文档库 最新最全的文档下载
当前位置:文档库 › 浪涌防护器件—TVS管

浪涌防护器件—TVS管

浪涌防护器件—TVS管
浪涌防护器件—TVS管

浪湧防護器件—TVS管

优恩半导体

電壓及電流的瞬態干擾是造成電子電路及設備損壞的主要原因,常給人們帶來無法估量的損失。這些干擾通常來自於電力設備的起停操作、交流電網的不穩定、雷電干擾及靜電放電等,瞬態干擾幾乎無處不在、無時不有,使人感到防不勝防。幸好,一種高效能的電路保護器件TVS管的出現使瞬態干擾得到了有效抑制。

TVS管也稱瞬變電壓抑制二極體,也叫箝位型二極體,是在穩壓管工藝基礎上發展起來的一種新產品,是目前普遍使用的一種高效能限壓保護器件,其電路符號和普通穩壓二極體相同,外形也與普通二極體無異,當TVS管兩端經受瞬間的高能量衝擊時,它能以極高的速度(最高達1*10-12秒)使其阻抗驟然降低,同時吸收一個大電流,將其兩端間的電壓箝位在一個預定的數值上,從而確保後面的電路元件免受瞬態高能量的衝擊而損壞。

TVS管的特性:

在規定的反向應用條件下,TVS管對受保護的線路呈高阻抗狀態。當瞬間電壓超過其擊穿電壓時,TVS管就會提供一個低阻抗的路徑,並通過大電流方式使流向被保護元器件的瞬間電流分流到TVS管,同時將受保護元器件兩端的電壓限制在TVS管的箝位電壓。當過壓條件消失後,TVS管又恢復到高阻抗狀態。

TVS管的關鍵參數:

1、最小擊穿電壓VBR:器件在發生擊穿的區域內,在規定的試驗電流IBR(一般情況IBR=1mA)下,測得器件兩端的電壓稱為最小擊穿電壓。

2、反向斷態電壓VRWM:TVS管最大連續工作的直流或脈衝電壓,該電壓施加於TVS管的兩極間時,它處於反向關斷狀態,流過它的電流應小於或等於其最大反向漏電流IR。

3、脈衝峰值電流IPP:反向工作時,在規定的脈衝波形(如:10/1000μs雙指數波形)條件下,器件允許通過的最大浪湧電流。

4、最大箝位電壓VC:當脈衝峰值電流IPP流過TVS管時,其兩端出現的最大電壓值稱為箝位電壓VC。VC和IPP反映了TVS管的浪湧抑制能力。通常把VC與VBR之比稱為箝位因數(係數),其值一般在1.2~1.4之間。

5、脈衝峰值功率PPP:脈衝峰值功率PPP是指脈衝峰值電流IPP 與最大箝位電壓VC的乘積,即PPP=IPP×VC。它是TVS管能承受的最大峰值功率。在給定的最大箝位電壓下,脈衝峰值功率PPP越大,

其浪湧電流的承受能力越大。

6、結電容CJ:TVS管結電容CJ是由其矽片的雪崩結截面和偏置電壓來決定的,是在特定頻率(1MHz)下測得。CJ的大小與TVS管的電流承受能力成正比,CJ太大,將使信號衰減。因此,電容CJ是數據介面電路選用TVS管的重要參數。在高頻信號線路的保護中,應主要選用低結電容的TVS管,一般低結電容的TVS管其結電容可以做到零點幾到幾p F的數量級了。

TVS的分類:

優恩半導體TVS管按功率分類,可分為200W、400W、500W、600W、1000W、1500W、3000W、5000W、8000W、15000W、20000W、30000W、3600W、6600W等。也可按極性分類。按極性分為單極性及雙極性兩種。單極性尾標中用A表示,雙極性尾標中以C表示。如SA5.0A表示單向的,SA5.0CA表示雙向的。

TVS的應用:

TVS主要用於對電路元件進行快速過電壓保護。它能"吸收"功率高達數千瓦的浪湧信號。TVS具有體積小、功率大、回應快、無雜訊、價格低等諸多優點,它的應用十分廣泛,如:家用電器;電子儀器;儀錶;精密設備;電腦系統;通訊設備;RS232、485及CAN等通訊端口;ISDN的保護;I/O端口;IC電路保護;音、視頻輸入;交、直流電源;電機、繼電器雜訊的抑制等各個領域。它可以有效地對雷電、負載開關等人為操作錯誤引起的過電壓衝擊起保護作用。

下圖是優恩半導體TVS管在電路應用中的典型例子。

注解:

1、TVS1對整個電路(包括變壓器)進行保護。

2、TVS2對其後的電路(除變壓器外的整個電路)提供高度的保護。由於變壓器的物理性質有如一個大的串聯電阻,當受到浪湧衝擊時,斷路的機會很少。

3、TVS3對負載提供全面的保護。在此採用的是成本較低的單極TVS二極體。若電路中只採用TVS3,電橋因沒有TVS的保護,電橋應採用較高電壓及電流比值的器件,以防止損壞。

TVS的選用方法:

1、確定待保護電路的直流電壓或持續工作電壓。如果是交流電,應計算出最大值,即用有效值*1.414。

2、TVS的反向變位電壓即工作電壓(VRWM)--選擇TVS的VRWM 等於或大於上述步驟1所規定的操作電壓。這就保證了在正常工作條件下TVS吸收的電流可忽略不計,如果步驟1所規定的電壓高於TVS 的VRWM,TVS將吸收大量的漏電流而處於雪崩擊穿狀態,從而影響電路的工作。

