文档库 最新最全的文档下载
当前位置:文档库 › 高斯常见错误

高斯常见错误

高斯常见错误
高斯常见错误

近来一直在学习高斯,因为不精通常遇到各种错误。

结合自学的东西和查阅的资料总结出来一些错误,希望对和我一样的高斯初学者有所帮助。

1、Q:Error termination in NtrErr: ntran open failure returned to fopen. Segmentation fault

E:Can't open a file.

2、Q:Internal consistency error detected in FileIO for unit 1

I= 4 J=0 I Fail= 1.

E:Gaussian is limited to 16 GB of scratch space on the 32-bit nodes.

3、Q:Out-of-memory error in routine UFChkP (IEnd= 12292175

MxCore= 6291456)

Use %Mem=12MW to provide the minimum amount of memory required to complete this step. Error termination via Lnk1e at Thu Feb 2 13:05:32 2006.

E efault memory (6 MW, set in $GAUSS_MEMDEF) is too small for unfchk.

4、Q:galloc: could not allocate memory.: Resource temporarily unavailable

or Out-of-memory error in routine...

or End of file in GetChg. Error termination via Lnk1e ...

E:Not enough memory.

5、Q:IMax=3 JMax=2 DiffMx= 0.00D+00

Unable to allocate space to process matrices in G2DrvN:

NAtomX= 58 NBasis= 762 NBas6D= 762 MDV1= 6291106 MinMem= 105955841.

E:Gaussian has 6 MW free memory (MDV1) but requires at least 106 MW (MinMem).

6、Q;Estimate disk for full transformation -677255533 words. Semi-Direct transformation. Bad length for file.

E:MaxDisk has been set too low.

7、Q:Error termination in NtrErr:

NtrErr Called from FileIO.

E:The calculation has exceeded the maximum limit of maxcyc.

8、Q:Erroneous read. Read 0 instead of 6258688. fd = 4 g_read

E:Disk quota or disk size exceeded. Could also be disk failure or NFS timeout.

9、Q:Erroneous write. Write 8192 instead of 12288. fd = 4

E:Disk quota or disk size exceeded. Could also be disk failure or NFS

10、Q:orig len = 12288 left = 12288 g_write

E:timeout

11、另有link错误:

如:

Error termination request processed by link 9999

对于优化不收敛,即L9999错误,实际上是在规定的步数内没有完成优化,即还没有找到极小值点。(或者对于过渡态优化,还没有找到过渡态)

这有几种可能性:

1. 看一下能量的收敛的情况,可能正在单调减小,眼看有收敛的趋势,这样的情况下,只要加大循环的步数,可能就可以解决问题了。

2. 加大循环步数还不能解决的(循环步数有人说超过200再不收敛,再加也不会有用了,这虽然不一定绝对正确,但200步应该也差不多了),有两种可能。一是查看能量,发现能量在振荡了,且变化已经很小了,这时可能重新算一下,或者构型稍微变一下,继续优化,就可以得到收敛的结果(当然也有麻烦的,看运气和经验了);二是构型变化太大,和你预计的差别过大,这很可能是你的初始构型太差了,优化不知道到哪里去了,这时最好检查一下初始构型,再从头优化。

