文档库 最新最全的文档下载
当前位置:文档库 › 现场总线电机消息帧程序

现场总线电机消息帧程序

现场总线电机消息帧程序
现场总线电机消息帧程序

基于CAN总线的电机控制程序

;设CAN控制器SJA1000的片选地址为7F00H

;选择PeliCAN模式

MODE EQU 7F00H;SJA1000方式寄存器

CMR EQU 7F01H;SJA1000命令寄存器

SR EQU 7F02H;SJA1000状态寄存器

IR EQU 7F03H;SJA1000中断寄存器

IER EQU 7F04H;SJA1000验收代码寄存器;中断使能寄存器

ACR EQU 7F10H;SJA1000验收代码寄存器

AMR EQU 7F14H;SJA1000验收屏蔽寄存器

BTR0 EQU 7F06H;SJA1000总线定时寄存器0

BTR1 EQU 7F07H;SJA1000总线定时寄存器1

OCR EQU 7F08H;SJA1000输出控制寄存器

RBSA EQU 7F1EH;SJA1000接收缓存器起始地址寄存器

CDR EQU 7F1FH;SJA1000时钟分频寄存器

ALC EQU 7F0BH;SJA1000丢失仲裁捕获寄存器

ECC EQU 7F0CH;SJA1000错误代码捕获寄存器

CANTXB EQU 7F10H;SJA1000发送缓冲区首址

CANRXB EQU 7F10H;SJA1000接收缓冲区首址

RXERR EQU 7F0EH;

TXERR EQU 7F0FH;

CPUTM EQU 30H

CPURM EQU 40H

;R0-存放CAN发送数据缓冲区地址(接收的PC机数据存放的首地址),R6存放发送的数据个数(来自PC机的数据个数)

;R1-存放CAN接收数据缓冲区地址(发往PC机的数据存放的首地址),R7存放接收的数据个数(发往PC机的数据个数)

;

ORG 0000H

SJMP MAIN

ORG 30H

;=======================主程序======================================== MAIN: MOV SP,#5FH

LCALL DELAY2

LCALL CANINI ;SJA1000初始化

MOV SCON,#50H ;串口初始化

MOV TMOD,#20H

MOV TH1,#0FDH

MOV TL1,#0FDH

MOV PCON,#00H ;设置波特率

SETB TR1 ;启动定时器

;SETB EA ;开放中断

;SETB ES ;开放串行中断

SETB P1.7

MOV A,#52H

MOV SBUF,A

JNB TI,$

CLR TI

MOV A,#65H

MOV SBUF,A

JNB TI,$

CLR TI

MOV A,#61H

MOV SBUF,A

JNB TI,$

CLR TI

MOV A,#64H

MOV SBUF,A

JNB TI,$

CLR TI

MOV A,#79H

MOV SBUF,A

JNB TI,$

CLR TI

MOV A,#20H

MOV SBUF,A

JNB TI,$

CLR TI

MOV A,#4FH

MOV SBUF,A

JNB TI,$

CLR TI

MOV A,#4BH

MOV SBUF,A

JNB TI,$

CLR TI

MOV A,#21H

MOV SBUF,A

JNB TI,$

CLR TI

CLR 00H ;位00H-CAN发送区是否有数据需要发送,0-无,1-有

CLR 01H ;位01H-CAN接收区是否有数据需要发送,0-无,1-有

CLR 02H ;位02H-是否第1次接收PC机数据标志位:0-是,1-否CLR 03H ;位03H-接收结束标志位

LOOP: LCALL SEARCH

JNB 01H,LOOP ;接收到CAN数据?是-开始工件检测(与电缸控制器进

行通信;否-继续接收

CLR 01H

MOV A,CPURM+5

CJNE A,#02,NO_FORWARD MOTOR_FORWARD:

SETB P1.5

SETB P3.4

LCALL DELAY2

LCALL DELAY2

LCALL DELAY2

LCALL DELAY2

LCALL DELAY2

LCALL DELAY2

LCALL DELAY2

LCALL DELAY2

LCALL DELAY2

CLR P1.4

CLR P1.6

SJMP LOOP

NO_FORWARD:

MOV A,CPURM+6

CJNE A,#02,MOTOR_STOP MOTOR_BACKWARD:

SETB P1.4

SETB P1.6

LCALL DELAY2

LCALL DELAY2

LCALL DELAY2

LCALL DELAY2

LCALL DELAY2

LCALL DELAY2

LCALL DELAY2

LCALL DELAY2

LCALL DELAY2

CLR P1.5

CLR P3.4

SJMP LOOP

MOTOR_STOP:

SETB P1.4

SETB P1.5

SETB P1.6

SETB P3.4

SJMP LOOP

;motor_stop:

; CJNE A,#02,LOOP4

; SETB P1.4

LOOP4: SJMP LOOP ;跳回开始新的循环

;===================CAN控制器初始化子程序============================= CANINI:

MOV DPTR,#MODE ;方式寄存器

MOV A,#01H ;进入复位模式,对SJA1000进行初始化

MOVX @DPTR,A ;

CANI1: MOVX A,@DPTR

JNB ACC.0,CANI1

MOV DPTR,#CDR ;时钟分频寄存器

MOV A,#0C8H ;1000,1000

MOVX @DPTR,A ;选择PeliCAN模式,关闭时钟输出(CLKOUT)

MOV DPTR,#IER ;

MOV A,#00001111B ;中断允许寄存器开放发送中断、溢出中断和错误警告中断MOVX @DPTR,A ;

MOV DPTR,#AMR ;接收屏蔽寄存器

MOV A,#0FFH ;不用过滤ID28-ID21(类型)

MOVX @DPTR,A ;不用过滤ID20-ID13(数量)

INC DPTR

MOV A,#0FFH ;

MOVX @DPTR,A ;

INC DPTR

MOV A,#00H ;要求判断总线上的数据是否是发送给该节点的(过滤)MOVX @DPTR,A ;

INC DPTR

MOV A,#00H ;

MOVX @DPTR,A ;

MOV DPTR,#ACR ;接收代码寄存器

MOV A,#0FFH ;

MOVX @DPTR,A ;

INC DPTR

MOV A,#0FFH ;

MOVX @DPTR,A ;

INC DPTR ;

MOV A,#40H ;

MOVX @DPTR,A ;

INC DPTR

MOV A,#00H ;该节点地址为4000H

MOVX @DPTR,A ;

