文档库 最新最全的文档下载
当前位置:文档库 › 活性炭吸附气体中氮氧化物实验装置的设计开发

活性炭吸附气体中氮氧化物实验装置的设计开发

活性炭吸附气体中氮氧化物实验装置的设计开发
活性炭吸附气体中氮氧化物实验装置的设计开发

污水活性炭吸附实验装置

污水活性炭吸附实验装置使用说明书 JGL-900型污水活性炭吸附实验装置 设备特点: 1.设备布局合理、美观,结构清晰,整体感强。 2.设备设有反洗系统,可对污染的活性炭进行自 动清洁,大大提高设备的利用率,并使设备 操作简单化。 实验目的: 1.了解活性炭吸附实验工艺及性能,熟悉整个实验过 程的操作。 2.掌握用“连续法”确定活性炭污水处理的设计参数 的方法。 主要配置: 吸附柱、活性炭、水泵、水箱、液体流量计、压力表、 反洗系统、不锈钢框架、控制屏。 技术参数: 1.环境温度:5℃~40℃,电源220V单相,功率 370W。 2.有机玻璃吸咐柱:尺寸Φ60×1000mm,数量6根。 3.活性炭:工业柱状活性炭,填装高度:700-750mm。 4.水泵:流量1m3/h,扬程15m,功率370W。 5.水箱:尺寸500×400×400mm,含反洗水箱,PVC材质。 6.液体流量:转子流量计,16-160L/h。 1.反洗系统包括反洗管道和反洗水箱。 2.框架为304不锈钢,结构紧凑,外形美观,操作方便。 3.外形尺寸:1400×500×1600mm,框架为可移动式设计,带脚轮及禁锢脚。

目录 一、技术参数 (1) 二、实验指导 (1) 1.实验概述 (1) 2.实验目的 (1) 3.实验原理 (1) 4.实验工艺流程图 (3) 5.实验操作步骤 (3) 6.实验数据处理 (4) 7.

三、注意事项 (4) 污水活性炭吸附实验装置 一、技术参数: a)有机玻璃吸附柱:Φ60×1000mm,6根。 b)活性炭:工业用活性炭,装填高度:600mm。 c)水泵:1WZB-35A型自吸清水泵,最大流量2m3/h、 最大扬程35m、额定流量1m3/h、额定扬程15m、额定功率370W。 d)污水流量计LZS-15型,流量:25-250L/h。 e)PVC水箱尺寸:500×400×400mm。 f)外形尺寸:1300×500×1500mm。 2、实验指导: 1.实验概述: 活性炭吸附是目前国内外应用较多的一种水处理工艺,由于活性炭种类多、可去除物质复杂,因此掌握“连续流”法确定活性炭吸附工艺设计参数的方法,对水处理工程技术人员至关重要,本实验装置仅对连续流活性炭吸咐法作了进一步了解。 2.实验目的: 1)通过实验进一步了解活性炭的吸附工艺及性能,并熟悉整个实验过程的操作。 2)掌握用“连续流”法确定活性炭污水处理的设计参数的方法。 3) 可开实验:a测定吸附等温线;b吸附穿透曲线测定。 3.实验原理: 活性炭吸附是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。活性炭的吸附作用产生于两个方面:一是由于活性炭内部分子在各个方

活性炭吸附塔技术

活性炭吸附塔是处理有机废气、臭味处理效果最好的净化设备。活性炭吸附是有效的去除水的臭味、天然和合成溶解有机物、微污染物质等的措施。大部分比较大的有机物分子、芳香族化合物、卤代炔等能牢固地吸附在活性炭表面上或空隙中,并对腐殖质、合成有机物和低分子量有机物有明显的去除效果.活性炭吸附作为深度净化工艺,经常用于废水的末级处理,也可用于长产用水、生活用水的纯化处理。当粉尘和颗粒物比较多时,活性炭吸附装置可同时和水帘机和水喷淋塔和UV等离子一起使用,达到废气净化达标排放。 工作原理 活性炭吸附装置主要由活性炭层和承托层组成。活性炭具有发达废气处理粉尘处理噪音处理

