文档库 最新最全的文档下载
当前位置:文档库 › 腐蚀环境下铝合金疲劳裂纹扩展的试验及仿真

腐蚀环境下铝合金疲劳裂纹扩展的试验及仿真

腐蚀环境下铝合金疲劳裂纹扩展的试验及仿真
腐蚀环境下铝合金疲劳裂纹扩展的试验及仿真

常用金相腐蚀剂

常用金相腐蚀剂(转)

低倍组织浸蚀剂 序号用途成份腐蚀方法附注 A101 大多数钢种 1:1(容积比工业盐酸水溶液 60-80℃热蚀时间: 易切削钢5-10min 碳素钢等5-20min 合金钢等15-20min 酸蚀后防锈方法: a. 中和法:用10%氨水溶液浸泡后再以热水冲洗。 b. 钝化法:浸入浓硝酸5秒再用热水冲洗。 c. 涂层保护法:涂清漆和塑料膜。 A102 奥氏体不锈钢.耐热钢盐酸 10份硝酸 1份水 10份 (容积比) 60-70℃热蚀时间: 5-25min A103 碳素钢合金钢高速工具钢盐酸 38份硫酸 12份水 50份 (容积比) 60-80℃热蚀时间: 15-25min A104 大多数钢种盐酸 500ml 硫酸 35ml 硫酸铜 150g 室温浸蚀在浸蚀过程中,用毛刷不断擦拭试样表面, 去除表面沉淀物可用 A108号浸蚀剂作冲刷液

A105 大多数钢种三氯化铁200g 硝酸 300ml 水 100ml 室温浸蚀或擦拭1-5min A106 大多数钢种盐酸 30ml 三氯化铁 50g 水 70ml 室温浸蚀 A107 碳素钢合金钢 10%-40%硝酸水溶液 (容积比室温浸蚀 25%硝酸水溶液为通用浸蚀剂 a.可用于球墨铸铁的低倍组织显示。 b.高浓度适用于不便作加热的钢锭截面等大试样。 A108 碳素钢合金钢显示技晶及粗晶组织 10%-20%过硫酸铵水溶液室温浸蚀或擦拭 A109 碳素钢合金钢三氯化铁饱和水溶液 500ml 硝酸 10ml 室温浸蚀 A110 不锈钢及高铬.高镍合金钢硝酸 1份盐酸 3份 A111 奥氏体不锈钢硫酸铜 100ml 盐酸 500ml 水 500ml 室温浸蚀也可以加热使用通用浸蚀剂 A112 精密合金高温合金硝酸 60ml 盐酸 200ml 氯化高铁 50g 过硫酸铵 30g 水 50ml 室温浸蚀 A113 钢的技晶组织工业氯化铜铵12g 盐酸 5ml 水 100ml 浸蚀30-60min后对表面稍加研磨则能获得好的效果 A114 显示铸态组织和铸钢晶粒度硝酸 10ml 硫酸 10ml 水 20ml 室温浸蚀 A115 高合金钢高速钢铁-钴和镍基高温合金盐酸 50ml 硝酸 25ml 水 25ml 稀王水浸蚀剂 A116 铁素体及奥氏体不锈钢重铬酸钾 25g (K2Cr2O7) 盐酸 100ml 硝酸 10ml 水 100ml 60-70℃热蚀时间:30-60min 碳钢、合金钢显微组织 序号用途成份腐蚀方法附注 A201 碳钢合金钢硝酸 1-10ml乙醇 90-99ml 硝酸加入量按材料选择,常用3%-4%溶液,1%溶液适用于碳钢中温回火组织及CN共渗黑色组织最常用浸蚀剂。但热处理组织不如苦味酸溶液的分辩能力强 A202 钢的热处理组织苦味酸 2-4g乙醇100ml必要时加入4-5滴润湿剂室温浸蚀浸蚀作用缓慢能清晰显示珠光体、马氏体、回火马氏体、贝氏体等组织,F3C染成黄色 A203 显示极细珠光体戊醇 100ml苦味酸 5g 通风柜内操作不能存放 A204 显示淬火马氏体与铁素体的反差苦味酸 1g水 100ml 70-80℃热蚀时间:15-20秒也可以使用饱和溶液 A205 显示铁素体与碳化物的组织苦味酸 1g盐酸 5ml乙醇 100ml 室温浸蚀 Vilella试剂经 300-500℃回火效果最佳,也可显示高铬钢中的板条马氏体与针状马氏体的区别 A206 显示合金钢回火马氏体 1%硝酸乙醇1份4%苦味酸乙醇1份室温浸蚀

金属疲劳试验方法

铝合金疲劳实验 李慕姚 1351626 一﹑实验目的 1. 观察疲劳失效现象和断口特征。 2. 了解测定材料疲劳极限的方法。 二、实验设备 1. 疲劳试验机。 2. 游标卡尺。 三﹑实验原理及方法 在交变应力的应力循环中,最小应力和最大应力的比值 r=m ax m in σσ (2-16) 称为循环特征或应力比。在既定的r 下,若试样的最大应力为σ 1m ax ,经历N 1次循环后,发生疲劳失效,则N 1称为最大应力为σ1 m ax 时的疲劳寿命(简称寿 命)。实验表明,在同一循环特征下,最大应力越大,则寿命越短;随着最大应力的降低,寿命迅速增加。表示最大应力σmax 与寿命N 的关系曲线称为应力-寿命曲线或S-N 曲线。碳钢的S-N 曲线如图2-31所示。从图线看出,当应力降到某一极限值σr 时,S-N 曲线趋近于水平线。即应力不超过σr 时,寿命N 可无限增大。称为疲劳极限或持久极限。下标r 表示循环特征。 实验表明,黑色金属试样如经历107次循环仍未失效,则再增加循环次数一般也不会失效。故可把107次循环下仍未失效的最大应力作为持久极限σr 。而把N 0=107称为循环基数。有色金属的S-N 曲线在N>5×108时往往仍未趋于水平,通常规定一个循环基数N 0,例如取N 0=108,把它对应的最大应力作为“条件”持久极限。

