文档库 最新最全的文档下载
当前位置:文档库 › Lab6 Banker's Algorithm

Lab6 Banker's Algorithm

Lab6 Banker's Algorithm
Lab6 Banker's Algorithm

Lab 6 Banker's Algorithm

Objectives:

1. Understand the concepts of resource allocation denial

2. Understand how to avoid deadlock using Banker's algoritm

[Time Required]: Depending on your experience of Windows, the estimated time of completion for this lab is 80mins.

[Notes]: Following exercises answer must be written on your lab workbook. Hand in it after lab.

Login the lab Linux

Double click on VMWare , and choose Ubuntu to run, then give a little patience to wait the Ubuntu starting up. (password:ubuntu)

[Background Knowledge]

Please reference textbook Page261-265.

[Running Environment]

This lab use winTC to implementation, you can download it on FTP.

[Exercise 1 Judge the system security]

There are 5 processes(P1,P2,P3,P4,P5) and 3 resources(A,B,C) in the system. And current state is shown in following table, and available resource vector is available=(0,0,0).

Please write the function test to complete following Banker's algorithm. Or you

can write your own program to implement the Banker's algorithm.

#define m 3

#define n 5

main(){

int test(int ned[],int av[],all[]);

int available[m]={0,0,0},need[n][m];

int allocation[n][m]={{0,1,0},{2,0,0},{3,0,3},{2,1,1},{0,0,2}};

int i,j,g=1;

int finish[n]={0,0,0,0,0};

clrscr();

printf(“please input the need resource data\n”);

for(i=0;i

for(j=0;j

scanf(“%d”,&need[i][j]);

j=0;

do{

for(i=0;i

if(finish[i]==0 && test(need[i],available,allocation[i]))

finish[i]=1;

j++;

}while(j

for(i=0;i

g=g&&finish[i];

if(g)

printf(“safe state”);

else

printf(“not safe state”);

}

[Brief Summary Of Lab] What do you learn from this lab? Or do you have

any other questions and suggestions about this lab?

#include

#include"conio.h"

//int need=0,R=0;

int i=0;

#define m 3

#define n 5

void main(){

int test(int ned[],int av[],int all[]);

int available[m]={0,0,0},need[n][m]={{0,0,2},{2,2,2},{0,0,0},{1,0,0},{0,0,2}}; int allocation[n][m]={{0,1,0},{2,0,0},{3,0,3},{2,1,1},{0,0,2}};

int i,j,g=1,abcd;

int finish[n]={0,0,0,0,0};

//clrscr();

printf("please input the need resource data\n");

/*for(i=0;i

for(j=0;j

scanf("%d",&need[i][j]);*/

j=0;

abcd=need[2][1];

//printf("abcd=%d\n",abcd);

do{

for(i=0;i

if(finish[i]==0&&test(need[i],available,allocation[i]))

finish[i]=1;

j++;

//printf("need=%d,R=%d\n",need,R);

}while(j

for(i=0;i

g=g&&finish[i];

if(g)

printf("safe state\n");

else

printf("not safe state\n");

}

int test(int ned[],int av[],int all[])

{

int k;

int a[3]={1,1,1};

for(k=0;k<3;k++)

{

if(av[k]

a[k]=0;

}

if(a[0]&&a[1]&&a[2])

for(k=0;k<3;k++)

{

av[k]+=all[k];

return 1;

return i=

}

else

return 0;

}

四位二进制同步加法计数器(缺0011 0100 0101 0110)

成绩评定表

课程设计任务书

摘要 本次课设题目为四位二进制加法计数器(缺0011 0100 0101 0110)。 首先在QuartusII8.1中建立名为count16的工程,用四位二进制加法计数器的VHDL语言实现了四位二进制加法计数器的仿真波形图,同时进行相关操作,锁定了所需管脚,将其下载到实验箱。 然后,在Multisim软件中,通过选用四个时钟脉冲下降沿触发的JK触发器和同步电路,画出其时序图,卡诺图,建立相关方程,做出相关计算,完成四位二进制加法计数器(缺0011 0100 0101 0110)的驱动方程。在Multisim软件里画出了四位二进制加法计数器的逻辑电路图。经过运行,分析由红绿灯的亮灭顺序及状态,和逻辑分析仪里出现波形图。说明四位二进制加法计数器顺利完成。 关键词:计数器;VHDL语言;仿真;触发器。

目录 一、课程设计目的 (1) 二、设计框图 (1) 三、实现过程 (2) 1、QUARTUS II实现过程 (2) 1.1建立工程 (2) 1.2编译程序 (7) 1.3波形仿真 (10) 1.4 仿真结果分析 (14) 1.5引脚锁定与下载 (14) 2、MULTISIM实现过程 (16) 2.1求驱动方程 (16) 2.2画逻辑电路图 (19) 2.3逻辑分析仪的仿真 (20) 2.4结果分析 (21) 2.5自启动判断 (22) 四、总结 (23) 五、参考书目 (24)

一、课程设计目的 1 了解同步加法计数器工作原理和逻辑功能。 2 掌握计数器电路的分析、设计方法及应用。 3 学会正确使用JK 触发器。 二、设计框图 状态转换图是描述时序电路的一种方法,具有形象直观的特点,即其把所用触发器的状态转换关系及转换条件用几何图形表示出来,十分清新,便于查看。 在本课程设计中,四位二进制同步加法计数器用四个CP 下降沿触发的JK 触发器实现,其中有相应的跳变,即跳过了0011 0100 0101 0110四个状态,这在状态转换图中可以清晰地显示出来。具体结构示意框图和状态转换图如下: 1010 101111001101111011110 /1 /1000 101101110010000100000/0/0/0/0/0/0/0/0/0/????←????←????←????←????←↓↑???→????→????→????→????→? B:状态转换图

