文档库 最新最全的文档下载
当前位置:文档库 › 光学分析法导论

光学分析法导论

光学分析法导论
光学分析法导论

第2章光学分析法导论

【2-1】解释下列名词。

(1)原子光谱和分子光谱(2)发射光谱和吸收光谱

(3)闪耀光栅和闪耀波长(4)光谱通带

答:(1)原子光谱:由原子能级之间跃迁产生的光谱称为原子光谱。

分子光谱:由分子能级跃迁产生的光谱称为分子光谱。

(2)发射光谱:原来处于激发态的粒子回到低能级或基态时,往往会发射电磁辐射,这样产生的光谱为发射光谱。

吸收光谱:物质对辐射选择性吸收而得到的原子或分子光谱称为吸收光谱。

(3)闪耀光栅:当光栅刻划成锯齿形的线槽断面时,光栅的光能量便集中在预定的方向上,即某一光谱级上。从这个方向探测时,光谱的强度最大,这种现象称为闪耀,这种光栅称为闪耀光栅。

闪耀波长:在这样刻成的闪耀光栅中,起衍射作用的槽面是个光滑的平面,它与光栅的表面一夹角,称为闪耀角。最大光强度所对应的波长,称为闪耀波长。

(4)光谱通带:仪器出射狭缝所能通过的谱线宽度。

【2-2】简述棱镜和光栅的分光原理。

【2-3】简述光电倍增管工作原理。

答:光电倍增管工作原理:

1)光子透过入射窗口入射在光电阴极K上。

2)光电阴极电子受光子激发,离开表面发射到真空中。

3)光电子通过电子加速和电子光学系统聚焦入射到第一倍增极D1上,倍增极将发射出比入射电子数目更多的二次电子,入射电子经N级倍增极倍增后光电子就放大N次方倍。

4)经过倍增后的二次电子由阳极P收集起来,形成阳极光电流,在负载RL上产生信号电压。

【2-4】何谓多道型检测器?试述多道型检测器光电二极管阵列、电荷耦合器件和电荷注入器件三者在基本组成和功能方面的共同点。

【2-5】请按能量递增和波长递增的顺序,分别排列下列电磁辐射区:红外,无线电波,可见光,紫外光,X射线,微波。

答:能量递增顺序:无线电波、微波、红外线、可见光、紫外光、X射线。

波长递增顺序:X射线、紫外光、可见光、红外线、微波、无线电波。

【2-6】计算下列电磁辐射的频率和波数。

(1)波长为0.9nm 的单色X 射线; (2)589.0nm 的钠D 线; (3)12.6μm 的红外吸收峰; (4)波长为200cm 的微波辐射。 答:由公式c

v λ

=

,1

σλ

=

得:

(1)101773.0010 3.33100.910v Hz -?==??,71

7

1 1.11100.910cm σ--==?? (2)1014

73.0010 5.0910589.010v Hz -?==??,417

1 1.7010589.010cm σ--==?? (3)101343.0010 2.381012.610v Hz -?==??,21

4

17.941012.610cm σ--==?? (4)Hz 8101050.12001000.3?=?=ν,311

5.0010200

cm σ--==?

【2-7】 以焦耳(J )和电子伏特(eV )为单位计算题2-6中各种光子的能量。 答:由公式E h ν=,得:

(1)34171636.6310 3.3310 2.2110 1.3910E J eV --=???=?=? (2)3414196.6310 5.0910 3.3610 2.10E J eV --=???=?= (3)34132026.6310 2.3810 1.58109.8610E J eV ---=???=?=? (4)3482676.6310 1.50109.9410 6.2110E J eV ---=???=?=? 【2-8】 填表

答:

【2-9】 某平面反射式衍射光栅每毫米刻槽数为1750条,平行光束的入射角为48.2°。计算在-11.2°方向上的衍射光的波长。

解:根据光栅公式:()sin d sin n αθλ+=

6

110[sin 48.2+sin(11.2)]=11750

λ?-?o o 315.0nm λ=(一级)

【2-10】 某光谱仪能分辨位于207.3nm 及215.1nm 的相邻两条谱线,计算仪器的分辨率。如果要求两条谱线在焦面上分离达2.5mm ,计算该仪器的线色散率及倒线色散率。 解:分辨率207.3nm+215.1nm /2=27.1215.1nm-207.3nm

R λλ==?() 线色散率-12.5mm =0.32mm nm 215.1nm-207.3nm

L dl D d λ==? 倒线色散率1

-1-111 3.1nm mm 0.32mm nm

L

L D D -=

==?? 【2-11】 若光栅的宽度为60mm ,总刻线度为1500条/mm ,计算: (1)此光栅的理论分辨率;