的空隙,比表面积大,具有很高的吸附能力。正是由于活性炭的这种特性,它在水的深度处理中被广泛应用,如生活给水,污水后段的(净水)深度处理等。 含尘气体由风机提供动力,正压或负压进入塔体,由于活性炭固体表面上存在着未平衡和未饱和的分子引力或化学健力,因此当此固体表面与气体接触时,就能吸引气体分子,使其浓聚并保持在固体表面,污染物质从而被吸附,废气经过滤器后,进入设备排尘系统,净化气体高空达标排放。 1.吸附效率高,吸附容量大,适用面广 2.维护方便,无技术要求 3.比表面积大,良好的选择性吸附 4.活性炭具有来源广泛价格低廉等特点 5.吸附效率高,能力强 6.操作简易、安全 活性炭使用一段时间后,吸附了大量的吸附质,逐步趋向饱和,丧失了工作能力,严重时将穿透滤层,因此应进行活性炭的再生或更换。 鹤壁市隆盛环保矿山设备有限公司(以下简称“隆盛环保”)于2011年11月成立,企业类型为有限责任公司,注册资金1200万元,公司注册地址:鹤壁市淇滨区金山工业园区创业路路南。隆盛环保是废气处理粉尘处理噪音处理

空气中氮氧化物

_ 一、实验目的与要求 1、掌握氮氧化物测定的基本大气中氮氧化物的原理和方法。 2、绘制实验室空气中氮氧化物的日变化曲线。 3、了解并掌握大气中氮氧化物的有关知识。 二、实验方案 1、实验仪器 (1)大气取样器;(2)分光光度计;(3)棕色多孔玻板吸收管;(4)双球玻璃管;(5)比色管;(6)移液管。 2、实验药品 (1)吸收原液标准液;(2)吸收原液;(3)蒸馏水。 3、实验原理 主要反应方程式为: 4、实验步骤 1)氮氧化物的采集 用一个内装5mL采样液用吸收的多孔玻板吸收管,接上氧化管,并使管口微向下倾斜,朝上风向,避免潮湿空气将氧化管弄湿,而污染吸收液,如图1-1所示。分别以每分钟0.1L、0.3L的流量抽取空气30min。采样高度为1.5m,若

氮氧化物含量很低,可增加采样量,采样至吸收液呈浅玫瑰红色为止。记录采样时间和地点,根据采样时间和流量,算出采样体积。把一天分成几个时间段进行采样(7次),如10:300~11:00、11:30~12:00、12:30~13:00、13:30~14:00、14:30~15:00、15:30~16:00、16:30~17:00。 图1-1 氮氧化物采样装置的连接图示 2)氮氧化物的测定 ①标准曲线的绘制:取7支50mL 比色管,按表1-1配制标准系列。 将各管摇匀,避免阳光直射,放置15 min ,以蒸馏水为参比,用1cm 比色皿,在540nm 波长处测定吸光度。根据吸光度与浓度的对应关系,用最小二乘法计算标准曲线的回归方程式: y = bx + a 式中:y ——(A-A 0),标准溶液吸光度(A )与试剂空白吸光度(A 0)之差; x ——NO 2-浓度,μg/mL ; a 、 b ——回归方程式的截距和斜率。 ρNO x = 76 .0)(0??--V b a A A 式中:ρNO x ——氮氧化物浓度,mg/m 3; A ——样品溶液吸光度; A 0、a 、b 表示的意义同上; V ——标准状态下(25℃,760mmHg )的采样体积,L ;

活性炭吸附实验报告

《环工综合实验(1)》(活性炭吸附实验) 实验报告 专业环境工程(卓越班) 班级 姓名 指导教师 成绩 东华大学环境科学与工程学院实验中心 二0一六年 11月

附剂的比表面积、孔结构、及其表面化学性质等有关。 吸附等温线(Adsorption Isotherm): 指一定温度条件下吸附平衡时单位质量吸附剂的吸附量 q 与吸附质在流体相中的分压 p (气相吸附)或浓度 c (液相吸附)之间的关系曲线。 水中苯酚在树脂上的吸附等温线