如:Error termination via Lnk1e in /usr/local/bin/g03/l103.exe

为构型错误。

改进高斯过程回归算法及其应用研究

改进高斯过程回归算法及其应用研究 在工业生产过程中,由于受到工艺、检测技术以及工况等条件限制,一些重要变量常常无法直接检测,这严重制约了自动控制技术的普及与应用,软测量技术因此应运而生。软测量技术最重要的一步就是软测量建模,近几年各种软测量建模方法不断涌现,其中高斯过程回归方法(Gaussian process regression,GPR)凭借其在处理小样本、复杂度较高的工业数据上的优势,被越来越多的学者关注。然而作为传统的软测量建模算法,高斯过程回归存在核函数单一、计算量较大、对初值敏感等问题,本文将针对这些问题开展改进研究。本文的研究得到了浙江省自然科学基金的资助,主要的研究内容和成果总结如下:(1)高斯过程回归结构以及参数优化研究。 针对延迟焦化过程数据具有非线性、时变性和较强的复杂性等特点,提出一种基于万有引力搜索优化的组合核函数高斯过程回归算法。该算法具有两大特点:1)用组合核函数代替传统的单一核函数,相较于单一核函数,选择组合核函数能够更大可能地保留数据特征信息,使得映射关系更加符合数据分布,同时组合核函数的引入在结构上保证了算法具有更好的泛化能力;2)引入万有引力搜索算法寻找每一个核函数的最优超参数,克服共轭梯度法对初值依赖性强、迭代次数不确定等缺点。(2)高斯过程回归集成算法研究。针对工业现场工况复杂,不同的工况下数据特征间的相关性可能会不同等问题,提出一种基于K-means聚类的集成自适应高斯过程回归算法。 首先利用K-means聚类算法将工业数据集划分成三个簇,然后利用自适应算法自适应地为每个簇选出最优核函数并建立最优局部模型。预测阶段,选用贝叶斯后验概率的融合方式对每个子模型赋予权重,从而对每个局部模型进行加权集成,得到预测结果。(3)改进高斯过程回归算法的应用研究。将所提两种算法应用于某延迟焦化系统开工线温度预测中,建立开工线温度预测模型,并与传统GPR 算法、基于粒子群寻优的GPR(PSO-GPR)、基于遗传算法寻优的GPR(GA-GPR)、基于万有引力寻优的SVR(GSA-SVR)以及基于均值融和方式的K-means自适应高斯过程回归集成算法进行对比,结果表明本文提出的算法具有最高的预测精度、最强的稳定性,同时也证明了所提算法在延迟焦化系统中的实用性、有效性。 (4)延迟焦化温度预测系统软件开发与应用。基于本文所提两种算法的基础

高斯消元法(完整)

高斯消元法解线性方程组 在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?这就是下面要讨论的问题。 一、线性方程组 设含有n 个未知量、有m 个方程式组成的方程组 a x a x a x b a x a x a x b a x a x a x b n n n n m m mn n m 11112211211222221122+++=+++=+++=???????ΛΛΛΛΛΛΛΛΛ (3.1) 其中系数a ij ,常数b j 都是已知数,x i 是未知量(也称为未知数)。当右端常数项b 1, b 2, …, b m 不全为0时,称方程组(3.1)为非齐次线性方程组;当b 1=b 2= … =b m = 0时,即 a x a x a x a x a x a x a x a x a x n n n n m m mn n 111122121122221122000 +++=+++=+++=???????ΛΛΛΛΛΛΛΛΛ (3.2) 称为齐次线性方程组。 由n 个数k 1, k 2, …, k n 组成的一个有序数组(k 1, k 2, …, k n ),如果将它们依次代入方程组(3.1)中的x 1, x 2, …, x n 后,(3.1)中的每个方程都变成恒等式,则称这个有序数组(k 1, k 2, …, k n )为方程组(3.1)的一个解。显然由x 1=0, x 2=0, …, x n =0组成的有序数组(0, 0, …, 0)是齐次线性方程组(3.2)的一个解,称之为齐次线性方程组(3.2)的零解,而当齐次线性方程组的未知量取值不全为零时,称之为非零解。 (利用矩阵来讨论线性方程组的解的情况或求线性方程组的解是很方便的。因此,我们先给出线性方程组的矩阵表示形式。) 非齐次线性方程组(3.1)的矩阵表示形式为: AX = B 其中 A = ????????????mn m m n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211,X = ????????????n x x x M 21, B = ????? ???????n b b b M 21 称A 为方程组(3.1)的系数矩阵,X 为未知矩阵,B 为常数矩阵。将系数矩阵A 和常数矩阵B 放在一起构成的矩阵