3、最大峰值脈衝功率:確定電路的干擾脈衝情況,根據干擾脈衝

的波形、脈衝持續時間,確定能夠有效抑制該干擾的TVS峰值脈衝功率。

4、所選TVS的最大箝位電壓(VC)應低於被保護電路所允許的最大承受電壓。

5、單極性還是雙極性-常常會出現這樣的誤解即雙向TVS用來抑制反向浪湧脈衝,其實並非如此。雙向TVS用於交流電或來自正負雙向脈衝的場合。TVS有時也用於減少電容。如果電路只有正向電平信號,那麽單向TVS就足夠了。TVS操作方式如下:正向浪湧時,TVS處於反向雪崩擊穿狀態;反向浪湧時,TVS類似正向偏置二極體一樣導通並吸收浪湧能量。在低電容電路裏情況就不是這樣了。應選用雙向TVS以保護電路中的低電容器件免受反向浪湧的損害。

6、如果知道比較準確的浪湧電流IPP,那麼可以利用VC來確定其功率,如果無法確定功率的大概範圍,一般來說,選擇功率大一些比較好。

好了,對於抗浪湧能力超強的TVS管你瞭解了嗎?如果還有什麼不清楚的,歡迎來電優恩半導體諮詢。

基于HyperMesh_OptiStruct的汽车零部件结构拓扑优化设计

Equipment Manufactring Technology No.10,2008 优化设计在现代结构设计中占有十分重要的地位,它能使工程设计者从众多的设计方案中获得较为完善的或最为合适的最优设计方案,是虚拟设计和制造的重要环节,并贯穿于设计和制造的整个过程。结构优化设计通常可根据设计变量的类型划分为尺寸优化,形状优化,和拓扑优化三类。目前,尺寸优化的理论和应用已趋于成熟,形状优化的理论已经基本建立,正在着重解决实际应用方面的问题。结构的拓扑优化由于其理论和计算上的复杂性而成为结构优化设计中最富挑战性的研究领域[1]。一方面拓扑优化大大减少了建模方面的工作量,另一方面它可以在改善或保持结构性能的基础上大大减轻结构的质量。近年来,随着汽车工业的快速发展,日益突出的能源问题和为了满足对汽车设计的新要求,对汽车零部件和机械结构开展拓扑优化设计具有重要的意义。 1连续体结构拓扑优化的方法及常用算法 1.1连续体结构拓扑优化的方法 连续体结构拓扑优化是在一定空间区域内寻求材料最合理分布的一种优化方法。在进行连续体结构拓扑优化设计时,其初始设计区域一般采用基结构法进行描述。所谓基结构法,就是把给定的初始设计区域离散成足够多的单元,形成由这些若干单元构成的基结构,再按某种优化策略和准则从这个基结构中删除某些单元,用保留下来的单元描述结构的最优拓扑。基结构法可借用有限元分析时所使用的网格单元,只需在优化初始阶段进行一次网格划分,在整个优化过程中可保持网格划分不变,这使得基结构法较易实现,称为目前结构拓扑优化中应用最为广泛的方法。连续体结构拓扑优化多采用基结构法的拓扑优化方法主要有以下三种[2~3]。 1.1.1均匀化方法 均匀化方法就是以Bendsoe、Kikuchi提出的均匀化理论为基础引入微结构,将设计区域离散成许多带有孔洞的微结构单胞,对连续体进行拓扑优化,通过优化计算确定其材料密度呈0~1分布,由此得出最优的拓扑结构。它适用连续体基于应力和位移约束或频率约束的拓扑优化分析。1.1.2变密度法 变密度法是从均匀化方法发展而来的一种方法。其基本思想就是引入一种假想的密度值在[0,1]之间的密度可变材料,将连续结构体离散为有限元模型后,以每个单元的密度为设计变量,将结构的拓扑优化问题转化为单元材料的最优分布问题。这种方法主要应用于多工况应力约束下的平面结构、三维连续结构及结构碰撞问题等方面。 1.1.3变厚度法 变厚度法是最早被采用的拓扑优化方法,属于几何(尺寸)描述方式。这种方法将薄板或薄壳可能占据的整个区域划分成有限个单元,假定所有单元的厚度是均匀的,把这一模型作为初始模型进行优化。这样优化求得的最优设计将是一个带孔洞的,厚度均匀的薄板或薄壳。 1.2结构拓扑优化设计的常用算法 合理的优化算法的选择对于结构的拓扑优化设计是非常重要的,我们应该根据我们所要优化的工程结构(如结构拓扑优化数学模型的特点,优化目标函数的性质,约束函数非线性的复杂程度,以及优化要求达到的计算精度等)来选择一个合适的优化算法。目前,工程结构中常用的拓扑优化算法主要有以下三种[3~4]。 1.2.1优化准则法 优化准则法是拓扑优化算法中的分析型算法,在拓扑优化当中应用十分很广。这种方法理解方便,数学推导简单明了,不需要对变量求导数,因此计算量小。缺点是仅仅适用于单目标,单约束问题的优化。因此不适应对复杂问题进行分析求解。常用的优化准则方法一般包括OC算法,COC(continu-um-basedoptimalitycriteria)算法和DOC(discretizedoptimalitycriteria)算法以及DCOC(discretizedcontinuumoptimalitycriteri-a)算法。 基于HyperMesh/OptiStruct的汽车 零部件结构拓扑优化设计 刘庆,侯献军 (武汉理工大学汽车工程学院,武汉430070) 摘要:基于结构拓扑优化在优化设计中的重要性,介绍了拓扑优化的方法和常用算法,建立了基于HyperMesh/OptiStruct的结构拓扑优化设计流程图,最后在考虑了三种不同载荷工况下,进行了汽车控制臂的拓扑优化,最终使得优化结构质量更轻。 关键词:拓扑优化;汽车控制臂;HyperMesh;OptiStruct 中图分类号:U463文献标识码:A文章编号:1672-545X(2008)10-0042-03 收稿日期:2008-07-10 作者简介:刘庆(1983—),男,河南新乡人,硕士研究生,研究方向:发动机排放控制与电控技术;侯献军(1973—),男,河南新乡人,副教授,研究方向:发动机排放与节能控制、车用动力新型装置。 42

