文档库 最新最全的文档下载
当前位置:文档库 › 实验二 凯氏定氮法测定牛奶中蛋白质的含量#优选.

实验二 凯氏定氮法测定牛奶中蛋白质的含量#优选.

实验二 凯氏定氮法测定牛奶中蛋白质的含量#优选.
实验二 凯氏定氮法测定牛奶中蛋白质的含量#优选.

实验二凯氏定氮法测定牛奶中蛋白质的含量

一、实验目的与要求

1. 掌握半微量凯氏定氮法的原理。

2. 熟悉利用半微量凯氏定氮法测定干酵母片中蛋白质含量的操作方法。

二、实验原理

蛋白质是含一定量氮的有机化合物,蛋白质样品在凯氏烧瓶中经过浓H2SO4消化后,有机物炭化生成碳,碳将硫酸还原为SO2,本身则变成CO2,SO2使N还原为NH3,本身则氧化为S2O3而消化过程中生成H2,又加速了NH3的形成。在反应过程中,生成的H2O和S2O3溢出,而NH3则与H2SO4结合成(NH4)2SO4存在溶液中,加入NaOH并蒸馏,使NH3溢出,用H3PO3吸收后,以标准酸溶液滴定,根据标准酸溶液消耗的量计算样品中的含氮量,从而可以折算出蛋白质含量。

三、实验材料、试剂与仪器

1. 材料与试剂

浓H2SO4、K2SO4、CuSO4·5H2O、NaOH、HCl、H3PO4、甲基红、乙醇、溴甲酚绿、牛奶、定量滤纸等。

40 %NaOH 溶液:40 g NaOH 溶于100 mL水中;

0.05 mol/LHCl标准液:4.2 mL HCl 溶于1000 mL 水中,碳酸钠法标定盐酸;

2 % H3BO3溶液:H3BO

3 2 mL 溶于100 mL 水中;

加速剂:K2SO4 150 g ,CuSO4·5H2O 10 g 仔细混匀研磨。

甲基红—溴甲酚绿混合指示剂:甲基红溶于乙醇配成0.1 % 乙醇溶液,溴甲酚绿溶于乙醇配成0.5 % 乙醇溶液,两种溶液等体积混合,阴凉处保存(保存期三个月以内)。

2. 仪器

消化管、小漏斗、研钵、玻璃珠、酸式滴定管、锥形瓶、天平、凯氏定氮仪等。

四、实验方法与步骤

1. 样品消化

1)牛奶5 mL置于消化管内,加入加速剂5 g,并沿烧瓶壁缓缓加入20 mL浓硫酸,加入玻璃珠2~3粒,摇动烧瓶使全部样品浸没于硫酸。

2)消化管放在消化炉支架上,套上毒气罩,压下毒气罩锁住二面拉钩。

3)把支架连同装有试样的消化管一起移至电热炉上保持消化管在电炉中心,设定温度在420 ℃保持消化管中液体连续沸腾,沸酸在瓶颈部下冷凝回流。待溶液消煮至无微小碳粒、呈蓝绿色时继续消煮5 min左右。

4)消化结束,将支架连同消化管一同移回消化管托底上,冷却至室温。注意,在冷却过程中,毒气罩必须保持吸气状态(切忌放入冷水中冷却)放置,防止废气溢出。

2. 样品蒸馏

1)打开自来水给水龙头,使自来水经过给水口进入冷凝管。注意水流量以保证冷凝管起到冷却作用为止。

2)开总电源开关,待红色指示灯亮起,按一下汽按钮待蒸汽导出管放出蒸汽,按消除按钮停止加热。

3)在蒸馏导出管托架上,放上已经加入适量(15 mL 左右)的接受液(硼酸和混合指示剂)的锥形瓶。抬起锥形瓶支架使蒸馏导出管的末端浸入接受液内。

4)在消化完全冷却后的消化管内,逐个加入10 mL 左右蒸馏水稀释样品。

5)向下压左侧手柄,将消化管套在防溅管密封圈上,稍加旋转使其保持接口密封,拉下防护罩。

6)按一下蒸汽按钮,开始蒸馏,到时或到量时自动停止。用洗瓶将蒸馏水冲洗接收,取下锥形瓶。

7)加碱:按一下碱按钮,NaOH 溶液量必须至蒸馏液碱性颜色变黑为止。

3. 滴定与计算

吸收氨后的吸收液,用标定后的盐酸溶液进行滴定,溶液由蓝绿色变为灰紫色为滴定终点。

粗蛋白质%=

%100014.0)('12?÷????-V

V W K C V V 式中:V 2——样品时消耗酸标准溶液的体积,mL ;

V 1——滴定空白时消耗酸标准溶液的体积,mL ;

V ’——试样消解液蒸馏用体积,mL ;

V ——样品分解液总体积,mL ;

C ——酸标准溶液浓度,mol/L ;

K ——氮换算成粗蛋白质的系数,牛奶为 ;

W ——样品质量,g ;

0.0140——氮的毫克当量数。

五、思考题

1. 能否使用碱溶液进行滴定,应如何设计实验?

2. 凯氏定氮法是否适用于所有含氮化合物的测定?

3. 何谓样品消化?在定氮仪的反应室内将发生什么化学反应?

最新文件---------------- 仅供参考--------------------已改成word文本--------------------- 方便更改

食品中蛋白质的测定实验报告

1.目的 掌握凯氏定氮法测蛋白质的原理、操作、条件、注意事项。 2.原理 蛋白质是含氮有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解。分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后在以硫酸或盐酸标准溶液滴定,根据酸的消耗量计算含氮量再乘以换算系数,即为蛋白质含量。 3.试剂 3.1浓硫酸、硫酸铜、硫酸钾,所有试剂均用不含氮的蒸馏水配制 3.2混合指示液 1份(1g/L)甲基红乙醇溶液与5份1g/L溴甲酚氯乙醇溶液临用时混合。 也可用2份甲基红乙醇溶液与1份1g/L次甲基蓝乙醇溶液临用时混合。 3.3氢氧化钠溶液(400g/L) 3.4标准滴定溶液 硫酸标准溶液[c(1/2H2SO4)=0.0500mol/L]或盐酸标准溶液[c(HCl) 0.0500mol/L] 3.5硼酸溶液(20g/L) 4.仪器 定氮蒸馏装置 5.样品 全蛋(2.47g) 6.操作 6.1样品处理 准确称取2—5g半固体样品,小心移入干燥洁净的500mL凯氏烧瓶中,然后加入研细的硫酸铜0.5g,硫酸钾10g和浓硫酸20mL,轻轻摇匀后于瓶口放一小漏斗,将瓶以45°角斜放于加有石棉网的电炉上,小火加热,待内容物全部炭化后,泡沫完全消失后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色呈请透明后,再继续加热0.5h,取下放冷,慢慢加入20mL水。 放冷后,移入100mL容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白试验。 6.2连接装置 装好定氮装置,于水蒸气发生器内装水至2/3处,加甲基红指示剂数滴及少量硫酸,以保持水呈酸性,加入数滴玻璃珠以防暴沸,用调压器控制,