图2-31 疲劳试验曲线图 工程问题中,有时根据零件寿命的要求,在规定的某一循环次数下,测出σmax ,并称之为疲劳强度。它有别于上面定义的疲劳极限。 用旋转弯曲疲劳实验来测定对称循环的疲劳极限σ-1.设备简单最常使用。各类旋转弯曲疲劳试验机大同小异,图2-32为这类试验机的原理示意图。试样1的两端装入左右两个心轴2后,旋紧左右两根螺杆3。使试样与两个心轴组成一个承受弯曲的“整体梁”上,它支承于两端的滚珠轴承4上。载荷P 通过加力架作用于“梁”上,其受力简图及弯矩图如图2-33所示。梁的中段(试样) 为纯弯曲,且弯矩为M=21 P ɑ。“梁”由高速电机6带动,在套筒7中高速旋转,于是试样横截面上任一点的弯曲正应力,皆为对称循环交变应力,若试样的最小直径为d min ,最小截面边缘上一点的最大和最小应力为 max σ=I Md 2min , min σ=-I Md 2min (2-17) 式中I=64π d 4 m in 。试样每旋转一周,应力就完成一个循环。试样断裂后,套筒压迫停止开关使试验机自动停机。这时的循环次数可由计数器8中读出。 四﹑实验步骤 (1)测量试样最小直径d min ; (2)计算或查出K 值;

材料疲劳裂纹扩展设计研究综述

材料疲劳裂纹扩展研究综述 摘要:疲劳裂纹扩展行为是现代材料研究中重要的内容之一。论述了组织结构、环境温度、腐蚀条件以及载荷应力比、频率变化对材料疲劳裂纹扩展行为的影响。总结出疲劳裂纹扩展研究的常用方法和理论模型,并讨论了“塑性钝化模型”和“裂纹闭合效应”与实际观察结果存在的矛盾温度、载荷频率和应力比是影响材料疲劳裂纹扩展行为的主要因素。发展相关理论和方法,正确认识影响机理,科学预测疲劳裂纹扩展行为一直是人们追求的目标。指出了常用理论的不足,对新的研究方法进行了论述。 关键词: 温度; 载荷频率; 应力比; 理论; 方法; 疲劳裂纹扩展 1 前言 19世纪40年代随着断裂力学的兴起,人们对于材料疲劳寿命的研究重点逐渐由不考虑裂纹的传统疲劳转向了主要考察裂纹扩展的断裂疲劳。尽量准确地估算构件的剩余疲劳寿命是人们研究材料疲劳扩展行为的一个重要目的。然而,材料的疲劳裂纹扩展研究涉及了力学、材料、机械设计与加工工艺等诸多学科,材料、载荷条件、使用环境等诸多因素都对疲劳破坏有着显著的影响,这给研究工作带来了极大困难。正因为此,虽然对于疲劳的研究取得了大量有意义的研究成果,但仍有很多问题存在着争议,很多学者还在不断的研究和探讨,力求得到更加准确的解决疲劳裂纹扩展问题的方法和理论。 经过几十年的发展,人们已经认识到断裂力学是研究结构和构件疲劳裂纹扩展有力而现实的工具。现代断裂力学理论的成就和工程实际的迫切需要,促进了疲劳断裂研究的迅速发展。如Rice的疲劳裂纹扩展力学分析(1967年) ,Elber的裂纹闭合理论(1971年) ,Wheeler 等的超载迟滞模

型(1970年) ,Hudak等关于裂纹扩展速率标准的测试方法,Sadananda和Vasudevan ( 1998年)的两参数理论等都取得了一定成果。本文将对其研究中存在问题、常用方法和理论模型、以及温度、载荷频率和应力比对疲劳裂纹扩展影响的研究成果和新近发展起来的相关理论进行介绍。 2 疲劳裂纹扩展研究现存问题 如今,人们在分析材料裂纹扩展问题时最常用到的是“塑性钝化模型”和裂纹尖端因“反向塑性区”等原因导致的“裂纹闭合效应”理论。而它们是否正确,却一直在人们的验证和争论之中。 根据现有的研究结果,有学者提出,若按照“塑性钝化模型”理论,强度高的材料应具有较低的裂纹扩展速率,但实验结果却不能证实这一预测。另外,该“模型”认为的“裂纹尖端的钝化是在拉应力达到最大值时完成的”这一观点在理论上不妥,也与实测结果不符。观察结果表明,裂纹尖端钝化是一个渐进的过程,钝化半径与外载荷大小成正比。 而疲劳裂纹在扩展过程中的“裂纹闭合效应”在什么情况下存在,能否对材料的裂纹扩展速率产生重要影响,考虑“裂纹闭合”的实验室数据能否用于工程中等问题也一直在人们的争论之中。由于“裂纹闭合效应”理论推出的结论是:“对载荷比的依赖性不是材料的内在行为,而是源于裂纹表面提前闭合后应力强度因子幅(△K) 的变化”,所以早在1984年S.Suresh等人就指出[1],“裂纹闭合”不是一个力学参数,它受构件形状、载荷、环境和裂纹长度等因素的影响。因此,除非在实际使用过程中测量构件的裂纹闭合情况,否则在实验室里做出来的试验结果不能用来预测构件中的裂纹扩展速率。1970年,Ritchie研究钢中裂纹扩展的近门槛值时发现:在真空环境下,应力比R对门槛值几乎没有影响,首度质疑了裂纹闭合的存在性和所起的作用。在前人研究的基础上,美国海军实验室的

