文档库 最新最全的文档下载
当前位置:文档库 › 初中数学公式定律手册(必考)

初中数学公式定律手册(必考)

初中数学公式定律手册(必考)
初中数学公式定律手册(必考)

中学数学公式定律手册大全

初中代数

1)初中代数

【实数的分类】

【自然数】表示物体个数的1、2、3、4···等都称为自然数

【质数与合数】一个大于1的整数,如果除了它本身和1以外不能被其它正整数所整除,那么这个数称为质数。一个大于1的数,如果除了它本身和1以外还能被其它正整数所整除,那么这个数知名人士为合数,1既不是质数又不是合数。

【相反数】只有符号不同的两个实数,其中一个叫做另一个的相反数。零的相反数是零。

一个正数的绝对值是它本身,一个负数绝对值是它的相反数,零的绝对值为零。

【绝对值】

【完全平方数】如果一个有理数a的平方等于有理数b,那么这个有理数b叫做完全平方数。

【开方】求一数的方根的运算叫做开方。

【代数式】用有限次运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结所得的式子,叫做代数式。

【代数式的分类】

【无理式】根号下含有字母的代数式叫做无理式

【分式】除式中含字母的有理式叫分式

【倒数】1除以一个非零实数的商叫这个实数的倒数。零没有倒数。

【方根】如果一个数的n次方(n是大于1的整数)等于a,这个数叫做a 的n次方根。

【算术根】正数a的正的n次方根叫做a的n次算术根,零的算术根是零,负数没有算术根。

【代数式的值】用数值代替代数式里的字母,计算后所得的结果,叫做当这个字母取这个数值时的代数式的值。

【有理式】只含有加、减、乘、除和乘方运算的代数式叫有理式

【整式】没有除法运算或者虽有除法运算而除式中不含字母的有理式叫整式

2)初中代数2

【有理数的运算律】加法交换律:a+b=b+a

加法结合律: (a+b)+c=a+(b+c) 乘法的交换律: ab=ba

乘法的结合律: a(bc)=(ab)c 乘法分配律: a(b+c)=ab+ac

【等式的性质】【乘法公式】

【因式分解】

【方程】方程含有未知数的等式叫做方程。

方程的解在未知数允许值范围内,能使方程两边相等的未知数的值叫做方程的解。

解方程在指定范围内求出方程所有解,或者确定方程无解的过程,叫做解方程。

【一元一次方程】一元一次方程:只含有一个未知数且未知数的次数是一次的整式方程叫做一元一次方程

【一元二次方程】

平面几何

(一)直线与角

【直线】(不定义)直线向两方无限延伸,它无端点。

【射线】在直线上某一点旁的部分。射线只有一个端点。

【线段】直线上两点间的部分。它有两个端点。

【垂线】如果两条直线相交成直角,那么称这两条直线互相垂直。其中一条叫另一条的垂线,它们的交点叫垂足。

【斜线】如果两条直线不相交成直角时,其中一条直线叫另一条直线的斜线。

【点到直线的距离】从直线外一点到这条直线的垂线段的长度,叫做点到直线距离。

【线段的垂直平分线】定理:线段的垂直平分线上的点和这条线段两个端点的距离相等。

【平行线】在同一平面内不相交的两条直线叫做平行线。

【平行线公理及推论】经过直线外一点,有一条而且只有一条直线和这条直线平行。

平行于同一条直线的两条直线平行。

【角的定义】有公共点的两条射线所组成的图形,叫做角

【角的分类】周角:3600平角:1800直角:900锐角:00

(二)三角形

【三角形的分类】按角分

锐角三角形,钝角三角形,直角三角形按边分

等腰三角形,等边三角形,不等边三角形

【三角形的角平分线】三角形一个的角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段,叫做三角形的角的平分线。