蛋白质测定实验报告

蛋白质测定实验报告标准化管理部编码-[99968T-6889628-J68568-1689N]

蛋白质测定方法——化学报告

蛋白质的检测 酚试剂法灵敏度较高 20~250mg 费时蛋白质在碱性溶 液中其肽键与 Cu2+螯合,形成 蛋白质一铜复合 物,此复合物使 酚试剂的磷钼酸 还原,产生蓝色 化合物 酚类、柠檬 酸、硫酸铵、 tris缓冲液、 甘氨酸、糖 类、甘油等均 有干扰作用 由上表可大致了解五种检测蛋白质的方法,下面以实验的形式进行详细阐述: 1 材料与方法 仪器材料 (1)仪器:凯氏定氮仪、紫外分光光度计、可见光分光光度计、工作离心机、布氏漏斗、抽滤泵。 (2)试剂及原材料:牛奶、酸奶、豆浆、LpH=4. 7醋酸- 醋酸钠缓冲液、乙醇-乙醚等体积混合液、浓H2SO4 、40%氢氧化钠、30%过氧化氢、2%硼酸溶液、0. 050molPL标准盐酸溶液、硫酸钾- 硫酸铜接触剂、混合指示剂、标准蛋白溶液、双缩脲试剂、考马斯亮蓝G- 250试剂。 实验方法 (1)凯氏定氮法测定蛋白质含量 将待测样品与浓硫酸共热,含氮有机物即分解产生氨(消化) ,氨又与硫酸作用,变成硫酸铵。为了加速消化,可以加入CuSO4 作催化剂和加入K2SO4 以提高溶液的沸点,而加入30%过氧化氢有利于消化溶液的澄清。消化好的样品在凯氏定氮仪内经强碱碱化使之分解放出氨,借蒸汽将氨蒸至定量硼酸溶液中,然后用标准盐酸溶液进行滴定,记录,计算出样品含氮量。每个样品做三次重复测定,取平均值。 (2)紫外吸收法测定蛋白质含量 蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质,吸收峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。 紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如,

环境监测实验报告

分数 环境监测实验报告 姓名:陈志杰 班级:10级环工一班 院系:水建院 任课教师:杜丹 2012年12 月16 日

内蒙古农业大学西区宿舍楼生活饮用水水质检测分析报告一、西区宿舍楼生活饮用水水质监测目的 1掌握水质现状及其变化趋势。 2为开展水环境质量评价和预测、预报及进行环境科学研究 提供基础数据和技术手段。 3为国家政府部门制定水环境保护标准、法规和规划提供有关 数据和资料。 4对环境污染纠纷进行仲裁监测,为判断纠纷原因提供科学依据。 二、水质监测项目指标 物理指标:水温,臭和味,色度,浊度,透明度,固体物(总固体物,溶解固体物,悬浮物),矿化度,电导率,氧化还原电位。 金属化合物:铝,汞,镉,铅,铜,锌,铬,砷,其他金属化合物如镍、铁、锰、钙、镁、铀。 非金属无机化合物:酸度和碱度,pH,溶解氧(DO),氰化物(简单氰化物,络合氰化物,有机氰化物),氟化物,含氮化合物(氨氮,亚硝酸盐氮,硝酸盐氮,凯氏氮,总氮),硫化物,含磷化合物,其他非金属无机化合物,如氯化物、碘化物、硫酸盐、余氯、硼、二氧化硅。 有机污染物:综合指标和类别指标化学需氧量(COD),高锰酸盐指数,生化需氧量(BOD),总有机碳(TOC),挥发酚,油类。 特定有机污染物:挥发性卤代烃,挥发性有机物(VOCs),多

环芳烃(PAHs)。 底质和活性污泥(污泥沉降比,污泥浓度,污泥容积指数) 二、水质检测方法 实验一pH值的测定 pH值是水中氢离子活度的负对数。pH=-log10αH+。 pH值是环境监测中常用的和最重要的检验项目之一。饮用水标准的pH值的范围是6.5~8.5。由于pH值受水温影响而变化,测定时应在规定的温度下进行,或者校正温度。通常采用玻璃电极法和比色法测定pH值。比色法简便,但受色度、浊度、胶体物质、氧化剂、还原剂及盐度的干扰。玻璃电极法基本不受上述因素的干扰。然而,pH在10以上时,产生“钠差”,读数偏低,需选用特制的“低钠差”,玻璃电极,或使用与水样的pH值相近的标准缓冲溶液对仪器进行校正。 本实验采用玻璃电极法测定pH值。 (一)实验目的 掌握玻璃电极法测定pH的方法及原理 (二)实验原理 以玻璃电极为指示电极,与参比电极组成电池。在25℃理想条件下,氢离子活度变化10倍,使电动势偏移59.16mv,根据电动势的变化测量出pH值。两种电极结合在一起能组成复合电极。pH计测量出玻璃复合电极的电压,电压转换成pH值,其结果被显示出来。(三)实验仪器 pH计(PB-21) (四)实验试剂 1.pH=4.003缓冲液(邻苯二甲酸氢钾) 2.pH=6.864缓冲液(混合磷酸盐) 3.pH=9.182缓冲液(硼砂) (五)实验步骤 1.将电极浸入到缓冲溶液中,搅拌均匀,直至达到稳定。 2.按mode(转换)键,直至显示出所需要的pH值测量方式。