汽车零部件料架设计

汽车零部件料架设计心得 生产包装形态 生产线原则上要求纸包装不能上线,因此适用于总装车间的生产包装可分为周转箱、非标中空板箱、仓储笼、专用产品料架四种形态,在此只介绍专用产品料架的包装形态。 专用产品料架,又可分为周转用产品架和线边固定存放架。这与投料的物流路线与投料方式有关,周转用产品架可满足:对换投料,线边固定存放架一般适用填补投料,但另需要投料容器与之搭配使用。对供应商来说,我们原则要求使用周转用产品架,除非由于零件特性等原因不适用产品架进行周转投料的,可考虑设定固定存放架和投料容器(有的直接是运输包装)的搭配包装方式。 料架材料 产品架的主体材料为金属管材,材质为Q235,一般要求的规格为40*40,30*30,25*25,20*20,40*25。考虑到动态运输,以及一个产品架顺引多个产品架的实际情况,所以框体要求不使用20*20的规格,而内部结构则尽量使用20*20的管材,以减轻重量和方便操作。 产品架的辅材起缓冲、防护作用,辅材材料为帆布、橡胶(脱硫)、尼龙、珍珠棉、PE发泡材料、PVC板材等。更多内容访问汽车物流包装网。 产品架分类 产品架的分类方式有数种之多,比如按结构分类、按运输方式分类、按材料分类、按被包装物性质(是否属于危险品、易碎品等)分类等,但各种分类标准归根结底是在决定产品架的结构,所以我在此处只以产品架的结构为分类标准

产品架按结构分类,主要分为以下几种:1、层掀板结构,2、货格结构,3、固定取放结构,4、货格变形结构,5、悬臂结构,6、箱、笼结构,7、组合结构,8、通用相配结构。 层掀板结构 层掀板结构产品架由多层翻版组成,每层翻版能够绕一端掀起,掀起后用气弹簧、机械弹簧或其他支撑结构支撑起而不会轻松落下,以便取用下一层的零件。每层翻版的面层配有一些限位结构,用于摆放、限位零件;有些产品架的翻版底层(相对面层而言)会固定一些缓冲材或其他限位结构,用于紧固下一层零件(一般这样的结构,产品架还需加做一个翻版顶盖,用于紧固顶层的零件),或者是防止零件向上窜动冲击上层翻版的底层而造成零件的划伤。层掀版结构的产品架,结构紧凑,零件摆放的密度大,空间浪费小,对生产线位置紧张的**来说,是值得推广的。但是,该结构产品架一般是只能在用完上一层的零件后才能打开取用下一层的零件,所以一般用于严格排序的零件,或者是零件品种较少,每个产品架只放一个品种的零件,多个产品架又能在生产线上布开的情况。 另外,对层掀板结构进行变形,将每层一块掀板分开做成两块,每块单独操作,互不干涉,这样就可以摆放两种图号的零件进行排序。这种变形的结构满足严格的类排序零件。所谓严格类排序,是指严格按照车型信息对零件进行排序,但由于零件特性使得限位结构不能适用所有零件,而使得排序的零件分开摆放的排序投料方式。更多内容访问汽车物流包装网。翻版的支撑装置有三种,气弹簧(自由型气弹簧)、机械弹簧(线形弹簧)、机械支撑杆。使用机械弹簧只是利用其拉力,翻版在掀起时要不会落下,平躺时要有力使之不易颠起,这样弹簧的安装位置非常不易确定,并且对弹簧自身的疲劳失效、强度、防锈等方面有很高要求。机械支撑杆滑动槽的表面要求较高,喷漆或生锈以后,掀起或放下翻板不易操作,活动不畅,并且容易受到震动而脱槽致使翻版跌落。

汽车结构设计

汽车结构设计: 汽车的结构设计,是确定汽车整车、部件(总成)和零件的结构。也就是说,设计师需要考虑由哪些部件组合成整车,又由哪些零件组合成部件。零件是构成产品的最基本的、不可再分解的单元。毫无疑问,零件设计是产品设计的根基。零件设计时,首先要考虑这个零件在整个部件中的作用和要求;其次,为了满足这个要求,零件应选用什么材料和设计成什么形状;最后,零件如何与部件中其他零件相互配合和安装。 1.材料选择 按照零件所使用的材料,可分为金属材料和非金属材料两大类。金属材料又可分为钢铁(黑色金属)材料和有色金属材料两大类。汽车所采用的非金属材料种类繁多。钢铁是汽车上所使用的最重要的材料,占全车重量的大部分。钢铁的主要优点是强度、刚度和硬度高,耐冲击和耐高温,因而用于汽车上载荷大、高温、高速的重要零件。所谓强度高,就是这种材料可承受较大的力而不被破坏;所谓刚度高,就是这种材料可承受较大的力而变形很小。汽车的零件在工作时,有的零件承受拉力而有伸长的趋势;有的零件承受压力而有缩短的趋势;有的零件承受弯曲力矩而趋于弯曲变形;有的零件承受扭转力矩。事实上,许多汽车零件的受力比上述例子复杂得多。如汽车变速器的轴就同时承受了拉、压、弯、扭多种力。汽车零件不仅是承受静载荷,而且,由于汽车的行驶随路况变化,还要承受十分复杂的动载荷。作为设计师,必须充分考虑零件的受力情况,经过周密的计算,确保零件的强度和刚度的数值在允许的范围内。 2.零件的形状 确定汽车零件的形状,也要花费设计师许多心血。例如,发动机气缸体的形状就非常复杂,需要设计气缸和水套,考虑与气缸盖、油底壳的接合,安装曲轴、进气管、排气管和各种各样的附属设备,乃至气缸体内部细长的润滑油通道……,所有这些因素都应考虑周全,每个细节均不能遗漏。汽车车身零件的形状就更特别,既不是常见的平面或圆柱体,也不是简单的双曲面或抛物面,而是造型师根据审美要求而塑造的。在确定零件的形状时,还需要考虑零件的制造方法,例如零件在机床上怎样装夹定位,刀具怎样加工,半成品怎样传送、堆叠等。 3. 汽车布局 一部汽车的布局元素包括发动机、传动系统、座舱、行李舱、排气系统、悬挂系统、油