MOV DPTR,#BTR0 ;总线定时寄存器0

MOV A,#31H

MOVX @DPTR,A ;

MOV DPTR,#BTR1 ;总线定时寄存器1

MOV A,#6FH

MOVX @DPTR,A ; 设置波特率40kbps

MOV A,#00011010B ;输出控制寄存器(采用推挽驱动方式)

MOV DPTR,#OCR ;

MOVX @DPTR,A

MOV A,#00H ;接收缓存器起始地址寄存器

MOV DPTR,#RBSA

MOVX @DPTR,A ;设置接收缓存器FIFO起始地址为0

MOV A,#00H ;

MOV DPTR,#TXERR ;发送错误计数寄存器

MOVX @DPTR,A ;清除发送错误计数寄存器

MOV DPTR,#ECC

MOVX A,@DPTR ;错误代码捕捉寄存器,清除错误代码捕捉寄存器

MOV A,#08H ;方式寄存器

MOV DPTR,#MODE

MOVX @DPTR,A ;设置双滤波接收方式,并返回工作状态

RET

;===================CAN总线发送数据子程序============================== TDATA:

MOV DPTR,#SR ;状态寄存器

MOVX A,@DPTR ;从SJA1000 读入状态寄存器值

JB ACC.4,TDA TA ;判断是否正在接收正在接收则等待

TS0 : MOVX A,@DPTR

JNB ACC.3,TS0 ;判断上次发送是否完成未完成则等待发送完成

TS1: MOVX A ,@DPTR

JNB ACC.2,TS1 ;判断发送缓冲区是否锁定锁定则等待

TS2 : MOV R0,#CPUTM

MOV DPTR, #CANTXB ;SJA1000 发送缓存区首址

MOV A,@R0 ;

MOVX @DPTR,A ;

JB ACC.7,TS3

ANL A,#0FH ;发送标准帧

ADD A,#02H

MOV R2,A

AJMP TS4

TS3: ANL A,#0FH ;发送扩展帧

ADD A,#04H

MOV R2,A

TS4: INC R0

MOV A,@R0

INC DPTR

MOVX @DPTR,A

DJNZ R2,TS4

MOV DPTR ,#CMR ;命令寄存器地址

MOV A,#01H

MOVX @DPTR,A ;启动SJA1000 发送

CLR 00H ;清有数据发送标志位

RET

;================CAN总线查询方式接收数据子程序========================= SEARCH:

MOV DPTR,#SR ;状态寄存器地址

MOVX A,@DPTR

ANL A,#0C3H ;读取总线脱离错误状态接收溢出有数据等位

JNZ PROC1

RET

;无上述状态结束

PROC1: JNB ACC.7,PROCI

BUSERR:MOV DPTR, #IR ;IR 中断寄存器出现总线脱离

MOVX A, @DPTR ;读中断寄存器清除中断位.

MOV DPTR ,#MODE ;方式寄存器地址

MOV A,#08H

MOVX @DPTR,A ;将方式寄存器复位请求位清0

RET

NOP

PROCI: MOV DPTR,#IR ;总线正常

MOVX A,@DPTR ;读取中断位

JNB ACC.3,OTHER

OVER: MOV DPTR,#CMR ;数据溢出中断置位.

MOV A,#0CH

MOVX @DPTR,A ;在命令寄存器中清除数据溢出和释放接收缓冲区

RET

NOP

OTHER: JB ACC.0,RECE ;IR.0=1 接收FIFO 未满或接收中断使能LJMP RECOUT ;IR.0=0 接收缓冲区无数据退出接收

NOP

RECE: MOV DPTR,#CANRXB ;读取并保存接收缓冲区的数据

MOV R1,#CPURM ;CPU 片内接收缓冲区首址

MOVX A,@DPTR ;读取读取CAN 缓冲区的2 号字节

MOV @R1,A ;保存

ANL A,#0FH ;截取低4 位是数据长度0~8

ADD A,#4 ;加4个字节的标识符ID

MOV R3,A

RDATA0: INC DPTR

INC R1

MOVX A,@DPTR

MOV @R1,A

DJNZ R3,RDATA0 ;循环读取与保存

MOV DPTR,#CMR

MOV A,#04H ;释放CAN 接收缓冲区

MOVX @DPTR,A

SETB 01H

RECOUT:

MOV DPTR, #ALC ;释放仲裁丢失捕捉寄存器和错误捕捉寄存器

MOVX A,@DPTR

MOV DPTR ,#ECC

MOVX A,@DPTR

NOP

RET

;==================PC机数据接收查询子程序============================== RS_RE: clr p1.7

JNB RI,$

CLR RI

JB 02H,RS_R1

MOV R0,#CPUTM

MOV A,SBUF

MOV @R0,A

JB ACC.7,RS_R2

ANL A,#0FH ;发送标准帧

ADD A,#02H

MOV R4,A

AJMP RS_R3

RS_R2: ANL A,#0FH ;发送扩展帧

ADD A,#04H

MOV R4,A

RS_R3: SETB 02H

LJMP RS_RE

RS_R1: INC R0

MOV A,SBUF

MOV @R0,A

DJNZ R4,RS_RE

SETB 00H

CLR 02H

lcall TDATA

RS_R4: RET

;====================往PC机发送数据子程序============================== RS_TR:

MOV R1,#CPURM

MOV A,@R1

JB ACC.7,RS_T1

ANL A,#0FH ;发送标准帧

ADD A,#02H

MOV R5,A

AJMP RS_T2

RS_T1: ANL A,#0FH ;发送扩展帧

ADD A,#04H

MOV R5,A

RS_T2: INC R5

SEND: MOV A,@R1

MOV SBUF,A

JNB TI,$

CLR TI

INC R1

DJNZ R5,SEND

CLR 01H

RET

;========================延时子程序================================== DELAY2: MOV R7,#00H ;

MOV R6,#00H ;

DELAY21:DJNZ R6,DELAY21 ;

DJNZ R7,DELAY21 ;

RET

END

直流电机设计程序

直流电机设计程序 3.1 主要指标 1. 额定电压 2. 额定功率 3. 额定转速 4. 额定效率 3.2 主要尺寸的确定 5. 结构型式的选择 6. 永磁材料的选择 选用烧结钕铁硼 7. 极弧系数 8. 电负荷 9. 长径比 10. 计算功率 11. 电枢直径 12. 极数 p=4 13. 极距 14. 电枢长度 cm D L a a 5.10157.0=?==λW P p N N N 76678.0378.021321'=??+=+=ηηcm D cm n B A p D a N i a 151.157.06006.0906.0766101.6'''101.63333==??????=??=取 λαδcm p D 89.54 21514.32=??==πτ