7075-T6铝合金搅拌摩擦焊疲劳裂纹扩展特性

7075-T6铝合金搅拌摩擦焊疲劳裂纹扩展特性1 陈加华1,杨新岐1,吴海亮1,栾国红2 1天津大学材料科学与工程学院,北京 (300072) 2中国搅拌摩擦焊中心北京搅拌摩擦焊技术有限公司,北京 (100024) E-mail:chenjiahua2008@!https://www.wendangku.net/doc/d81885192.html, 摘要:搅拌摩擦焊(FSW)作为一种新型固相连接技术在铝合金等轻型合金连接方面具有 很大的优势,建立合理有效的疲劳评定标准是FSW技术推广和应用的必要条件。本文通过 对7075-T6FSW接头不同位置的疲劳裂纹扩展速率进行实验,来研究铝合金FSW接头的疲 劳性能。实验结果表明:后退边HAZ疲劳裂纹扩展速率最慢,而垂直于焊缝区的扩展速率 则最快;焊缝中心区的扩展速率在低△K区会低于前进边HAZ,而到裂纹扩展后期,疲劳 裂纹扩展速率会高于前进边HAZ;与IIW标准的推荐值相比,所有区域的疲劳裂纹扩展速 率均显著低于推荐值,这说明FSW接头的疲劳性能较好。 关键词:搅拌摩擦焊;铝合金;疲劳裂纹扩展速率;焊接缺陷 1.引言 进入21世纪,能源问题已经成为世界上所有国家经济发展的制约因素,节约能源成为大 家的共识,而构件轻量化是其中重要途径,铝合金的使用能大大减轻构件的重量。铝合金材 料具有比强度高,耐腐蚀和易成形等一系列优点,如7xxx系列,在航空、航天、高速列车和 高速舰船等工业制造领域得到越来越广泛的应用。但是,铝合金具有熔点低、热传导系数较 大、热膨胀率高等特点,如采用传统熔焊连接时,将很难保证接头质量[1]。 搅拌摩擦焊(Fiction Stir Welding, 简称FSW)是英国焊接研究所(TWI)1991年发明的 新型固相连接技术,并在全世界范围内申请了专利保护[2],被誉为是继激光焊接后最为革命 性的连接方法。国内外已有大量实验证明:FSW技术能很好地连接铝合金,且接头强度比熔 焊有很大提高。但在国内关于搅拌摩擦焊接头疲劳性能研究的文献还非常之少,尤其是疲劳 裂纹扩展速率的文章。本文将对7075-T6铝合金FSW接头疲劳裂纹扩展速率进行研究,实验 结果将给疲劳评定机制的建立提供实验依据。 2.实验原理及方法 本试验所采用的材料为铝合金7075-T6,母材热处理状态为T6,其化学成分和基本力学 性能见表2-1和2-2。 表2-1铝合金7075 化学成分 材料 Zn Mg Cu Cr Mn Fe Si Al 7075 5.1~6.1 2.1~2.9 1.2~2.0 0.18~0.28 0.30 0.50 0.40 其余 表2-2 铝合金7075力学性能 材料断裂强度/MPa 屈服强度/MPa 延伸率/% 7075 552±6 520±4 14.4±0.6 此次焊接中的焊接参数为:搅拌头旋转速度800~1000r/min;焊接速度 150~250mm/min; 搅拌头插入深度4.75mm;倾角3°;压入量0.1~0.2mm;预顶压力1.5~2.5KN。所有7075-T6 1本项目是与中国搅拌摩擦焊中心北京赛福斯特技术有限公司的联合研究资助项目(项目编号: cfswt-34-041014)。

疲劳试验方案

腐蚀钢丝疲劳性能试验 通过对国内外的文献进行查阅,少有对已使用过的腐蚀钢丝进行疲劳性能 试验的相关研究。因此,有必要对锈蚀分级过的腐蚀钢丝(亦有疲劳损伤)进行疲劳 性能试验,为斜拉桥拉索的安全评定及剩余寿命预测提供研究基础。 一﹑实验目的 1. 观察疲劳失效现象和断口特征。 2. 得到S-N 曲线。 3. 试验特定过程中的应力应变关系 二、实验设备 1. 疲劳试验机。 2. 锈蚀分级的拉索钢丝。 三﹑实验方法 试验用拉索钢丝尺寸及构造示意图见图1。疲劳性能试验采用力控制,拉 索疲劳性能试验初始应力幅为 360MPa ,应力比为 0.5,断丝后仍保持荷载幅 不变。疲劳试验拉索钢丝长度为300mm 、自由段长度为 200mm 。钢丝截面直径为7mm ,对应面积为523.84810m -? 。 图1. 拉索钢丝示意图

表1.疲劳试验性能表 编号 Mpa σ? max Mpa σ min Mpa σ R 试件数量 1 290 580 290 0.5 4 2 360 720 360 0.5 4 3 500 1000 500 0.5 4 试件数量4根分别代表全新、锈蚀等级1、锈蚀等级2、锈蚀等级3的拉索钢丝。编号1、2、3力控制分别为:11.161KN —22.321KN 、13.854KN —27.709KN 、19.242KN —38.485KN 。 影响钢丝疲劳性能的参数主要是应力幅和应力循环次数,为在尽可能少的样本下获得钢丝疲劳寿命的概率分布,设计了如表1的拉索钢丝疲劳性能试验方案。 疲劳试验钢丝样本长度 300mm ,考虑到在拉伸疲劳试验时常断在夹持部位,主要是试验机夹具附加力使钢丝表面产生损伤或应力集中造成的,为使试验获得理想可靠的结果,应该对试验钢丝样本两端的夹持部位表面进行夹持处理,使夹持部位钢丝表面产生预压应力,提高其疲劳性能,避免试验过程中在此部位发生破坏。 四﹑试样 采用R 、S 、T 三组不同锈蚀等级的平行钢丝、以及全新钢丝。 五﹑实验结果处理 1. 将所得实验数据列表;然后以lgN 为横坐标,σmax 为纵坐标,绘制光滑的S-N 曲线。 2. 报告中绘出破坏断口,指出其特征。

常用金相试样化学腐蚀剂

常用金相试样化学腐蚀剂 浸蚀剂名称成份适用范围及使用要点 硝酸酒精溶液硝酸2-4ml 酒精100ml 各种碳钢、铸铁等 苦味酸酒精溶液苦味酸4g 酒精100ml 珠光体、马氏体、贝氏体、渗碳 体 盐酸苦味酸盐酸5ml 苦味酸1g 水100ml 回火后马氏体或奥氏体晶粒 氯化铁盐酸水溶液氯化铁5g 盐酸50ml 水100ml 奥氏体-铁素体不锈钢 奥氏体不锈钢 混合酸甘油溶液硝酸10ml 盐酸30ml 甘油30ml 奥氏体不锈钢 高Cr Ni耐热钢 王水酒精溶液盐酸10ml 硝酸3ml 酒精100ml 18-8型奥氏体钢的δ相 三合一浸蚀液盐酸10ml 硝酸3ml 甲醇100ml 高速钢回火后晶粒 硫酸铜盐酸溶液盐酸100ml 硫酸5ml 硫酸铜5g 高温合金 氯化铁溶液氯化铁30g 氯化铜1g 氯化锡0.5g 盐酸50g 铸铁磷的偏析与枝晶组织 苦味酸钠溶液苦味酸1g 水100ml 区别渗碳体和磷化物 氯化铁盐酸水溶液氯化铁5g 盐酸15ml 水100ml 纯铜、黄铜及铜合金 绿化铜盐酸溶液氯化铜1g 氯化镁4g 盐酸2ml 灰铸铁共晶团