同步二进制加法计数器

同步二进制加法计数器 F0302011 5030209303 刘冉 计数器是用来累计时钟脉冲(CP脉冲)个数的时序逻辑部件。它是数字系统中用途最广泛的基本部件之一,几乎在各种数字系统中都有计数器。它不仅可以计数,还可以对CP 脉冲分频,以及构成时间分配器或时序发生器,对数字系统进行定时、程序控制操作。此外,还能用它执行数字运算。 1、计数器的特点: 在数字电路中,把记忆输入CP脉冲个数的操作叫做计数,能实现计数状态的电子电路称为计数器。特点为(1)该电路一般为Moore型电路,输入端只有CP信号。 (2)从电路组成看,其主要组成单元是时钟触发器。 2、计数器分类 1) 按CP脉冲输入方式,计数器分为同步计数器和异步计数器两种。 同步计数器:计数脉冲引到所有触发器的时钟脉冲输入端,使应翻转的触发器在外接的CP脉冲作用下同时翻转。 异步计数器:计数脉冲并不引到所有触发器的时钟脉冲输入端,有的触发器的时钟脉冲输入端是其它触发器的输出,因此,触发器不是同时动作。 2) 按计数增减趋势,计数器分为加法计数器、减法计数器和可逆计数器三种。 加法计数器:计数器在CP脉冲作用下进行累加计数(每来一个CP脉冲,计数器加1)。 3) 按数制分为二进制计数器和非二进制计数器两类。 二进制计数器:按二进制规律计数。最常用的有四位二进制计数器,计数范围从0000到1111。 异步加法的缺点是运算速度慢,但是其电路比较简单,因此对运算速度要求不高的设备中,仍不失为一种可取的全加器。同步加法优点是速度快,虽然只比异步加法快千分之一甚至几千分之一秒,但对于计数器来讲,却是十分重要的。所以在这个高科技现代社会中,同步二进制计数器应用十分广泛。 下图为三位二进制加法计数器的电路图。 图1 三位二进制计数器 图示电路为对时钟信号计数的三位二进制加法计数器或称为八进制加法计数器。 该电路的经典分析过程: 1.根据电路写出输出方程、驱动方程和状态方程 2. 求出状态图 3.检查电路能否自启动 4.文字叙述逻辑功能 解:

国密算法(国家商用密码算法简介)

国家商用密码算法简介 密码学是研究编制密码和破译密码的技术科学,起源于隐秘消息传输,在编码和破译中逐渐发展起来。密码学是一个综合性的技术科学,与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。密码学的基本思想是对敏感消息的保护,主要包括机密性,鉴别,消息完整性和不可否认性,从而涉及加密,杂凑函数,数字签名,消息认证码等。 一.密码学简介 密码学中应用最为广泛的的三类算法包括对称算法、非对称算法、杂凑算法。 1.1 对称密码 对称密码学主要是分组密码和流密码及其应用。分组密码中将明文消息进行分块加密输出密文区块,而流密码中使用密钥生成密钥流对明文消息进行加密。世界上应用较为广泛的包括DES、3DES、AES,此外还有Serpent,Twofish,MARS和RC6等算法。对称加密的工作模式包括电码本模式(ECB 模式),密码反馈模式(CFB 模式),密码分组链接模式(CBC 模式),输入反馈模式(OFB 模式)等。1.2 非对称密码 公钥密码体制由Diffie和Hellman所提出。1978年Rivest,Shamir和Adleman提出RAS密码体制,基于大素数分解问题。基于有限域上的离散对数问题产生了ElGamal密码体制,而基于椭圆曲线上的离散对数问题产生了椭圆曲线密码密码体制。此外出现了其他公钥密码体制,这些密码体制同样基于困难问题。目前应用较多的包括RSA、DSA、DH、ECC等。 1.3杂凑算法 杂凑算法又称hash函数,就是把任意长的输入消息串变化成固定长的输出串的一种函数。这个输出串称为该消息的杂凑值。一个安全的杂凑函数应该至少满足以下几个条件。 1)输入长度是任意的; 2)输出长度是固定的,根据目前的计算技术应至少取128bits长,以便抵抗生日攻击; 3)对每一个给定的输入,计算输出即杂凑值是很容易的; 4)给定杂凑函数的描述,找到两个不同的输入消息杂凑到同一个值是计算上不可行的,或给定 杂凑函数的描述和一个随机选择的消息,找到另一个与该消息不同的消息使得它们杂凑到同一个值是计算上不可行的。 杂凑函数主要用于完整性校验和提高数字签名的有效性,目前已有很多方案。这些算法都是伪随机函数,任何杂凑值都是等可能的。输出并不以可辨别的方式依赖于输入;在任何输入串中单个比特

三位二进制加法计数器(无效态:000,001)设计一个基于74138的组合电路 设计一个140进制加法计数器

目录 1 课程设计的目的与作用 (1) 2 设计任务 (1) 3 设计原理 (2) 3.1三位二进制加法计数器 (2) 3.2全加器 (2) 3.3用集成芯片设计一个140进制的加法器 (2) 4实验步骤 (3) 4.1加法计数器 (3) 4.2全加器 (6) 4.3用集成芯片设计一个140进制的加法器 (7) 5仿真结果分析 (8) 6设计总结 (9) 7参考文献 (9)

1课程设计的目的与作用 (1)了解同步计数器及序列信号发生器工作原理; (2)掌握计数器电路的分析,设计方法及应用; (3)掌握序列信号发生器的分析,设计方法及应用 2 设计任务 2.1加法计数器 (1)设计一个循环型3位2进制加法计数器,其中无效状态为(000,001),组合电路选用与门和与非门等。 (2)根据自己的设计接线。 (3)检查无误后,测试其功能。 2.2全加器 (1)设计一个全加器,选用一片74LS138芯片设计电路。 (2)根据自己的设计接线。 (3)检查无误后,测试其功能。 2.3 140进制的加法器 (1)设计一个140进制加法器并显示计数,选用两片74L163芯片设计电路。 (2)根据自己的设计接线。 (3)检查无误后,测试其功能。