15. 气隙 δ=0.06cm 16. 电枢计算长度 3.3 绕组设计 17. 绕组形式 选用单叠绕组 18. 绕组并联支路对数 a=p=4 19. 槽数 20. 槽距 21. 预计气隙磁通 22. 电枢电动势 23. 预计导体总数 24. 每槽导体数 25. 每槽元件匝数 式中 每槽元件数 u=2 26. 实际每槽导体数 cm L L a ef 62.1006.025.102=?+=+=δ45 1533=?==a D Q cm Q D t a 05.145 1514.32=?==πwb B L ef i 34 4 1025.2106.062.1089.56.010''-?=????=?=ΦδταδV U E N N a 48.203 78 .021321=?+=+=η910 600 1025.2448 .20460'60'3=?????=Φ= -N a n p aE N δ2 .2045 910''===Q N N s 5 05.52 22.202''==?== s s W u N W 取20 5222=??==s s uW N

PLC控制步进电机的实例(图与程序)

PLC控制步进电机的实例(图与程序) ·采用绝对位置控制指令(DRVA),大致阐述FX1S控制步进电机的方法。由于水平有限,本实例采用非专业述语论述,请勿引用。 ·FX系列PLC单元能同时输出两组100KHZ脉冲,是低成本控制伺服与步进电机的较好选择! ·PLS+,PLS-为步进驱动器的脉冲信号端子,DIR+,DIR-为步进驱动器的方向信号端子。 ·所谓绝对位置控制(DRVA),就是指定要走到距离原点的位置,原点位置数据存放于32位寄存器D8140里。当机械位于我们设定的原点位置时用程序把D8140的值清零,也就确定了原点的位置。 ·实例动作方式:X0闭合动作到A点停止,X1闭合动作到B点停止,接线图与动作位置示例如左图(距离用脉冲数表示)。 ·程序如下图:(此程序只为说明用,实用需改善。) ·说明: ·在原点时将D8140的值清零(本程序中没有做此功能) ·32位寄存器D8140是存放Y0的输出脉冲数,正转时增加,反转时减少。当正转动作到A点时,D8140的值是3000。此时闭合X1,机械反转动作到B点,也就是-3000的位置。D8140的值就是-3000。 ·当机械从A点向B点动作过程中,X1断开(如在C点断开)则D8140的值就是200,此时再闭合X0,机械正转动作到A点停止。 ·当机械停在A点时,再闭合X0,因为机械已经在距离原点3000的位置上,故而机械没有动作!

·把程序中的绝对位置指令(DRVA)换成相对位置指令(DRVI): ·当机械在B点时(假设此时D8140的值是-3000)闭合X0,则机械正转3000个脉冲停止,也就是停在了原点。D8140的值为0 ·当机械在B点时(假设此时D8140的值是-3000)闭合X1,则机械反转3000个脉冲停止,也就是停在了左边距离B点3000的位置(图中未画出),D8140的值为-6000。 ·一般两相步进电机驱动器端子示意图: ·FREE+,FREE-:脱机信号,步进电机的没有脉冲信号输入时具有自锁功能,也就是锁住转子不动。而当有脱机信号时解除自锁功能,转子处于自由状态并且不响应步进脉冲。 ·V+,GND:为驱动器直流电源端子,也有交流供电类型。 ·A+,A-,B+,B-分别接步进电机的两相线圈。

西门子S 系列PLC控制步进电机进行正反转的方法

1、主程序先正转,等到正转完了就中断,中断中接通个辅助触点(),当闭合,住程序中的反转开始运做。这样子就OK了。 2、用PTO指令让OR 高速脉冲,另一个点如做方向信号,就可以控制正反转了,速度快慢就要控制输出脉冲周期了,周期越短速度越快,如果你速度很快的话请考虑缓慢加速,不然它是启动不了的,如果方向也变的快的话就要还做一个缓慢减速,不然它振动会蛮厉害,而且也会失步。 3、程NETWORK 1 // 用于单段脉冲串操作的主程序(PTO) // 首次扫描时,将映像寄存器位设为低 // 并调用子程序0 LD R 1 CALL SBR_0 NETWORK 1 // 子程序0开始 LD MOVB 16#8D SMB67 // 设置控制字节: // - 选择PTO操作 // - 选择单段操作 // - 选择毫秒增加 // - 设置脉冲计数和周期数值 // - 启用PTO功能 MOVW +500 SMW68 // 将周期设为500毫秒。 MOVD +4 SMD72 // 将脉冲计数设为4次脉冲。 ATCH INT_0 19 // 将中断例行程序0定义为 // 处理PTO完成中断的中断。 ENI // 全局中断启用

PLS 0 // 激活PTO操作,PLS0 =》 MOVB 16#89 SMB67 // 预载控制字节,用于随后的 // 周期改动。 NETWORK 1 // 中断0开始 // 如果当前周期为500毫秒: // 将周期设为1000毫秒,并生成4次脉冲 LDW= SMW68 +500 MOVW +1000 SMW68 PLS 0 CRETI NETWORK 2 // 如果当前周期为1000毫秒: // 将周期设为500毫秒,并生成4次脉冲 LDW= SMW68 +1000 MOVW +500 SMW68 PLS 0序注释 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关PLC产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。

无刷直流电机的驱动及控制

无刷直流电机驱动 James P. Johnson, Caterpiller公司 本章的题目是无刷直流电动机及其驱动。无刷直流电动机(BLDC)的运行仿效了有刷并励直流电动机或是永磁直流电动机的运行。通过将原直流电动机的定子、转子内外对调—变成采用包含电枢绕组的交流定子和产生磁场的转子使得该仿效得以可能。正如本章中要进一步讨论的,输入到BLDC定子绕组中的交流电流必须与转子位置同步更变,以便保持磁场定向,或优化定子电流与转子磁通的相互作用,类似于有刷直流电动机中换向器、电刷对绕组的作用。该原理的实际运用只能在开关电子学新发展的今天方可出现。BLDC电机控制是今天世界上发展最快的运动控制技术。可以预见,随着BLDC的优点愈益被大家所熟知且燃油成本持续增加,BLDC必然会进一步广泛运用。 2011-01-30 23.1 BLDC基本原理 在众文献中无刷直流电动机有许多定义。NEMA标准《运动/定位控制电动机和控制》中对“无刷直流电动机”的定义是:“无刷直流电动机是具有永久磁铁转子并具有转轴位置监测来实施电子换向的旋转自同步电机。不论其驱动电子装置是否与电动机集成在一起还是彼此分离,只要满足这一定义均为所指。”