水中苯酚在活性炭上的吸附等温线 吸附机理和吸附速率 吸附机理: 吸附质被吸附剂吸附的过程一般分为三步:(1)外扩散 (2)内扩散 (3)吸附 ①外扩散:吸附质从流体主体通过扩散传递到吸附剂颗粒的外表面。因为流体与固体接触时,在紧贴固体表面处有一层滞流膜,所以这一步的速率主要取决于吸附质以分子扩散通过这一滞流膜的传递速率。 ②内扩散:吸附质从吸附剂颗粒的外表面通过颗粒上微孔扩散进入颗粒内部,到达颗粒的内部表面。 ③吸附:吸附质被吸附剂吸附在内表面上。 对于物理吸附,第三步通常是瞬间完成的,所以吸附过程的速率由前二步决定。

?活性炭具有良好的吸附性能和化学稳定性,是目前国内外应用较广泛的一种非极性的吸附剂。 ?由于活性炭为非极性分子,因而溶解度小的非极性物质容易被吸附,而不能使其自由能降低的污染物既溶解度大的极性物质不易被吸附。活性炭的吸附能力以吸附容量q e表示: ?qe=X/M=V(Co-C)/M ?在一定的温度条件下,当存在于溶液中的被吸附物质的浓度与固体表面的被吸附物质的浓度处于动态平衡时,吸附就达到平衡。 1、吸附剂的比表面积越大,其吸附容量和吸附效果就越好吗?为什么? 答:比表面积越大,不一定吸附容量就越好。吸附剂的比表面积越大,只能说明其吸附能力较大,并不代表吸附容量就越大。吸附容量的大小还与脱吸速度有关,如果脱吸速度很快,就算吸附能力再大,吸附容量也还是没多大提升。吸附容量是一个动态平衡的过程。? 吸附剂的良好吸附性能是由于它具有密集的细孔构造,与吸附有关的物理性能有:a.孔容(VP):吸附剂中微孔的容积称为孔容,通常以单位重量吸附剂中吸附剂微孔的容积来表示(cm3/g);b.比表面积:即单位重量吸附剂所具有的表面积,常用单位是m2/g;c.孔径

废气活性炭吸附装置操作规程

废气活性炭吸附装置操 作规程 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

废气活性炭吸附装置操作规程 ●一、操作规程 1.上电 观察各个阀门和泵的状态和位置是否都正常情况下,若在正常情况下则依次合上总空气开关、溶剂泵空开和开关电源空开,如果有异常进行手动电气调整和机械维修调整。 2.开机 检查紧急停止按钮是否被按下,如果按下,向右旋转电气柜门上面的红色蘑菇旋钮90度,然后紧急停止会自动弹起。 若罐体中无残留VOC,直接按下“A吸附”或“B吸附”按钮,罐体即可进入吸附状态,此时罐体的尾气进气阀和尾气出气阀自动打开。 待罐体吸附完成后,按下“停止”按扭,启动另一个罐体的“吸附”按钮,另一个罐体即可进入吸附状态,此时此罐体的尾气进气阀和尾气出气阀自动打开。吸附完成的罐体尾气进气阀和尾气出气阀自动关闭。 对吸附完成的罐体进行解析,手动开启冷凝器的冷却水进出阀门和解析用的蒸汽总阀门后,直接按下“A/B解析”按扭,自动开启蒸汽进汽阀和蒸汽出汽阀,进入解析状态;当冷凝器的玻璃视盅没有与水不溶物出现时,解析完成后,再按下“停止”即可完成解析进入吸附状态。 若开机时,罐体中有残留VOC,则应先将罐体中的溶剂先解析出来后再开始吸附。 3.关机 当生产过程中遇到紧急情况需要停车时,按下“A/B停止”,则A/B罐所有气动阀门全部关闭;或者按下红色蘑菇头按钮(急停),同时关闭两个罐体。故障排除后方可复位急停按钮。 当无生产任务,系统不需要使用时,依次按下“A停止”、“B停止”按钮,并依次关上开关电源空开、溶剂泵空开和总空开。 4.高温处理