3 设计原理 3.1加法计数器 1.计数器是用来统计输入脉冲个数电路,是组成数字电路和计算机电路的基本时序逻辑部件。计数器按长度可分为:二进制,十进制和任意进制计数器。计数器不仅有加法计数器,也有减法计数器。如果一个计数器既能完成累加技术功能,也能完成递减功能,则称其为可逆计数器。在同步计数器中,个触发器共用同一个时钟信号。 2.时序电路的分析过程:根据给定的时序电路,写出各触发器的驱动方程,输出方程,根据驱动方程带入触发器特征方程,得到每个触发器的次态方程;再根据给定初态,一次迭代得到特征转换表,分析特征转换表画出状态图。 3.CP是输入计数脉冲,所谓计数,就是记CP脉冲个数,每来一个CP脉冲,计数器就加一个1,随着输入计数脉冲个数的增加,计数器中的数值也增大,当计数器记满时再来CP脉冲,计数器归零的同时给高位进位,即要给高位进位信号。 3.2全加器 1.74LS138有三个输入端:A0,A1,A2 和八个输出端Q0-Q7. 3个使能输入端口分是STB,STC,STA,只有当STB=STC=0,STA=1时,译码器才能正常工作,否则译码器处于禁止状态,所有输出端为高电平。 2. 以处理低位进位,并输出本位加法进位。多个全加器进行级联可以得到多位全加器 3.3用集成芯片设计一个140进制的加法器 选取两片74LS163芯片设计140进制加法计数器。74LS163具有以下功能: A 异步清零功能 当0 CR时,其他输入信号都不起作用,由时钟触发器的逻 = = CR时,计数器清零。在0 R复位计数器也即使异步清辑特性知道,其异步输入端信号是优先的,0 = CR正是通过D 零的。

基于国密算法、数字证书的安全问题理解

基于国密算法、数字证书的安全问题理解 1. 国密算法发展背景 随着金融安全上升到国家安全高度,近年来国家有关机关和监管机构站在国家安全和长远战略的高度提出了推动国密算法应用实施、加强行业安全可控的要求。摆脱对国外技术和产品的过度依赖,建设行业网络安全环境,增强我国行业信息系统的“安全可控”能力显得尤为必要和迫切。 密码算法是保障信息安全的核心技术,尤其是最关键的银行业核心领域长期以来都是沿用3DES、SHA-1、RSA等国际通用的密码算法体系及相关标准,为从根本上摆脱对国外密码技术和产品的过度依赖。2010年底,国家密码管理局公布了我国自主研制的“椭圆曲线公钥密码算法”(SM2算法)。为保障重要经济系统密码应用安全,国家密码管理局于2011年发布了《关于做好公钥密码算法升级工作的通知》,要求“自2011年3月1日期,在建和拟建公钥密码基础设施电子认证系统和密钥管理系统应使用SM2算法。自2011年7月1日起,投入运行并使用公钥密码的信息系统,应使用SM2算法。” 2. 国密算法 安全的本质是算法和安全系统 保证安全最根本的方法是基础软件和基础硬件都是自己控制,目前我国无法短期国产化的情况下,数据加密是最好的方式。如果加密算法以及实现都是外国提供的,安全性从何说起,所以我国国家密码局发布了自主可控的国密算法 国密算法:为了保障商用密码的安全性,国家商用密码管理办公室制定了一系列密码标准,包括SM1(SCB2)、SM2、SM3、SM4、SM7、SM9、祖冲之密码算法(ZUC)那等等。 其中SM1、SM4、SM7、祖冲之密码(ZUC)是对称算法;SM2、SM9是非对称算法;SM3是哈希算法。 目前SM1、SM7算法不公开,调用该算法时,需要通过加密芯片的接口进行调用 3. 国密算法的现状 虽然在SSL VPN、数字证书认证系统、密钥管理系统、金融数据加密机、签名验签服务器、智能密码钥匙、智能IC卡、PCI密码卡等产品上改造完毕,但是目前的信息系统整体架构中还有操作系统、数据库、中间件、浏览器、网络设备、负载均衡设备、芯片等软硬件,由于复杂的原因无法完全把密码模块升级为国产密码模块,导致整个信息系统还存在安全薄弱环节。 4. 浏览器与SSL证书 SSL证书的作用就是传输加密 如果网站安装了SSL证书,就启用了https访问,那么你的访问就更加安全了。

三位二进制同步减法计数器

赣南师院物理与电子信息学院数字电路课程设计报告书 姓名:胡丹 班级:电气教育技术10级 学号:100805004 时间:2012年 4月8日

3位二进制同步减法计数器 1、设计任务与要求 设计一个3位二进制同步减法计数器(无效状态为001 100) 2、方案设计与论证 2.1 基本原理 计数器是用来统计脉冲个数的电路,是组成数字电路和计算机电路的基本时序部件,计数器按进制分可分为:二进制,十进制和N 进制。计数器不仅有加法计数器,也有减法计数器。一个计数器如果既能完成加法计数,又能完成减法计数,则其称为可逆计数器。 同步计数器:当输入计数脉冲到来时,要更新状态的触发器都是同时翻转的计数器,叫做同步计数器。设计同步计数器按照下面的思路进行分析。 图(1) 2.2 设计过程 2.2.1 状态图 000 111 110 101 011 010 图(2) 2.2.2 卡诺图 00 01 11 10 111 xxx 010 000 xxx 011 110 101 图(3) 0 1 Q 1n Q 0n Q 2n 时序逻辑问题 状态赋值 状态转换图 最简逻辑表达式 逻辑图 检查能否自启动 选定触发器类型