(2)能否将铁的310.0671nm ,310.0369nm 和309.997nm 的三条谱线分开? 解:(1)光栅理论分辨率60mm 1500/mm=90000R kN ==?条 (2)能,过程略。

【2-12】 有一垂直对称式光栅摄谱仪,装一块1200条/mm 刻线的光栅,其宽度为5.0cm ,闪耀角为20°,试计算:

(1)在第一级光谱中,该光栅的理论分辨率;

(2)当入射光沿槽面法线N '入射时,其闪耀波长1b λ()。 解:(1)分辨率1200560000R kN ==?= (2)1b λ()

=570nm ,过程略。

【2-13】 若用刻痕密度为2000条/mm 的光栅,分辨460.20nm 和460.30nm 处的两条Li 发射线。试计算(1)分辨率;(2)光栅的大小。 解:(1)分辨率3(460.20nm+460.30nm 2

=4.610460.30nm-460.20nm

R λλ=

=??)/; (2)光栅的总刻痕数334.610 4.610R

N n

=

=?=? 光栅的大小,即宽度为3

1

1

14.6100.1cm mm 0.23cm 2000mm

W Nd --==??

??= 【2-14】 若λ为衍射光波长,W 为光栅总宽度。试证明光栅理论分辨率的最大极限值为

2W

λ

证明:根据光栅方程:()d sin cos k αβλ±=可得,sin cos αβ±最大值为2,故d 最小为:2

k d λ

= ∴212

W W W

R kN K k d k λλ==?

=?=

。 【2-15】 写出下列各种跃迁所需的能量范围(eV )。 (1)原子内层电子跃迁 (0.1~10nm); (2)原子外层电子跃迁 (10~780nm);

(3)分子的价电子跃迁(1.25~0.06μm); (4)分子振动能级的跃迁(25~1.25μm);

(5)分子转动能级的跃迁(250~25μm)。 解:由E hv =计算得 (1)21.210?~51.210?eV (2)1.6~21.210?eV (3)1.0~20.7 eV (4)2510-?~1.0 eV (5)3

510-?~2

510-?eV

欢迎您的下载,

资料仅供参考!

致力为企业和个人提供合同协议,策划案计划书,学习资料等等

打造全网一站式需求

光学分析部分习题.docx

第二章光分析方法导论 一、选择题 1、 请按能量递增的次序,排列下列电磁波谱区:红外、射频、可见光、紫外、X 射线、微波、丫射 线( A 、 微波、射频、红外、可见光、紫外、X 射线、丫射线 B 、 射频、微波、红外、可见光、紫外、X 射线、丫射线 C 、 丫射线、X 射线、紫外、可见光、红外、微波、射频 D 、 丫射线、X 射线、紫外、可见光、红外、射频、微波 2、 请按波长递增的次序,排列下列电磁波谱区:红外、射频、可见光、紫外、X 射线、微波、丫射线( 微波、射频、红外、可见光、紫外、X 射线、丫射线 射频、微波、红外、可见光、紫外、X 射线、丫射线 Y 射线、X 射线、紫外、可见光、红外、微波、射频 丫射线、X 射线、紫外、可见光、红外、射频、微波 请按能量递增的次序,排列下列电磁波谱区:远红外、可见光、近紫外、近红外、远紫外( 某分了的转动能级差△ E=0.05eV ,产生此能级跃迁所需吸收的电磁辐射的波长为( 248pm D 、2480pm A 、 B 、 D 、 3、 A 、 远红外、 近红外、 可见光、近紫外、 远紫外 B 、 远红外、 近红外、 可见光、远紫外、 近紫外 C 、 远紫外、 近紫外、 可见光、近红外、 远红外 D 、 近紫外、 远紫外、 可见光、近红外、 远红外 4、 A 、 请按波长递增的次序,排列下列电磁波谱区:远红外、可见光、近紫外、近红外、远紫外( 可见光、近紫外、 远红外、 近红外、 远紫外 B 、 远红外、 近红外、 可见光、远紫外、 近紫外 C 、远紫外、 近紫外、 可见光、近红外、 远红外 D 、 近紫外、 远紫外、 可见光、近红外、 远红外 5、 下列哪种光谱分析法不属于吸收光谱( A 、 C 、 分了荧光光谱法 原了吸收光谱法 B 、 D 、 紫外■可见分光光度 法 6、 A 、 下列哪种光谱分析属于发射光谱法( 紫外■可见分光光度法 B 、 原了吸收分光光度法 C 、 原了荧光光谱法 D 、 激光拉曼光谱法 7、 A 、 2.48pm 24.8屮Yi C 、