每台吸附器设有2个温度表检测碳颗粒温度,活性炭的着火点为500℃。假如吸附过程温度达到在130℃左右,为防止碳颗粒自燃的发生,应立即将该罐体切换到解析状态。如果解析不能有效降温,应立即停止解析,打开自来水阀门和罐体上排气阀,直至碳层全部浸泡在水里。待温度降下来后,排水,解吸颗粒碳,再重新投入吸附回收。 吸附单元在各工况时各阀的位置 ●二、注意事项 1、开机前需检查注意三项:①压缩空气(如氮气);②循坏水;③蒸汽。 2、操作步骤:①先打开A吸附(关闭废气管上插板阀),待A吸附饱和后点B吸附,关闭A吸附(点A停止按钮);②A解析完成后点停止,等待B吸附完成后点A吸附,依次循环。 3、各部位压力:①压缩空气压力不小于6公斤;②管道压力不低于4公斤;③进箱体压力不高于1公斤。 4、循环水先开出,再开进(冷凝器上为出,下为进),循环水必须常开。 5、吸附时间长,解析时间短。 6、蒸汽吸附时不开,解析时需开。 7、如有疑问可打电话咨询:天辰环保/陈工:

氮氧化物NOX气体传感器

氮氧化物NOX气体传感器 氮氧化物NOX气体传感器适用于各种环境和特殊环境中的氮氧化物NOX气体浓度和泄露,在线检测及现场声光报警,对危险现场的作业安全起到了预警作用,此仪器采用进口的电化学传感器和微控制器技术,具有信号稳定,精度高,重复性好等优点,防爆接线方式适用于各种危险场所,并兼容各种控制器,PLC,DCS等控制系统,可以同时实现现场报警和远程监控,报警功能,4-20mA标准信号输出,继电器开关量输出。 氮氧化物NOX气体传感器产品特性: ①进口电化学传感器具有良好的抗干扰性能,适用寿命8年。 ②采用先进微处理技术,响应速度快,测量精度高,稳定性和重复性好。 ③检测现场具有具有现场声光报警功能,气体浓度超标即时报警,是危险场所作业的安全保障。 4现场带背光大屏幕LCD显示,直观显示气体浓度,类型,单位,工作状态等。 5独立气室,更换传感器无须现场标定,传感器关键参数自动识别。 6全量程范围温度数字自动跟踪补偿,保证测量准确性。 氮氧化物NOX气体传感器技术参数: 检测气体:空气中的氮氧化物NOX 检测范围:0~100ppm,0~200ppm,0~1000ppm,0~1000ppm,0~5000ppm,100%LEL可选。 分别率:0.01ppm(0~100ppm);0.1ppm(0~1000ppm);1ppm(0~10000ppm以上);0.1LEL. 工作方式:固定式连续工作,扩散式,管道式,流通时,泵吸式可选。 检测误差:≦1%(F.S) 响应时间:≦10S 输出信号:电流信号输出4-20MA 报警方式:2路无源节点信号输出,报警点可设置。 工作环境:-20℃~50℃(特殊要求:(-40℃~+70℃) 相对湿度:≦90%RH 工作电压:DC12~30V 传感器寿命:3年 防爆形式:探头变送器及传感器均为隔爆型。

实验6活性炭吸附实验.

实验6 活性炭吸附实验 1.实验目的 了解活性炭吸附工艺,掌握测定吸附等温线的操作过程。 2.实验原理 活性炭吸附是利用活性炭固体表面对水中一种或几种物质的吸附作用,达到净化水质的目的。 活性炭对水中所含杂质的吸附既有物理吸附也有化学吸附。 当活性炭对水中所含物质吸附时,水中的溶解性物质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中,即同时发生解吸现象。当吸附和解吸处于动态平衡状态时,称为吸附平衡。而此时被吸附物质在溶液中的浓度称为平衡浓度C。活性炭的吸附能力以吸附量表示,用m克活性炭吸附溶液中的溶质,被吸附的溶质 为毫克,则吸附量可按下式计算: (1 式中,q e为平衡吸附量(mg/g;C0与C e分别为吸附质的初始浓度与平衡浓度(mg/L;V 为溶液的体积(L;m为所用的活性炭的质量(g。 的大小除了决定于活性炭的品种之外,还与被吸附物质的性质、浓度、水的温度及pH值有关。一般说来,当被吸附的物质不容易溶解于水而受到水的排斥作用,且活性炭对被吸附物质的亲和作用力强、被吸附物质的浓度又较大时,值就比较大。 由吸附量和平衡浓度C的关系所绘出的曲线称为吸附等温线,表示吸附等温线的公式称为吸附等温式,比较常用的吸附等温式有有Langmuir、BET和Fruendlich吸附等温式。 在水和废水处理中通常用Fruendlich吸附等温式来比较不同温度和不同溶液浓度时的活性炭的 吸附容量,即 (2