高斯消元法 主元消去法

实验内容 1.编写用高斯消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证. (1) 123 123 123 0.101 2.304 3.555 1.183 1.347 3.712 4.623 2.137 2.835 1.072 5.643 3.035 x x x x x x x x x ++= ? ? -++= ? ?-++= ? (2) 123 123 123 528 28321 361 x x x x x x x x x ++= ? ? +-= ? ?--= ? MATLAB计算源程序 1. 用高斯消元法解线性方程组b AX=的MATLAB程序 输入的量:系数矩阵A和常系数向量b; 输出的量:系数矩阵A和增广矩阵B的秩RA,RB, 方程组中未知量的个数n 和有关方程组解X及其解的信息. function [RA,RB,n,X]=gaus(A,b) B=[A b]; n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('请注意:因为RA~=RB,所以此方程组无解.') return end if RA==RB if RA==n disp('请注意:因为RA=RB=n,所以此方程组有唯一解.') X=zeros(n,1); C=zeros(1,n+1); for p= 1:n-1 for k=p+1:n m= B(k,p)/ B(p,p); B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1); end end b=B(1:n,n+1);A=B(1:n,1:n); X(n)=b(n)/A(n,n); for q=n-1:-1:1 X(q)=(b(q)-sum(A(q,q+1:n)*X(q+1:n)))/A(q,q); end else disp('请注意:因为RA=RB

高斯消元法讲解

#include "Stdio.h" #include "Conio.h" /*L是矩阵的行减1,从程序上看是最外层循环的次数 N 对应矩阵的行数,M对应矩阵的列数 可以通过改变L、N、M来控制矩的阶数 */ #define L 3 #define N 4 #define M 5 void gauss(double a[N][M],double x[N]) {int i,j,l,n,m,k=0; double temp[N]; /*第一个do-while是将增广矩阵消成上三角形式*/ do{n=0; for(l=k;l=0;l--)temp[n++]=a[k-l][k+1]/a[k+1][k+1]; for(m=0,i=k;i>=0;i--,m++) for(j=k;j=0) ; /*下一个for是解方程组*/ for(i=0;i

高斯过程在机器学习中的应用

西安郵電大学 科研训练报告书 基于高斯过程在机器学习中的应用

摘要 高斯过程是近年来发展起来的一种新的机器学习方法,它有着严格的统计学习理论基础,对处理高维数非线性小样本复杂问题具有良好的适应性。对列车精准停车问题的这种复杂的非线性问题,将高斯过程机器学习方法应用于此问题,并提出相应的模型,减少数据间复杂的内在物理或其他关系。很多工程实例研究表明,高斯过程机器学习模型是科学可行的,预测精度高,简单实用,对很多问题问题具有较好的适用性。 关键词:高斯过程;机器学习;列车精准停车 Abstract Gaussian processes ( GP) is a newly developed machine learning method based on the strict statistical learning theory. GP is capable of solving the highly nonlinear problem with small samples and high dimensions.Precise train stopping complex nonlinear problem, GP machine learning model applied to this problem, and propose a model to reduce the complexity of data between the intrinsic physical or other relationship. Case studies show that many of the works, GP machine learning model is scientific and feasible, the prediction accuracy is high, simple and practical, on many issues the problem has good applicability. Key Words:Gaussian processes;machine learning;precise train stopping 1引言 列车(包括火车、地铁、轻轨等轨道交通工具)的精确停车是轨道交通控制系统中的一项关键技术。对于有效使用站台屏蔽门、保证乘客安全、较少乘客换乘时间等有着至关重要的作用。然而就实际物理模型建模时收到很多方面的制约,且耗费大量的金钱。通过研究,将实际上依赖于物理模型的建立和控制参数的调整,而采用对数据本身的练习进行学习和建模。如果能从数据中学习到列车精确停车的规律,则可以在保证列车达到精确停车所需指标的同时,大量节省硬件方面的费用,并建立数据规律,同时使结果与实际模型相联系,促进物理模型的建立。因此,在利用机器学习来分析列车精确停车问题时,不需要过多关注各种复杂的如轨道坡度、摩擦系数、天气状况、乘客数量等外在因素,而只需关注对精度有明显影响的因素如停车的初始速度及距离等。 在本文中,将研究机器学习领域的高斯过程(Gaussian Process,GP),并以实际的列车停车