图23.1 无刷直流电机构形 2011-01-31 若干类型的电机和驱动被归类于无刷直流电机,它们包括: 1 永磁同步电机(PMSMs); 2 梯形反电势(back - EMF)表面安装磁铁无刷直流电机; 3 正弦形表面安装磁铁无刷直流电机; 4 内嵌式磁铁无刷直流电机; 5 电机与驱动装置组合式无刷直流电机; 6 轴向磁通无刷直流电机。 图23.1给出了几种较常见的无刷直流电机的构形图。永磁同步电机反电势是正弦形的,其绕组如同其他交流电机一样通常不是满距,或是接近满距的集中式绕组。许多无刷直流电

步进电机的控制程序

mega16的,16和32管脚兼容,只不过flash大小不一样,不过中断向量号也不一样,你看下自己改改。时钟频率:内部RC 1M 芯片:ULN2003 键值:0 小角度快正转。1 小角度快倒。2 大角度快转。3 大角度快倒。4 小角度正慢转。5 小角度倒慢转。6 大角度正慢转。7 大角度倒慢转。********************************************************************/ #include #include #define uchar unsigned char #define uint unsigned int uchar a=0,b=0; uchar KEY_num=0xe1; unsigned int m=9000; const uchar f1[]={0x02,0x06,0x04,0x0c,0x08,0x09,0x01,0x03}; //正转时序3.75度 const uchar f2[]={0x04,0x06,0x02,0x03,0x01,0x09,0x08,0x0c}; //倒转时序3.75度 const uchar f3[]={0x01,0x02,0x04,0x08}; //正转时序7.5度 const uchar f4[]={0x01,0x08,0x04,0x02}; //倒转时序7.5度 void delay(int k) //延时 { int i; for(i=0;i

步进电机启动停止正反转控制程序的汇编语言的实现

DELAY 1MS MACRO TIME ;延时宏命令 LOCAL AA LOCAL BB PUSH CX MOV CX,TIME AA: PUSH CX MOV CX,1000 BB: NOP LOOP BB POP CX LOOP AA POP CX ENDM DATA SEGMENT TABA DB 01H,03H,02H,06H,04H,05H;正转的模型 TABB DB 05H,04H,06H,02H,03H,01H;反转的模型DATA ENDS CODE SEGMENT ZZ PROC NEAR PUSH DS MOV AX,DATA MOV DS,AX MOV AX,0 PUSH AX MOV DX,203H MOV AL,80H OUT DX,AL ;8255的控制字设定 MOV DX,200H MOV AL,0 OUT DX,AL ;先输出制动命令 MOV CX,360 ;设定正转步数 DD: MOV BL,6 ;六拍 MOV DX,200H LEA DI,TABA ;指针指向正转的数字模型 CC: MOV AL,[DI] OUT DX,AL DELAY 1MS 10 INC DI ;指针加1,指向下一步的数字模型 DEC BL ;拍数减1 JNZ CC ;六拍未结束,则继续循环 LOOP DD;360个周期的六拍未结束,继续循环 ZZ ENDP

FZ PROC NEAR MOV CX,400 ;设定反转步数 FF: MOV BL,6 MOV DX,200H LEA DI,TABB ;指针指向反转的数字模型 EE: MOV AL,[DI] OUT DX,AL DELAY 1MS 10 DEC DI ;指针减1,指向反转下一步数字模型 DEC BL JNZ EE LOOP FF FZ ENDP MOV DX,200H MOV AL,0 OUT DX,AL ;结束后,输出制动命令 RET MAIN ENDP CODE ENDS END START

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 .主要技术指标 1. 额定功率:P N=30W 2. 额定电压:U N =48V,直流 3. 额定电流:l N:::1A 3. 额定转速:n N =10000r/min 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸:0.036 0.065m ?主要尺寸的确定 1. 预取效率—-0.63、 2. 计算功率p 直流电动机P' - =0.85 30-40.48W ,按陈世坤书 n N 0.63 长期运行P u丄丄P N 3叩 短期运行P -?丄P N 4们 3. 预取线负荷A =11000A/m 4?预取气隙磁感应强度B§=0.55T 5. 预取计算极弧系数:-=0.8 6. 预取长径比(L/D)入’=2

7 ?计算电枢内径 根据计算电枢内径取电枢内径值 。衬=1.4 10 ° m 8. 气隙长度:=0.7 10 "m 9. 电枢外径 D j =2.95 10,m 10. 极对数p=1 11. 计算电枢铁芯长 L 、,D i1=2 1.4 10^ =2.8 10^m 根据计算电枢铁芯长取电枢铁芯长 L= 2.8 10^m 2 ■ Di1 3.14 1.4 10 T = ---------------------------------- = 2p 2 13.输入永磁体轴向长Lm =L =2.8 10,m ?定子结构 1. 齿数 Z=6 2. 齿距 3 "「 4 10 J .733 10% 3. 槽形选择 梯形口扇形槽, 见下 图。 4. 预估齿宽:b t = d 』 733 汩 °. 55 7294 10讣,B t 可由 1.43 0.96 BZ 5. 设计者经验得 1.43T , b t 由工艺取 0.295 10'm 预估轭高:h j1 礙 22 0.8 O. 55 = O .323 10,m 2IB j1K Fe 2K Fe B j1 2 0.96 1.56 B j1可由设计者经验得1.53T , h j1由工艺取0.325 10'm 根据齿宽和轭高作出下图,得到具体槽形尺寸 6.1P 「 6.1 40.48 ‘■: ?工 i A s B/ n N 3 10.8 11000 0.55 2 10000 = 1.37 10-m 12.极距 __2 = 2.2 10 m 3