酒精100ml 硫酸铜-盐酸溶液硫酸铜4g 盐酸20ml 水20ml 灰铸铁共晶团 硫酸铜-盐酸溶液硫酸铜5g 盐酸50ml 水50ml 高温合金 盐酸-硫酸-硫酸铜溶液硫酸铜5g 盐酸100ml 硫酸5ml 高温合金 复合试剂硝酸30ml 盐酸15ml 重铬酸钾5g 酒精30ml 苦味酸1g 氯化高铁3g 高温合金 硬质合金试剂A饱和的三氯化铁 盐酸溶液 B新配置的20%氢氧 化钾水溶液+20%铁 氰化钾水溶液 硬质合金先在A试剂中浸蚀 1min,然后在B试剂中浸蚀3min, WC相(灰白色),TiC-WC相(黄 色)Co(黑色) 氢氧化钾-铁氰化钾水新配置的10%氢氧 化钾水溶液+10%铁 氰化钾水溶液 硬质合金的n相 混合酸硝酸2.5ml 氢氟酸1ml 盐酸1.5ml 水95ml 显示硬铝组织 氢氟酸水溶液氢氟酸0.5ml 水99.5ml 显示一半铝合金组织 苛性钠水溶液苛性钠1g 水100ml 显示铝与铝合金组织

铝合金结构腐蚀疲劳裂纹扩展与剩余强度研究_张有宏

第28卷 第2期航 空 学 报 Vo l 128No 12 2007年 3月ACT A A ERON A U T ICA ET A ST RO N AU T ICA SIN ICA M ar. 2007 收稿日期:2005-11-18;修订日期:2006-06-12通讯作者:张有宏E -mail:zyhnpu@hotm https://www.wendangku.net/doc/d81885192.html, 文章编号:1000 -6893(2007)02-0332-04铝合金结构腐蚀疲劳裂纹扩展与剩余强度研究 张有宏1,吕国志1,李 仲1,2,陈跃良3,任克亮1 (11西北工业大学航空学院,陕西西安 710072)(21中国飞机强度研究所,陕西西安 710065)(31海军航空工程学院青岛分院,山东青岛 266041) Investigation on Corrosion Fatigue Crack Growth and Residual Strength of Aluminum Alloy Structure ZH A NG You -hong 1 ,LU Guo -zhi 1 ,LI Zho ng 1,2 ,CH EN Yue -liang 3,REN Ke -liang 1 (11Scho ol o f A eronautics,N or thwest Po ly technical U niversity,Xi c an 710072,China) (21A ir cr aft Streng th R esear ch Institute of China,X i c an 710065,China) (31Q ing dao Br anch,Nav al A ero nautical Eng ineering Academy,Qing dao 266041,China) 摘 要:在315%N aCl 腐蚀溶液环境下对含中心孔L Y12CZ 铝合金紧固件的疲劳裂纹扩展进行了试验研究,得到3种不同频率下紧固件的腐蚀疲劳裂纹扩展曲线。试验结果说明,随着频率的增加,腐蚀疲劳裂纹扩展速率逐渐降低,腐蚀溶液中疲劳裂纹扩展速率比在空气中大。以试验数据为基础,结合裂纹扩展分析软件AF GRO W,提出一种可以用数值方法模拟腐蚀疲劳裂纹扩展的方法,模拟结果和试验结果符合较好。对紧固孔试验件利用2种失效模式进行了剩余强度分析,得到腐蚀环境下紧固孔结构的剩余强度曲线。关键词:铝合金;腐蚀疲劳;剩余强度;裂纹扩展;加载频率中图分类号:V 21512;V21615 文献标识码:A Abstract:T he fatig ue cr ack pro pag atio n behavio r o f L Y 12CZ aluminum allo y fastener involving center ho le in 315%N aCl solut ion is investig ated.T he cor rosio n fat igue crack g ro wth cur ves of the specimens at three differ -ent fr equencies are pr esented.Ex per iment al research show s that the cor ro sion fat igue cr ack g row th rate decrea -ses with the incr easing of the loading f requencies,and in co rr osiv e enviro nment,the crack gr ow th rate is lar ger than the rate in air.Based on the ex per iment results,using the A FG RO W so ftwar e,the numer ical simulation met ho d is car ried out to analyze the cor rosion fatig ue crack g row th behavio r;and the pr edict ed r esults are in goo d ag reement w ith the ex perimental r esults.Finally ,the residual strength analy sis o f the specimen using two failur e mo des separ ately is carr ied o ut,and the r esidual st rength curv e of fastener structure in co rr osiv e env -i r onment is obtained. Key words:a luminum allo y;co rr osio n fatigue;r esidual str eng th;cr ack g row th;loading fr equency 在沿海地区服役的老龄飞机,机体结构腐蚀相当严重。腐蚀和疲劳载荷的共同作用严重降低了机体结构寿命和剩余强度,给飞机结构安全性 带来了严重的挑战。在腐蚀环境下疲劳裂纹更易于产生且扩展速率比空气中更快,使得机体结构往往提前失效断裂。但是腐蚀对疲劳寿命和结构安全性的影响尚未完全理解,对机体材料的腐蚀疲劳试验开展得还很少,深入研究腐蚀环境下机体结构的寿命评估问题,成为一个紧迫的任务。在机体结构中,存在大量的通孔紧固件,在沿海腐蚀环境下紧固件处是发生腐蚀损伤的主要位置之一,给整个机体结构带来一定的安全隐患。为此,本文进行了紧固孔的腐蚀疲劳裂纹扩展试验,并利用数值方法对紧固件结构的腐蚀疲劳问题进行 了模拟,为腐蚀环境下服役机体结构的安全性评估提供一定的参考。1 试验及方法 试验件采用含中心孔的LY12CZ 铝合金平板结构。试验件尺寸为300mm @70m m @3m m,中心孔直径为2mm,在中心孔边垂直于加载方向预制两条对称的切口,长度均为1mm 。 在对试验件进行疲劳试验的时候,在试验件夹持处布置自制的透明塑料溶液槽,使其中盛放的315%NaCl 溶液对试验件产生腐蚀作用,进行 试验件的腐蚀疲劳研究。在试验进行过程中,用高倍显微镜测量裂纹长度,直到试验件断裂为止,并记录相应的循环数。利用七点拟合法得到裂纹的扩展速率。 疲劳试验在室温条件下进行,对试验件采用