高斯消元法MATLAB实现

《数值分析》实验报告 一、实验目的与要求 1.掌握高斯消去法的基本思路和迭代步骤; 2.培养编程与上机调试能力。 二、实验内容 1.编写用高斯消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证. (1) 123 123 123 0.101 2.304 3.555 1.183 1.347 3.712 4.623 2.137 2.835 1.072 5.643 3.035 x x x x x x x x x ++= ? ? -++= ? ?-++= ? (2) 123 123 123 528 28321 361 x x x x x x x x x ++= ? ? +-= ? ?--= ? 2.编写用列主元高斯消元法解线性方程组的MATLAB程序,并求解下面的线性方程组,然后用逆矩阵解方程组的方法验证. (1) 123 123 123 0.101 2.304 3.555 1.183 1.347 3.712 4.623 2.137 2.835 1.072 5.643 3.035 x x x x x x x x x ++= ? ? -++= ? ?-++= ? (2) 123 123 123 528 28321 361 x x x x x x x x x ++= ? ? +-= ? ?--= ? 三.MATLAB计算源程序 1. 用高斯消元法解线性方程组b AX=的MATLAB程序 输入的量:系数矩阵A和常系数向量b; 输出的量:系数矩阵A和增广矩阵B的秩RA,RB, 方程组中未知量的个数n 和有关方程组解X及其解的信息. function [RA,RB,n,X]=gaus(A,b) B=[A b]; n=length(b); RA=rank(A); RB=rank(B);zhica=RB-RA; if zhica>0, disp('请注意:因为RA~=RB,所以此方程组无解.') return end if RA==RB if RA==n disp('请注意:因为RA=RB=n,所以此方程组有唯一解.') X=zeros(n,1); C=zeros(1,n+1); for p= 1:n-1 for k=p+1:n m= B(k,p)/ B(p,p); B(k,p:n+1)= B(k,p:n+1)-m* B(p,p:n+1);

高斯过程在机器学习中的应用

高斯过程在机器学习中的应用

西安郵電大学 科研训练报告书 基于高斯过程在机器学习中的应用

摘要 高斯过程是近年来发展起来的一种新的机器学习方法,它有着严格的统计学习理论基础,对处理高维数非线性小样本复杂问题具有良好的适应性。对列车精准停车问题的这种复杂的非线性问题,将高斯过程机器学习方法应用于此问题,并提出相应的模型,减少数据间复杂的内在物理或其他关系。很多工程实例研究表明,高斯过程机器学习模型是科学可行的,预测精度高,简单实用,对很多问题问题具有较好的适用性。关键词:高斯过程;机器学习;列车精准停车 Abstract Gaussian processes ( GP) is a newly developed machine learning method based on the strict statistical learning theory. GP is capable of solving the highly nonlinear problem with small samples and high dimensions.Precise train stopping complex nonlinear problem, GP machine learning model applied to this problem, and propose a model to reduce the complexity of data between the intrinsic physical or other relationship. Case studies show that many of the works, GP machine learning model is scientific and feasible, the prediction accuracy is high, simple and practical, on many issues the problem has good applicability. Key Words: Gaussian processes;machine learning;precise train stopping

高斯消元法简介

高斯消元法简介 一,教学目标 知识与技能:了解高斯消元法 过程与方法:直接演示说明,学习做简单练习 情感,态度和价值观:进一步体会解方程组的根本思想消元,通过高斯消元的学习增强学习数学的能力 二,重点与难点:高斯消元法 三,课型:新授课 四,教学过程: 1.在前面的几节课,已经用加减消元和代入消元法求解二元或者三元一次方程组,其基本的思想就是从已知的方程导出未知数较少的方程组,直到最后得到一个一元一次方程,这种做法可适用于一般的n 元线性方程组(线性方程组),但是由于未知数的增加,我们希望我们的消元是有规律的,以避免混乱,下面介绍高斯消元法 2.例1:解方程组 1234123412341234251027612632517315292763 x x x x x x x x x x x x x x x x ---=?? -++-=?? ---=??--++=-? 解:把第一个方程的2倍,-3倍,5倍分别加到第2,3,4个方程上,可以消去2,3,4个 方程的未知数1x 12342342342342510 522226 2 1 7213 x x x x x x x x x x x x x ---=?? +-=?? +-=??--+=-? 为了使以后少出现分数运算,交换第二,三个方程的位置 12342342342342510 2 1 522226 7213 x x x x x x x x x x x x x ---=?? +-=?? +-=??--+=-? 把第2个方程的-5倍,7倍分别加到第3,4个方程,可以消去第3,4个方程未知数2x 123423434342510 2 1 31221 6126 x x x x x x x x x x x ---=?? +-=?? --=??-=-? 整理一下方程,第3个方程的左右两边乘以13 - ,第4个方程左右两边乘以1 6 123423434342510 2 1 47 21 x x x x x x x x x x x ---=?? +-=?? +=-??-=-?