汽车零部件查询系统设计

交通与汽车工程学院 课程设计说明书 课程名称: 计算机应用基础课程设计 课程代码: 6011339 题目: 汽车零部件查询系统设计 年级/专业/班: 学生姓名: 学号: 开始时间: 2012 年 4 月 1 日 完成时间: 2012 年 4 月 12 日 课程设计成绩: 学习态度及平时成绩(30)技术水平与实际 能力(20) 创新(5) 说明书(计算书、图纸、分析 报告)撰写质量(45) 总分 (100) 指导教师签名:年月日

目录 摘要 (2) 1 引言 (3) 2 本程序主要功能 (3) 3 本程序结构设计 (4) 4 程序设计界面 (4) 5 程序代码 (10) 结论 (30) 致谢 (31) 参考文献 (32)

摘要 随着计算机的普及程序的应用也越来越受到重视,本次课程设计使用 Visual Basic 作为开发工具,进行了汽车零部件查询系统设计的程序设计,本系统主要完成对汽车零部件的管理,包括库存的添加、删除等。系统可以完成对各类信息的追加、浏览、修改、查询和计算等功能。 汽车零部件查询系统广泛应用于4S店汽车零部件的库存与销售管理工作中,要求其具有实用性强、使用方便、效率高和安全可靠等特点。本管理系统正是围绕以上几个方面进行开发的,在开发过程中充分考虑到本系统的应用特点,并进行了大量的检验,证明其的确达到了设计的要求,是一个已具备了实际应用能力的软件。 关键词:汽车零部件销售库存销售

1 引言 1.1 问题的提出 为适合现代企业发展的需要,汽车零部件管理已经成为困扰销售的一个难题,由于其费时和繁琐性,企业迫切需要一种专门为零部件管理而服务的工具。为此,简单的汽车零部件管理系统为此而制造出来。本简单程序是为汽车零部件管理而设计的,内容简单,使用方便。程序稍加变更可以适合对资源分配方面的杂事加以处理。 作为当代大学生,熟练的操作计算机是一种必备的素质。本次设计会让我们更加熟悉VB编程,把以前学过的一些东西又重新复习了一遍,并与实际结合起来,对我们能力的提升有了很大的帮助,还能促使我们在以后的实际应用中更好的应用VB编程来设计一些数据库管理系统。 2 本程序主要功能 汽车零部件管理系统是典型的信息管理系统,其开发主要包括后台数据库的建立和维护以及前端应用程序的开发两个方面。对于前者要求建立起数据一致性和完整性强、数据安全性好的库。而对于后者则要求应用程序功能完备,易使用等特点. 本系统主要完成对汽车零部件信息的管理,包括数据库中零件的入库和出库等。系统可以完成对各类信息的浏览、修改、查询对零件销售价格进行计算等功能。系统的核心是数据库中零件的余量,每一个零件的修改都将联动的影响其它的各项信息,当完成对数据的操作时系统会自动地完成数据库的修改。查询功能也是系统的核心之一,在系统中即有单条件查询和多条件查

汽车零部件总结(全)

汽车零部件论文必备 目录 一、汽车构造知识———————————————————1 二、汽车行业政策———————————————————4 三、专有名词解释———————————————————4 四、零部件数据(全新)————————————————6 五、数据查询—————————————————————6 六,论文检测—————————————————————6 一、汽车构造知识 汽车一般由发动机、底盘、车身、电气设备等四个基本部分组成。 1、发动机是一种由许多机构和系统组成的复杂机器。无论是汽油机,还是柴油机;无论是四行程发动机,还是二行程发动机;无论是单缸发动机,还是多缸发动机。要完成能量转换,实现工作循环,保证长时间连续正常工作,都必须具备两大机构和五大系统组成,即由曲柄连杆机构,配气机构、燃料供给系、润滑系、冷却系、点火系和起动系组成;柴油机由以上两大机构和四大系统组成,即由曲柄连杆机构、配气机构、燃料供给系、润滑系、冷却系和起动系组成,柴油机是压燃的,不需要点火系。 (1)曲柄连杆机构是发动机实现工作循环,完成 能量转换的主要运动零件。它由机体组、活塞连杆 组和曲轴飞轮组等组成。在作功行程中,活塞承受 燃气压力在气缸内作直线运动,通过连杆转换成曲 轴的旋转运动,并从曲轴对外输出动力。而在进气、 压缩和排气行程中,飞轮释放能量又把曲轴的旋转 运动转化成活塞的直线运动。 (2) 配气机构的功用是根据发动机的工作顺序 和工作过程,定时开启和关闭进气门和排气门, 使可燃混合气或空气进入气缸,并使废气从气缸 内排出,实现换气过程。 (3) 燃料供给系统汽油机燃料供给系的功 用是根据发动机的要求,配制出一定数量和浓度 的混合气,供入气缸,并将燃烧后的废气从气缸 内排出到大气中去;柴