疲劳试验标准大全

疲劳试验列表 ISO 12108 金属材料疲劳试验疲劳裂纹扩展方法… ISO 12107 金属材料疲劳试验统计方案和数据分析方法… ISO 1352 钢扭应力疲劳试验方法… ISO 1143 金属旋转弯曲疲劳试验方法… GB/T6398 金属材料疲劳裂纹扩展速率试验方法… ASTM E2207-02 薄壁管应变控制轴向扭转疲劳试验方法… ASTM E1949-03 粘贴金属电阻应变片室温疲劳寿命试验方法… ASTM E796-94 金属箔延性试验方法… ASTM E739-91 线性或线性化应力-寿命(S-N)和应变-寿命(e-N)… ASTM E647-05 疲劳裂纹扩展速率试验方法… ASTM E606-04 应变控制疲劳试验方法… ASTM E468-90 金属材料恒幅疲劳试验结果表示方法… ASTM E466-96 金属材料力控制恒幅轴向疲劳试验方法… ISO 12106 金属材料–疲劳试验–轴向应变控制方法… ISO 1099 金属材料–疲劳试验–轴向力控制方法… GB/T3075 金属轴向疲劳试验方法… GB/T4337 金属旋转弯曲疲劳试验方法… GB/T7733 金属旋转弯曲腐蚀疲劳试验方法… GB/T12443 金属扭应力疲劳试验方法… GB/T2107 金属高温旋转弯曲疲劳试验方法… 疲劳试验列表 GB/T15248 金属材料轴向等幅低循环疲劳试验方法… GB/T10622 金属材料滚动接触疲劳试验方法… ISO 12108 金属材料疲劳试验疲劳裂纹扩展方法 标准英文名称 Metallic materials – Fatigue testing – Fatigue crack growth method 标准编号 ISO 12108 实施年份 2002 标准中文名称 金属材料疲劳试验疲劳裂纹扩展方法 适用范围 适用于金属材料疲劳裂纹扩展速率和疲劳裂纹扩展门槛值的测定。应用于材料检验,失效分析,质量控制,选材及新金属材料研发等方面。

铝合金及铜合金金相制样的制备

铝合金及铜合金金相制样的制备 材料成型实验室内部资料 2012.9.14 内容是根据个人经验总结得来,每个人的经验可能不同,具体操作技巧还有自己多磨多总结,本文仅供参考。刚开始一般几天都很难磨好一个样,但熟练后一天10-20个不成问题。如果谁有上面好的经验可以慢慢总结尽量,慢慢完善。 金相试样制备步骤:取样、镶样、标号、磨光、抛光、显示。 一、取样、镶样、标号 根据所需检测面的组织取样(手工锯或线切割),确定磨哪个面,然后再镶样机上镶样(样品大小如果合适就不必镶样),并对所取样品进行编号标示,以免样品多或放置时间长而导致样品混乱分不清。保证每个样品用一个样品袋装着并贴上标签纸。 二、磨光、抛光 1、磨光 原则(最终要求):一个平面、划痕朝一个方向 磨光一般包括粗磨和细磨两个阶段,每步都要达到上面要求即只有一个平面,划痕朝一个方向;粗磨一般在300-1000的砂纸上进行,细磨一般在1500-2000上砂纸上进行,样品比较平整的可以直接进行细磨。 技巧:手拿着样品放在预磨机上保证压力均匀的压着样品,用力要适中,手不动。细磨时也可以不在预磨机上直接把砂纸放在桌之上手工磨,手工磨时要保证磨的方向朝一个方向,用力均匀。 初学者容易出现的问题:a、磨出几个平面;b、磨成斜面;c、磨的时候没加水找出严重氧化;d、手指拿样品时靠砂纸太近,不知不觉把手机磨破; 2、抛光 原则(最终要求):光亮、无划痕、无污点 抛光在抛光机上进行,抛光布有软些的和较硬的,根据实际情况选择那种抛光布,也可以粗抛时在硬一点的布上抛,然后再在软一些的布上抛,抛光时一般都要不定期的加抛光粉,加入量根据实际情况确定,一般是开始时粗抛加多点,后面少加点。抛光时样品压在抛光布上的压力一定要把控好,一般也是开始时压力大点,到后面基本不用力,就让样品跟抛光布轻轻接触。最后保证样品达到上面要求。 抛光一般在5-30分钟即可抛好,如果超过30分钟样品表面容易出现颗粒掉落、应力等缺陷,建议用砂纸(1500-2000)细磨后重新抛光 技巧:手拿样品控制好压力,开始时可以用点力,多加点抛光粉,且手拿样品从抛光布中央向边缘(线速度大)游走,这样即可以使磨光过程产生的粗大划痕可以快点磨掉,也能延长抛光布的使用寿命;到后期则基本不用力,保证样品跟抛光布接触即可,同时抛光粉稍微少加点,但一般不建议不加用清水抛,清水抛容易出新划痕,手拿样品让样品从边缘向中