西门子S系列PLC控制步进电机进行正反转的方法

西门子S系列P L C控制步进电机进行正反转 的方法 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

1、主程序先正转,等到正转完了就中断,中断中接通个辅助触点(),当闭合,住程序中的反转开始运做。这样子就OK了。 2、用PTO指令让 OR 高速脉冲,另一个点如做方向信号,就可以控制正反转了,速度快慢就要控制输出脉冲周期了,周期越短速度越快,如果你速度很快的话请考虑缓慢加速,不然它是启动不了的,如果方向也变的快的话就要还做一个缓慢减速,不然它振动会蛮厉害,而且也会失步。 3、程NETWORK 1 // 用于单段脉冲串操作的主程序(PTO) // 首次扫描时,将映像寄存器位设为低 // 并调用子程序0 LD R 1 CALL SBR_0 NETWORK 1 // 子程序0开始 LD MOVB 16#8D SMB67 // 设置控制字节: // - 选择PTO操作 // - 选择单段操作 // - 选择毫秒增加 // - 设置脉冲计数和周期数值 // - 启用PTO功能 MOVW +500 SMW68 // 将周期设为500毫秒。 MOVD +4 SMD72 // 将脉冲计数设为4次脉冲。 ATCH INT_0 19 // 将中断例行程序0定义为 // 处理PTO完成中断的中断。 ENI // 全局中断启用

PLS 0 // 激活PTO操作,PLS0 =》 MOVB 16#89 SMB67 // 预载控制字节,用于随后的 // 周期改动。 NETWORK 1 // 中断0开始 // 如果当前周期为500毫秒: // 将周期设为1000毫秒,并生成4次脉冲 LDW= SMW68 +500 MOVW +1000 SMW68 PLS 0 CRETI NETWORK 2 // 如果当前周期为1000毫秒: // 将周期设为500毫秒,并生成4次脉冲 LDW= SMW68 +1000 MOVW +500 SMW68 PLS 0序注释 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关PLC产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城。

永磁直流电机设计

永磁直流電機設計 1.電機主要尺寸與功率,轉速的關系: 與異步電機相似,直流電機的功率,轉速之間的關系是: D22*Lg=6.1*108*p’/(αP*A*Bg*Ky*n) (1) D2 電樞直徑(cm) 電机初設計時的主要尺寸 Lg 電樞計算長度(cm) 根據電机功率和實際需要確定 p’計算功率(w) p’=E*Ia=(1+2η)*P N/3η E=Ce*Φ*n*Ky=(P*N/60*a)*Φ2*n*Ky*10-8 Ce 電勢系數 a 支路數在小功率電機中取a=2 p 极數在小功率電機中取p=2 N 電樞總導体數 n 電机額定轉速 Ky 電樞繞組短矩系數小功率永磁電机p=2時,采用單疊繞組Ky=Sin[(y1/τ)*π/2] y1繞組第一節矩 αP 極弧系數一般取αP=0.6~0.75 正弦分布時αP=0.637 Φ每極磁通Φ=αP*τ*Lg*Bg τ極矩(cm) τ=π*D2/P Bg 氣隙磁密(Gs) 又稱磁負荷對鋁鎳Bg=(0.5~0.7) Br 對鐵氧体Bg=(0.7~0.85) Br, Br為剩磁密度 A 電樞線負荷 A=Ia*N/(a*π*D2)Ia電樞額定電流對連續運行的永磁電動机,一般取A=(30~80)A/cm另外電機負荷Δ= Ia/(a*Sd),其中Sd=π*d2/4 d為導線直徑.為了保証發熱因子A*Δ≦1400 (A/cm*A/mm2 )通常以電樞直徑D2和電樞外徑La作為電机主要尺寸,而把電動機的輸出功率和轉睦為電机的主要性能,在主要尺寸和主要性能的基礎上,我們就可以設計電機了. 在(1)式的基礎上經過變換可為:

D22*Lg*n/P’=(6.1*108/π2)*1/(αP*Bg*A)=C A 由上式可以看, C A的值並不取決於電機的容量和轉速,也不直接與電樞直徑和長度有關,它 僅取決於氣隙的平均磁密及電樞線負荷,而Bg和A的變化很小,它近似為常數,通常稱為電機 常數,它的導數K A=1/C A=(p’/n)/(D22* Lg)∞αP*Bg*A 稱為電機利用系數,它是正比於單位電 樞有效体積產生的電磁轉矩的一個比例常數. 2.直流電機定子的確定 2.1磁鋼內徑 根據電機電樞外徑D2確定磁鋼內徑 Dmi=D2+2g+2Hp 其中g為氣隙長度,小功率直流電機g=0.02-0.06cm ,鐵氧體時g可取得大些,鋁鎳鈷磁 鋼電機可取得較小,因鐵氧體H C較大.氣隙對電機的性能有很大的影響,較小的g可以使電樞 反應引起的氣隙磁場畸變加劇,使電機的換向不良加劇,及電機運行不穩定,主極表面損耗和 噪音加劇,以及電樞撓度加大,較大的氣隙,使電機效率下降,溫升提高. 有時電機磁鋼采用極靴,這樣可以起聚磁作用,提高氣隙磁密,還可稠節極靴 形狀以改善空載氣隙磁場波形,負載時交軸電樞反應磁通經極靴閉,合對永磁磁 極的影響較小.但這樣會使磁鋼結構复雜,制造成本增加,漏磁系數較大,外形尺 寸增加,負載時氣隙磁場的畸變較大.而無極靴時永磁體直接面向氣隙,漏磁系數小,能產生較多的磁通,材料利用率高,氣隙磁場畸變,而且結構簡單,便於生產. 其缺點是容易引起不可逆退磁現象. Hp 極靴高(cm) 無極靴結構時Hp=0 2.2磁鋼外徑 Dm0=Dmi+2Hm (瓦片形結構) Hm 永磁體磁路長度,它的尺寸應從滿足(1)有足夠的氣隙磁密(產生不可逆退磁),(2)在要求的任何情運行狀態下會形成永久性退磁等方面來確定,一般Hm=(5~15)g Hm越大,則氣隙磁密也越大,否則,則氣隙磁密也越小. 2.3磁鋼截面積Sm 對于鐵氧體由于Br小,則Sm取較大值,而對于鋁鎳鈷來說, Br較大,則Sm取小值. 環形鐵氧體磁鋼截面積: Sm=αP*π*(Dmi+Hm)Lg/P (cm)