蛋白质含量测定 凯氏定氮法

食品中蛋白质含量测定(凯氏定氮法) 一、目的与要求 1、学习凯氏定氮法测定蛋白质的原理。 2、掌握凯氏定氮法的操作技术,包括样品的消化处理、蒸馏、滴定及蛋白质含量计算等。 二、实验原理 蛋白质是含氮的化合物。食品与浓硫酸和催化剂共同加热消化,使蛋白质分解,产生的氨与硫酸结合生成硫酸铵,留在消化液中,然后加碱蒸馏使氨游离,用硼酸吸收后,再用盐酸标准溶液滴定,根据酸的消耗量来乘以蛋白质换算系数,即得蛋白质含量。 因为食品中除蛋白质外,还含有其它含氮物质,所以此蛋白质称为粗蛋白。 三、仪器与试剂 硫酸铜(CuSO4·5H20)硫酸钾硫酸(密度为L)硼酸溶液(20g/L) 氢氧化钠溶液(400g/L)L盐酸标准滴定溶液。 混合指示试剂:%甲基红乙溶液液1份,与%溴甲酚绿乙醇溶液5份临用时混合。 微量定氮蒸馏装置:如图3-所示。 图3-微量凯氏定氮装置 1、电炉; 2、水蒸气发生器(2L平底烧瓶); 3、螺旋夹a; 4、小漏斗及棒状玻璃塞(样品入口处); 5、反应室; 6、反应室外层; 7、橡皮管及螺旋夹b;8、冷凝管;9、蒸馏液接收瓶。 四、实验步骤 1、样品消化 称取样品约(±),移入干燥的100mL凯氏烧瓶中,加入硫酸铜和6g硫酸钾,稍摇匀后瓶口放一小漏斗,加入20mL浓硫酸,将瓶以450角斜支于有小孔的石棉网上,使用万用电炉,在通风橱中加热消化,开始时用低温加热,待内容物全部炭化,泡沫停止后,再升高温度保持微沸,消化至液体呈蓝绿色澄清透明后,继续加热,取下放冷,小心加20mL水,放冷后,无损地转移到100mL容量瓶中,加水定容至刻度,混匀备用,即为消化液。 试剂空白实验:取与样品消化相同的硫酸铜、硫酸钾、浓硫酸,按以上同样方法进行消化,冷却,加水定容至100mL,得试剂空白消化液。 2、定氮装置的检查与洗涤

凯氏定氮法测定蛋白质含量

凯氏定氮法测定粗纤维素中蛋白质含量 1、原理 蛋白质是含氮的有机化合物。蛋白质与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,蛋白质含量。 2、试剂 所有试剂均用不含氨的蒸馏水配制。 2.1 硫酸铜。 2.2 硫酸钾。 2.3 硫酸。 2.4 2%硼酸溶液。 2.5 混合指示液:1份0.1%甲基红乙醇溶液与5份0.1%溴甲酚绿乙醇溶液临用时混合。也可用2份0.1%甲基红乙醇溶液与1份0.1%次甲基蓝乙醇溶液临用时混合。 2.6 30%氢氧化钠溶液。 2.7 0.025mol/L硫酸标准溶液或0.05mol/L盐酸标准溶液。 3、仪器 安全管导管汽水分离管样品入口塞子冷凝管吸收瓶隔热液套反应管蒸汽发生瓶 如图1所示:

图1 3、操作步骤 3.1样品处理:精密称取0.2-2.0g固体样品或2-5g半固体样品或吸取10-20ml液体样品(约相当氮30-40mg),移入干燥的100ml或500ml定氮瓶中,加入0.2g硫酸铜,6g硫酸钾及20毫升硫酸,稍摇匀后于瓶口放一小漏斗,将瓶以45度角斜支于有小孔的石棉网上,小火加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,再继续加热0.5小时。取下放冷,小心加20ml水,放冷后,移入100ml 容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同量的硫酸铜、硫酸钾、浓硫酸同一方法做试剂空白试验。但是此法比较危险,不易在实验室演示,现在大多数实验室有消煮仪一次可以进行多个(一次可以消煮16个样品)样品处理,并有通风橱进行通风,温度可以自己设定,更加安全和可操作性,因此逐步成为主要的凯氏定氮法的首选处理方法。 一般消解温度都设在240度及240度以上,如果想快速消解可以适当提高温度甚至可以用最大温度进行消解。 3.2、按图装好定氮装置,于水蒸气发生器内装水约2/3处加甲基红指示剂数滴及数毫升硫酸,以保持水呈酸性,加入数粒玻璃珠以防暴沸,用调压器控制,加热煮沸水蒸气发生瓶内的水。 3.3、向接收瓶内加入10ml 2%硼酸溶液及混合指示剂1滴,并使冷凝管的下端插入液面下,吸取10.0ml样品消化液由小玻璃杯流入反应室,并以10ml水洗涤小烧杯使流入反应室内,塞紧小玻璃杯的棒状玻璃塞。将10ml 40%氢氧化钠溶液倒入小玻璃杯,提起玻璃塞使其缓慢流入反应室,不能立即将玻璃盖塞紧,这样易使玻璃塞粘在进样口,应先用蒸馏水冲洗然后再盖,并加水于小玻璃杯以防漏气。夹紧螺旋夹,开始蒸馏,蒸气通入反应室使氨通过冷凝管而进入接收瓶内,蒸馏5min。移动接收瓶,使冷凝管下端离开液皿,再蒸馏1min,然后用少量水冲洗冷凝管下端外部。取下接收瓶,以0.05N硫酸或0.05N盐酸标准溶液定至灰色或蓝紫色为终点。 同时吸取10.0ml试剂空白消化液按3操作。 4、计算 X =((V1-V2)*N*0.014)/( m*(10/100)) *F*100%

蛋白质测定实验报告

蛋白质测定方法——化学报告

蛋白质的检测 酚试剂法灵敏度较高 20~250mg 费时蛋白质在碱性溶 液中其肽键与 Cu2+螯合,形成 蛋白质一铜复合 物,此复合物使 酚试剂的磷钼酸 还原,产生蓝色 化合物 酚类、柠檬 酸、硫酸铵、 tris缓冲液、 甘氨酸、糖 类、甘油等均 有干扰作用 由上表可大致了解五种检测蛋白质的方法,下面以实验的形式进行详细阐述:

1 材料与方法 1.1 仪器材料 (1)仪器:凯氏定氮仪、紫外分光光度计、可见光分光光度计、工作离心机、布氏漏斗、抽滤泵。 (2)试剂及原材料:牛奶、酸奶、豆浆、0.12mol/LpH=4. 7醋酸- 醋酸钠缓冲液、乙醇-乙醚等体积混合液、浓H2SO4 、40%氢氧化钠、30%过氧化氢、2%硼酸溶液、0. 050molPL标准盐酸溶液、硫酸钾- 硫酸铜接触剂、混合指示剂、标准蛋白溶液、双缩脲试剂、考马斯亮蓝G- 250试剂。 1.2 实验方法 (1)凯氏定氮法测定蛋白质含量 将待测样品与浓硫酸共热,含氮有机物即分解产生氨(消化) ,氨又与硫酸作用,变成硫酸铵。为了加速消化,可以加入CuSO4 作催化剂和加入K2SO4 以提高溶液的沸点,而加入30%过氧化氢有利于消化溶液的澄清。消化好的样品在凯氏定氮仪内经强碱碱化使之分解放出氨,借蒸汽将氨蒸至定量硼酸溶液中,然后用标准盐酸溶液进行滴定,记录,计算出样品含氮量。每个样品做三次重复测定,取平均值。 (2)紫外吸收法测定蛋白质含量 蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质,吸收峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。 紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如, 生化制备中常用的(NH4)2SO4 等和大多数缓冲液不干扰测定,特别适用于柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。 此法的特点是测定蛋白质含量的准确度较差,干扰物质较多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质有一定的误差,故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。 此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因pH的改变而有变化,因此要注意溶液的pH值,测定样品时的pH要与测定标准曲线的pH相一致。取待测样品制成蛋白浓度大约在0. 1~1. 0mgPmL的蛋白质溶液,用紫外分光光度计进行比色,对照标准曲线得出样品含氮量。每个样品做3次重复测定,取平均值。 (3)双缩脲法测定蛋白质含量