式中:——吸附容量(mg/g; K——与吸附比表面积、温度有关的系数; n——与温度有关的常数,n>1; C——吸附平衡时的溶液浓度(mg/L。 这是一个经验公式,通常用图解方法求出K,n的值.为了方便易解,往往将式(2变换成线性 对数关系式 (3 式中:C0——水中被吸附物质原始浓度(mg/L; C——被吸附物质的平衡浓度(mg/L; m——活性炭投加量(g/L。 3.实验设备与试剂 (1)间歇式活性炭吸附装置,间歇式吸附采用三角烧瓶,在烧瓶内放入活性炭和水样进行振荡。 (2)振荡箱 (3)天平 (4)烘箱 (5)分光光度计 (6)注射器、塑料滤头、滤膜等 (7)活性炭 4.实验方法 (1)标准曲线的绘制

活性炭吸附实验

活性炭吸附实验 一 实验目的 1、通过实验进一步了解活性炭的吸附工艺及性能,并熟悉整个实验过程的操作 2、掌握用“间歇”法、“连续流”法确定活性炭处理污水的设计参数的方法 二 实验原理 活性炭吸附过程包括物理吸附和化学吸附。其基?原理就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。当活性炭对水中所含杂质吸附时,水中的溶解性杂质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中即同时发生解吸现象。当吸附和解吸处于动态平衡状态时,称为吸附平衡。这时活性炭和水(即固相和液相)之间的溶质浓度,具有一定的分布比值。单位重量的活性炭吸附溶质的数量q e ,即吸附容量可按下式计算: m C C V q e ) (0-= 式中 q e —活性炭吸附量,即单位重量的吸附剂所吸附的物质量,mg/g ; V —污水体积,L ; C 0、C —分别为吸附前原水及吸附平衡时污水中的物质浓度,mg/L ; m —活性炭投加量,g ; 在温度一定的条件下,活性炭的吸附量随被吸附物质平衡浓度的提高而提高,两者之间的变化曲线称吸附等温线,通常用Fruendlich 经验式加以表达。 n e C K q 1*= 式中 K 、n —是与溶液的温度、pH 值以及吸附剂和被吸附物质的性质有关的常数; K 、n 值求法如下:通过间歇式活性炭吸附实验测得q e 、C 相应之值,将式上式到对数后变换为下式: C n K q e lg 1 lg lg += 将q e 、C 相应值点绘在双对数坐标纸上,所得直线的斜率为1/n ,截距则为k 。 三 实验设备及用具 1、振荡器一台; 2、分析天平一台; 3、分光光度计一台; 4、250mL 三角烧杯5个; 5、100mL 容量瓶6个; 6、活性炭(粉状和粒状); 7、亚甲基兰。 8、活性炭连续流吸附实验装置 四 实验步骤 1、 间歇式活性炭吸附实验 ①配制浓度为50mg/L 的亚甲兰溶液于1000mL 容量瓶中; ②用十倍稀释法依次配制浓度为5mg/L 、1mg/L 、0.5mg/L 、0.1mg/L 、0.05mg/L 、0.01mg/L 的亚甲兰溶液于100mL 容量瓶中;