5E62铝合金疲劳裂纹扩展行为的有限元模拟

5E62铝合金疲劳裂纹扩展行为的有限元模拟飞机蒙皮占整机结构重量的50%以上,需要承受复杂的气动载荷作用,是现代飞机损伤容限设计重点关注的构件。聂祚仁课题组自主研发的5E62铝合金,主要应用于飞机蒙皮材料,其强度和耐损伤性能具有较高的匹配程度。 采用实验与数值模拟相结合的方式对材料疲劳破坏过程进行预测,可以大量节约人力、物力和财力,是工程应用中预防疲劳破坏的发生好方法。使用XFEM 方法对5E62-O铝合金MT试样疲劳裂纹扩展路径及扩展过程中裂纹尖端应力场分布、应力强度因子KI和疲劳裂纹扩展速率进行了模拟计算。 模拟结果表明裂纹扩展路径与实验一致,均垂直于应力加载方向沿直线扩展;XFEM方法计算的Paris区疲劳裂纹扩展速率与理论值和实验值均有较好的一致性,疲劳裂纹扩展速率随?K值的增加近似线性增长。使用XFEM方法计算半裂纹长度从4.5mm到26.5mm的KI值与理论值比较接近,最大误差为8.9%。 模拟计算获得的稳态扩展区间裂纹长度为5.8~24.5mm,与实验获得的Paris 区间裂纹长度误差分别为22.4%和16.3%。通过调用ABAQUS率相关用户材料子程序建立晶体塑性有限元模型,计算单/双织构裂纹尖端应力分布、裂纹尖端张开位移和J积分,探究取向对裂纹扩展的影响。 Cube和S织构裂纹尖端塑性区、S22、CTOD和J积分均小于Goss和Brass 织构,应力释放区域则反之;Cube织构Mises等效屈服应力、CTOD和J积分最小,S 织构裂纹尖端的Mises最大,但其他两个方向分担了一部分的应力,使得对裂纹扩展起主要作用的S22保持较低的水平,Goss织构的塑性区和J积分最大,Brass 织构的CTOD最大。由此说明Cube和S织构具有较强的抵抗裂纹扩展的能力,Goss 和Brass织构具有较差的抵抗裂纹扩展的能力。

疲劳裂纹扩展

疲劳裂纹扩展

不锈钢304L的疲劳裂纹扩展模拟 Feifei Fan, Sergiy Kalnaus, Yanyao Jiang (美国内华达大学机械工程学院) 摘要:一个基于最近发展的疲劳方法的实验用来预测不锈钢304L的裂纹扩展。这种疲劳方法包括两个步骤:(1)材料的弹塑性有限元分析;(2)多轴疲劳标准在基于有限元分析的可输出的拉伸实验的裂纹萌生与扩展预测中的应用。这种有限元分析具有这样的特点:能够实现在先进循环塑性理论下扑捉材料在常幅加载条件下重要的循环塑性行为。这种疲劳方法是基于这样的理论:当累计疲劳损伤达到一个特定值时材料发生局部失效,而且这种理论同样适用于裂纹的萌生与扩展。所以,一组材料特性参数同时用来做裂纹的萌生与扩展预测,而所有的材料特性参数都是由平滑试样试验产生。这种疲劳方法适用于I型紧凑试样在不同应力比和两步高低加载顺序下等幅加载的裂纹扩展。结果显示,这种疲劳方法能够合理的模拟在试验上观察到的裂纹扩展行为,包括刻痕影响、应力比的影响和加载顺序的影响。另外,这种还方法能够模拟从刻痕到早期的裂纹扩展和疲劳全寿命,而且预测的结果和试验观察的结果吻合得很好。 关键词:累计损伤;疲劳裂纹扩展;疲劳标准 1 .简介 工程承压设备经常承受到循环加载,一般说来,疲劳过程有三个阶段组成:裂纹萌生和早期裂纹扩展、稳定裂纹扩展和最后的疲劳断裂。裂纹扩展速率dN da/通常被表示为重对数图尺在应力强度因素范围上的一个功能。在常幅加载下,不同应力比时稳定的裂纹扩展结果通常服从Paris公式和其修正公式。常幅疲劳加载下不同材料的行为不同。有些材料表现为应力比的影响:在相同应力比时,裂纹扩展速率曲线一致,但是,应力比增大时,裂纹扩展速率也增大。而其他金属材料没有表现出任何应力比的影响,而且在恒幅加载其裂纹扩展速率曲线在重对数图纸上重合。 在变幅加载条件下疲劳裂纹扩展行为作为另一个课题已经研究了若干年了。过载和变幅加载的应用对疲劳裂纹扩展研究产生了重大的影响。对于大多数金属材料而言,上述加载方法的应用导致疲劳裂纹扩展速率减慢。基于线弹性断裂力学的理论,这种过渡行为经常使用应力强度因子和通过引入在稳定裂纹扩展状态下的Paris公式的修

弹簧疲劳试验方案

5.试样弹簧 5.1试样 试样应按规定程序批准的图样、技术文件制造,并经过尺寸和特性检验合格。 5.2试样抽取 试样应从同一批产品中随机抽取 5.3 试样数量 5.3.1 对于疲劳寿命验证试验,推荐的最少试样数量最少4件,当有特殊要求时,试样数量可自行确定。 6 试验条件 6.1 试验机 6.1.1 推荐采用机械式或电液伺服试验机,也可安装在配套阀上进行试验。 6.1.2 试验机位移精度应满足试验要求。 6.1.3 试验机得频率应在一定范围内可调。 6.1.4 试验机应具备试验时间或次数预置、自动计时或计数、自动停机及输出试验数据等功能。 6.2 试验频率 6.2.1 试验频率可根据试验机得频率范围和弹簧实际工作频率等情况确定。整个试验过程中试验频率应保持稳定。 6.2.2 试验频率Fr 应避开单个弹簧的固有自振频率F ,一般应满足如下关系式: 10F F r 其中:钢制弹簧固有频率F 按如下公式计算: F=3.56×105×d/nD 2 6.3 试验振幅 振幅分为位移幅(Ha )和载荷幅(Fa )。对于螺旋弹簧的疲劳寿命验证试验一般使用位移幅作为试验振幅。 6.4 试验环境 试验一般在室温下进行,但试验时样件的温升应不高于实际工况最高温度。 7 试验方法 7.1试样的安装 7.1.1试样的安装方法 为了避免试样承受偏载和附加应力,压缩弹簧试样安装时要保证试样两端平整接触,应将试样安放再固定的支座上;拉伸弹簧试样的安装应满足工况要求。 7.1.2 试验。高度 对定型的产品,试样试验的最大高度为实际使用要求的最大高度H1,试验的最小高度为实际使用要求的最小高度H2.试验的平均高度为实际使用工况的最大高度H1与最小高度H2二者之和的平均值。 7.1.3安装高度允许偏差 用多工位试验机,或者多台试验机同时对一批试样进行试验时,应将试样调整到同样的试验安装高度,其最大允许偏差为3%Ha 。 7.2 加载 7.2.1 正常情况下,按试验机的加载方式进行加载。 7.2.2 在有必要情况下,可模拟产品实际工作负载进行加载。 7.3 试验机运转及数据记录