步进电机控制及其汇编程序

综合实践报告之第二次大作业 题目:步进电机控制设计 说明:在工业电气自动化工程中,步进电机是一种常用的控制设备,它以脉冲信号控制电机的转速,在数控机床、仪器仪表、计算机外围设备以及其它自动设备中有广泛的应用。 步进电机是指一步步走的电动机,所谓“步”指转动角度,每步都会使电机转过一个固定的角度。步进电机有不同的种类,但其控制方法均相同,均以脉冲信号进行驱动,很适合使用单片机来进行控制。 本次大作业要求设计一个步进电机的控制部分。 已知: 采用2相制5线步进电机,其结构如下图所示,线圈中心抽头X1与X2连接在一起; B 相X1A 相 2相步进电机 步进电机采用1相激磁法,即在每一个瞬间只有一个线圈导通,其它线圈休息; 单片机与步进电机之间可采用ULN2003类的驱动IC ; 要求: 查找资料,设计出步进电机的硬件连接电路图; 给出控制软件流程图; 用汇编语言写出控制软件的代码。 提示:本作业对电机的转动方向不做要求,在实际应用中,改变线圈激磁的顺序可以改变步进电机的转动方向,每送一次激磁信号后应经过一小段时间延时,让步进电机有足够的时间建立激励磁场及转动。可以使用单片机的~端口输出控制信号,经驱动IC 传至步进电机。

电路图设计说明 此控制电路选用AT89S51型单片机作为驱动时序的输出控制器,其输出作为两相四线步进电机的时序信号,经过驱动芯片ULN2003放大后输入到两相四线步进电机的输入端口;单片机作为控制指令的输入按键K1-K3的输入端口,K1为电机正转按键,K2为电机正转按键,K3为电机停止按键,这三个按键均为高电平输入有效,按一下K1电机正转,按一下K2电机反转转,按一下K3电机停止。其硬件电路如图一: 控制程序流程图

无刷直流电机控制系统的设计

1引言无刷直流电机最本质的特征是没有机械换向器和电刷所构成的机械接触式换向机构。现在,无刷直流电机定义有俩种:一种是方波/梯形波直流电机才可以被称为无刷直流电机,而正弦波直流电机则被认为是永磁同步电机。另一种是方波/梯形波直流电机和正弦波直流电机都是无刷直流电机。国际电器制造业协会在1987年将无刷直流电机定义为“一种转子为永磁体,带转子位置信号,通过电子换相控制的自同步旋转电机”,其换相电路可以是独立的或集成于电机本体上的。本次设计采用第一种定义,把具有方波/梯形波无刷直流电机称为无刷直流电机。从20世纪90年代开始,由于人们生活水平的不断提高和现代化生产、办公自动化的发展,家用电器、工业机器人等设备都向着高效率化、小型化及高智能化发展,电机作为设备的重要组成部分,必须具有精度高、速度快、效率高等优点,因此无刷直流电机的应用也发展迅速[1]。 1.1 无刷直流电机的发展概况 无刷直流电动机是由有刷直流电动机的基础上发展过来的。 19世纪40年代,第一台直流电动机研制成功,经过70多年不断的发展,直流电机进入成熟阶段,并且运用广泛。 1955年,美国的D.Harrison申请了用晶体管换相线路代替有刷直流电动机的机械电刷的专利,形成了现代无刷直流电动机的雏形。 在20世纪60年代初,霍尔元件等位置传感器和电子换向线路的发现,标志着真正的无刷直流电机的出现。 20世纪70年代初,德国人Blaschke提出矢量控制理论,无刷直流电机的性能控制水平得到进一步的提高,极大地推动了电机在高性能领域的应用。 1987年,在北京举办的德国金属加工设备展览会上,西门子和博世两公司展出了永磁自同步伺服系统和驱动器,引起了我国有关学者的注意,自此我国开始了研制和开发电机控制系统和驱动的热潮。目前,我国无刷直流电机的系列产品越来越多,形成了生产规模。 无刷直流电动机的发展主要取决于电子电力技术的发展,无刷直流电机发展的初期,由于大功率开关器件的发展处于初级阶段,性能差,价格贵,而且受永磁材料和驱动控制技术的约束,这让无刷直流电动机问世以后的很长一段时间内,都停

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 一. 主要技术指标 1. 额定功率:W 30P N = 2. 额定电压:V U N 48=,直流 3. 额定电流:A I N 1< 3. 额定转速:m in /10000r n N = 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸:m 065.0036.0?φ 二. 主要尺寸的确定 1. 预取效率63.0='η、 2. 计算功率i P ' 直流电动机 W P K P N N m i 48.4063 .030 85.0'=?= = η,按陈世坤书。 长期运行 N i P P ?'' += 'ηη321 短期运行 N i P P ?'' += 'η η431 3. 预取线负荷m A A s /11000'= 4. 预取气隙磁感应强度T B 55.0'=δ 5. 预取计算极弧系数8.0=i α 6. 预取长径比(L/D )λ′=2

7.计算电枢内径 m n B A P D N s i i i 233 11037.110000 255.0110008.048 .401.61.6-?=?????=''''='λαδ 根据计算电枢内径取电枢内径值m D i 21104.1-?= 8. 气隙长度m 3107.0-?=δ 9. 电枢外径m D 211095.2-?= 10. 极对数p=1 11. 计算电枢铁芯长 m D L i 221108.2104.12--?=??='='λ 根据计算电枢铁芯长取电枢铁芯长L= m 2108.2-? 12. 极距 m p D i 22 1 102.22 104.114.32--?=??==πτ 13. 输入永磁体轴向长m L L m 2108.2-?== 三.定子结构 1. 齿数 Z=6 2. 齿距 m z D t i 22 1 10733.06 104.114.3--?=??==π 3. 槽形选择 梯形口扇形槽,见下图。 4. 预估齿宽: m K B tB b Fe t t 2210294.096 .043.155 .010733.0--?=???==δ ,t B 可由 设计者经验得1.43T ,t b 由工艺取m 210295.0-? 5. 预估轭高: m B K B a K lB h j Fe i Fe j j 211110323.056 .196.0255 .08.02.222-?=????=≈Φ= δδτ

单片机课设步进电机控制正反转(单片机爱好者)