第02章 光学分析法导论2006.10.22

第二章光学分析法导论 一、教学内容 1、电磁辐射及电磁波谱的概念、特性及相关物理量 2、物质与电磁辐射相互作用及相关的光谱学 3、光学分析法的分类及特点 4、光学分析法的基本仪器 二、重点与难点 1、电磁辐射与电磁波谱的性质 2、各物理量的相互换算 3、物质与电磁辐射相互作用的机制 三、教学目标 1、牢固掌握电磁辐射和电磁波谱的概念及性质 2、熟练掌握电磁辐射各种物理量之间的换算 3、清楚理解物质与电磁辐射相互作用所产生的各种光谱 4、清晰光学分析法分类的线索 5、掌握光谱法的基本仪器部件 四、教学学时 2学时 第一节电磁辐射 一、电磁辐射的性质 以电磁辐射为分析信号的分析方法在广义上都称为光学分析法。红外光、可见光、紫外光、X射线等都是电磁辐射。电磁辐射具有波粒二象性。 图2-1 电磁波示意图 1、波动性 按照经典物理学的观点,电磁辐射是在空间传播着的交变电磁场,称之为电磁波。 电磁波可以用频率(υ)、波长(λ)和波数(δ)等波参数来表征。 频率υ定义为ls内电磁场振荡的次数,单位为赫兹(Hz)。频率与辐射传播的介质无关,对于一个确定的电磁辐射,它是一个不变的特征量。 波长λ是电磁波相邻两个同位相点之间的距离,常用的单位有厘米

(cm),微米(μm,10-6m),纳米(nm,10-9m)。 波长与频率的乘积就是电磁辐射传播的速度。在真空中,电磁辐射的速度与频率无关,并达到最大值,精确测量的数值是2.99792×1010cm·s-1。这一速度称作光速,用符号c表示。于是有: c=υλ(2-1)在介质中,电磁辐射的电磁场与构成介质的原子或分子的外层电子相互作用,使其传播速度减小。介质不同,传播速度不同,因而波长亦不相同。在不加说明的情况下,辐射的波长指的是在真空中的波长,此时它具有确定的数值。 辐射在空气中的速度与光速差别很小,故式(2-1)也适用于空气。 波数δ是lcm内波的数目,单位为cm-1。当波长以cm为单位时,波数与波长的关系为: 1 (2-2) δ= λ 电磁辐射的波动性表现为电磁辐射的衍射和干涉现象。 2、微粒性 根据量子理论,电磁辐射是在空间高速运动的光量子(或称光子)流。可以用每个光子所具有的能量来表征。 普朗克方程将电磁辐射的波动性和微粒性联系在一起。 c =υ=(2-3) E h h λ 式中h为普朗克常数,它等于6.63×10-34焦耳·秒(J·s)。显而易见,辐射的频率越高(波长越小)光子的能量就越高。一个X射线的光子(λ=10-8cm)所具有的能量比热钨丝发出的光子(λ=10-4cm)大约高l万倍。 光子的能量常以电子伏特(eV)为单位表示 1eV=1.6×10-19J 电磁辐射是具有波动性和微粒性的物质运动形式。所以,频率、波长、波数和光子的能量都可以用作表征电磁辐射的特征参数。一般常用的参数是波长。 二、电磁波谱 电磁辐射按照波长(或频率、波数、能量)大小的顺序排列就得到电磁波谱。电磁波谱一般分成如表2-1所示的一些不同的波长区域,不同的波长区域对应着物质不同类型能级的跃迁。

光学分析法概论

第九章光学分析法概论 1、光学分析法有哪些类型。 基于辐射的发射建立的发射光谱分析法、火焰光度分析法、分子发光分析法、放射分析法等;基于辐射的吸收建立的UV-V is光度法、原子吸收光度法、红外光谱法、核磁共振波谱法等;基于辐射的散射建立的比浊法、拉曼光谱法;基睛辐射的折射建立的折射法、干涉法;基于辐射的衍射建立的X-射线衍射法、电子衍射法等;基于辐射的旋转建立的偏振法、旋光法、圆二色光谱法等。 2、吸收光谱法和发射光谱法有何异同? 吸收光谱法为当物质所吸收的电磁辐射能由低能态或基态跃迁至较高的能态(激发态),得到的光谱发射光谱法为物质通过电致激发、热致激发或光致激发等激发过程获得能量,变为激发态原子或分子,当从激发态过渡到低能态或基态时产生的光谱。 3、什么是分子光谱法?什么是原子光谱法? 原子光谱法:是由原子外层或内层电子能级的变化产生的光谱,它的表现形式为线光谱。属于这类分析方法的有原子发射光谱法、原子吸收光谱法,原子荧光光谱法以及X射线荧光光谱法等。 分子光谱法:是由分子中电子能级、振动和转动能级的变化产生的光谱,表现形式为带光谱。属于这类分析方法的有紫外-可见分光光度法,红外光谱法,分子荧光光谱法和分子磷光光谱法等。 4、简述光学仪器三个最基本的组成部分及其作用。 辐射源(光源):提供电磁辐射。 波长选择器:将复合光分解成单色光或有一定宽度的谱带。 检测器:将光信号转换成电信号。 5、简述常用的分光系统的组成以及各自作用特点。 分光系统的作用是将复合光分解成单色光或有一定宽度的谱带。分光系统又分为单色器和滤光片。单色器由入射狭缝和出射狭缝、准直镜以及色散元件,如棱镜或光栅等组成。 棱镜:色散作用是基于构成棱镜的光学材料对不同波长的光具有不同的折射率。 光栅:利用多狭缝干涉和单狭缝衍射两者联合作用产生光栅光谱。 干涉仪:通过干涉现象,得到明暗相间的干涉图。 滤光器是最简单的分光系统,只能分离出一个波长带或只能保证消除给定消长以上或以下的所有辐射。 6、简述常用辐射源的种类典型的光源及其应用范围。