【三角形的中线】连结三角形一个顶点的线段,叫做三角形的中线。

【三角形的高】三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。

【三角形的中位线】连结三角形两边中点的线段,叫做三角形的中位线。

全等三角形

【定义】全等三角形的对应边、对应角、对应的角的平分线、高及中线相等。

【性质】全等三角形的对应边、对应角、对应的角的平分线、高及中线相等。

【判定】

任意三角形直角三角形

(1)两边及夹角对应相等。

记为SAS

(2)两角和一边对应相等。

记为ASAA或AAS

(3)三边对应相等。记为

SSS

(1)一边一锐角对应相等

(2)两直角边对应相等。

(3)斜边、直角边对应相等

(HL)

三角形的四心

【名称】定义性质

【内心】三角形三条内角平分线的交

点,叫做三角形的内心(即

内切圆的圆心)

(1)内心到三角形三边的距

离相等。

(2)三角形一个顶点与内心

的连线平分这个角。

【外心】三角形三边的垂直平分线的

交点,叫做三角形的外心。

(即外接圆的圆心)

(1)外心到三角形的三个顶

点的距离相等。

(2)外心与三角形一边中点

的连线必垂直该边。

(3)过外心垂直于三角形一

边的直线必平分该边。

【重心】三角形三条中线的交点,叫

做三角形的重心。

(1)重心到每边中点的距离

等于这边中线的三分之一。

(2)三角形顶点与重心的连

线必过对边中点。

【垂心】三角形三条高的交点,叫做

三角形的垂心。

三角形的一个顶点与垂心连

线必垂直于对边。

初中数学所有的公式

初中三年的所有的公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

七年级数学上册必考定义、定理、公式、方法梳理

七年级数学上册必考定义、定理、公式、方法梳理 第一章有理数 1.1 正数与负数 ①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”) ②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。 ③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。 注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。 1.2 有理数 1.有理数: (1)整数:正整数、0、负整数统称整数; (2)分数:正分数和负分数统称分数; (3)有理数:整数和分数统称有理数。 2.数轴: (1)定义:通常用一条直线上的点表示数,这条直线叫数轴; (2)数轴三要素:原点、正方向、单位长度;

(3)原点:在直线上任取一个点表示数0,这个点叫做原点; (4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。 3.相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0) 4.绝对值: (1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,数的绝对值是两点间的距离。 (2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。 1.3 有理数的加减法 ①有理数加法法则: a.同号两数相加,取相同的符号,并把绝对值相加。 b.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。 c.一个数同0相加,仍得这个数。 ②有理数减法法则:减去一个数,等于加这个数的相反

2017年中考数学必背公式大全

2017年中考数学必背公式大全

中考数学必背公式大全 1 同角或等角的补角相等 2 同角或等角的余角相等 3 过两点有且只有一条直线 4 两点之间线段最短 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补

15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22 边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS)有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形

最全的的初中数学公式大全

最全的的初中数学公式大全 1过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理(ASA) 有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

初中数学各种公式(完整整理版)

初中数学各种公式及性质完整版 1.乘法与因式分解 ①(a+b)(a-b)=a2-b2;②(a±b)2=a2±2ab+b2;③(a+b)(a2-ab+b2)=a3+b3; ④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。2.幂的运算性质 ①a m×a n=a m+n;②a m÷a n=a m-n;③(a m)n=a mn;④(ab)n=a n b n;⑤(a b )n= n n a b ; ⑥a-n=1 n a ,特别:()-n=()n;⑦a0=1(a≠0)。 3.二次根式 ①()2=a(a≥0);②=丨a丨;③=×;④=(a>0,b≥0)。 4.三角不等式 |a|-|b|≤|a±b|≤|a|+|b|(定理); 加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a,b分别为向量a和向量b) |a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b ; |a-b|≥|a|-|b|;-|a|≤a≤|a|; 5.某些数列前n项之和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2; 2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6; 13+23+33+43+53+63+…n3=n2(n+1)2/4;1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3;6.一元二次方程 对于方程:ax2+bx+c=0: ①求根公式是x= 24 2 b b ac a -±-,其中△=b2-4ac叫做根的判别式。 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根; 当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。 ②若方程有两个实数根x1和x2,则二次三项式ax2+bx+c可分解为a(x-x1)(x-x2)。 ③以a和b为根的一元二次方程是x2-(a+b)x+ab=0。