高斯消元法

求解线性方程组的直接解法 5.1 Gauss 消去法 ① 三角方程组 先举一个简单的例子来说明消去法的基本思想. 例1. 用消去法解方程组 ??? ??=+-=-=++(3) .122(2) ,54(1) ,6321 32321x x x x x x x x 解 第一步.将方程(1)乘上-2加到方程(3)上去,消去(3)中的未知数1x ,得到 (4) .11432-=--x x 第二步.将方程(2)加到方程(4)上去,消去方程(4)中的未知数2x ,得到与原方程组等 价的三角形方程组 (5) .62 ,54 ,6332321?? ? ??-=-=-=++x x x x x x 显然,方程组(5)是容易求解的,解为.)3,2,1(T x =* 上述过程相当于 332331 (-2) 6-56 20014011111-56 140140111156 122140111)|(r r r r r r b A →+→+??? ? ?? ??--→????? ??---→????? ??--= 其中用i r 表示矩阵的第i 行. 下面我们讨论求解一般线性方程组的高斯消去法. 一般地 ???????==++=+++n n nn n n n n b x a b x a x a b x a x a x a 2 222211212111 当a 11a 22…a nn ≠0时,可解出 x n =b n /a nn for k=n-1:1 x k =(b 1- a k,k+1x k +1-…- a kn x n )/ a kk end

注: k k b x ,可用同一组单元.并可解出一个未知数即代入其它方程消去该未知数 Gauss 消元法的流程图为: 流程图中,,(,1,2,...,)ij i a b i j n 分别为线性方程组的系数矩阵和常数向量; k 是循环次数。 ② 顺序消去法 一般地,k =1对n 阶方程组消去第k 个元(a kk ≠0):

高斯消元法

这里向你推荐一下克鲁特算法(其实就是对高斯列主元消元法进行优化,使之更适合于计算机编程),首先将矩阵A进行LU分解(将系数矩阵分解成一个上三角矩阵和一个下三角矩阵),分解的过程中用到了隐式的主元寻找法,同时利用克鲁特算法可以将两个n*n矩阵压缩到一个n*n矩阵中,大大节省了存储空间提高了计算速度。 方程可化为L*U*x=B,令U*x=y --->L*y=B 然后利用回代先求y,再利用y求x 因为该方法在求解过程中不涉及增广矩阵所以矩阵B几乎不参与什么运算,所以它的计算速度应该能够达到高斯列主元消元法的三倍,但原理与其基本一致。 而且我在程序中使用了动态数组方便你今后进行扩展。 以下程序按照《矩阵论第二版》和《C语言数值计算法方法大全》编写,LU分解部分程序主要参考了《C语言数值计算法方法大全》第二章的程序 如果你需要详细的理论讲解我可以将这两本书和源程序发给你.,我的邮箱 hu_hu605@https://www.wendangku.net/doc/dd9824970.html, 计算结果: A矩阵: 2 2 5 3 4 7 1 3 3 B矩阵: 5 6 5 解矩阵: x 1=-7 x 2=0.333333 x 3=3.66667 Press any key to continue #include #include #include #include #include #include #include using namespace std; #define TINY 1.0e-20 //A small number. #define N 3

高斯消元法(完整)教学内容

高斯消元法(完整)