土壤中全氮的测定实验报告

土壤中全氮的测定 环境工程李婷婷2110921109 一、实验目的 1、学习掌握土壤中全氮的测定原理和方法; 2、了解凯氏定氮仪的使用方法。 二、实验原理 测定土壤全氮的方法主要有干烧法和湿浇法。 样品用浓硫酸高温消煮时,各种含氮有机化合物经过复杂的高温分解反应转化为铵态氮(硫酸铵),这个复杂的反应,总称为开氏反应。 开氏法分为样品的消煮和消煮液中铵态氮的定量两个步骤。 土样经浓硫酸消煮,各种含氮有机化合物转化为铵态氮,用氢氧化钠碱化后蒸馏出来的氨用硼酸吸收,以甲基红-溴甲酚绿混合指示剂,用盐酸标准溶液滴定,求出土壤全氮含量 凯氏法测定全氮步骤: 有机N 加速剂+浓H2SO4 OH- H3BO3 H+ (+无机N)NH4+ NH3 NH4++H2BO3- H3BO3 消煮液中NH4+的定量(蒸馏) 开氏反应的速度不大,通常需要利用加速剂来加速消煮过程。加速剂的成分,按其效用的不同,可分为增温剂、催化剂和氧化剂三类。 增温剂是硫酸钾或无水硫酸钠;催化剂主要有Hg、HgO、CuSO4、Se 等;常用的氧化剂有K2Cr2O7、KMnO4、HclO4和H2O2 等。 凯氏定氮仪可完成对消解样品的全自动加碱、蒸馏和滴定过程。消解完的样品上机后和碱生成氨,氨气和水蒸气一起经冷凝管冷凝后,被收集在加入硼酸吸收液的接收瓶中,而后自动进行滴定、显示、记录盐酸消耗量,计算机根据公式计算含氮量,并打印出结果。 三、实验过程 1.称量样品。在电子天平上称量土样约0.5g。 2.消解。土样中先加入5mL浓硫酸,煮沸,然后冷却,再加入1mL高氯酸,继续煮 沸至土样呈灰白色。 3.过滤,定容。将土样冷却后,用定量滤纸过滤到100mL容量瓶中,定容。 4.调节仪器,测量。调整仪器,设置好参数。取样品20mL放到消煮管中,进行测量 (测一个空白值)。 四、实验结果与分析 结果计算:N%=1.401×M(V-V0)/W 其中:M:盐酸标准浓度,mol/L; V:滴定样品盐酸的消耗量,mL;

【1】生物样本中蛋白质的提取及测定(分子医学实验)

《分子生物学实验》 实验报告 实验名称:生物样本中蛋白质的提取及测定 姓名:杰 学号:3140104666 组别: 同组同学:唐曦

带教教师:伟俞萍 实验日期:2015年9月15日 目录 1.原理: (3) 1.1生物样本中蛋白质的提取 (3) 1.2生物样本中蛋白质的测定 (3) 1.2.1 Lowry法 (3) 1.2.2 考马斯亮蓝法 (4) 1.2.3 紫外吸收法 (4) 2.操作步骤 (4) 2.1生物样本中蛋白质的提取 (4) 2.2生物样本中蛋白质的测定 (5) 2.2.1 Lowry法 (5) 2.2.2 考马斯亮蓝法 (5) 2.2.3紫外吸收法 (5) 3、实验结果 (6) 3.1 原始数据 (6) 3.1.1 Lowry法 (6) 3.1.2 考马斯亮蓝法 (7) 3.1.3 紫外吸收法 (7)

3.2 数据处理 (8) 3.2.1 Lowry法 (8) 3.2.2 考马斯亮蓝法 (9) 3.2.3 紫外吸收法 (10) 4.讨论: (11) 1.原理: 1.1生物样本中蛋白质的提取 离体不久的组织,在适宜的温度及pH等条件下,可以进行一定程度的物质代谢。因此,在生物化学实验中,常利用离体组织来研究各种物质代谢的途径与酶系作用,也可以从组织中提取各种代谢物质或酶进行研究。但生物组织离体过久,其所含物质的含量和生物活性都将发生变化。例如,组织中的某些酶在久置后会发生变性而失活;有些组织成分如糖原、ATP等,甚至在动物死亡数分钟至十几分钟,其含量即有明显的降低。因此,利用离体组织作代谢研究或作为提取材料时,都必须迅速将它取出,并尽快地进行提取或测定。一般采用断头法处死动物,放出血液,立即取出实验所需的脏器或组织,除去外层的脂肪及结缔组织后,用冰冷的生理盐水洗去血液(必要时可用冰冷的生理盐水灌注脏器以洗去血液),再用滤纸吸干,即可用于实验。取出的脏器或组织,可根据不同的方法制成不同的组织样品。包括组织糜、组织匀浆、组织浸出液。由于动物肝脏细胞比较脆弱,易于破碎,故本实验选用小鼠肝脏细胞作为实验材料,采用匀浆法法将其破碎,然后加入样品提取液使蛋白质溶解,用高速离心法弃去细胞碎片。收集上清液后可进行蛋白质定量分析。 1.2生物样本中蛋白质的测定 1.2.1 Lowry法 1921年,Folin发明了Folin-酚试剂法测定蛋白质的浓度,反应原理是利用蛋白质分子中的酪氨酸和色氨酸残基还原酚试剂(磷钨酸-磷泪酸)生成蓝色

凯氏定氮法测定蛋白质的原理及其消化

凯氏定氮法测定蛋白质的原理及其消化、蒸馏 以凯氏定氮法测定氮含量换算蛋白质的方法,是国际上通用的标准方法,操作简单,测定结果重复性和重现性都很好,广泛用于各种食品、谷物、饲料等样品的蛋白质含量测定。此法又分为常量、半微量、微量法三种。国家标准规定为半微量凯氏定氮法。其测定原理相同,主要区别在于常量法的样品及试剂用量较微量法多。而微量法则具有实验规模小,实验费用低的优点。但微量法的准确度和精密度比常量法要差一些。凯氏定氮法整个测定过程分为消解、蒸馏、滴定三步。凯式定氮法包括消化炉和蒸馏装置,它们的结合能够让实验尽可能的简单。 要使测定结果有更好的正确度、准确度和精准度,认真细致掌握测定的每个步骤、各个细节及相应的注意事项,就显得尤为重要。 实验过程操作 1、主要试剂的配制 40%氢氧化钠:化学纯400g氢氧化钠溶于1000ml无氨蒸馏水中。 2%硼酸:分析纯20g硼酸溶于1000ml无氨蒸馏水中。