初中数学必背重要公式

初中数学必背重要公式 一、有理数 (1) 二、整式的加减 (3) 三、一元一次方程 (3) 四、几何图形初步 (3) 五、相交线与平行线 (4) 六、实数 (4) 七、平面直角坐标系 (4) 八、二元一次方程组 (5) 九、不等式与不等式组 (5) 十、三角形 (6) 十一、全等三角形 (6) 十二、轴对称 (6) 十三、整式的乘法与因式分解 (7) 十四、分式 (7) 十五、二次根式 (8) 十六、勾股定理 (8) 十七、平行四边形 (8) 十八、一次函数 (9) 十九、数据的分析 (9) 二十、一元二次方程 (10) 二十—、二次函数 (10) 一、有理数 1、相反数与绝对值 (1)数a 的相反数是-a。若a、b 互为相反数,则 a+b=0;反之,若 a+b=0,则 a、b 互为相反数. a(a>0), (2)绝对值计算∣a∣= 0(a=0), -a(a<0), a(a≧0),a(a>0), 或∣a∣= 或∣a∣= -a(a<0), ------------------ a(a≦0) 2、两个有理数大小的比较 (1)在数轴上,右边的数总比左边的数大. (2)正数大于 0,负数小于 0,正数大于一切负数.

(3)两个负数比较,绝对值大的负数反而小. 3、有理数的运算 4、有理数运算律

(2)如果 a=b ,那么 ac=bc ;如果 a=b ,那么 = (c≠0) 5、科学记数法 把一个大于 10 的数记作a×10n 的形式,其中a 大于或等于 1 且小于 10,即 1 ≤| a| <10,n 是正整数. 二、整式的加减 1、合并同类项的法则 合并同类项时,将同类项的系数相加,所得的和作为系数,字母与字母的指数不变. 2、去括号法则 括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项的符号都不改变;括号前面是 “-”号,把括号和它前面的“-”号去掉,括号里的各项都改变符号. 3、整式的加减法则 整式的加减实质就是去括号、合并同类项,若有括号,就要先去掉括号,然后再合并同类项,直 到结果中没有同类项为止. 三、一元一次方程 1、等式的基本性质 (1)如果a=b ,那么 a+c=b+c ,a-c=b-c a b c c 2、解一元一次方程的步骤 四、几何图形初步 1、直线、线段公理 (1) 直线公理:两点确定一条直线. (2) 线段公理:两点之间,线段最短. 2、角

中考数学必背公式大全

中考数学必背公式大全文档编制序号:[KK8UY-LL9IO69-TTO6M3-MTOL89-FTT688]

中考数学必背公式大全 1 同角或等角的补角相等 2 同角或等角的余角相等 3 过两点有且只有一条直线 4 两点之间线段最短 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180°

18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22 边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS)有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL)有斜边和一条直角边对应相等的两个直角三角形全等 27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

《初中数学公式大全》

初中数学公式表

实用工具:常用数学公式 公式分类公式表达式 乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b

|a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac<0 注:方程没有实根,有共轭复数根 三角函数公式 两角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 倍角公式 tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a 半角公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA)) 和差化积 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) 2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

初中数学各种公式(完整版)

数学各种公式及性质 1. 乘法与因式分解 ①(a +b )(a -b )=a 2-b 2;②(a ±b )2=a 2±2ab +b 2;③(a +b )(a 2-ab +b 2)=a 3+b 3; ④(a -b )(a 2+ab +b 2)=a 3-b 3;a 2+b 2=(a +b )2-2ab ;(a -b )2=(a +b )2-4ab 。 2. 幂的运算性质 ①a m ×a n =a m +n ;②a m ÷ a n =a m -n ;③(a m )n =a mn ;④(ab )n =a n b n ;⑤(a b )n =n n a b ; ⑥a -n = 1n a ,特别:()-n =()n ;⑦a 0 =1(a ≠0)。 3. 二次根式 ①( )2=a (a ≥0);② =丨a 丨;③ = × ;④ = (a >0,b ≥0)。 4. 三角不等式 |a|-|b|≤|a±b|≤|a|+|b|(定理); 加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a ,b 分别为向量a 和向量b ) |a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b ; |a-b|≥|a|-|b|; -|a|≤a≤|a|; 5. 某些数列前n 项之和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n -1)=n 2 ; 2+4+6+8+10+12+14+…+(2n)=n(n+1); 12+22+32+42+52+62+72+82+…+n 2=n(n+1)(2n+1)/6; 13+23+33+43+53+63+…n 3=n 2(n+1)2/4; 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3; 6. 一元二次方程 对于方程:ax 2 +bx +c =0: ①求根公式是x =2b a -,其中△=b 2-4ac 叫做根的判别式。 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根; 当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。