汽车车门部件结构设计

汽车门部件结构设计 概述 车门是汽车车身的主要部件之一,它不仅为司乘人员上下车提供方便 的条件,而且与整车动力性(空气动力性)、舒适性(风流噪声、密封等)和使用性能(开启方便灵活)等有着密切的关系,同时对整车造型起着协调作用,并直接影响车身外形的美观。 一、车门的结构型式——分类 现代汽车的车门结构型式很多,一般可按下述几种方式进行分类: 1.按运动形式,分为: ①旋转 式 向上旋转开启的车门。 近年轿车上出现的一种—c)翼开式前方旋转的车门; 近年轿车上出现的向上—b)垂直旋转式、内摆门等;常见的司机门、折叠门—a)水平旋转式②平移式——拉门、外摆式车门(外移门)等。

2.按结构,分为: ·无骨架式——车门由内外两部分冲压钣件组焊而成, 大部分司机门、折叠门均采用此结构; ·有骨架式——车门内外蒙皮焊接在骨架上——外摆式乘客门。 3.按门叶的数目,分为: ·单叶式(单扇门)——如司机门、安全门、单叶乘客门等; 平移式 旋转式·双叶式——乘客门) 双叶外移门(一前一后—平移式旋转折叠(两叶一组) —折叠式旋转式·四叶式——四叶式折叠门(两叶一组),主要用于城市客车。 各类车型的驾驶员用门,货车及轿车车门多为旋转式,开门方向可以向前(顺开),或往后(逆开)。顺开门在行车时较为安全。 平移门(外移门)主要用于客车的乘客门。 4.按有无运动轨道,分为: 有轨式、无轨式 二、对车门设计的要求

1.具有必要的开度,并能使车门停在最大开度上,以保证上、下车方便; 2.安全可靠。关闭时能锁住,行车或撞车时不会自动打开; 3.开关方便,操纵方便——升降玻璃,锁止等,或在低气压下(≤0.3MPa) 也能开启灵活; 4.具有良好的密封性——涉及密封胶条特性、设计精度、间隙大小、配 合精度等; 5.具有足够的刚度,不易变形下沉,行车时不振响; 6.制造工艺好,易于冲压成形,便于安装附件和维护调整; 7.外形上与整车协调; 8.操纵机构必须易于接近,便于调整保养。

汽车零部件设计复习题

《汽车零部件设计基础》复习题 题型:填空、判断、选择、名词解释、问答题、计算题(带计算器) 第一章 1、什么是汽车的整车整备质量和质量系数?各自的定义? 答:车上带有全部装备(包括随车工具、备胎等),加满燃料、水,但没有装货和载人时的质量。 质量系数:指汽车车载质量和整车整备质量的比值,该系数反映了汽车的设计水平和工艺水平,值越大说明该汽车的结构和制造工艺越先进。 整车整备质量:整车整备质量指装备有车身、全部电气设备和车辆正常行驶所需的辅助设备的完整车辆的质量。 在设计阶段需估算确定。在日常工作中,收集大量同类型汽车各总成、部件和整车的有关质量数据,结合新车设计的结构特点、工艺水平等初步估算各总成、部件的质量,在累计构成整车整备质量。 2、轴荷分配影响汽车的哪些性能? 答:轴荷分配对轮胎寿命和汽车的许多使用性能。对动力性通过性和操纵稳定性也有一定的影响。 3、汽车的动力性的参数及其定义? 答:汽车的动力性用汽车在良好的路面上直线行驶时所能达到的平均行驶速度来表示。所以,动力性是汽车各种性能中最基本、最重要的性能。 汽车动力性主要参数 (1)汽车的最高车速。 (2)汽车的加速时间。 (3)汽车能爬上的最大坡度。 (4)汽车比功率 (5)比转矩 4、汽车的燃油经济性?最小转弯半径? 答:燃油经济性:指以最小的燃油消耗量完成单位运输工作的能力。 经济性有三个评价指标:单位行驶里程的燃料消耗量(L/100km)、单位运输工

作量的燃料消耗量、消耗单位燃油所行驶的里程,中国主要以针对第一个指标的测试为主。 最小转弯半径:最小转弯半径是指当转向盘转到极限位置,外侧转向轮的中心在支承平面上滚过的轨迹圆半径。 5、汽车的制动性定义及其参数? 汽车的制动性:汽车行驶时能在短距离内停车且维持行驶方向的稳定性,在下长坡时能维持一定车速的能力,以及在一定坡道上能长时间停车不动的驻车性能。汽车的制动性主要由下列三方面来评价: (1)制动效能。指在良好路面上,汽车以一定初速制动到停车的制动距离或制动时汽车的减速度,它是制动性能最基本的评价指标. 例如:制动距离、平均制动减速度、行车制动踏板力、应急制动操纵力。 (2)制动效能的恒定性。即抗热衰退性能,指汽车高速行驶或下长坡连续制动时制动效能保持的程度。 (3)制动时的方向稳定性。即制动时汽车不发生跑偏、侧滑以及失去转向能力的性能,常用制动时汽车按给定路径行驶的能力来评价。 6、汽车通过性几何参数定义 其评价参数主要有哪些? 答:与间隙失效有关的汽车整车几何参数,称为汽车的通过性几何参数。 例如:最小离地间隙、纵向通过半径、横向通过半径、接近角、离去角等。 第二章 1、对离合器的设计要求是什么? 答:①在任何行驶条件下,既能可靠的传递发动机的最大转矩,并有适当的转矩储备,又能防止传动系个零件因过载。 ②接合时要完全,平顺 ③分离时要迅速,彻底 ④从动部分转动惯量要小 ⑤应有足够的吸热能力和良好的通风散热效果 ⑥应能避免和衰减传动系的扭转振动,并具有吸收振动,缓和冲击和降低噪声的能力。