高斯消元法解线性方程组 在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?这就是下面要讨论的问题。 一、线性方程组 设含有n 个未知量、有m 个方程式组成的方程组 a x a x a x b a x a x a x b a x a x a x b n n n n m m mn n m 11112211211222221122+++=+++=+++=??????? (3.1) 其中系数a ij ,常数b j 都是已知数,x i 是未知量(也称为未知数)。当右端常数项b 1, b 2, …, b m 不全为0时,称方程组(3.1)为非齐次线性方程组;当b 1=b 2= … =b m = 0时,即 a x a x a x a x a x a x a x a x a x n n n n m m mn n 111122121122221122000 +++=+++=+++=??????? (3.2) 称为齐次线性方程组。 由n 个数k 1, k 2, …, k n 组成的一个有序数组(k 1, k 2, …, k n ),如果将它们依次代入方程组(3.1)中的x 1, x 2, …, x n 后,(3.1)中的每个方程都变成恒等式,则称这个有序数组(k 1, k 2, …, k n )为方程组(3.1)的一个解。显然由x 1=0, x 2=0, …, x n =0组成的有序数组(0, 0, …, 0)是齐次线性方程组(3.2)的一个解,称之为齐次线性方程组(3.2)的零解,而当齐次线性方程组的未知量取值不全为零时,称之为非零解。 (利用矩阵来讨论线性方程组的解的情况或求线性方程组的解是很方便的。因此,我们先给出线性方程组的矩阵表示形式。) 非齐次线性方程组(3.1)的矩阵表示形式为: AX = B 其中 A = ????????????mn m m n n a a a a a a a a a 212222111211,X = ????????????n x x x 21, B = ????? ???????n b b b 21 称A 为方程组(3.1)的系数矩阵,X 为未知矩阵,B 为常数矩阵。将系数矩阵A 和常数矩阵B 放在一起构成的矩阵

高斯列主元消元法解线性方程组

高斯列主元消元法解线性方程组 一、题目:用Gauss 列主元消去法解线性方程组Ax b =,其中, A=17.031 -0.615 -2.991 1.007 -1.006 0.000-1.000 34.211 -1.000 -2.100 0.300 -1.7000.000 0.500 13.000 -0.500 1.000 -1.5004.501 3.110 -3.907 -61.705 12.170 8.9990.101 -8.012 -0.017 -0.910 4.918 0.1001.000 2.000 3.000 4.500 5.000 21.803?? ? ? ? ? ? ? ? ??? 0.230 -52.322 54.000 240.236 29.304 -117.818b ?? ? ? ?= ? ? ? ? ??? T X=(0.907099 -1.961798 3.293738 -4.500708 3.029344 -5.255068) 二、原理及步骤分析 设 n n ij R a A ?∈=][)1(,n n R b b b b ∈=],,,[)1()2(2)1(1 。若约化主元素 ),,2,1(0)(n k a k kk =≠,则通过高斯消元法将方程b AX =约化为三角形方程组求解。 如果在消元过程中发现某个约化主元0) (=k kk a , 则第K 次消元就无法进行。此外,即 使所有约化主元全不为零,虽然可以完成方程组的求解,但也无法保证结果的可靠性,因为计算过程中存在舍入误差。 为减少计算过程中的舍入误差对解的影响,在每次消元前,应先选择绝对值尽可能大的元作为约元的主元,如果在子块的第一列中选取主元,则相应方法称为列主元消元法。相应过程为: (1)选主元:在子块的第一列中选择一个元) (k k i k a 使) (max k ik n i k k k i a a k ≤≤= 并将第k 行元与第k i 行元互换。 (2)消元计算:对k=1,2,……n-1依次计算 ()()()???? ?????++=-=++=-=++==++n k k i b m b b n k k j i a m a a n k k i a a m k k ik k i k i k kj ik k ij k ij k kk k ik k ik ,,2,1,,2,1,,,2,1)()() 1() ()()1()() ()( (3)回代求解 ???? ????????? ??-==∑+=) (1) ()()() (i ii n i j j i ij i i i n nn n n n a x a b x a b x ()1,,2,1 --=n n i

高斯消元法(完整)