00 01 11 10 1 x 0 0 x 1 1 图(4) 00 01 11 10 1 x 1 1 x 1 1 图(5) 00 01 11 10 1 x 0 0 x 1 1 图(6) 2.2.3 状态方程与驱动方程 状态方程: 12 n Q +=1n Q 2 n Q +1n Q 2 n Q 11 n Q +=1 n Q +0 n Q 1 n Q Q 1n Q 0n Q 2n 0 1 Q 1n+1的卡诺图 Q 1n Q 0n Q 2 n 0 1 Q 1n Q 0n Q 2n 0 1

国密算法应用流程

RJMU401国密算法应用流程 一、国密芯片RJMU401数据加密传输、身份认证及数据完整性保证 1、传输信道中的数据都采用SM4分组加密算法,保证数据传输时数据的机密性; 2、使用散列算法SM3保证数据的完整性,以防止数据在传输的过程中被篡改; 3、使用非对称算法SM2的私钥签名来保证数据的不可抵赖性,确保数据是从某一个确 定的车载用户端发出; 4、具体流程如下: a、用户数据使用SM3进行散列运算得到数据摘要,再使用非对称算法SM2进行 摘要签名; b、同时使用对称算法SM4的密钥对数据摘要进行加密并传输给安全模块; c、使用同一个对称算法SM4密钥对用户数据进行加密,并将加密后的密文传输给 监控端; d、监控端收到数据密文后,使用对应的密钥进行对称算法SM4解密,并使用散列 算法对解密后的数据进行运算得到数据摘要1; e、监控端对收到的摘要签名进行对称算法SM4解密,再经过非对称算法解密得到 最初的数据摘要2; f、对比数据摘要1和数据摘要2,若两者相等则认为传输数据具备完整性;否则 认为数据出错; 图1、数据加密传输、数据完整性及签名认证流程 补充说明: 1、需要有一主机发起认证指令,监控端收到对应指令后,会产生一个随机数(会话密 钥),可用该随机数作为对称加密SM4的单次密钥,用于加密传输的数据; 2、此SM4的会话密钥不会明文传输,监控端查找对应车载用户端的公钥进行加密,传 给对应的车载用户端,车载用户端收到数据后,用自己的SM2私钥解密,即可得到此次会话密钥。(会话密钥采用非对称密钥机制进行传输) 3、每一个车载用户端存放一个或者两个SM2密钥对,可采用CA证书形式。证书在车 载用户端生产时候预置进安全芯片RJMU401,监控端存储所有的车载用户端的SM2密钥对(证书)。

国密算法

国密算法(SM1/2/4)芯片用户手册(UART接口) 注意:用户在实际使用时只需通过UART口控制国密算法芯片即可,控制协议及使用参考示例见下面 QQ:1900109344(算法芯片交流)

目录 1.概述 (3) 2.基本特征 (3) 3.通信协议 (3) 3.1.物理层 (3) 3.2.链路层 (4) 3.2.1.通讯数据包定义 (4) 3.2.2.协议描述 (4) 3.3.数据单元格式 (5) 3.3.1.命令单元格式 (5) 3.3.2.应答单元格式 (5) 3.4.SM1算法操作指令 (6) 3.4.1.SM1 加密/解密 (6) 3.4.2.SM1算法密钥导入指令 (6) 3.5.SM2算法操作指令 (7) 3.5.1.SM2_Sign SM2签名 (7) 3.5.2.SM2_V erify SM2验证 (7) 3.5.3.SM2_Enc SM2加密 (8) 3.5.4.SM2_Dec SM2解密 (9) 3.5.5.SM2_GetPairKey 产生SM2密钥对 (9) 3.5.6.SM2算法公钥导入 (10) 3.6.SM4算法操作指令 (10) 3.6.1.SM4加密/解密 (10) 3.6.2.SM4算法密钥导入指令 (11) 3.7.校验/修改Pin指令 (11) 3.8.国密算法使用示例(Uart口命令流) (12) 3.8.1.SM1算法操作示例 (12) 3.8.2.SM2算法操作示例 (13) 3.8.3.SM4算法操作示例 (14) 3.9.参考数据 (15) 3.9.1.SM1参考数据 (15) 3.9.2.SM2参考数据 (15) 3.9.3.SM4参考数据 (17)

国密算法芯片

国密算法芯片 用户手册 注意:用户在实际使用时需要通过UART口控制国密算法芯片,控制协议见下面说明,芯片本身只包含其中某几个算法,需要在购买时说明。 通过UART口发命令即可,方便用户使用,价格便宜 QQ:2425053909(注明加密芯片)

目录 1.概述 (2) 2.基本特征 (2) 3.通信协议 (2) 3.1.物理层 (2) 3.2.链路层 (3) 3.2.1. 通讯数据包定义 (3) 3.2.2. 协议描述 (3) 3.3.数据单元格式 (4) 3.3.1. 命令单元格式 (4) 3.3.2. 应答单元格式 (4) 4.国密芯片加解密指令 (5) 4.1.SM1算法操作指令 (5) 4.2.SM4算法操作指令 (5) 4.3.SM7算法操作指令 (6) 4.4.SSF33算法操作指令 (7) 4.5.SM3算法操作指令 (7)

1.概述 本文档适用于使用国密算法芯片进行终端开发的用户。终端开发者通过发送串口命令的方式操作国密芯片进行数据交换,国密产品应用开发。通过阅读本文档,终端开发者可以在无需考虑国密算法实现细节情况下,借助国密芯片来迅速改造现有系统使之适合国密应用。 2.基本特征 芯片的基本特征见下表: 3.通信协议 3.1.物理层 国密芯片采用系统供电方式,电压5V或者3.3V。国密芯片串口与系统MCU 串口相连,异步全双工通讯,波特率默认为115200bps。数据格式为1位起始位、8位数据位和1位停止位,无校验位。 系统MCU向国密芯片发送命令时,在同一个命令内,相连两个发送字符之间的间隔不应大于10个字符时间,否则国密芯片可能会认为命令超时导致无任何响应。