汽车结构设计知识点总结

1.安全汽车:从车身结构的安全角度上来说,车身前后部为弹性结构,中部为刚 性结构的车身。车身结构件:支撑车身覆盖件的全部车身结构件零件的总称。 2.车身覆盖件:覆盖车身内部结构表面板件。 3.车身主图版:车身主要轮廓和结构的图板。 4.车身主模型:按照主图板、车身零件图和样板制造的1:1实体模型。 5.H点人体模型:测量汽车实际H点位置的模型。 6.眼椭圆:驾驶员以正常坐姿坐在坐椅中时眼睛位置在车身中的统计分布圆形。 7.视切比:视切线含眼椭圆一侧区域内眼睛数与两侧眼睛总数之比称为视切比。 8.包含比:眼椭圆内所含眼睛数与总眼睛数之比。 手伸及界面:以正常坐姿坐在座椅中,身系安全带,一手握住方向盘时另一手所能伸及的最大空间界面。 11.座椅的动态特性:座椅的动态特性是指座椅对从汽车的悬架、车轮、车身等振动系统传来的冲击和振动所能起到的缓冲作用和消振特性。 12.座椅的静态特性:座椅的静态特性是指座椅的结构型式、几何参数、人体接触座垫和靠背的体压分布以及由此而形成的受载轮廓等技术参数对乘坐舒适性的关系特性。 传统手工车身制图中,曲面是用什么投影来表示?表面用位于曲面上一系列截面线和素线的投影所组成的网状图形表示。②坐椅前后(2)、坐椅上下(2)、坐椅俯仰(2)、坐椅靠背俯仰(2),共8个方向。 .在车身造型概念设计中,常用的平面设计软件有哪些?常用的CAID 曲面设计软件系统有哪些?在车身工程设计中,常用的逆向设计软件有哪些?在加工制造过程中常用的CAM 设计软件系统有哪些? 答: 1)软件: PHOTOSHO、CORE DRAW、ADOBE ILLUSTRATOR 、ALIAS DESIGN STUDIO 2)ALIAS 、 ICEM-SURF 、RHINO 3D3)IMAGEWARE; 、GEOMAGIC; 、RAPIDFORM 4)MasterCAM、 PowerMill; 、SurfCAM; 、Cimatron;、 HyperMill 、EdgeCAM

汽车零件设计

目录 一.序言 (2) 二. 课程设计任务书 (3) 2.1 课程设计题目 (3) 2.2 课程设计目的 (3) 2.3 课程设计时间 (3) 2.4 整车性能参数 (3) 2.5 设计的基本要求 (4) 2.6 齿轮加工制造工艺部分的要求 (4) 2.7 提交的文件资料 (4) 三、工艺规程设计 (5) 3.1齿轮齿条转向器的优缺点 (5) 3.2齿轮齿条转向器的输入形式及特点 (5) 3.3齿轮齿条转向器计算载荷的确定 (6) 3.4齿轮齿条式转向器的齿轮的设计 (9) 3.5条式转向器的齿条的设计 (9) 3.6齿轮齿条式转向器的综合分析设计及计算 (10) 3.7条式转向器的材料选择及强度校核 (13) 3.8齿条式转向器的受力分析与计算 (15) 3.9轴的设计计算校核 (17) 3.10式转向器间隙调整弹簧的设计计算 (20) 3.11轴承的选择 (21) 3.12齿轮齿条式转向器的齿轮加工工艺过程 (22) 参考文献 (22) 附件一机械加工工序卡片 附件二机械加工工艺规程卡片 附件三零件图 附件四毛坯图

一.序言 《汽车制造工艺学课程设计》是在《汽车制造工艺学》等专业课程所学的理论知识,发展专业知识解决时间生产问题的依次实践训练。 通过这次设计以巩固我们所学的理论知识和专业技能,提高自己解决实际生产问题的能力。在设计中能逐步掌握查阅手册,查阅有关书籍的能力。在设计中逐步培养了我们一丝不苟的工作态度,严谨的工作作风,对我们今后参加工作有极大的帮组。 这次设计有许多不足之处,希望老师评阅批改。

二.课程设计任务书 2.1课程设计题目:汽车齿轮齿条式转向器设计及零件加工工艺制定 2.2课程设计目的:此课程设计是《汽车设计》、《汽车制造工艺学》课程教学重要实践环节,其目的是: 1)培养学生理论联系实际的设计思想,巩固和加强所学的相关专业课程的知识; 2)熟悉和掌握车辆设计和制造工艺制定的一般过程和方法,提高综合运用所学的知识进行车辆设计与制造 的能力; 3)熟练掌握和运用设计资料(指导书、图册、标准和规范等)以及经验数据进行设计的能力,培养学生机 械制图、设计计算和编写技术文件等的基本技能。 2.3课程设计时间:2011年10月30日~2011年11月30日2.4整车性能参数: 车型:一汽佳宝(面包车) 基本参数(网络搜索得到):