高斯消元法解线性方程组 在工程技术与工程管理中有许多问题经常可以归结为线性方程组类型得数学模型,这些模型中方程与未知量个数常常有多个,而且方程个数与未知量个数也不一定相同.那么这样得线性方程组就是否有解呢?如果有解,解就是否唯一?若解不唯一,解得结构如何呢?这就就是下面要讨论得问题. 一、线性方程组 设含有n个未知量、有m个方程式组成得方程组 (3、1) 其中系数,常数都就是已知数,就是未知量(也称为未知数)。当右端常数项,,…,不全为0时,称方程组(3、1)为非齐次线性方程组;当== …== 0时,即 (3、2) 称为齐次线性方程组. 由n个数, , …, 组成得一个有序数组(,,…,),如果将它们依次代入方程组(3、1)中得,,…, 后,(3、1)中得每个方程都变成恒等式,则称这个有序数组(,,…,)为方程组(3、1)得一个解。显然由=0, =0, …, =0组成得有序数组(0,0,…,0)就是齐次线性方程组(3、2)得一个解,称之为齐次线性方程组(3、2)得零解,而当齐次线性方程组得未知量取值不全为零时,称之为非零解. (利用矩阵来讨论线性方程组得解得情况或求线性方程组得解就是很方便得。因此,我们先给出线性方程组得矩阵表示形式。) 非齐次线性方程组(3、1)得矩阵表示形式为: AX =B 其中 A=,X=,B = 称A为方程组(3、1)得系数矩阵,X为未知矩阵,B为常数矩阵。将系数矩阵A与常数矩阵B放在一起构成得矩阵 = 称为方程组(3、1)得增广矩阵。 齐次线性方程组(3、2)得矩阵表示形式为:AX=O 二、高斯消元法 (下面介绍利用矩阵求解方程组得方法,那么矩阵初等行变换会不会改变方程组得解呢?我们先瞧一个定理。) 定理3、1若用初等行变换将增广矩阵化为,则AX= B与CX =D就是同解方程组。 证由定理3、1可知,存在初等矩阵,,…, ,使 …= 记…= P,则P可逆,即存在。 设为方程组A X=B得解,即 A= B 在上式两边左乘P,得 P A = PB 即 C=D 说明也就是方程组C X=D得解。反之,设为方程组C X =D得解,即

高斯消元法求解线性方程组

数值分析 程 序 设 计 学院:计算机学院 姓名:袁薪洋 时间:2012年10月10日

1.实验目的: 1熟练掌握C语言程序设计,编程求解问题。 2.运用高斯消元法求解线性方程组。 2.实验内容: 用高斯消元法求解方程组。 0.001 2.000 3.000 x1 1.000 -1.000 3.172 4.623 x2 = 2.000 -2.000 1.072 5.643 x3 3.000 程序的完整代码: #include #include #define row 3 void M_Print(float(*a)[row],float* b) { int i,j; printf("**********************************\n\n"); printf("用高斯主元消去法求解线性方程组:\n\n"); printf("**********************************\n\n");

for(i=0;i

高斯消元法(完整)

高斯消元法解线性方程组 在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?这就是下面要讨论的问题。 一、线性方程组 设含有n 个未知量、有m 个方程式组成的方程组 a x a x a x b a x a x a x b a x a x a x b n n n n m m mn n m 11112211211222221122+++=+++=+++=??????? (3.1) 其中系数a ij ,常数b j 都是已知数,x i 是未知量(也称为未知数)。当右端常数项b 1, b 2, …, b m 不全为0时, 称方程组(3.1)为非齐次线性方程组;当b 1=b 2= … =b m = 0时,即 a x a x a x a x a x a x a x a x a x n n n n m m mn n 111122121122221122000 +++=+++=+++=??????? (3.2) 称为齐次线性方程组。 由n 个数k 1, k 2, …, k n 组成的一个有序数组(k 1, k 2, …, k n ),如果将它们依次代入方程组(3.1)中的x 1, x 2, …, x n 后,(3.1)中的每个方程都变成恒等式,则称这个有序数组(k 1, k 2, …, k n )为方程组(3.1)的一个解。显然由x 1=0, x 2=0, …, x n =0组成的有序数组(0, 0, …, 0)是齐次线性方程组(3.2)的一个解,称之为齐次线性方程组(3.2)的零解,而当齐次线性方程组的未知量取值不全为零时,称之为非零解。 (利用矩阵来讨论线性方程组的解的情况或求线性方程组的解是很方便的。因此,我们先给出线性方程组的矩阵表示形式。) 非齐次线性方程组(3.1)的矩阵表示形式为: AX = B 其中 A = ????????????mn m m n n a a a a a a a a a 21 2222111211,X = ????????????n x x x 21,B = ????????????n b b b 21 称A 为方程组(3.1)的系数矩阵,X 为未知矩阵,B 为常数矩阵。将系数矩阵A 和常数矩阵B 放在一起构成的矩阵

相关文档