活性炭吸附塔-计算书

精心整理 活性炭吸附塔计算书 活性炭吸附塔 1、设计风量:Q=20000m3/h=5.56m3/s。 2、参数设计要求: ①管道风速:V1=10~20m/s, ②空塔气速为气体通过吸附器整个横截面的速度。空塔风速:V2=0.8~1.2m/s, 3、(1 (2 (3 (4 (5 ? ? ?? 则塔体长度L=4.5+0.73×2=5.96m 4、考虑安装的实际情况:塔体尺寸L×B×H=6m×2.2m×2.5m 活性炭吸附塔 1、设计风量:Q=20000m3/h=5.56m3/s。 2、参数设计要求: ①管道风速:V1=10~20m/s,

②空塔气速为气体通过吸附器整个横截面的速度。空塔风速:V 2=0.8~1.2m/s , ③过滤风速:V 3=0.2~0.6m/s , ④过滤停留时间:T 1=0.2~2s , ⑤碳层厚度:h =0.2~0.5m , ⑥碳层间距:0.3~0.5m 。 活性炭颗粒性质: 平均直径d p =0.003m ,表观密度ρs =670kg/3m ,堆积密度ρB =470kg/3m 3、(12 (2(3 X=aSLρb a S L V=Wd CQt 式中:C―Q―t―W―V=sp v =1000 =20m 污染物每小时的排放量:(取污染物100mg/m 3) ρ0=100×20000×106-=2.0kg/h 假设吸附塔吸附效率为90%,则达标排放时需要吸附总的污染物的量为: 2.0×90%=1.8kg/h t =CQ VWd ×109-=910200001008.0%1020????=800h 则在吸附作用时间内的吸附量:

X=1.8×800=1440㎏ 根据X=aSL b ρ得: L = b aS X ρ 根据活性炭的吸附能力,设静活度为16kg 甲苯/100kg 活性炭 所以,L =470 5.51 6.01440??=3.48m 吸附剂的用量M : M=LSρb V V '1、2、L (1ρd 为风管直径,m 。 (2)摩擦阻力系数λ,按下式计算: 式中:K 为风管内壁的绝对粗糙度,m ,取0.15×10-3m 。 Re 为雷诺数,νVd Re =,ν为运动黏度,m 2/s ,取ν=15.06×10-6m 2/s 。 (下列近似公式适用于内壁绝对粗糙度K=0.15×10-3m 的钢板风管: λ=0.0175d -0.21V -0.075 m p ?=1.05×10-2d -1.21V 1.925)

氮氧化物废气的处理..

氮氧化物废气的处理 姓名:贺佳萌 学号:1505110107 专业班级:应化1101 指导老师:曾冬铭

氮氧化物废气的处理 摘要:氮氧化物是主要的大气污染物之一,本文介绍了含氮氧化物废气的产生原因及处理方法。 关键词:氮氧化物;处理技术; 前言 氮氧化物是指一系列由氮元索和氧元素组成的化合物,包括有N2O、NO、N2O3 、NO2、N2O4、N2O5,通常用分子式NO x 来统一表示。大气中NO x主要以NO、NO2的形式存在。 NO x的危害早已被人们所认识到,主要体现在: (1)氮氧化物对人体的危害很大,可直接导致人体的呼吸道损伤,而且是一种致癌物。 (2)氮氧化物会使植物受损伤甚至死亡。 (3)在阳光的催化作用下,氮氧化物易与碳氢化物发生复杂的光化反应,产生光化学烟雾,导致严重的大气污染。 (4)氮氧化物会导致臭氧层的破坏。 (5)氮氧化物也易与水气结合成为含有硝酸成分的酸雨川。 以上光化学烟雾、酸雨及臭氧问题,近年来有逐渐恶化的趋势,已经成为政府及社会公众非常关心的问题。 氮氧化物的产生主要来自于两个方面:自然界本身和人类活动。据统计,由自然界本身变化规律产生的NOx每年约500×106t,人类活动产生的NOx每年约50×106t。从数据来看,虽然人类活动产生的NOx较自然界本身产生的NOx少得多,但由于人类活动产生的NOx往往比较集中,浓度较高,且大多在人类活动环境区域内,因而其危害性更大。 人类活动产生的氮氧化物主要来源于两个方面: (1)含氮化合物的燃烧; (2)亚硝酸、硝酸及其盐类的工业生产及使用。据美国环保局估计,99%的NOx产生于含氮化合物的燃烧,如火力电厂煤燃烧产生的烟气、汽车尾气等。在亚硝酸、硝酸及其盐类的工业生产及使用过程中,由于它们的还原分解,会放出大量的NOx,其局部浓度很高,处理困难,危害大。 在含NOx废气中,对自然环境和人类生存危害最大的主要是NO和NO2。NO为无色、无味、无臭气体,微溶于水,可溶于乙醇和硝酸,在空气中可缓慢氧化为NO2,与氧化剂反应生成NO2,与还原剂反应生成N2。NO2溶于水和硝酸,和水反应生成HNO3和HNO2,和碱及强碱弱酸盐反应生成硝酸盐和亚硝酸盐,和还原剂反应还原为N2。