汽车零部件介绍

汽车零部件 发动机: 曲轴 引擎的主要旋转机件,装上连杆后,可承接连杆的上下(往复)运动变成循环(旋转)运动。 是发动机上的一个重要的机件,其材料是由碳素结构钢或球墨铸铁制成的,有两个重要部位:主轴颈,连杆颈,(还有其他)。主轴颈被安装在缸体上,连杆颈与连杆大头孔连接,连杆小头孔与汽缸活塞连接,是一个典型的曲柄滑块机构。曲轴的润滑主要是指与摇臂间轴瓦的润滑和两头固定点的润滑.这个一般都是压力润滑的,曲轴中间会有油道和各个轴瓦相通,发动机运转以后靠机油泵提供压力供油进行润滑、降温。发动机工作过程就是,活塞经过混合压缩气的燃爆,推动活塞做直线运动,并通过连杆将力传给曲轴,由曲轴将直线运动转变为旋转运动。曲轴的旋转是发动机的动力源。 惠州东本发动机,南海本田发动机,惠州住金,上海爱知,广丰发动机,连杆

连杆机构中两端分别与主动和从动构件铰接以传递运动和力的杆件。例如在往复活塞式动力机械和压缩机中,用连杆来连接活塞与曲柄。连杆多为钢件,其主体部分的截面多为圆形或工字形,两端有孔,孔内装有青铜衬套或滚针轴承,供装入轴销而构成铰接。连杆是汽车发动机中的重要零件,它连接着活塞和曲轴,其作用是将活塞的往复运动转变为曲轴的旋转运动,并把作用在活塞上的力传给曲轴以输出功率。连杆在工作中,除承受燃烧室燃气产生的压力外,还要承受纵向和横向的惯性力。因此,连杆在一个复杂的应力状态下工作。它既受交变的拉压应力、又受弯曲应力。连杆的主要损坏形式是疲劳断裂和过量变形。通常疲劳断裂的部位是在连杆上的三个高应力区域。连杆的工作条件要求连杆具有较高的强度和抗疲劳性能;又要求具有足够的钢性和韧性。传统连杆加工工艺中其材料一般采用45钢、40Cr或40MnB等调质钢,但现在国外所广泛采用的先进连杆裂解(conrod fracture splitting)的加工技术要求其脆性较大,硬度更高,因此,以德国汽车企业生产的新型连杆材料如C70S6高碳微合金非调质钢、SPLITASCO系列锻钢、FRACTIM锻钢和S53CV-FS锻钢等(以上均为德国din标准)。合金钢虽具有很高强度,担对应力集中很敏感。所以,在连杆外形、过度圆角等方面需严格要求,还应注意表面加工质量以提高疲劳强度,否则高强度合金钢的应用并不能达到预期果。 四会实力连杆云南西南仪表

汽车零部件总成

招专业人才上一览英才汽车车身总成范围 车身(驾驶室):油漆工艺前的车身本体(白车身),不包括车身附件及装饰件。主要由车身结构件及覆盖件(非承载式车身)焊接组成。 M1类包括前围、侧围、后围、顶盖、车身地板、翼子板、车门、发动机罩盖、行李箱盖(或背门总成)等。 M1以外的其它类包括前围、侧围、后围、顶盖、车身地板、地板盖板(金属件)、顶盖通风窗、翼子板、车门、发动机罩盖、车身骨架(非承载式车身) 汽车车身损失的确定 车辆的车身,尤其是轿车和客车的车身更是车辆的主体结构部分,在碰撞、刮擦和倾翻等交通事故或意外事故中,车身是受损最严重的部分,其车身覆盖件及其他构件会发生局部变形,严重时车架或整体式车身都会发生变形,使其形状和位置关系不能符合制造厂的技术规范,这不仅影响美观,还会影响到车身和汽车上其他总成的安装关系,使车辆不能正常行驶。因此,必须对其进行校正和修复,有些零部件和总成则需要更换。对于保险车辆,这笔费用需要保险人按保险合同的规定承担,这要求有相对准确的计算依据,必须正确地核定车身的损伤情况。 车身由于事故遭受损伤后的修复工作,是一项工艺复杂且技术性很强的专业工作,事故车的定损应考虑到工艺的复杂性和技术性,因此,要求定损人员应熟悉汽车车身结构及车身修复工艺。 汽车车身的结构 现代汽车的车身特别是轿车车身,不仅是现代化的工业产品和先进的交通运输工具的载体,也可以称其为一件精美的艺术品。设计者和制造者为了降低轿车的自重,增加车身的整体刚度,大多采用了整体式承载结构,采用了大量的新材料、新结构和新工艺,这使得车身的修复工艺变得更加复杂。所以,为了保证准确的定损核价,为了保证因事故受损的车身能够修旧如新,保证车身的修理质量,不仅修理者,从事保险理赔的事故车辆定损人员也必须十分熟悉车身的材料和结构特点、生产工艺、车身造型、车身维修工艺及特点。 (一)汽车车身的分类及构成 1. 根据用途车身可以分为两大类:客车车身、货车车身。 ①客车车身依据车身的大小和特点又分为:小客车(轿车)车身、大客车车身。 ②货车车身:货车车身通常由两部分组成,即驾驶室和货厢。 2. 车身按壳体结构型式可分为3种: ①骨架式。壳体结构具有完整的骨架(构架),车身蒙皮板就固定在装配好的骨架上。 ②半骨架式。只有部分骨架,如单独的支柱、拱形梁、加固件等,这些骨架或直接相连或借蒙皮板相连。 ③壳体式。该结构车身没有骨架,全部利用蒙皮板连接时形成的加强筋代替骨架。中型及大型客车多采用骨架式车身,轿车和货车多采用壳体式车身。 3. 按车身受力的不同可分为3类: ①非承载式车身。车身与车架用弹性元件连接,车身不承受汽车载荷。 ②半承载式车身。车身与车架系刚性连接,车身承受车架的一部分载荷。 ③承载式车身。承载式车身没有车架,发动机和底盘各部件都直接安装在车身上。承载式车身具有更轻的质量、更大的刚度和更低的高度,承载式车身是通过点焊将车身前部、车身底部、车身侧部和车身后部四大件焊接在一起,如图10-1所示。 4. 车身构成 (1)车身前部。车身前部一般为厢式结构,具有较强的刚性,用来安装布置发动机、前悬架、转向装置等部件。如图10-2所示。 车身前部配有后挡泥板、两侧挡泥围板、前侧梁、前横梁和散热器上支撑等刚性较高的骨架部分,这些部件组成长方形的发动机舱,在其外部覆盖有发动机罩、前挡泥板、平衡板、散热器隔栅等面板。