0.05mol/L盐酸:分析纯4.2ml盐酸定容至1000ml,通过无水碳酸钠标定。 混合指示剂:把溶解于95%乙醇的0.l%溴甲酚绿溶液5份和溶于95%乙醇的0.l% 甲基红溶液1份混合而成. 2、实验过程注意事项 (1)样品应是均匀的。固体样品应预先研细混匀,液体样品应振摇或搅拌均匀。 固体样品一般取样范围为0.20g~2.00g;半固体试样一般取样范围为 2.00g~5.00g;液体样品取样10.0mL~25.0mL(约相当氮30mg~40mg)。若检测液体样品,结果以g/100mL表示。 样品应是均匀的。固体样品应预先研细混匀,液体样品应振摇或搅拌均匀。 (2)样品放入定氮瓶内时,不要沾附颈上。万一沾附可用少量水冲下,以免被检样消化不完全,结果偏低,或者用滤纸包裹好一起投入消化,滤纸影响通过空白扣除。消化时应注意旋转凯氏烧瓶,将附在瓶壁上的碳粒冲下,对样品彻底消化。若样品不易消化至澄清透明,可将凯氏烧瓶中溶液冷却,加入数滴过氧化氢后,再继续加热消化至完全。 (3)消化时,不要用强火。若样品含糖高或含脂及较多时,注意控制加热温度,以免大量泡沫喷出凯氏烧瓶,造成样品

蛋白质含量测定——双缩脲试剂法-实验报告

生物化学实验报告 姓名: 学号: 专业年级: 组别: 生物化学与分子生物学实验教学中心

实验名称蛋白质含量测定——双缩脲试剂法 实验日期实验地点 合作者指导老师 评分教师签名批改日期 一、实验目的 1.1.掌握双缩脲测定血清总蛋白的基本原理、操作; 1.2.掌握双缩脲试剂的配制; 1.3.熟悉血清总蛋白的临床意义; 1.4.了解双缩脲法测定血清总蛋白的特点和注意事项。 二、实验原理 2.1.两分子尿素加热脱氨缩合成的双缩脲(H2N-OC-NH-CO-NH2),因分子内含有两个邻接的肽键,在碱性溶液中可与Cu2+发生双缩脲反应,生成紫红色络合物。 2.2.蛋白质分子含有大量彼此相连的肽键(-CO-NH-),同样能在碱性条件下与Cu2+发生双缩脲反应,生成的紫红色络合物,且在540nm处的吸光度与蛋白质的含量在10~120g/L范围内有良好的线性关系。 三、材料与方法: 3.1.实验材料: 3.1.1.实验试剂:①小牛血清;②6.0mol/LNaOH溶液;③双缩脲试剂:硫酸酮、酒石酸钾钠、碘化钾;④蛋白质标准液(70g/L);⑤0.9%NaCl;⑥蒸馏水。 3.1.2.实验器材:①试管;②烧杯;③容量瓶;④加样枪;⑤刻度吸管;⑥玻璃棒;⑥1100分光光度计;⑦电子天平;⑧水浴锅。

3.2.实验步骤 四、结果与讨论: 4.1.实验现象: ①选取三支洁净无损的试管,从左往右依次加入0.9%氯化钠溶液、蛋白质标准液、相应的小牛血清各0.5ml,分别命名为B试管、S试管和U试管,再分别向三支试管内加入4ml的双缩脲试剂,溶液均成蓝色透明状。

测定次数 1 2 3 平均吸光度 ②将三支试管放入37℃水浴锅中加热20min,取出后,B试管呈淡蓝色,S试管和U 试管均成浅紫色,且S试管的颜色比U试管的颜色深。(如图一) 图一水浴后三支试管颜色图二分光计读数 S 0.185 0.184 0.185 0.1847 U 0.152 0.151 0.152 0.1517 结果计算:代入公式:血清总蛋白(g/L)=(Au/As)X蛋白质标准液浓度(g/L),得出结果:血清总蛋白=57.493g/L。 4.3.结果讨论 经查阅资料得:正常成人血清总蛋白含量为60~80g/L,而小牛血清总蛋白含量比正常成人血清总蛋白含量略低一点,本次结果得出小牛血清总蛋白含量为57.493g/L,符合情况。 4.3.1.成功原因: ①本次试验的试剂混合水浴后出现了预期效果:B试管呈淡蓝色,S试管和U试管均成浅紫色,且S试管的颜色比U试管的颜色深。B试管呈淡蓝色是因为B试管中没有发生任何反应,所以呈现双缩脲试剂本来的淡蓝色,而S试管和U试管呈浅紫色是因为试剂中的蛋白质和双缩脲发生了双缩脲反应而呈浅紫色。 管号

实验一蛋白质含量测定

实验一蛋白质含量的测定 姓名:mangogola 一.实验原理 生物化学实验中,经常需要测定蛋白质的含量,一般常用的蛋白质含量测定方法有紫外吸收法、福林酚试剂法以及一些改进的Lowry法可以应用。 紫外吸收法测定蛋白质含量的原理是由于蛋白质中酪氨酸、色氨酸中的苯环含有共轭双键,因此蛋白质具有吸收紫外光的性质,吸收高峰在280nm处,且蛋白质溶液的光密度值与其含量呈正比关系。该方法具有简单、灵敏、快速和不消耗样品的优点,但易受核酸分子中嘌呤、嘧啶等的干扰,准确度较差。根据蛋白质和核酸的吸收峰不同,可通过计算适当校正核酸的干扰作用。 Lowry法的原理是:在碱性条件下,蛋白质与铜离子形成铜-蛋白质复合物,该复合物可还原磷钼酸-磷钨酸(Folin试剂)产生深蓝色的钼蓝和钨蓝混合物。该方法灵敏度较高,但较费时。 对膜蛋白或相当稀的(如<1ug/ml)蛋白溶液的含量测定,以及为减小去污剂、脂类、碳水化合物的干扰,可采用一些改进的Lowry法,如蛋白质-染料结合法。原理是:当染料考马斯亮蓝G250与蛋白质结合时,最大吸收峰从465nm移动到595nm,而且吸收值在一定蛋白浓度下线性相关,因此用标准浓度的蛋白测OD595作标准曲线,即可求得待测样品的蛋白浓度。此方法简单经济、快速、灵敏度也较高。需要注意的是,染料与蛋白质可在3min内完成结合,由于染料试剂中含有酒精成分,易挥发,所以结合生成的复合物在1h 内可比较稳定地存在于溶液中,制作的标准曲线后部会出现弯曲现象。 二.实验过程(Lowry法) 1.溶液配制 A液:2%Na2CO3,用0.1mol/LNaOH配制。(不能将NaOH和 Na2CO3干粉混合配制,这样会因释放CO2而不准确) B液:0.5%CuSO4.5H2O,用1%酒石酸钾或酒石酸钠配制。 C液:使用前将A、B液按50:1混合,当天使用。 D液:Folin试剂 标准蛋白溶液:200ug/mLBSA溶液 2.标准曲线测定 按照下表进行操作,用一系列标准浓度的BSA平行进行两组测定反应,记录A500。取两组测定的平均值,以蛋白浓度为横坐标,光密度值为纵坐标绘制标准曲线。 3.将待测样品稀释至标准曲线浓度范围内,同时按上述方法测A500,根据标准曲线读出蛋