1.光学分析法导论

第一章 光学分析法导论 (An Introduction to Optical Analysis ) 1.1 电磁辐射的性质 电磁辐射(electromagnetic radiation )是一种以极大的速度(在真空中为 2.9979× 1010cm ·s -1)通过空间,不需要任何物质作为传播媒介的能量。它包括无线电波、微波、红外光、紫外-可见光以及X 射线和γ射线等形式。电磁辐射具有波动性和微粒性。 1.1.1 电磁辐射的波动性 根据Maxwell 的观点,电磁辐射的波动性可以用电场矢量E 和磁场矢量M 来描述,如图1.1.1所示。它是最简单的单个频率的平面偏振电磁波。平面偏振就是它的电场矢量E 在一个平面内振动,而磁场矢量M 在另一个与电场矢量相垂直的平面内振动。电场和磁场矢量都是正弦波形,并且垂直于波的传播方向。与物质的电子相互作用的是电磁波的电场,所以磁场矢量可以忽略,仅用电场矢量代表电磁波。波的传播以及反射、衍射、干涉、折射和散射等现象表现了电磁辐射具有波的性质,可以用以下波参数来描。 图1.1.1 电磁波的电场矢量E 和磁场矢量M 1)周期T 相邻两个波峰或波谷通过空间某一固定点所需要的时间间隔称为周期,单位为s (秒)。 2)频率ν 单位时间内通过传播方向上某一点的波峰或波谷的数目,即单位时间内电磁场振动的次数称为频率,它等于周期的倒数1/T ,单位为1/s (1/秒),称为赫兹,以Hz 表示。电磁波的频率只取决于辐射源,与通过的介质无关。 3)波长λ 相邻两个波峰或波谷的直线距离。若电磁波传播速度为c ,频率为ν,那么波长λ为: νλ1 ?=c (1.1.1) 不同的电磁波谱区可采用不同的波长单位,可以是m ,cm ,μm 或nm ,他们之间的换算关系为1m=102cm=106μm=109nm 。 4)波数 每厘米长度内含有波长的数目,即波长的倒数: c νλ== 1 (1.1.2) 单位为cm -1(厘米-1),将波长换算成波长的关系式为:

光学分析法导论习题

光学分析法导论习题 一.填空题 1. 光速c≈3×1010cm·s-1是在中测得的。 2.原子内层电子跃迁的能量相当于光,原子外层电子跃迁的能量相当于光和。 3.分子振动能级跃迁所需的能量相当于光,分子中电子跃迁的能量相当于光。 4.钠的基态光谱支项为 ,钠的共振谱线以表示。 5.,和三种光分析方法是利用线光谱进行检测的。 6.指出下列电磁辐射所在的光谱区(光速为3×1010cm·s-1)。 (1)波长588.9nm ;(2)波数400cm-1; (3)频率2.5×1013Hz ;(4)波长300nm 。 二.选择题 1.电磁辐射的微粒性表现在下述哪种性质上 A. 能量 B. 频率 C. 波长 D. 波数 2.当辐射从一种介质传播到另一种介质中时,下述哪种参量不变? A. 波长 B.频率 C.速度 D.方向 3.镁的L=2光谱项可具有几个J值? A.1 B.2 C.3 D.4 4.下述哪种分析方法是基于发射原理的? A.红外光谱法 B.荧光光度法 C.核磁共振波谱法 D.分光光度法 5.带光谱是由于 A 炽热固体发射的结果 B 受激分子发射的结果