水喷淋+活性炭吸附处理工业废气方案

东莞市奇格斯电子科技有限公司 环保治理工程 方案编号:20111209 设 计 方 案 设计单位:创美环保 设计日期:二O一一年十二月

方案摘要 一、喷漆废气治理工程 处理工艺:水喷淋+活性炭吸附塔工艺 处理规模:处理量3000m3/h,共1套; 工程造价:¥3.51万元 二、移印废气治理工程 处理工艺:活性炭吸附塔工艺 处理规模:处理量10000m3/h,共1套; 工程造价:¥2.82万元 三、发电机尾气及噪声治理工程 处理规模:125KW发电机1台 工程造价:¥6.95万元 四、火烟治理工程 处理工艺:旋流板塔工艺 工程造价:¥3.34万元 五、油烟治理工程 处理工艺:静电除尘工艺 工程造价:¥2.00万元 六、监测费 项目造价: ¥0.50万元 七、验收审批费 项目造价: ¥0.80万元 以上合计:¥19.92 万元

目录 第一章喷漆废气处理设计 (4) 一、工程概况 (4) 二、设计依据及标准 (4) 三、设计范围 (4) 四、设计条件 (4) 五、工艺设计 (5) 六、主要设备技术性能 (7) 第二章移印废气处理工程 (8) 一、工程概况 (8) 二、设计依据及标准 (9) 三、设计范围 (9) 四、设计条件 (9) 五、工艺设计 (10) 六、主要设备技术性能 (11) 第三章发电机尾气处理工艺设计 (12) 一、设计依据及标准 (12) 二、设计条件 (12) 三、工艺设计 (13) 第四章柴油发电机房噪声治理 (15) 第五章厨房油烟治理 (18) 第六章炉灶火烟治理工艺 (21) 第七章工程概算 (24) 一、喷漆废气处理工程概算 (24) 二、移印废气处理工程概算 (25) 三、发电机尾气治理工程概算 (26) 四、发电机噪音治理工程概算 (27) 五、厨房油烟废气治理工程概算 (28) 六、厨房火烟废气治理工程概算 (28) 第八章售后服务与支付方式 (29) 一、售后服务 (29) 二、付款方式 (30)