中学数学公式大全(全)

数学公式及性质(完整版) 1.乘法与因式分解 ①(a+b)(a-b)=a2-b2;②(a±b)2=a2±2ab+b2;③(a+b)(a2-ab+b2)=a3+b3; ④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。2.幂的运算性质 ①a m×a n=a m+n;②a m÷a n=a m-n;③(a m)n=a mn;④(ab)n=a n b n;⑤(a b )n=n n a b ; ⑥a-n=1 n a ,特别:()-n=()n;⑦a0=1(a≠0)。 3.二次根式 ①()2=a(a≥0);②=丨a丨;③=×;④=(a>0,b≥0)。4.三角不等式 |a|-|b|≤|a±b|≤|a|+|b|(定理); 加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a,b分别为向量a和向量b) |a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b ; |a-b|≥|a|-|b|;-|a|≤a≤|a|; 5.某些数列前n项之和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2; 2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6; 13+23+33+43+53+63+…n3=n2(n+1)2/4; 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3;

初中数学必考公式汇总

初中数学必考公式汇总 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于 180° 18 推论 1 直角三角形的两个锐角互余 19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理 1 在角的平分线上的点到这个角的两边的距离相等 28 定理 2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角) 31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论 3 等边三角形的各角都相等,并且每一个角都等于 60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

(完整版)初中数学公式大全(绝对经典)

初中数学公式大全 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12 两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形内角和定理三角形三个内角的和等于180 ° 18 推论 1 直角三角形的两个锐角互余 19 推论 2 三角形的一个外角等于和它不相邻的两个内角的和 20 推论 3 三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22 边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA) 有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27 定理 1 在角的平分线上的点到这个角的两边的距离相等 28 定理 2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等( 即等边对等角) 31 推论 1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论 3 等边三角形的各角都相等,并且每一个角都等于60 ° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论 1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60 °的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理 1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44 定理 3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46 勾股定理直角三角形两直角边a、b 的平方和、等于斜边 c 的平方,即a^2+b^2=c^2

(完整)初中数学各种公式(完整版)

数学各种公式及性质 1.乘法与因式分解 ①(a+b)(a-b)=a2-b2;②(a±b)2=a2±2ab+b2;③(a+b)(a2-ab+b2)=a3+b3; ④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab;(a-b)2=(a+b)2-4ab。2.幂的运算性质 ①a m×a n=a m+n;②a m÷a n=a m-n;③(a m)n=a mn;④(ab)n=a n b n;⑤(a b )n= n n a b ; ⑥a-n=1 n a ,特别:()-n=()n;⑦a0=1(a≠0)。 3.二次根式 ①()2=a(a≥0);②=丨a丨;③=×;④=(a>0,b≥0)。 4.三角不等式 |a|-|b|≤|a±b|≤|a|+|b|(定理); 加强条件:||a|-|b||≤|a±b|≤|a|+|b|也成立,这个不等式也可称为向量的三角不等式(其中a,b分别为向量a和向量b) |a+b|≤|a|+|b|;|a-b|≤|a|+|b|;|a|≤b<=>-b≤a≤b ; |a-b|≥|a|-|b|;-|a|≤a≤|a|; 5.某些数列前n项之和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2;1+3+5+7+9+11+13+15+…+(2n-1)=n2; 2+4+6+8+10+12+14+…+(2n)=n(n+1);12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6; 13+23+33+43+53+63+…n3=n2(n+1)2/4;1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3;6.一元二次方程 对于方程:ax2+bx+c=0: ①求根公式是x 24 b b ac -±-△=b2-4ac叫做根的判别式。 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根; 当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根。 ②若方程有两个实数根x1和x2,则二次三项式ax2+bx+c可分解为a(x-x1)(x-x2)。