同步计数器和异步计数器比较

一、选择题 1.同步计数器和异步计数器比较,同步计数器的显著优点是A。 A.工作速度高 B.触发器利用率高 C.电路简单 D.不受时钟C P控制。 2.把一个五进制计数器与一个四进制计数器串联可得到D进制计数器。 A.4 B.5 C.9 D.20 3.下列逻辑电路中为时序逻辑电路的是C。 A.变量译码器 B.加法器 C.数码寄存器 D.数据选择器 4.N个触发器可以构成最大计数长度(进制数)为D的计数器。 A.N B.2N C.N2 D.2N 5.N个触发器可以构成能寄存B位二进制数码的寄存器。 A.N-1 B.N C.N+1 D.2N 6.五个D触发器构成环形计数器,其计数长度为A。 A.5 B.10 C.25 D.32 7.同步时序电路和异步时序电路比较,其差异在于后者B。 A.没有触发器 B.没有统一的时钟脉冲控制 C.没有稳定状态 D.输出只与内部状态有关 8.一位8421B C D码计数器至少需要B个触发器。 A.3 B.4 C.5 D.10 9.欲设计0,1,2,3,4,5,6,7这几个数的计数器,如果设计合理,采用同 步二进制计数器,最少应使用B级触发器。 A.2 B.3 C.4 D.8 10.8位移位寄存器,串行输入时经个脉冲后,8位数码全部移入寄存器中。 A.1 B.2 C.4 D.8 11.用二进制异步计数器从0做加法,计到十进制数178,则最少需要个触发器。 A.2 B.6 C.7 D.8 E.10 12.某电视机水平-垂直扫描发生器需要一个分频器将31500H Z的脉冲转换为60H Z 的脉冲,欲构成此分频器至少需要个触发器。 A.10 B.60 C.525 D.31500 13.某移位寄存器的时钟脉冲频率为100K H Z,欲将存放在该寄存器中的数左移8位,完成该操作需要时间。

4位同步二进制加法计数器

4位同步二进制加法计数器 一、实验目的 1、熟悉在EDA平台上进行数字电路集成设计的整个流程。 2、掌握Max+PlusⅡ软件环境下简单的图形、VHDL文本等输入设计方法。 3、熟悉VHDL设计实体的基本结构、语言要素、设计流程等。 4、掌握利用Max+PlusⅡ的波形仿真工具验证设计的过程。 5、学习使用JTAG接口下载逻辑电路到可编程芯片,并能调试到芯片正常工作为止。 二、实验设备 1.软件 操作系统:Windows 2000 EDA软件:MAX+plus II 10.2 2.硬件 EDA实验箱:革新EDAPRO/240H 三、实验原理 1.设计分析 4位同步二进制加法计数器的工作原理是指当时钟信号clk的上升沿到来时,且复位信号clr低电平有效时,就把计数器的状态清0。 在clr复位信号无效(即此时高电平有效)的前提下,当clk的上升沿到来时,如果计数器原态是15,计数器回到0态,否则计数器的状态将加1. 2.VHDL源程序 library ieee; use ieee.std_logic_1164.all; entity cnt4e is port(clk,clr:in std_logic; cout:out std_logic; q:buffer integer range 0 to 15); end cnt4e; architecture one of cnt4e is begin process(clk,clr) begin if clk'event and clk='1'then if clr='1'then if q=15 then q<=0; cout<='0'; elsif q=14 then q<=q+1; cout<='1'; else q<=q+1; end if; else q<=0;

