9Sm 的晶体合成、结构与性质研究[期刊论文]-江苏师范大学学报(自然科学版) 2013(3) 本文链接:https://www.wendangku.net/doc/d49316897.html,/Periodical_ydysg201201028.aspx

相关文档
相关文档 最新文档