微量凯氏定氮法测定蛋白质含量实验报告

微量凯氏定氮法测定蛋白质含量实验报告 一、实验目得 1、学习微量凯氏定氮法得原理 2、掌握微量凯氏定氮法得操作技术(未知样品得消化、蒸馏、滴定及其含氮量得计算等) 二、实验原理 凯氏定氮法常用于测定天然有机物(如蛋白质,核酸及氨基酸等)得含氮量。 当天然含氮有机物与浓硫酸共热时,其中得碳、氢被氧化成二氧化碳与水,而氮则变成氨并进一步与硫酸作用生成硫酸铵.此过程称为“消化"。 此过程进行得相对较为缓慢,通常需要加入硫酸钾或硫酸钠以提高溶液得沸点,并加入硫酸铜作为催化剂,以促进反应得进行。氧化剂过氧化氢也能加速反应。 消化过程: 蒸馏:在消化完全得样品溶液中加入浓氢氧化钠使呈碱性,加热蒸馏,即可释放出氨气. 反应方程式如下: 吸收与滴定:蒸馏所放出得氨,可用硼酸溶液进行吸收,待吸收完全后,再用盐酸标准溶液滴定,直至恢复溶液中原来氢离子浓度为

止(即滴定至蓝紫色),最后根据所用标准酸得当量数(相当于待测物中氨得当量数)计算出待测物中得氮量。 三、实验试剂、材料与器材 实验材料:食用面粉. 实验试剂:浓硫酸、30%氢氧化钠溶液、克氏催化剂、2%硼酸、指示剂、0、01M HCL。 实验器材:凯氏烧瓶、电炉、凯氏定氮蒸馏装置、锥形瓶、100ml容量瓶、酸式滴定管。 四、操作步骤 1、消化 (1)准确称取1克食用面粉,用称量纸卷好小心送入至50毫升得凯氏烧瓶底部,切勿沾于瓶口或瓶颈上; (2)向另一烧瓶加入1ml水作空白对照; 在每个烧瓶内加入硫酸钾—硫酸铜混合物(克氏催化剂)少许,浓硫酸10ml,小瓷片两粒,摇匀; (3)将烧瓶约60度角固定在铁架上,每个瓶口放一小漏斗,在通风厨内得电炉上消化; (4)在消化开始时,应控制火力,不要使液体冲到瓶颈; (5)待瓶内水汽蒸完,硫酸开始分解并放出SO2白烟后,适当加强火力,继续消化,直至消化液呈透明绿色为止;

紫外分光光度法测定蛋白质含量实验报告

紫外分光光度法测定蛋白质含量 一、实验目的 1.学习紫外光度法测定蛋白质含量的原理; 2.掌握紫外分光光度法测蛋白质含量的实验技术。 二、实验原理 1.测蛋白质含量的方法主要有:①测参数法:折射率、相对密度、紫外吸收等;②基于化学反应:定氮法、双缩脲法、Folin―酚试剂法等。本实验采用紫外分光光度法。 2.蛋白质中的酪氨酸和色氨酸残基的苯环中含有共轭双键,因此,蛋白质具有吸收紫外光的性质,其最大吸收峰位于280nm附近(不同蛋白质略有不同)。在最大吸收波长处,吸光度与蛋白质溶液的浓度服从朗伯―比尔定律。 利用紫外吸收法测蛋白质含量的准确度较差,原因有二:①对于测定那些与标准蛋白质中酪氨酸和色氨酸含量差异较大的蛋白质,有一定误差,故该法适于测定与标准蛋白质氨基酸组成相似的蛋白质;②样品中含有的嘌呤、嘧啶等吸收紫外光的物质,会出现较大干扰。 三、仪器与试剂 TU―1901紫外可见分光光度计、标准蛋白质溶液3.00mg·mL-1、0.9%NaCl 溶液、试样蛋白质溶液。 10mL比色管、1cm石英比色皿、吸量管。 四、实验步骤 1.绘制吸收曲线 用吸量管吸取2mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在190~400nm间每隔5nm测一次吸光度Abs,记录数据并作图。 2.绘制标准曲线 用吸量管分别吸取1.0、1.5、2.0、2.5、3.0mL3.00mg·mL-1标准蛋白质溶液于10mL比色管中,用0.9%NaCl溶液稀释至刻度,摇匀。用1cm石英比色皿,以0.9%NaCl溶液作参比溶液,在波长280nm处分别测其吸光度,记录数据并作图。 3.样品测定 取适量浓度试样蛋白质溶液,在波长280nm处测其吸光度,重复三次。在已经得到标准曲线的情况下,为了使测量结果准确度高,待测溶液的浓度需在标准曲线的线性范围内,所以,先测定试样蛋白质原液的吸光度(1.363),估算浓度为2.0960 mg·mL-1,再将原试液稀释至5倍(即取2mL试液,用0.9%NaCl溶液稀释至刻度,摇匀),估算浓度为0.4192 mg·mL-1,测吸光度,重复三次 五、数据处理与结果分析

蛋白质含量的测定

蛋白质含量的测定 实验三蛋白质含量的测定 衡量食品的营养成分时,要测定蛋白质含量,但由于蛋白质组成及其性质的复杂性,在食品分析中,通常用食品的总氮量表示,蛋白质是食品含氮物质的主要形式,每一蛋白质都有其恒定的含氮量,用实验方法求得某样品中的含氮量后,通过一定的换算系数。即可计算该样品的蛋白质含量。 一般食品蛋白质含氮量为l0,如肉、蛋、豌豆、玉米等,其换算系数为6.25,小麦取5.70,大米5.95、乳制品6.38、大豆5.17,动物胶5.55。 一、目的与要求: 掌握微量凯氏法测定蛋白质总氮量的原理及操作技术。包括样品的消化,蒸馏吸收及滴定与含氮量的计算。 二、原理: 凯氏定氮法:食品经加硫酸消化使蛋白质分解,其中氮素与硫酸化合成硫酸铵。然后加碱蒸馏使氨游离,用硼酸液吸收后,再用盐酸或硫酸滴定根据盐酸消耗量,再乘以一定的数值即为蛋白含量,其化学反应式如下。 ( 1 ) 2NH(CH)COOH+13HS0 (NH)2S0+6C0+12S0+ 16H 2222444222 (2)(NH)SO+2NAOH-----2NH+2HO+NASO 4242224 (3)2NH+4HBO----(NH)BO+5HO 33342472 (4) (NH)B0+HS0+5H0-(NH)SO+4HBO 424724249422 三、试剂与仪器: 1、硫酸钾 2、硫酸铜 3、硫酸