C 受激原子发射的结果 D 简单离子发射的结果 ?习题 一.填空题 1. 光速c≈3×1010cm·s-1是在头真空中测得的。 2.原子内层电子跃迁的能量相当于 X 光,原子外层电子跃迁的能量相当于紫外光和可见光。 3.分子振动能级跃迁所需的能量相当于红外光,分子中电子跃迁的能量相当于紫外可见光。 4.钠的基态光谱项为 32S 1/2 ,钠的共振谱线以 32P 3/2 或32P 312 表 示。 5.原子发射,原子吸收和原子荧光三种光分析方法是利用线光谱进行检测的。 6.指出下列电磁辐射所在的光谱区(光速为3×1010cm·s-1)。 (1)波长588.9nm ;(2)波数400cm-1; (3)频率2.5×1013Hz ;(4)波长300nm 。 二.选择题 1.电磁辐射的微粒性表现在下述哪种性质上(A) A. 能量 B. 频率 C. 波长 D. 波数 2.当辐射从一种介质传播到另一种介质中时,下述哪种参量不变?(B) A. 波长 B.频率 C.速度 D.方向 3.镁的L=2光谱项可具有几个J值?(C) A.1 B.2 C.3 D.4 4.下述哪种分析方法是基于发射原理的?(B) A.红外光谱法 B.荧光光度法 C.核磁共振波谱法 D.分光光度法 5.带光谱是由于(B) A 炽热固体发射的结果 B 受激分子发射的结果 C 受激原子发射的结果 D 简单离子受激发射的结果 一、选择题 1、请按能量递增的次序,排列下列电磁波谱区:红外、射频、可见光、紫外、X射线、

第二章 光学分析法导论

第二章 光学分析法导论 1、解释下列名词 (1)原子光谱和分子光谱 (2)发射光谱和吸收光谱 (3)统计权重和简并度 (4)分子振动光谱和分子转动光谱 (5)禁戒跃迁和亚稳态 (6)光谱项和光谱支项 (7)分子荧光、磷光和化学发光 (8)拉曼光谱 答:(1)由原子的外层电子能级跃迁产生的光谱称原子光谱; 由分子成键电子能级跃产生的光谱称分子光谱。 (2)原子受外界能量(如热能、电能)作用时,激发到较高能态,但很不稳定,再返回基态或较低能态而发射特征谱线形成的光谱称原子发射光谱。 由基态原子蒸气选择性地吸收一定频率的光辐射后跃迁到较高能态产生的原子特征光谱称原子吸收光谱。 (3)由能级简并引起的概率权重称为统计权重。 在磁场作用下,同一光谱支项会分裂成2J+1个不同的支能级,2J+1称为简并度。 (4)由分子在振动能级间跃迁产生的光谱称分子振动光谱; 由分子在不同转动能级间跃迁称分子转动光谱。 (5)不符合光谱选择定则的跃迁叫禁戒跃迁; 若两光谱项之间为禁戒跃迁,处于较高能级的原子有较长寿命,称为亚稳态。 (6)光谱项:用n 、L 、S 、J 四个量子数来表示能量状态,符号n 2S+1L J ; 光谱支项: J 值不同的光谱项。 (7)荧光和磷光都是光致发光。 荧光是物质的基态分子吸收一定波长范围的光辐射激发至单重激发态,再由激发态回到基态产生的二次辐射; 磷光是单重激发态先过渡到三重激发态,再由三重激发态向基态跃迁产生的光辐射; 化学发光是化学反应物或产物受反应释放的化学能激发产生的光辐射。 (8)拉曼光谱:入射光子与溶液中试样分子间非弹性碰撞引起能量交换而产生的与入射光频率不同的散射光谱。 2、阐明光谱项中各符号的意义和计算方法。 答:光谱项:n 2S+1L J ; 其中 n 为主量子数,与个别单独价电子的主量子数相同,取值仍为1,2,3,…任意正整数。 L 为总角量子数,其数值为外层价电子角量子数l 的矢量和,即:∑=i i l L 两个价电子耦合所得的总角量子数与单个价电子的角量子数l 1、l 2有如下的取值关系: L = (l 1+l 2),(l 1+l 2 -1),(l 1+l 2 -2),…,|l 1-l 2| 其值可能为L =0,1,2,3,…,相应的光谱项符号为S ,P ,D ,F ,…。若价电子数为3时,应先把2个价电子的角量子数的矢量和求出后,再与第三个价电子求出矢量和,就是3个价电子的总角量子数,依此类推。 S 为总自旋量子数,价电子自旋与自旋之间的相互作用也是较强的,多个价电子的总自旋量子数是单个价电子量子数m s 的矢量和,即:∑=i i s m S ,