基于国密算法的文件安全系统研究与实现

基于国密算法的文件安全系统研究与实现 徐学东1,季才伟2 (1.长春工程学院机电学院,吉林长春,130012;2.长春易申软件有限公司,吉林长春,130012) 摘要:针对网络环境下电子文件的安全需求,研究基于国密算法的文件安全系统。提出C/S架构的系统模型,针对公共信道交互的安全性问题,提出“新鲜性标识符+挑战应答模式”的认证及密码协议方案,并完成了算法、密钥体系安全性设计和产品开发,目前已并通过了国密测试。 关键词:国密算法;公共信道;挑战应答模式;密钥体系 Research on the file security system based on the National commercial cipher algorithm Xu Xuedong1,Ji Caiwei2 (1.School of Mechanical&Electrical Engineering Changchun institute of Technology,ChangChun,130012; 2.Changchun E-sun Software Co.,ChangChun,130012) Abstract:According to the security requirement of the electronic file in the network environment,Analysis the file security system based on the national commercial cipher algorithm. Present C/S structure of the system model, “the fresh identifier + challenge response mode”authentication and cryptographic protocol is put forward to solve the problem of the safety of public channel interaction,and gives the algorithm and key security system design and specific implementation process.At present, has passed the testing of National commercial cipher algorithm. Keywords:National commercial cipher algorithm;Common channel;Challenge response mode;Key system 0 引言 重要电子文件传输、存储等过程中存在非法访问、窃取的风 险,需要通过密码产品进行保护。我国《商用密码管理条例》规定, 对信息进行加密保护或认证所使用的密码技术和产品,只能使用 经国家密码管理局审批认定的商用密码产品。商密产品必须基于 国密商用算法,且需通过国密产品检测获得产品型号。 国密商用算法是指国密 SM 系列算法。在国密产品检测中, 除了应用国密算法,基于PKI的加密体系,公共信道双向认证、算 法和密钥管理安全性和性能均有很高的要求。研究基于国密算法 的电子文件安全系统的设计方案,确保可信认证及无漏洞交互, 达到国密产品检测的要求。 1 系统架构设计 网络环境下,电子文件一般采取集中管理、分布使用的管理 方式。基于SC/SS架构模型,系统由服务端和客户端构成。总体 架构如图1。服务端负责用户的身份认证,权限控制,电子文件的 加密存储和行为审计。客户端负责文件的解密,监控文件的使用。 两者共同完成用户身份认证、会话协商密钥和客户端系统的安全 监控、防破解功能。 系统的加解密环节则需要在服务端和客户端分别实现。服务 端密码运算采用国密局审批通过的SJK1238加密卡,负责与客户 端协商会话密钥,验证客户端身份,对文档进行加解密。客户端采 用SJK1104 USBkey,负责与服务端协商会话密钥时的数字签名、 通讯数据加解密及客户端文档解密。为确保性能及密钥的安全 性,密码运算采用硬件加密。具体算法为:公钥密码算法为SM2, 杂凑算法为SM3,对称密码算法为SM4。 2 公共信道认证及密码协议 由于客户端和安全服务器的交互必须通过公共信道,其安全 设计至关重要。传统通过公共信道实现基于本地身份的交互认证 问题的研究已经较为深入。无密钥的安全传输机制也取得一些成 果。本设计的目标是简洁、高效、确保认证防止内部攻击。 2.1 新鲜性标识符概念 基于细粒度新鲜性的认证及密码协议是通过公共信道交互 的有效方案。其中新鲜性的概念是:协议运行期间,新鲜性标示 符N在产生时间t0之间没有被使用过。如果交互双方都相信新 鲜性标识符重复概率很低,攻击者在协议运行期间找到一个使用 过的标识符是实践上不可行的,则该新鲜性标识符只有若干合法 的主体拥有。 2.2 基于新鲜性标识符的挑战应答模式 挑战应答(Challenge/Response)模式是常用的认证方式,就 是每次认证时认证服务器端都给客户端发送一个"挑战"字串, 客户端程序收到这个"挑战"字串后,做出相应的"应答",认 证服务器将应答串与自己的计算结果比较,判断是否通过认证。 根据Dolev-Yao模型,每次交互过程双方均采用“新鲜性挑战”字 串,如加密算法完善,不同消息之间的格式不能相同,每个主体能 区分消息是否是由自己产生,则基于该新鲜性标识符进行双向认 证的过程就是安全的。 本系统客户端与服务器通讯采用标准双向认证协议,使用挑 战应答模式协商会话密钥,交互双方在交互过程中各产生一个新 鲜性随时数,作为签名验证的标识符。协商成功后通讯的数据均 使用会话密钥进行加密。协商过程如下: 基金项目:吉林省科技攻关计划项目(20140204060SF);吉林省教育厅科研规划项目(吉教科合字[2014]第337号)DOI:10.16520/https://www.wendangku.net/doc/d89799723.html,ki.1000-8519.2016.18.029

4位二进制计数器实验

计算机组成原理 实验报告 院系: 专业: 班级: 学号: 姓名: 指导老师: 2014年11月20日

实验一 4位二进制计数器实验 一、实验环境 1. Windows 2000 或 Windows XP 2. QuartusII9.1 sp2、DE2-115计算机组成原理教学实验系统一台,排线若干。 二、实验目的 1、熟悉VHDL 语言的编写。 2、验证计数器的计数功能。 三、实验要求 本实验要求设计一个4位二进制计数器。要求在时钟脉冲的作用下,完成计数功能,能在输出端看到0-9,A-F 的数据显示。(其次要求下载到实验版实现显示) 四、实验原理 计数器是一种用来实现计数功能的时序部件,计数器在数字系统中主要是对脉冲的个数进行计数,以实现测量、计数和控制的功能,同时兼有分频功能。计数器由基本的计数单元和一些控制门所组成,计数单元则由一系列具有存储信息功能的各类触发器构成,这些触发器有RS 触发器、T 触发器、D 触发器及JK 触发器等。计数器在数字系统中应用广泛,如在电子计算机的控制器中对指令地址进行计数,以便顺序取出下一条指令,在运算器中作乘法、除法运算时记下加法、减法次数,又如在数字仪器中对脉冲的计数等等。 计数器按计数进制不同,可分为二进制计数器、十进制计数器、其他进制计数器和可变进制计数器,若按计数单元中各触发器所接收计数脉冲和翻转顺序或计数功能来划分,则有异步计数器和同步计数器两大类,以及加法计数器、减法计数器、加/减计数器等,如按预置和清除方式来分,则有并行预置、直接预置、异步清除和同步清除等差别,按权码来分,则有“8421”码,“5421”码、余“3”码等计数器,按集成度来分,有单、双位计数器等等,其最基本的分类如下: 计数器的种类??????? ?????????????????????进制计数器十进制计数器二进制计数器进制可逆计数器减法计数器 加法计数器功能异步计数器同步计数器结构N 、、、321 下面对同步二进制加法计数器做一些介绍。 同步计数器中,所有触发器的CP 端是相连的,CP 的每一个触发沿都会使所有的触发器状态更新。因此不能使用T′触发器。应控制触发器的输入端,即将

国密算法高速加密芯片

国密算法 --TF32A09系列芯片 赵玉山1371 899 2179 芯片概述: TF32A09系列芯片采用独有的数据流加解密处理机制,实现了对高速数据流同步加解密功能,在加解密速度上全面超越了国内同类型芯片。 TF32A09系列芯片集成度高、安全性强、接口丰富、加解密速度快,具有极高的性价比。该系列芯片可广泛的应用于金融、电子政务、电子商务、配电、视频加 密、安全存储、工业安全防护、物联网安全防护等安全领域。 芯片架构:

关键特性: ?CS320D 32位安全内核,外部总线支持8位/16位/32位访问; ?工作频率可达到100MHz; ?64k Byte ROM,可将成熟固件或受保护代码掩膜到ROM,密码算法使用MPU保护; ?20kByte 片内SRAM,从容完成高速数据处理; ?512kByte Nor Flash,满足不同客户应用要求; ?拥有两个USB—OTG 接口,可根据应用需求设置成Host或Device ; ?集成多种通信接口和多种信息安全算法(SM1、SM2、SM3、SM4、3DES、RSA等),可实现高度整合的单芯片解决方案; ?支持在线调试,IDE 调试环境采用CodeWarrior。 内部存储器: ?20KB SRAM ?64KB ROM ?512KB FLASH 芯片外部接口:

技术参数: 1. 工作电压: 2.4V~ 3.6V 2. 频率:最高可达100MHZ 3. 外形尺寸:TF32A9FAL1(LQFP176,20X20X1.4mm ) TF32A9FCL1(LQFP80,10X10X1.4mm ) TF32A9FDL1(LQFP64,10X10X1.4mm ) 芯片优势: ? 自主设计,国产安全芯片 ? 专利设计,加密传输速度快 ? 拥有两个USB —OTG 接口,高速流加密 ? 接口丰富 ? 集成国密算法 外设模块 176Pin 芯片 80Pin 芯片 64Pin 芯片 USB1 ● ● ● USB2 ● ● 7816-1(智能卡) ● ● ● 7816-2(智能卡) ● ● SPI1 ● ● ● SPI2 ● UART1 ● ● ● UART2 ● ● NFC(nandFlash) ● ● I2C ● ● ● KPP(键盘) ● GPIO 32 16 2

车联网安全之国密算法与其他算法的区别

车联网安全之国密算法与其他算法的区别 概述: 在车联网中,不管是端到云、还是云到车,每个环节、每个节点的信息安全保障都离不开加解密算法的支持,加解密算法的合理使用以及其计算能力直接影响车联网的性能和用户的体验。 今天和大家讨论一下国密算法与其他加解密算法(即国际算法是美国的安全局发布,是现今最通用的商用算法)的差别,以便于车联网的设计者们在不同的环节、节点采用最优的算法,从而提高产品的性价比。 国密算法: 即国产密码算法,是国家密码局制定标准的一系列算法,其中包括了对称加密算法,椭圆曲线非对称加密算法,杂凑算法等,在金融领域目前主要使用公开的SM2、SM3、SM4三类算法,分别是非对称算法、哈希算法和对称算法。在车联网中,目前还没有车厂采用国密算法,但作者认为随着互联网安全作为国家属性的重要度提升,未来国密算法将是车联网安全领域的发展趋势。 与国际算法差别: SM1是国家密码管理部门审批的分组密码算法,分组长度和密钥长度都为128比特,算法安全保密强度及相关软硬件实现性能与AES相当,该算法不公开,仅以 IP核的形式存在于芯片中; 图1:SM1与AES的比较 SM2算法和RSA算法都是公钥密码算法,SM2算法是一种更先进安全的算法,在我们国家商用密码体系中被用来替换RSA算法。SM2性能更优更安全:密码复杂度高、处理速度快、硬件性能消耗更小。

图2:SM2与RSA的比较 注: 1. 亚指数级算法复杂度低于指数级别的算法。 2. RSA秘钥生成速度较慢。例:主频1.5G赫兹的话,RSA需要2-3秒的,这在车联网中是根本无法接受的,而SM2只需要几十毫秒。 SM3是摘要加密算法,该算法适用于商用密码应用中的数字签名和验证以及随机数的生成,是在SHA-256基础上改进实现的一种算法。SM3算法采用Merkle-Damgard结构,消息分组长度为512位,摘要值长度为256位。 图3:SM3与Sha256的比较 SM4分组密码算法是我国自主设计的分组对称密码算法,用于实现数据的加密/解密运算,以保证数据和信息的机密性,是专门为无线局域网产品设计的加密算法。

4位同步二进制加法计数器

4位同步二进制加法计数器 一.实验目的 1.通过此实验逐步了解、熟悉和掌握FPGA开发软件Quartus Ⅱ的使用的 法及VerilogHDL的编程方法。 2、学习用VerilogHDL语言以不同方式来描述1位全加器及电路的设计仿真和硬件测试。 二.实验设备 操作系统:Windows 2000 EDA软件: Quartus II6.0 三.设计原理 1.4位同步二进制加法计数器的工作原理是指当时钟信号clk的上升沿到来时,且复位信号clr低电平有效时,就把计数器的状态清0。在clr复位信号无效(即此时高电平有效)的前提下,当clk的上升沿到来时,如果计数器原态是15,计数器回到0态,否则计数器的状态将加1 2.VHDL源程序 library ieee; use ieee.std_logic_1164.all; entity cnt4e is port(clk,clr:in std_logic;

cout:out std_logic; q:buffer integer range 0 to 15); end cnt4e; architecture one of cnt4e is begin process(clk,clr) begin if clk'event and clk='1'then if clr='1'then if q=15 then q<=0; cout<='0'; elsif q=14 then q<=q+1; cout<='1'; else q<=q+1; end if; else q<=0; cout<='0'; end if; end if; end process; end one;

数电课设三位二进制同步加法计数器序列信号发生器串行序列检测器电路设计方案

第一部分 数字电子课程设计

成绩评定表

课程设计任务书

目录 1 课程设计的目的与作用 (1) 1.1设计目的及设计思想 (1) 1.2设计的作用 (1) 1.3 设计的任务 (1) 2 所用multisim软件环境介绍 (1) 3 三位二进制同步加法计数器设计 (3) 3.1 基本原理 (3) 3.2 设计过程 (3) 4序列信号发生器的设计 (6) 4.1 基本原理 (6) 4.2 设计过程 (6) 5串行序列检测器电路设计 (7) 5.1 基本原理 (7) 5.2 设计过程 (8) 6 仿真结果分析 (11) 6.1 三位二进制同步加法计数器仿真 (11) 6.2 序列信号发生器(发生序列100101)的仿真 (14) 6.3 0110串行序列检测器电路设计 (17) 7 设计总结和体会 (23) 8 参考文献 (23)