初中数学必背公式及定理

初中数学必背公式及定理 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 错角相等,两直线平行 11 同旁角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,错角相等 14 两直线平行,同旁角互补 15 定理三角形两边的和大于第三边 16 推论三角形两边的差小于第三边 17 三角形角和定理三角形三个角的和等于180° 18 推论1 直角三角形的两个锐角互余 19 推论2 三角形的一个外角等于和它不相邻的两个角的和 20 推论3 三角形的一个外角大于任何一个和它不相邻的角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS) 有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1 在角的平分线上的点到这个角的两边的距离相等 28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角) 31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3 等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1 三个角都相等的三角形是等边三角形 36 推论 2 有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1 关于某条直线对称的两个图形是全等形 43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形

初中数学各种应用题公式

初中数学各种应用题公式平均数问题公式:(一个数+另一个数)÷2 反向行程问题公式: 路程÷(大速+小速)=时间 同向行程问题公式:路程÷(大速-小速)=时间 行船问题公式同上 列车过桥问题公式(车长+桥长)÷车速=时间 工程问题公式1÷速度和 盈亏问题公式(盈+亏)÷两次的相差数 利率问题公式总利润÷成本×100% 盈亏:(盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 相遇 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水 顺流速度=静水速度+水流速度

逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣 利润=售出价-成本(进价) 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距+1 全长=株距×(株数-1) 株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距全长=株距×株数株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1)

初中数学公式大全35463

初中数学常用的概念、公式和定理 1. 整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数. 如:-3, ,0.231,0.737373…, , .无限不环循小数叫做无理数..如:π,- - ,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数. 2. 绝对值:a ≥0 丨a 丨=a;a ≤0 丨a 丨=-a. 如:丨- 丨= ;丨3.14-π丨=π-3.14. 3. 一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这 个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0. 4. 把一个数写成±a×10n 的形式(其中1≤a<10,n 是整数),这种记数法叫做科学记数法. 如:-40700=-4.07×105,0.000043=4.3×10- 5. 5. 被开方数的小数点每移动2位,算术平方根的小数点就向相同方向移动1位;被开方数 的小数点每移动3位,立方根的小数点就向相同方向移动1位. 如:已知 =0.4858,则 =48.58;已知 =1.558,则 =0.1588. 6. 整式的乘除法:①几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. ②单项式乘以多项式,用单项式乘以多项式的每一个项.③多项式乘以多项式,用一个多- 项式的每一项分别乘以另一个多项式的每一项.④多项式除以单项式,将多项式的每一项 分别除以这个单项式. 7. 幂的运算性质:①a m ×a n =a m+n .②a m ÷a n =a m -n .③(a m )n =a mn .④(ab)n =a n b n .⑤( )n =n.⑥a -n =n, 特别:( )-n =( )n .⑦a 0=1(a ≠0). 如:a 3×a 2=a 5,a 6÷a 2=a 4,(a 3)2=a 6,(3a 3)3=27a 9,(-3)-1=- ,5-2= = ,( )-2=( )2= ,(- 3.14)0=1,( - )0=1. 8. 乘法公式(反过来就是因式分解的公式):①(a+b )(a -b )=a 2-b 2.②(a±b)2 =a 2±2ab+b 2. ③(a+b )(a 2-ab+b 2)=a 3+b 3.④(a -b )(a 2+ab+b 2)=a 3-b 3;a 2+b 2=(a+b )2-2ab,(a - b )2=(a+b )2-4ab. 9. 选择因式分解方法的原则是:先看能否提公因式.在没有公因式的情况下:二项式用平 方差公式或立方和差公式,三项式用十字相乘法(特殊的用完全平方公式),三项以上用 分组分解法.注意:因式分解要进行到每一个多项式因式都不能再分解为止. 10. 分式的运算:乘除法要先把分子、分母都分解因式,并颠倒除式,约分后相乘;加减法 应先把分母分解因式,再通分(不能去分母).注意:结果要化为最简分式. 11. 二次根式:①( )2=a (a ≥0),② =丨a 丨, 如:①(3 )2=45.② =6.③a<0时, =-a .④ 的平方根=4的平方根=±2. 12. 一元二次方程:对于方程:ax 2+bx+c=0:①求根公式 (a>0,b ≥0). ,其中=b 2-4ac 叫做根-