光学分析法导论发射光谱习题

第二章光学分析法导论习题(P223) 1、光谱法的仪器由哪几部分组成?它们的作用是什么? 2、单色器由几部分组成?它们的作用是什么? 3、简述光栅和棱镜分光的原理。 4、影响光栅色散率(线色散率)的因素有哪些?线色散率的单位是什么? 5、波长为500nm和520nm的光谱线垂直照射到光栅上,经焦距为两米的成像物镜系统进 行光谱测量,若光栅刻线数分别为600条/mm,1200条/mm,问一级光谱和二级光谱中这两条线之间的距离为多少? 6、一台配有长63.5mm,刻线数为600条/mm光栅的光谱仪,理论上至少要用哪一级光谱 才能分辨开309.990nm和309.997nm的铁双线? 7、某光谱仪光栅长5cm,刻线数为1000条/mm,暗箱物镜焦距为1m,光线垂直光栅入射, 问分别用一、二级光谱时在衍射为30°处的波长各为多少?在此波长下所能分辨开的最小波长差各为什么?此时的倒线色散率为多大? 第三张原子发射光谱法习题(P242) 1、光谱项的意义是什么? 2、光谱分析常用的激发光源有哪几种?比较它们各自的特点? 3、发射光谱分析中,如何选择分析线和分析线对? 补充题 1、原子发射光谱是怎样产生的?其特点是什么? 2、原子发射光谱仪由哪几部分组成?其主要作用是什么? 3、名词解释:(1)激发电位;(2)电离电位;(3)原子线;(4);离子线;(5)共振线;(6) 灵敏线(7)等离子体;(8)自吸;(9)基体效应 4、简述ICP的形成原理及其特点。 5、光谱定性分析摄谱时,为什么要使用哈特曼光阑?为什么要同时摄取铁光谱? 6、光谱定量分析的依据是什么?为什么要采用内标法?简述内标法的原理。 7、为什么原子发射光谱可采用内标法来消除实验条件的影响? 8、采用原子发射光谱分析下列试样时,选用什么光源为宜? (1)矿石中组分的定性、半定量分析; (2)合金中铜的质量分数(10-2数量级) (3)钢中锰的质量分数(10-4~10-3数量级) (4)污水中的Cr、Mn、Cu、Fe等的质量分数(10-6~10-3数量级) 9、某合金中Pb的光谱的定量测定,以Mg作为内标,实验测得数据如下:根据下面数据,(1) 绘制工作曲线; (2)求溶液中A、B、C的质量浓度。 溶液黑度计读数(透光率)Pb的浓度(mg mL-1) Mg Pb 1 7.3 17.5 0.151 2 8.7 18.5 0.201 3 7.3 11.0 0.301 4 10.3 12.0 0.402 5 11. 6 10.4 0.502 A 8.8 15.5 B 9.2 12.5 C 10.7 12.2

光学分析法导论

第2章光学分析法导论 【2-1】解释下列名词。 (1)原子光谱和分子光谱(2)发射光谱和吸收光谱 (3)闪耀光栅和闪耀波长(4)光谱通带 答:(1)原子光谱:由原子能级之间跃迁产生的光谱称为原子光谱。 分子光谱:由分子能级跃迁产生的光谱称为分子光谱。 (2)发射光谱:原来处于激发态的粒子回到低能级或基态时,往往会发射电磁辐射,这样产生的光谱为发射光谱。 吸收光谱:物质对辐射选择性吸收而得到的原子或分子光谱称为吸收光谱。 (3)闪耀光栅:当光栅刻划成锯齿形的线槽断面时,光栅的光能量便集中在预定的方向上,即某一光谱级上。从这个方向探测时,光谱的强度最大,这种现象称为闪耀,这种光栅称为闪耀光栅。 闪耀波长:在这样刻成的闪耀光栅中,起衍射作用的槽面是个光滑的平面,它与光栅的表面一夹角,称为闪耀角。最大光强度所对应的波长,称为闪耀波长。 (4)光谱通带:仪器出射狭缝所能通过的谱线宽度。 【2-2】简述棱镜和光栅的分光原理。 【2-3】简述光电倍增管工作原理。 答:光电倍增管工作原理: 1)光子透过入射窗口入射在光电阴极K上。 2)光电阴极电子受光子激发,离开表面发射到真空中。 3)光电子通过电子加速和电子光学系统聚焦入射到第一倍增极D1上,倍增极将发射出比入射电子数目更多的二次电子,入射电子经N级倍增极倍增后光电子就放大N次方倍。 4)经过倍增后的二次电子由阳极P收集起来,形成阳极光电流,在负载RL上产生信号电压。 【2-4】何谓多道型检测器?试述多道型检测器光电二极管阵列、电荷耦合器件和电荷注入器件三者在基本组成和功能方面的共同点。 【2-5】请按能量递增和波长递增的顺序,分别排列下列电磁辐射区:红外,无线电波,可见光,紫外光,X射线,微波。 答:能量递增顺序:无线电波、微波、红外线、可见光、紫外光、X射线。 波长递增顺序:X射线、紫外光、可见光、红外线、微波、无线电波。 【2-6】计算下列电磁辐射的频率和波数。