4、2,硼酸溶液 5、40,氢氧化钠溶液 6、混合指示剂:把溶解于95,乙醇的0.l,溴甲酚绿溶液10毫升和溶于95,乙醇的0.l,甲基红溶液2毫升混合而成( 7、0.OINHCL标准溶液或0(01N硫酸标准溶液( 8、凯氏微量定氮仪一套。 9、定氮瓶100m1或50ml一只。 10、三角瓶150ml 3只。 11、量筒50ml、lOml、lOOml。 12、吸量管10ml只。 13、酸式滴定管1支。 14、容量瓶100毫升1只。 15、小漏斗1只。 四、操作方法: 1、样品处理:精密称取0.2-2.0g固体样品或2-5g半固体样品或吸取10-20ml 液体样品(约相当氮30-40mg),移入干燥的100ml或500ml定氮瓶中,加入0.2g

土壤全氮的测定凯氏定氮法

土壤学实验讲义 (修订版) 吴彩霞王静李旭东 2012年10月

目录 实验一、土壤分析样品采集与制备 实验二、土壤全氮的测定—凯氏定氮法实验三、土壤速效钾的测定 实验四、土壤有效磷的测定 实验五、土壤有机质的测定 实验六、土壤酸度的测定

实验一土壤分析样品采集与制备 一、实验目的和说明 为开展土壤科学实验,合理用土和改土,除了野外调查和鉴定土壤基础性状外,还须进行必要的室内常规分析测定。而要获得可靠的科学分析数据,必须从正确地进行土壤样品(简称土样)的采集和制备做起。一般土样分析误差来自采样、分样和分析三个方面,而采样误差往往大于分析误差,如果采样缺乏代表性即使室内分析人员的测定技术如何熟练和任何高度精密的分析仪器,测定数据相当准确,也难于如实反映客观实际情况。故土样采集和制备是一项十分细致而重要的工作。 二、实验方法步骤 (一)土样采集 分析某一土壤或土层,只能抽取其中有代表性的少部份土壤,这就是土样。采样的基本要求是使土样具有代表性,即能代表所研究的土壤总体。根据不同的研究目的,可有不同的采样方法。 1.土壤剖面样品 土壤剖面样品是为研究土壤的基本理化性质和发生分类。应按土壤类型,选择有代表性的地点挖掘剖面,根据土壤发生层次由下而上的采集土样,一般在各层的典型部位采集厚约l0厘米的土壤,但耕作层必须要全层柱状连续采样,每层采一公斤;放入干净的布袋或塑料袋内,袋内外均应附有标签,标签上注明采样地点、剖面号码、土层和深度。 图1 土壤剖面坑示意图

2. 土壤混合样品 混合土样多用于耕层土壤的化学分析,一般根据不同的土壤类型和土壤肥力状况,按地块分别采集混合土样。一般要求是: (1)采样点应避免田边、路旁、沟侧、粪底盘以及一些特殊的地形部位。 (2)采样面积一般在20—50亩的地块采集一个混合样可根据实际情况酌情增加样品数。 (3)采样深度依不同分析要求而定,一般土壤表层取0-10cm,取样点不少于5点。可用土钻或铁铲取样,特殊的微量元素分析,如铁元素需改用竹片或塑料工具取样,以防污染。 (4)每点取样深度和数量应相当,集中放入一土袋中,最后充分混匀碾碎,用四分法取对角二组,其余淘汰掉。取样数量约1公斤左右为宜。 (5)采样线路通常采用对角线、棋盘式和蛇形取样法。 (6)装好袋后,栓好内外标签。标签上注明采样地点、深度、采集人和日期,带回室内风干处理 (二)土壤样品制备 样品制备过程中的要求: (1)样品处理过程中不能发生任何物理和化学变化,以免造成分析误差。 (2)样品要均一化,使测定结果能代表整个样品和田间状态。 (3)样品制备过程包括:风干一分选一去杂一磨碎一过筛—混匀一装瓶一保存一登记。 风干一将取回的土样放在通风、干燥和无阳光直射的地方,或摊放在油布、牛皮纸、塑料布上,尽可能铺平并把大土块捏碎,以便风干快些。 分选一若取的土样太多,可在土样均匀摊开后,用“四分法”去掉一部分,留下1000克左右供分析用。 去杂、磨细和过筛一将风干后土样先用台称称出总重量,然后将土样倒在橡皮垫上,碾碎土块,并尽可能挑出样品中的石砾、新生体、侵入体、植物根等杂质,分别放入表面皿或其它容器中;将土样铺平,用木棒轻轻辗压,将辗碎的土壤用带有筛底和筛盖的0.25mm 筛孔的土筛过筛,并盖好盖、防止细土飞扬。不能筛过的部分,再行去杂,余下的土壤铺开再次碾压过筛,直至所有的土壤全部过筛,只剩下石砾为止。(样品通过多大筛孔、应依不同分析要求而定)。 混匀装瓶一将筛过的土壤全部倒在干净的纸上,充分混匀后装入500~1000ml磨口瓶中保存。每个样品瓶上应贴两个标签,大标签贴在瓶盖上。书写标签用HB铅笔或圆珠笔填

蛋白质测定实验报告

生物化学实验报告 姓名: XXX 学号: XXXXXXXXXX 专业年级: 2015级护理(助产)组别:第六实验室 生物化学与分子生物学实验教学中心

实验名称Folin-酚试剂法测定蛋白质含量 实验日期2016-10-18 实验地点第六实验室 合作者指导老师 评分教师签名批改日期 一、实验目的 1、掌握Folin-酚试剂法测定蛋白质含量的原理及其实验操作技术。 2、掌握制作标准曲线的要领和通过标准曲线求样品溶液中待测定物质含量的方法。 3、熟悉分光光度计的用法。 二、实验原理 1、在碱性溶液中,蛋白质分子中的肽键与碱性铜试剂中的Cu2+作用生成紫红色的蛋白质- Cu2+复合物。 2、蛋白质- Cu2+复合物中所含的酪氨酸或色氨酸残基还原酚试剂中的磷钼酸和磷钨酸,生成蓝色的化合物。 3、在一定浓度范围内,蓝色的深浅度与蛋白质浓度呈线性关系,故与同样处理的蛋白质标准液比色即可求出蛋白质的含量。 三、材料与方法: 1.实验材料 (1)样品 健康人血清(300倍稀释);正常人血清蛋白质含量:60~80 g/L (2)试剂 牛血清白蛋白标准液(200μg/ml);碱性硫酸铜溶液(当日有效);Folin-酚试剂(3)仪器与器材