(完整版)初中数学常用公式和定理大全

初中数学常用公式定理 1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数. 2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14. 3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0. 4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5. 5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③(a+ b)(a2-ab+b2)=a3+b3.④(a-b)(a2+ab+b2)=a3-b3;a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab. 6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn.④(ab)n=a n b n.⑤()n=n. ⑥a-n=1 n a ,特别:()-n=()n.⑦a0=1(a≠0).如:a3×a2=a5,a6÷a2=a4,(a3)2=a6,(3a3)3=27a9, (-3)-1=-,5-2==,()-2=()2=,(-3.14)o=1,(-)0=1. 7、二次根式:①()2=a(a≥0),②=丨a丨,③=×,④=(a>0,b≥0).如: ①(3)2=45.②=6.③a<0时,=-a.④的平方根=4的平方根=±2.(平方根、立方根、算术平方根的概念) 8、一元二次方程:对于方程:ax2+bx+c=0: ①求根公式是x= 24 b b ac -±- ,其中△=b2-4ac叫做根的判别式. 当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根; 当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根. ②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2). ③以a和b为根的一元二次方程是x2-(a+b)x+ab=0. 9、一次函数y=kx+b(k≠0)的图象是一条直线(b是直线与y轴的交点的纵坐标即一次函数在y轴上的截距).当k>0时,y随x的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点. 10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反. 11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体

初中数学必背公式归纳整理

初中数学必背公式归纳整理 很多初中同学想要初中的公式,所以整理了一些,希望大家多多理解并进行记忆,以便考个好的数学成绩。 初中数学必背公式归纳乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2) 三角不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b-b≤a≤b |a-b|≥|a|-|b| -|a|≤a≤|a| 一元二次方程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a 根与系数的关系X1+X2=-b/a X1*X2=c/a 注:韦达定理 判别式 b2-4ac=0 注:方程有两个相等的实根 b2-4ac>0 注:方程有两个不等的实根 b2-4ac0 抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py 直棱柱侧面积S=c*h 斜棱柱侧面积S=c'*h 正棱锥侧面积S=1/2c*h' 正棱台侧面积S=1/2(c+c')h' 圆台侧面积S=1/2(c+c')l=pi(R+r)l 球的表面积S=4pi*r2

圆柱侧面积S=c*h=2pi*h 圆锥侧面积S=1/2*c*l=pi*r*l 弧长公式l=a*r a是圆心角的弧度数r >0 扇形面积公式s=1/2*l*r 锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h 斜棱柱体积V=S'L 注:其中,S'是直截面面积, L是侧棱长 柱体体积公式V=s*h 圆柱体V=pi*r2h 常见的初中数学公式 1.过两点有且只有一条直线 2.两点之间线段最短 3.同角或等角的补角相等 4.同角或等角的余角相等 5.过一点有且只有一条直线和已知直线垂直 6.直线外一点与直线上各点连接的所有线段中,垂线段最短 7.平行公理经过直线外一点,有且只有一条直线与这条直线平行 8.如果两条直线都和第三条直线平行,这两条直线也互相平行 9.同位角相等,两直线平行 10.内错角相等,两直线平行 11.同旁内角互补,两直线平行 12.两直线平行,同位角相等 13.两直线平行,内错角相等 14.两直线平行,同旁内角互补

相关文档
相关文档 最新文档