常用金相腐蚀剂资料讲解

常用金相腐蚀剂

常用金相腐蚀剂(转)

低倍组织浸蚀剂 序号用途成份腐蚀方法附注 A101 大多数钢种 1:1(容积比工业盐酸水溶液 60-80℃热蚀时间: 易切削钢5-10min 碳素钢等5-20min 合金钢等15-20min 酸蚀后防锈方法: a. 中和法:用10%氨水溶液浸泡后再以热水冲洗。 b. 钝化法:浸入浓硝酸5秒再用热水冲洗。 c. 涂层保护法:涂清漆和塑料膜。 A102 奥氏体不锈钢.耐热钢盐酸 10份硝酸 1份水 10份 (容积比) 60-70℃热蚀时间: 5-25min A103 碳素钢合金钢高速工具钢盐酸 38份硫酸 12份水 50份 (容积比) 60-80℃热蚀时间: 15-25min A104 大多数钢种盐酸 500ml 硫酸 35ml 硫酸铜 150g 室温浸蚀在浸蚀过程中,用毛刷不断擦拭试样表面, 去除表面沉淀物可用 A108号浸蚀剂作冲刷液 A105 大多数钢种三氯化铁200g 硝酸 300ml 水 100ml 室温浸蚀或擦拭1-5min

A106 大多数钢种盐酸 30ml 三氯化铁 50g 水 70ml 室温浸蚀 A107 碳素钢合金钢 10%-40%硝酸水溶液 (容积比室温浸蚀 25%硝酸水溶液为通用浸蚀剂 a.可用于球墨铸铁的低倍组织显示。 b.高浓度适用于不便作加热的钢锭截面等大试样。 A108 碳素钢合金钢显示技晶及粗晶组织 10%-20%过硫酸铵水溶液室温浸蚀或擦拭 A109 碳素钢合金钢三氯化铁饱和水溶液 500ml 硝酸 10ml 室温浸蚀 A110 不锈钢及高铬.高镍合金钢硝酸 1份盐酸 3份 A111 奥氏体不锈钢硫酸铜 100ml 盐酸 500ml 水 500ml 室温浸蚀也可以加热使用通用浸蚀剂 A112 精密合金高温合金硝酸 60ml 盐酸 200ml 氯化高铁 50g 过硫酸铵 30g 水 50ml 室温浸蚀 A113 钢的技晶组织工业氯化铜铵12g 盐酸 5ml 水 100ml 浸蚀30-60min后对表面稍加研磨则能获得好的效果 A114 显示铸态组织和铸钢晶粒度硝酸 10ml 硫酸 10ml 水 20ml 室温浸蚀 A115 高合金钢高速钢铁-钴和镍基高温合金盐酸 50ml 硝酸 25ml 水 25ml 稀王水浸蚀剂 A116 铁素体及奥氏体不锈钢重铬酸钾 25g (K2Cr2O7) 盐酸 100ml 硝酸 10ml 水 100ml 60-70℃热蚀时间:30-60min 碳钢、合金钢显微组织 序号用途成份腐蚀方法附注 A201 碳钢合金钢硝酸 1-10ml乙醇 90-99ml 硝酸加入量按材料选择,常用3%-4%溶液,1%溶液适用于碳钢中温回火组织及CN共渗黑色组织最常用浸蚀剂。但热处理组织不如苦味酸溶液的分辩能力强 A202 钢的热处理组织苦味酸 2-4g乙醇100ml必要时加入4-5滴润湿剂室温浸蚀浸蚀作用缓慢能清晰显示珠光体、马氏体、回火马氏体、贝氏体等组织,F3C染成黄色 A203 显示极细珠光体戊醇 100ml苦味酸 5g 通风柜内操作不能存放 A204 显示淬火马氏体与铁素体的反差苦味酸 1g水 100ml 70-80℃热蚀时间:15-20秒也可以使用饱和溶液 A205 显示铁素体与碳化物的组织苦味酸 1g盐酸 5ml乙醇 100ml 室温浸蚀 Vilella试剂经300-500℃回火效果最佳,也可显示高铬钢中的板条马氏体与针状马氏体的区别 A206 显示合金钢回火马氏体 1%硝酸乙醇1份4%苦味酸乙醇1份室温浸蚀

综述-铝合金疲劳及断口分析

文献综述 (2011级) 设计题目铝合金疲劳及断口分析 学生姓名胡伟 学号201111514 专业班级金属材料工程2011级03班指导教师黄俊老师 院系名称材料科学与工程学院 2015年4月12日