V-1100分光光度计;恒温水浴箱;试管6支、试管架;加样枪、加样枪架;坐标纸 2.实验步骤 流程图: (1)取6支试管做好标记,再按下表加样:(1作空白对照,2-5作标准试管,6为待测样品) 试剂(ml) 1 2 3 4 5 6 牛血清白蛋白标准液- 0.20 0.40 0.60 0.80 - 样品液(稀释300倍)- - - - - 0.50 蒸馏水 1.0 0.80 0.60 0.40 0.20 0.50 碱性硫酸铜 2.0 2.0 2.0 2.0 2.0 2.0 Folin-酚试剂0.20 0.20 0.20 0.20 0.20 0.20 蛋白质浓度(μg/ml)0 40 80 120 160 未知(2)往各试管中按表格要求加入蛋白标准液、样品液、蒸馏水及碱性硫酸铜试剂后,混匀室温静置10min。 (3)向各管内加入Folin-酚试剂0.20ml,并于2s内迅速摇匀。 (4)加样完毕后,将各试管进行40℃水浴10min。 (5)冷却至室温后,以500nm波长比色,以1号管作空白对照,按2-6顺序测定试管内溶液吸光度并重复测三次,记录数据并计算结果。

生物化学实验报告

实验一糖类的性质实验 (一)糖类的颜色反应 一、实验目的 1、了解糖类某些颜色反应的原理。 2、学习应用糖的颜色反应鉴别糖类的方法。 二、颜色反应 (一)α-萘酚反应 1、原理糖在浓无机酸(硫酸、盐酸)作用下,脱水生成糠醛及糠醛衍生物,后 者能与α-萘酚生成紫红色物质。因为糠醛及糠醛衍生物对此反应均呈阳性,故此反应不是糖类的特异反应。 2、器材 试管及试管架,滴管 3、试剂 莫氏试剂:5%α-萘酚的酒精溶液1500mL.称取α-萘酚5g,溶于95%酒精中,总体积达100 mL,贮于棕色瓶内。用前配制。 1%葡萄糖溶液100 mL 1%果糖溶液100 mL 1%蔗糖溶液100 mL 1%淀粉溶液100 mL %糠醛溶液100 mL 浓硫酸 500 mL 4、实验操作 取5支试管,分别加入1%葡萄糖溶液、1%果糖溶液、1%蔗糖溶液、1%淀粉溶液、%糠醛溶液各1 mL。再向5支试管中各加入2滴莫氏试剂,充分混合。倾斜试管,小心地沿试管壁加入浓硫酸1 mL,慢慢立起试管,切勿摇动。 观察记录各管颜色。 (二)间苯二酚反应 1、原理 在酸作用下,酮醣脱水生成羟甲基糠醛,后者再与间苯二酚作用生成红色物质。此反应是酮醣的特异反应。醛糖在同样条件下呈色反应缓慢,只有在糖浓度较高或煮沸时间较长时,才呈微弱的阳性反应。实验条件下蔗醣有可能水解而呈阳性反应。 2、器材 试管及试管架,滴管 3、试剂 塞氏试剂:%间苯二酚-盐酸溶液1000 mL,称取间苯二酚0.05 g溶于30 mL 浓盐酸中,再用蒸馏水稀至1000 mL。 1%葡萄糖溶液100 mL 1%果糖溶液100 mL 1%蔗糖溶液100 mL 4、实验操作

SDS-PAGE测定蛋白质相对分子质量实验报告

SDS-PAGE测定蛋白质相对分子质量 一、前言 聚丙烯酰胺凝胶电泳 聚丙烯酰胺凝胶电泳,简称PAGE,是以聚丙烯酰胺凝胶作为支持介质的一种常用电泳技术。聚丙烯酰胺凝胶由单体丙烯酰胺和甲叉双丙烯酰胺聚合而成,聚合过程由自由基催化完成。催化聚合的常用方法有两种:化学聚合法和光聚合法。化学聚合以过硫酸铵(APS)为催化剂,以四甲基乙二胺(TEMED)为加速剂。在聚合过程中,TEMED催化过硫酸铵产生自由基,后者引发丙烯酰胺单体聚合,同时甲叉双丙烯酰胺与丙烯酰胺链间产生甲叉键交联,从而形成三维网状结构。 PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和分子筛效应。不连续系统中由于缓冲液离子成分,pH,凝胶浓度及电位梯度的不连续性,带电颗粒在电场中泳动不仅有电荷效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳。不连续体系由电极缓冲液、浓缩胶及分离胶所组成。浓缩胶是由AP催化聚合而成的大孔胶,凝胶缓冲液为pH6.7的Tris-HCl。分离胶是由AP催化聚合而成的小孔胶,凝胶缓冲液为pH8.9 Tris-HCl。电极缓冲液是pH8.3 Tris-甘氨酸缓冲液。2种孔径的凝胶、2种缓冲体系、3种pH值使不连续体系形成了凝胶孔径、pH值、缓冲液离子成分的不连续性,这是样品浓缩的主要因素。

SDS是阴离子去污剂,作为变性剂和助溶试剂,它能断裂分子内和分子间的氢键,使分子去折叠,破坏蛋白分子的二、三级结构。而强还原剂如巯基乙醇,二硫苏糖醇能使半胱氨酸残基间的二硫键断裂。在样品和凝胶中加入还原剂和SDS后,分子被解聚成多肽链,解聚后的氨基酸侧链和SDS结合成蛋白- SDS胶束,所带的负电荷大大超过了蛋白原有的电荷量,这样就消除了不同分子间的电荷差异和结构差异。 SDS-PAGE一般采用的是不连续缓冲系统,与连续缓冲系统相比,能够有较高的分辨率。 浓缩胶的作用是有堆积作用,凝胶浓度较小,孔径较大,把较稀的样品加在浓缩胶上,经过大孔径凝胶的迁移作用而被浓缩至一个狭窄的区带。当样品液和浓缩胶选TRIS/HCl缓冲液,电极液选TRIS/甘氨酸。电泳开始后,HCl解离成氯离子,甘氨酸解离出少量的甘氨酸根离子。蛋白质带负电荷,因此一起向正极移动,其中氯离子最快,甘氨酸根离子最慢,蛋白居中。电泳开始时氯离子泳动率最大,超过蛋白,因此在后面形成低电导区,而电场强度与低电导区成反比,因而产生较高的电场强度,使蛋白和甘氨酸根离子迅速移动,形成一稳定的界面,使蛋白聚集在移动界面附近,浓缩成一中间层。 此鉴定方法中,蛋白质的迁移率主要取决于它的相对分子质量,而与所带电荷和分子形状无关。

相关文档
相关文档 最新文档