单片机课程设计报告设计题目:步进电机控制系统 学院机械工程学院 专业机械设计制造及其自动化 班级 姓名 学号 指导教师 湖北工业大学 2010 年秋季学期

目录 1.设计目的 (2) 2.设计的主要内容和要求 (2) 3.题目及要求功能分析 (2) 4.设计方案 (5) 4.1 整体方案 (5) 4.2 具体方案 (5) 5.硬件电路的设计 (6) 5.1 硬件线路 (6) 5.2 工作原理 (7) 5.3 操作时序 (8) 6. 软件设计 (8) 6.1 软件结构 (8) 6.2 程序流程 (9) 6.3 源程序清单 (9) 7. 系统仿真 (9) 8. 使用说明 (10) 9. 设计总结 (10) 参考文献 (11) 附录 (12)

步进电机的控制 1.设计目的 (1)熟悉单片机编程原理。 (2)熟练掌握51单片机的控制电路和最小系统。 (3)单片机基本应用系统的设计方法。 2.设计的主要内容和要求 (1)查阅资料,了解步进电机的工作原理。 (2)通过单片机给参数控制电机的转动。 (3)通过按钮控制启停及反转。 (4)其他功能。 3.题目及要求功能分析 步进电机:步进电机是一种将电脉冲转化为角位移的执行机构。当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其精度高等特点,广泛应用于各种工业控制系统中。 三相单、双六拍步进电机的结构和工作原理: 三相单、双六拍步进电机通电方式:这种方式的通电顺

小型永磁直流电机设计

小型永磁直流电机设计(部分) Ap1008331谢志恒 1.电机主要尺寸与功率,转速的关系: 与异步电机相似,直流电机的功率,转速之间的关系是: D22*Lg=6.1*108*p’/(αP*A*Bg*Ky*n) (1) D2 电枢直径(cm) 电机初设计时的主要尺寸 Lg 电枢计算长度(cm) 根据电机功率和实际需要确定 p’计算功率(w) p’=E*Ia=(1+2η)*P N/3η E=Ce*Φ*n*Ky=(P*N/60*a)*Φ2*n*Ky*10-8 Ce 电势系数 a 支路数在小功率电机中取a=2 p 极数在小功率电机中取p=2 N 电枢总导体数 n 电机额定转速 Ky 电枢绕组短矩系数小功率永磁电机p=2时,采用单叠绕组Ky=Sin[(y1/τ)*π/2] y1绕组第一节矩 P 极弧系数一般取αP=0.6~0.75 正弦分布時αP=0.637 Φ每极磁通Φ=αP*τ*Lg*Bg τ极矩(cm) τ=π*D2/P Bg气隙磁密(Gs) 又称磁负荷,对铝镍Bg=(0.5~0.7) Br,对铁氧体Bg=(0.7~0.85) Br, Br为剩磁密度 A 电枢线负荷A=Ia*N/(a*π*D2)Ia电枢额定电流对连续运行的永磁电动机,一般取A=(30~80)A/cm另外电机负荷Δ= Ia/(a*Sd),其中Sd=π*d2/4,d为导线直径。为了保证发热因子A*Δ≦1400 (A/cm*A/mm2 )通常以电枢直径D2和电枢外径La作为电机主要尺寸,而把电动机的输出功率和转速为电机的主要性能,在主要尺寸和主要性能的基础上,我们就可以设计电机了。

在(1)式的基础上经过变换可为: D22*Lg*n/P’=(6.1*108/π2)*1/(αP*Bg*A)=C A 由上式可以看, CA的值并不取决於电机的容量和转速,也不直接与电枢直径和长度有关,它仅取决於气隙的平均磁密及电枢线负荷,而Bg和A的变化很小,它近似为常数,通常称为电机常数,它的导数K A=1/C A=(p’/n)/(D22* Lg)∞αP*Bg*A称为电机利用系数,它是正比於单位电枢有效体积产生的电磁转矩的一个比例常数。 2.磁钢的选择: 2.1磁钢的材质 在永磁直流电机中,磁钢相当于串激电中的定子线圈中,它在定子铁壳中产生磁场,它和其它电机一样,是利用电磁感应原理在磁场媒质中进行能量转换的,磁场在能量转换过程中起媒介作用,在永磁直流电机中产生磁场的磁源是充过磁的永磁体,也叫磁钢,充过磁的磁石性能对电机的性能有很大的影响。 在现代电机制造中,磁钢的材料有下列几种:铁氧体.铝镍鈷合金,稀士合金,釹铁硼等.由于各种材料自身特点和本公司的实际,一般选用铁氧体作为永磁材料。 2.2永磁材料的磁性能 磁钢的退磁曲线如下: 永磁材料的磁性能可以用磁滞回线来反映和描述.即用B=f(H)曲线来反映永磁体的磁感应强度随磁场强度来降改变的特性,该回线包含的面积随最大充磁磁场强度HMAX增大而增大,当HMAX达到HS时回线面积渐近地达到一个最大值,而且这时磁性能也较稳定,面积最大的回线被称为磁滞回线. 磁滞回线在第二象限的部分称为退磁曲线,它是永磁材料的基本特性曲线,退磁曲线中磁感应强度Bm 为正值而磁场强度Hm为负值,在退磁曲线过程中,永磁体相当于一个磁源.退磁

步进电机的控制电路和程序

步进电机的控制电路和程序 先看一下我们将要使用的51单片机综合学习系统能完成哪些实验与产品开发工作:分别有流水灯,数码管显示,液晶显示,按键开关,蜂鸣器奏乐,继电器控制,IIC总线,SPI总线,PS/2实验,AD模数转换,光耦实验,串口通信,红外线遥控,无线遥控,温度传感,步进电机控制等等。 上图是我们将要使用的51单片机综合学习系统硬件平台,本期实验我们用到了综合系统主机、步进电机,综合系统其它功能模块原理与使用详见前几期《电子制作》杂志及后期连载教程介绍。 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。步进电机可以作为一种控制用的特种电机,利用其没有积累误差(精度为100%)的特点,广泛应用于各种开环控制。 步进电机分类与结构 现在比较常用的步进电机分为三种:反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)。本章节以反应式步进电机为例,介绍其基本原理与应用方法。反应式步进电机可实现大转矩输出,步进角一般为1.5度。反应式步进电机的转子磁路由软磁材料制成,定子上有多相励磁绕组,利用磁导的变化产生转矩。常用小型步进电机的实物如图1 所示。 图1步进电机实物图 图 2 步进电机内部图 步进电机现场应用驱动电路 综合系统使用的是小型步进电机,对电压和电流 要求不是很高,为了说明应用原理,故采用最简单 的驱动电路,目的在于验证步进电机的使用,在正 式工业控制中还需在此基础上改进。一般的驱动电 路可以用图3的形式。 图3 一般驱动电路 在实际应用中一般驱动路数不止一路,用上图的分立电路体积大,很多 场合用现成的集成电路作为多路驱动。常用的小型步进电机驱动电路可以用 ULN2003或ULN2803。本书配套实验板上用的是ULN2003。ULN2003是高压大电流达林顿晶体管阵列系列产品,具有电流增益高、工作电压高、温度范围宽、带负载能力强等特点,适应于各类要求高速大功率驱动的系统。ULN2003A由7组达林顿晶体管阵列和相应的电阻网络以及钳位二极管网络构成,具有同时驱动7组负载的能力,为单片双极型大功率高速集成电路。ULN2003内部结构及等效电路图如图4:

步进电机正反转控制C语言程序 只为初学者

只为初学者的步进电机正反控制程序 #include<> #define uchar unsigned char #define uint unsigned int #define MotorData P2 //步进电机控制接口定义 sbit zheng=P3^0; sbit fan=P3^1; sbit stop=P3^2; uchar phasecw[8] ={0x01,0x03,0x02,0x06,0x04,0x0c,0x08,0x09};//正转 uchar phaseccw[8]={0x09,0x08,0x0c,0x04,0x06,0x02,0x03,0x01};//反转 //ms延时函数 void delay(uint t) { uint k; while(t--) { for(k=0; k<125; k++); } } void Delay_xms(uint x) { uint i,j; for(i=0;i

void Motor_work(uint t) { uchar i,j; switch(t) { case 0: while(1) {if(stop==0) break; for(i=0;i<8;i++) {MotorData=phasecw[i]; delay(50);//转速调节 } } break; case 1: while(1) {if(stop==0) break; for(j=0;j<8;j++) {MotorData=phaseccw[j]; delay(50);//转速调节 } } break; } } //停止转动 void Motor_test(void) { if(zheng==0) { Delay_xms(10); if(zheng==0) Motor_work(0); } if(fan==0) { Delay_xms(10); if(fan==0) Motor_work(1); } } //主函数 void main(void) {

无刷直流电动机PWM 控制方案

第三章、用EL-DSPMCKIV实现无刷直流电动机PWM 控制方案 实验概述: 本实验是一个无刷直流电动机的PWM控制系统。结构简单,用到的模块也较少。下面给出每个模块的输入与输出量名称及其量值格式 (一)、无刷直流电动机PWM 控制原理简介 无刷直流电动机从结构上讲更接近永磁同步电动机(我们在下一章节中做详细介绍),控制方法也很简单,主要是通过检测转子的位置传感器给出的转子磁极位置信号来确定励磁的方向,从而保证转矩角在90 度附近变化,保证电机工作的高效率。定子换相是通过转子位置信号来控制,转矩的大小则通过PWM的方法控制有效占空比来调控。 我公司提供过两种直流无刷电机,一种以前提供过的57BL-02直流无刷电机的额定电压为24V,额定转速为1600rpm,转子极数为4,也就是2 极对,还有一种是现在提供的57BL-0730N1直流无刷电机,该电机额定转速为3000rpm,转子极数为10,也就是5极对,这两种电机的转子位置都由霍尔传感器提供,同时由此计算出电机的转速,控制程序样例没有电流环。 (二)、系统组成方案及功能模块划分 本实验为开环和闭环实验,通过几个模块信号处理最终用BLDCPWM模块产生IPM 驱动信号来控制直流无刷电机转动。

下图为一个开环控制的系统功能框图,参考占空比信号经由RMP2CNTL 模块处理,变成缓变信号送到PWM产生模块。霍尔传感器的输出脉冲信号,经由DSP的CAP1、CAP2、CAP3端口被DSP获取。通过霍尔提供的转子位置信息HALL3_DRV模块判断转子位置,并将该转子位置信息通过计数器传递给BLDC_3PWM_DRV 模块,该模块通过占空比输入、设定开关频率以及转子的位置信息产生相应的PWM 信号作用于逆变器中的开关管,从而驱动电动机旋转。

无刷直流永磁电动机设计流程和实例

无刷直流永磁电动机设计实例 . 主要技术指标 1. 额定功率: P N 30W 2. 额定电压: U N 48V ,直流 3. 额定电流: I N 1A 3. 额定转速: n N 10000r /min 4. 工作状态:短期运行 5. 设计方式:按方波设计 6. 外形尺寸: 0.036 0.065m . 主要尺寸的确定 1. 预取效率 0.63 、 2. 计算功率 P i 直流电动机 Pi ' K m P N 0.85 30 40.48W ,按陈世坤书 i N 0.63 12 长期运行 P i 132 P N 13 短期运行 P i 1 3 P N 4 3. 预取线负荷 A s ' 11000 A / m 4. 预取气隙磁感应强度 B ' 0.55T 5. 预取计算极弧系数 i 0.8 6. 预取长径比( L/D )λ′=2

7.计算电枢内径 根据计算电枢内径取电枢内径值 D i1 1.4 10 2 m 8. 气隙长度 0.7 10 3 4 m 9. 电枢外径 D 1 2.95 10 2 m 10. 极对数 p=1 11. 计算电枢铁芯长 L D i1 2 1.4 10 2 2.8 10 2 m 根据计算电枢铁芯长取电枢铁芯长 L= 2.8 10 2 m 13. 输入永磁体轴向长 L m L 2.8 10 2 m 定子结构 1. 齿数 Z=6 设计者经验得 1.43T , b t 由工艺取 0.295 10 2 m 3 槽形选择 梯形口扇形槽,见下图 D i1 3 i A 6s . B 1P i n N 6.1 40.48 0.8 11000 0.55 2 10000 1.37 10 2 m 4. 预估齿宽 : b t tB B t K Fe 0.733 10 2 0.55 1.43 0.96 0.294 10 2m , B t 可由 12. 极距 D i1 2p 3.14 1.4 10 2 2 2.2 10 2 m 2. 齿距 i1 3.14 1.4 10 2 0.733 10 2m 5. 预 估 轭 高 : h j1 a i B 2lB j1K Fe 2K Fe B j1 2.2 0.8 0.55 0.323 10 2m

相关文档
相关文档 最新文档