铝合金疲劳及断口分析 1 绪论 1.1 引言 7系铝合金包括Al-Zn-Mg 系和Al-Zn-Mg-Cu 系合金,此类合金具有密度低、比强度高、良好的加工性能及优良的焊接性能等一系列优点。随着应用在铝合金上的热处理工艺及微合金化技术的不断改进,其力学性能被大幅度强化,综合性能也得到了全面提升。在航空航天、建筑、车辆、、桥梁、工兵装备和大型压力容器等方面都得到了广泛的应用。 现代工业的飞速发展,对7 系铝合金的强度、韧性以及抗应力腐蚀性能等提出了更高的要求。但是,存在另外一个现象,在各行各业的领域中,铝合金设备偶尔会出现难以察觉的断裂,在断裂之前很难甚至无法察觉到一点塑性变形。这种断裂形式,对人身以及财产安全造成了不可挽回的损失。经过大量实验表明,这些断裂是由于材料的疲劳引起,材料在交变载荷的长期作用下,表面或者内部,尤其是内部会产生微观裂纹。本文主要研究铝合金疲劳引起的裂纹以及疲劳断口分析,此类研究对于日后的生产安全,有重大意义。 1.2 7系铝合金的发展历史 在20世纪20年代,德国的科学家研制出Al-Zn-Mg系合金,由于该合金抗应力腐蚀性能太差,并未得到产业内应用。在20世纪30年代初一直到二战结束期间,各个国家在研究中发现,Cu元素可以提高铝合金的抗应力腐蚀性能。在此,开发了大量Al-Zn-Mg 系合金,因此忽视了对Al-Zn-Mg 系合金的研究。德、美、苏、法等国在Al-Zn-Mg-Cu 系合金基础上成功地开发了7075 、B93 和D。T。 D683 等合金。目前正广泛应用在航空航天事业上,但是强度、韧性、抗应力腐蚀性能三者之间未能实现最佳组合状态。20世纪50年代,德国

用现有疲劳试验数据确定疲劳裂纹扩展率

用现有疲劳试验数据确定疲劳裂纹扩展率 收录:《中国造船》 - 2003年,03期 作者:周驰 关键词:船舶 疲劳寿命的预报在船舶与海洋工程领域中相当重要,但其关键问题是要找到一种较科学的疲劳寿命预报方法.最近,本文第二作者提出了一种海洋结构物疲劳寿 命预报的统一方法.该方法是基于疲劳裂纹扩展理论而发展起来的,在其九个参 数模型的假设之下,能够较好地解释一些其它方法所不能解释的现象.采用该方 法的主要障碍在于需要确定疲劳裂纹扩展率.作者通过对不同的疲劳裂纹扩展率的比较研究,并推广McFvily模型后,提出了一个具有较宽适用范围的九个参数 疲劳裂纹扩展率模型(从门槛域一直到不稳定断裂域).本文的主要目的是解决如何根据一些现有的疲劳试验数据来确定这九个模型参数的问题.文中给出了通过实验数据确定裂纹扩展率模型中各个参数的方法,并进行了模型参数的灵敏度分析.通过对文献中一些试验数据的收集,给出了几种常用金属材料的裂纹扩展率 模型参数. Determination of Fatigue Crack Growth Rate Using Existing Data 正在加载... 确定疲劳裂纹扩展理论门槛值的方法 Methods of Determination of Fatigue Crack Growth Theoretical Threshold 疲劳裂纹扩展 疲劳裂纹扩展理论门槛值ΔKthT的方法,特别对利用疲劳裂纹扩展速率表达式、根据da/dN~ΔK试验数据外推确定ΔKthT的三种方法作了较为详细的介绍,并用四套试验数据进行评估,结果显示,如果所采用的表达式能够正确反映近

常用金相腐蚀剂之欧阳光明创编

一些常用的金相腐蚀剂 欧阳光明(2021.03.07) 低倍组织浸蚀剂 序号用途成份腐蚀方法附注 A101 大多数钢种 1:1(容积比工业盐酸水溶液 60-80℃热蚀时间: 易切削钢5-10min 碳素钢等5-20min 合金钢等15-20min 酸蚀后防锈方法: a. 中和法:用10%氨水溶液浸泡后再以热水冲洗。 b. 钝化法:浸入浓硝酸5秒再用热水冲洗。c. 涂层保护法:涂清漆和塑料膜。 A102 奥氏体不锈钢.耐热钢盐酸 10份硝酸 1份水 10份 (容积比) 60-70℃热蚀时间: 5-25min A103 碳素钢合金钢高速工具钢盐酸 38份硫酸 12份水 50份 (容积比) 60-80℃热蚀时间: 15-25min A104 大多数钢种盐酸 500ml 硫酸 35ml 硫酸铜 150g 室温浸蚀在浸蚀过程中,用毛刷不断擦拭试样表面, 去除表面沉淀物可用 A108号浸蚀剂作冲刷液 A105 大多数钢种三氯化铁200g 硝酸 300ml 水 100ml 室温浸蚀或擦拭1-5min A106 大多数钢种盐酸 30ml 三氯化铁 50g 水 70ml 室温浸蚀 A107 碳素钢合金钢 10%-40%硝酸水溶液 (容积比室温浸蚀25%硝酸水溶液为通用浸蚀剂 a.可用于球墨铸铁的低倍组织显

示。 b.高浓度适用于不便作加热的钢锭截面等大试样。 A108 碳素钢合金钢显示技晶及粗晶组织 10%-20%过硫酸铵水溶液室温浸蚀或擦拭 A109 碳素钢合金钢三氯化铁饱和水溶液 500ml 硝酸 10ml 室温浸蚀 A110 不锈钢及高铬.高镍合金钢硝酸 1份盐酸 3份 A111 奥氏体不锈钢硫酸铜 100ml 盐酸 500ml 水 500ml 室温浸蚀也可以加热使用通用浸蚀剂 A112 精密合金高温合金硝酸 60ml 盐酸 200ml 氯化高铁 50g 过硫酸铵 30g 水 50ml 室温浸蚀 A113 钢的技晶组织工业氯化铜铵12g 盐酸 5ml 水 100ml 浸蚀30-60min后对表面稍加研磨则能获得好的效果 A114 显示铸态组织和铸钢晶粒度硝酸10ml 硫酸10ml 水20ml 室温浸蚀 A115 高合金钢高速钢铁-钴和镍基高温合金盐酸 50ml 硝酸25ml 水 25ml 稀王水浸蚀剂 A116 铁素体及奥氏体不锈钢重铬酸钾25g (K2Cr2O7) 盐酸100ml 硝酸 10ml 水 100ml 60-70℃热蚀时间:30-60min 碳钢、合金钢显微组织 序号用途成份腐蚀方法附注 A201 碳钢合金钢硝酸 1-10ml乙醇 90-99ml 硝酸加入量按材料选择,常用3%-4%溶液,1%溶液适用于碳钢中温回火组织及CN 共渗黑色组织最常用浸蚀剂。但热处理组织不如苦味酸溶液的分

相关文档