汽车车门部件结构设计

汽车门部件结构设计 概 述 车门是汽车车身的主要部件之一,它不仅为司乘人员上下车提供方便的条件,而且与整车动力性(空气动力性)、舒适性(风流噪声、密封等)和使用性能(开启方便灵活)等有着密切的关系,同时对整车造型起着协调作用,并直接影响车身外形的美观。 一、车门的结构型式——分类 现代汽车的车门结构型式很多,一般可按下述几种方式进行分类: 1.按运动形式,分为: ①旋转式 向上旋转开启的车门。近年轿车上出现的一种—c)翼开式前方旋转的车门; 近年轿车上出现的向上—b)垂直旋转式、内摆门等;常见的司机门、折叠门—a)水平旋转式?? ? ?? ②平移式——拉门、外摆式车门(外移门)等。

2.按结构,分为: ·无骨架式——车门由内外两部分冲压钣件组焊而成,大部分司机门、 折叠门均采用此结构; ·有骨架式——车门内外蒙皮焊接在骨架上——外摆式乘客门。 3.按门叶的数目,分为: ·单叶式(单扇门)——如司机门、安全门、单叶乘客门等; 平移式 旋转式 ·双叶式——乘客门 ) 双叶外移门(一前一后—平移式旋转折叠(两叶一组)—折叠式旋转式 ·四叶式——四叶式折叠门(两叶一组),主要用于城市客车。 各类车型的驾驶员用门,货车及轿车车门多为旋转式,开门方向可以向前(顺开),或往后(逆开)。顺开门在行车时较为安全。 平移门(外移门)主要用于客车的乘客门。 4.按有无运动轨道,分为: 有轨式、无轨式 二、对车门设计的要求

1.具有必要的开度,并能使车门停在最大开度上,以保证上、下车方便; 2.安全可靠。关闭时能锁住,行车或撞车时不会自动打开; 3.开关方便,操纵方便——升降玻璃,锁止等,或在低气压下(≤0.3MPa) 也能开启灵活; 4.具有良好的密封性——涉及密封胶条特性、设计精度、间隙大小、配 合精度等; 5.具有足够的刚度,不易变形下沉,行车时不振响; 6.制造工艺好,易于冲压成形,便于安装附件和维护调整; 7.外形上与整车协调; 8.操纵机构必须易于接近,便于调整保养。

汽车零部件逆向设计

汽车零部件逆向设计 发表时间:2013-03-07 08:11 来源:mfcad 作者:daomi 点击:39次 前言 随着汽车产品更新换代的加快,在原有车型上进行改进,以加快新产品的开发周期,被越来越多的汽车厂商所采用。对于汽车零部件来说,同样需要快速的开发过程,以适应整车的开发周期。而汽车中很大部分零部件是由一系列复杂的空间曲面构成的,这些曲面是由不同曲率的空间曲面相互连接而成,这种连接既要满足零件功能、结构的要求,又要光滑过渡,达到平顺、和谐的效果。逆向工程作为一种重要的开发手段,广泛的应用于汽车改型设计中,以加快产品的开发周期。 CATIA软件是汽车工业事实上的标准,是世界上多数汽车厂商所使用的核心CAD系统。CATIA V5软件的曲面造型技术上居有独特的优势,为汽车的设计开发提供了先进、方便、快捷的手段,极大地提高了汽车开发效率。 CATIA V5的逆向工程模块主要有数字曲面编辑模块DSE(Digitized Shape Editor) 和快速曲面重构模块QSR (Quick Surface Reconstruction) ,它涵盖逆向软件的点云输入及点云数据处理功能。这两个逆向工程模块结合并综合应用创成式曲面设计模块GSD(Generative Shape Design) 和自由曲面造型模块FSS ( Freestyle Shape) ,实现了逆向工程与正向设计曲面功能的交互应用,其使用变得更为简便、灵活。在外表面曲面完成之后,使用实体设计PDG(Part Design)模块使曲面缝合成实体,并在PDG模块中(有时需借助GSD 模块)进行结构设计及脱模分析等工作。对于有配合装配关系的零部件,借助ASM 模块进行电子装配并使用DMU(电子样机)模组中的空间分析SPA(Space Analysis)模块,对部品进行较核、检测。这些模块之间交互应用,从而使汽车零部件产品的开发更为方便、快捷。以下以一款车的后视镜的逆向开发为例探讨CATIA环境下的产品逆向开发过程。 一、点云数据的导入与处理 使用CATIA V5的DSE模块直接读取ATOS等扫描设备测量的点云数据,而不需要借处第三方软件进行格式转换。 在实物测量扫描过程中可能会有一些错误的点录入,所以要对点云数据进行观察,对一些数误的点云数据进行手工删除。由于所测量的点云云数据的量非常大,但并不是都用,过多的点云数量会加重电脑系统的运算速度。所以我们使用DSE模块中的过滤(Filter)功能对点云数量进行过滤,以减小点云数量。通常使用弦高偏差法(Adaptative)选项对点云进行过滤,使结构特征更加明显。图2为过滤后的点云数据。

相关文档
相关文档 最新文档