1 课程设计的目的与作用 1.1设计目的及设计思想 根据设计要求设计三位二进制加法计数器和序列信号发生器,加强对数字电子技术的理解,进一步巩固课堂上学到的理论知识。了解计数器和序列信号发生器的工作原理。 1.2设计作用 通过multisim软件仿真电路可以使我们对计数器和序列信号发生器有更深的理解。学会分析仿真结果的正确性,与理论计算值进行比较。通过课程设计,加强动手,动 脑的能力。 1.3设计任务 1.设计一个三位二进制同步加法计数器,要求无效状态为001,110。 2.设计一个序列信号发生器,要求发生序列100101。 2 所用multisim软件环境介绍 multisim软件环境介绍 Multisim是加拿大IIT公司(Interrative Image Technologies Ltd)推出的基于Windows的电路仿真软件,由于采用交互式的界面,比较直观、操作方便,具有丰富的元器件库和品种繁多的虚拟仪器,以及强大的分析功能等特点,因而得到了广泛的引用。 针对不同的用户,提供了多种版本,例如学生版、教育版、个人版、专业版和超级专业版。其中教育版适合高校的教学使用。 Multisim 7主界面。启动Multisim,就会看到其主界面,主要是由菜单栏、系统工具栏、设计工具栏、元件工具栏、仪器工具栏使用中元件列表、仿真开关、状态栏以及电路图编辑窗口等组成。如下图2.2.1所示。

实验一 4位二进制计数器实验

计算机组成原理 实验报告 姓名: 学号: 班级: 院系:

实验一 4位二进制计数器实验 【实验环境】 1. Windows 2000 或 Windows XP 2. QuartusII9.1 sp2、DE2-115计算机组成原理教学实验系统一台,排线若干。 【实验目的】 1、熟悉VHDL 语言的编写。 2、验证计数器的计数功能。 【实验要求】 本实验要求设计一个4位二进制计数器。要求在时钟脉冲的作用下,完成计数功能,能在输出端看到0-9,A-F 的数据显示。(其次要求下载到实验版实现显示) 【实验原理】 计数器是一种用来实现计数功能的时序部件,计数器在数字系统中主要是对脉冲的个数进行计数,以实现测量、计数和控制的功能,同时兼有分频功能。计数器由基本的计数单元和一些控制门所组成,计数单元则由一系列具有存储信息功能的各类触发器构成,这些触发器有RS 触发器、T 触发器、D 触发器及JK 触发器等。计数器在数字系统中应用广泛,如在电子计算机的控制器中对指令地址进行计数,以便顺序取出下一条指令,在运算器中作乘法、除法运算时记下加法、减法次数,又如在数字仪器中对脉冲的计数等等。 计数器按计数进制不同,可分为二进制计数器、十进制计数器、其他进制计数器和可变进制计数器,若按计数单元中各触发器所接收计数脉冲和翻转顺序或计数功能来划分,则有异步计数器和同步计数器两大类,以及加法计数器、减法计数器、加/减计数器等,如按预置和清除方式来分,则有并行预置、直接预置、异步清除和同步清除等差别,按权码来分,则有“8421”码,“5421”码、余“3”码等计数器,按集成度来分,有单、双位计数器等等,其最基本的分类如下: 计数器的种类??????? ?????????????????????进制计数器十进制计数器二进制计数器进制可逆计数器减法计数器 加法计数器功能异步计数器同步计数器结构N 、、、321 下面对同步二进制加法计数器做一些介绍。 同步计数器中,所有触发器的CP 端是相连的,CP 的每一个触发沿都会使所有的触发器状态更新。因此不能使用T′触发器。应控制触发器的输入端,即将触发器接成T 触发器。只有当低位向高位进位时(即低位全1时再加1),令高位触发器的T=1,触发器翻转,计数加1。

3位2进制同步计数器(约束项:000,010)

目录 1数字电子设计部分 (1) 1.1课程设计的内容和要求 (1) 1.2计数器设计原理 (1) 1.2.1三位二进制同步计数器状态图(000,010) (1) 1.2.2选择触发器、求时钟方程、输出方程、状态方程和结果 (1) 1.2.3逻辑接线图 (4) 1.2.4仿真结果 (5) 1.3串行序列检测器设计原理 (8) 1.3.2选择触发器、求时钟方程、输出方程、状态方程和结果 (8) 1.3.3、逻辑接线图 (11) 1.3.4.仿真结果 (11) 1.4 设计总结和体会 (13) 2.模拟电子设计部分 (14) 2.1课程设计的目的 (14) 2.2矩形波发生器 (14) 2.2.1简单原理及性能指标 (14) 2.2.2结论 (15) 2.2.3矩形波发生电路的仿真 (16) (1)仿真电路图 (16) (2)仿真波形及数据 (17) 2.2.4结果分析 (22) 2.3反相输入求和运算电路 (22) 2.3.1简单原理及性能指标 (22) 2.3.2结论 (23) 2.3.3反相输入求和电路仿真 (23) 图2.3.1反向输入求和电路仿真图 (24) (2)仿真结果 (24) 图2.3.2仿真结果 (24) 2.4误差分析 (24) 2.4.1误差因素 (24) 2.4.2改进方法 (25)

2.5.设计总结和体会 (25) 3.参考文献 (25)

1数字电子设计部分 1.1课程设计的内容和要求 (1)了解同步加法计数器工作原理和逻辑功能。 (2)掌握计数器电路的分析,设计方法及应用。 (3)学会正确使用JK触发器。 1.2计数器设计原理 1.2.1三位二进制同步计数器状态图(000,010) 001 1.2.2选择触发器、求时钟方程、输出方程、状态方程和结果(1)选择触发器 由于JK触发器功能齐全、使用灵活,故选用3个下降沿JK触发器。(2)求时钟方程 CP 0=CP 1 =CP 2 =CP (3)求输出方程 输出方程的卡诺图为:

相关文档