光学分析法导论思考题与练习题

思考题与练习题 1.对下列的物理量单位进行换算: (1)150pm X射线的波数(cm-1); (2)670.7nm Li线的频率(Hz); (3)3300cm-1波数的波长(μm); 答案:(1);(2);(3)3.03μm。 2.计算下列电磁辐射的频率(Hz)、波数(cm-1)及光量子的能量(用电子伏eV、尔格erg 及千卡/摩尔表示): (1)波长为589.0nm的钠D线; 答 ; 案: (2)在12.6μm的红外吸收峰。 答 。 案: 3.将波长443nm的光通过折射率为1.329的甲醇溶液时,试计算: (1)在甲醇溶液中的传播速度; (2)频率; (3)能量(J); (4)周期(s)。 答案:(1);(2);(3);(4)。 4.辐射通过空气(n=1.00027)与某玻璃(n=1.7000)界面时,其反射损失的能量大约有多 少? 答案:6.7% 5.何谓光的二象性?何谓电磁波谱?

6.请按照能量递增和波长递增的顺序,分别排列下列电磁辐射区:红外线,无线电波,可 见光,紫外光,X射线,微波。 7.光谱法的仪器通常由哪几部分组成?它们的作用是什么? 自测题 1.电磁辐射的二象性是指: A.电磁辐射是由电矢量和磁矢量组成; B.电磁辐射具有波动性和电磁性; C.电磁辐射具有微粒性和光电效应; D.电磁辐射具有波动性和电磁性。 2.光量子的能量与电磁辐射的哪一个物理量成正比? A.紫外;B.波长; C.波数;D.周期。 3.可见区、紫外区、红外光区、无线电波四个电磁波区域中,能量最大和最小的区域分别为 A.紫外区和无线电波区; B.可见光区和无线电波区; C.紫外区和红外区; D.波数越大。 4.有机化合物成键电子的能级间隔越小,受激跃迁时吸收电磁辐射的 A.能量越大;B.频率越高; C.波长越长; D.波数越大。 5.波长为0.0100nm的电磁辐射的能量是多少eV?(已知)

《分析化学》下册华中师大等校编第二章光学分析法导论作业答案

第二章光学分析法导论作业答案 1、解释下列名词 (1)原子光谱和分子光谱P10 原子光谱:由原子产生的光谱称为原子光谱。 分子光谱:由分子产生的光谱称为分子光谱。 (2)发射光谱和吸收光谱P13和P14 发射光谱:基态原子获得一定的能量处于激发态,当激发态原子返回基态或较低能级时发射出的特征谱线,即为发射光谱。 吸收光谱:当光辐射通过基态原子或分子时,原子或分子选择性地吸收一定频率的光辐射,跃迁到高能态所产生的特征光谱。(3)分子荧光、磷光和化学发光P15 分子荧光:基态分子吸收一定波长的光跃迁至单重激发态,当其由单重激发态回到基态时产生的二次辐射即为分子荧光。 分子磷光:基态分子吸收一定波长的光跃迁至单重激发态,然后过渡到三重激发态,当其由三重激发态回到基态时产生的光辐射即为分子磷光。 化学发光:化学反应物或反应产物受反应释放的化学能激发而产生的光辐射。 (4)分子振动光谱和分子转动光谱P14 分子振动光谱:分子在振动能级间跃迁产生的光谱,也叫红外吸收光谱。

分子转动光谱:分子在转动能级间跃迁产生的光谱,也叫远红外吸收光谱和微波。 2、计算(1)670.7nm 锂线的频率;(2)3300cm -1谱线的波长;(3)钠588.99nm 共振线的激发电位。 3、电子能级间的能量差一般为1-20eV ,计算在1eV ,5eV 时相应的波长(nm )。 107eV .21099.588101.6021099792.21063.6c h E J 1038.31099.5881099792.21063.6c h E )3(3030nm cm 10030.3330011)2(s 10470.4107.6701099792.2)1(7-19-1034197-103441147-10=??????==?=????===?===?=??==-----λλσλλυc 解:248.1nm 10602.151********.21063.6E c h 1241nm 10 602.11101099792.21063.6E c h 197 1034197 1034=??????===??????==----λλ解:

光学分析导论

光学分析导论 1 选择题 1-1.光强度与单色器狭缝宽度有关,定性分析时采用的宽度(C),定量分析时采用的宽度(A)A. 较大 B.适中 C. 较小 D. 任何都可 1-2. 对于同级一光谱,光栅的分辨率是常数,当波长变化时分辨率(A) A. 不变 B. 变化 C. 无法确定 1-3. 光栅的色散率,在一定波长范围内,波长增大,色散率(C) A. 增加 B. 减少 C. 不变 D. 无法确定 1-4. 光栅的分光原理是由构成的光栅对不同波长的光有(A) A.干涉和衍射的作用 B. 衍射的作用 C. 干涉的作用 1-5. 光栅分入射角为i,衍射角为θ, 光栅斜面与刻度线斜面的夹角为φ, 要使衍射光最强,只有当(A) A. i =θ =φ B. i >θ =φ C. i>θ >φ 1-6. 在紫外光区测定时,吸收池的材料是(C) A.玻璃 B. 透明塑料 C. 石英 1-7. 棱镜的分光原理是根据构成棱镜的光学材料对不同波长的光具有不同的(C) A.透射 B. 色散率 C. 折射率 D. 反射 1-8. 同一光栅,二级光谱的色散率是一级光谱的(A) A.2倍 B. 1倍 C. 0.5倍 D. 不确定 1-9. 带光谱产生的原因(B) A. 炽热的固体 B. 受激分子 C. 受激原子 1-10下列色散元件中, 色散均匀, 波长范围广且色散率大的是( C ) A.滤光片 B. 玻璃棱镜 C. 光栅 D 石英棱镜 1-11某台原子吸收分光光度计,其线色散率为每纳米1.0 mm,用它测定某种金属离 子,已知该离子的灵敏线为403.3nm,附近还有一条403.5nm 的谱线,为了不干扰该 金属离子的测定,仪器的狭缝宽度达:( B ) A < 0.5mm B < 0.2mm C < 1mm D < 5mm 1-12在光学分析法中, 采用钨灯作光源的是( C ) A. 原子光谱 B. 分子光谱 C. 可见分子光谱 D. 红外光谱 1-13 欲分析165~360nm的波谱区的原子吸收光谱, 应选用的光源为( D ) A 钨灯 B 能斯特灯 C 空心阴极灯D氘灯 1-14同一电子能级,振动态变化时所产生的光谱波长范围是( C ) A 可见光区 B 紫外光区 C 红外光区 D 微波区 2 问答题 2-1 光谱仪由哪几部分组成?它们的功能各是是什么? 2-2 光谱仪的光源的种类及用途 2-3 单色器由哪几部分组成?它们的功能各是什么? 3 计算题 3-1 若用每毫米刻有500条刻线的光栅观察钠的波长为590nm谱线,当光束垂直入射和以30°角入射时,最多能观察到几级光谱? [解]根据光栅公式nλ = d(sinφ + sinθ) ,n为最大时其sinθ=1

《仪器分析》第二章 光学分析法导论习题答案

第二章光学分析法导论 1. 已知1电子伏特=1. 602×10-19J,试计算下列辐射波长的频率(以兆赫为单位),波数(以cm-1为单位)及每个光子的能量(以电子伏特为单位):(1)波长为900pm的单色X射线;(2)589.0nm的钠D线;(3)1 2.6μm的红外吸收峰;(4)波长为200cm的微波辐射。 解:已知1eV=1.602×10-19J, h=6.626×10-34J·s, c=3.0×108m·s-1 ①λ=900pm的X射线 Hz,即3.333×1011MHz cm-1 J 用eV表示,则eV ②589.0nm的钠D线 Hz,即5.093×108MHz cm-1 J 用eV表示,则eV ③12.6μm的红外吸收峰 Hz,即2.381×107MHz cm-1 J 用eV表示,则eV ④波长为200cm的微波辐射 Hz,即1.50×102MHz

cm-1 J 用eV表示,则eV 2. 一个体系包含三个能级,如果这三个能级的统计权重相同,体系在300K温度下达到平衡时,试计算在各能级上的相对分布(N i/N).能级的相对能量如下。 (1) 0eV,0.001eV,0.02eV;(2) 0eV,0.01eV,0.2eV; (3) 0eV,0.1eV, 2eV。 解:已知T=300K, k=1.380×10-23J·K-1=8.614×10-5eV·K-1, kT=8.614×10-5×300=0.0258eV ①E0=0eV, E1=0.001eV, E2=0.02eV ②E0=0eV, E1=0.01eV, E2=0.2eV ③E0=0eV, E1=01eV, E2=2eV

相关文档
相关文档 最新文档