实验五活性炭吸附气体中的氮氧化物实验

实验五活性炭吸附气体中的氮氧化物实验 5.1 实验的意义和目的 活性炭吸附广泛应用于防止大气污染|、水质污染或有毒气体进化领域。用吸附法进化NO X尾气是一种简便、有效的方法。通过吸附剂的物理吸附性能和大的比表面将尾气中的污染气体分子吸附在吸附剂上;经过一段时间,吸附达到饱和。然后使吸附质解吸下来,达到进化的目的,吸附剂解吸后重复使用。 本实验采用玻璃夹套式U型吸附器,用活性炭作为吸附剂,媳妇进化浓度约2500ppm 的模拟尾气,得出吸附进化效率和转校时间数据。应达到以下目的:①深入理解吸附法进化有毒废气的原理和特点:②了解活性炭吸附剂在尾气进化方面的性能和作用。③掌握活性炭吸附、解吸、样品分析和数据处理的技术。 5.2 实验原理 活性炭是基于其较大的比表面(可高达1000m2/g)和较高的物理吸附性能吸附气体中的NOx。活性炭吸附NOx是可逆过程,在一定的温度和压力下达到吸附平衡,而在高温、减压下被吸附的NO X又被解吸出来,活性炭得到再生。 在工业应用中,由于活性炭填充层的操作条件依活性炭的种类,特别是吸附细孔德比表面、孔径分布以及填充高度、装填方法、原气条件的不同而异。所以通过实验应该明确吸附净化尾气系统的影响因素较多,操作条件是否合适直接关系到方法的技术经济性。 5.3 实验的装置、流程、遗弃或试剂 5.3.1 实验的装置、流程 本实验采用一夹套式U型吸附器,如附图8所示。吸附器内装填活性炭。实验装置及流程如附图9所示。 5.3.2 实验设备规格及试剂 (1)吸附器硬质玻璃,直径d=15mm,高度H=150mm,套管外径D=25mm,1个。 (2)活性炭果壳,粒径200目。 (3)稳定阀YJ-0.6型,1个。 (4) 蒸气瓶体积V=5L,1个。 (5)冷凝器1只。 (6)加热套M-106型,功率W=500W,一个。 (7)吸气瓶1个 (8)储气罐不锈钢,容积V=400L,最高耐压P=15kg/cm3,1个 (9)空气压缩机V-0 1/10型,排气量Q=0.1m3/min,压力P=20kg/cm2 (10)真空泵2XZ-0.5型,抽气量Q=0.5L/min,转数N=140r/min,1台 (11) 医用注射器容积V=5ml,V=2ml,各1只 (12)721型分光光度计1台 (13)调压器TDGC-0.5型,功率W=500W,1台 (14)对氨基苯磺酸分析纯1瓶 (15)盐酸萘乙二胺分析纯1瓶 (16)冰醋酸分析纯1瓶 (17)氢氧化钠分析纯1瓶 (18)硫酸亚铁工业纯1瓶 (19)亚硝酸钠工业纯1瓶。 5.4 实验方法和步骤 实验前根据原气浓度确定合适的装炭量和气体流量,一般预选气体浓度为2500ppm左

活性炭吸附装置

一、简述 ZH系列活性炭吸附法有机废气净化回收治理装置,是我公司总结国内外同类产品的生产经验,改进设计制造的。 本系列设备,系统设计完善,附属设备配套齐全,净化效率高。在国内处于领先地位。它广泛用于石油、化工、橡胶、油漆、涂装、印刷等行业中,凡释放苯类废气以及其它有机废气均能净化。它能有效地净化环境、消除污染、改善劳动操作条件,确保工人身体健康,并能回收有机溶剂,降低生产成本。 本系列装置结构紧凑,占地面积小,管理、维修简单,操作安全。 本产品已定型四种规格(如小于或大于该规格可以另行设计):ZH-3000A/B、ZH-5000A/B、ZH-7000A/B、ZH-9000A/B(处理风量分别为3000、5000、7000、9000m3/h),分A型和B型共八个产品。A型为单罐系列,适用于间歇吸附、再生;B型为双罐系列,适用于连续吸附、再生。 三、吸附净化原理及工艺流程 1、吸附:

有机废气经过滤器除去固体颗粒物质,由上而下进入吸附罐,有机物被活性炭捕集、吸附并浓缩,净化的空气从罐体下部经主风机排入大气。 2、解吸 当活性炭吸附有机物达到饱和状态后,停止吸入有机废气。通过活性炭床向上送入蒸汽进行吹脱,将有机物自活性炭中逐出,即解吸。罐中活性炭恢复其活性,即再生。 3、热风干燥及冷却: 用蒸汽解吸后的活性炭层中,约留有80~90%的蒸汽凝液,填充了活性炭内孔,从而降低了炭层的活性。因此,通入热空气对炭层进行干燥。然后关闭蒸汽阀门,再通入常温空气,冷却至25℃左右,活性炭恢复如初,以备再循环使用。 4、有机溶剂回收: 利用有机溶剂露点温度较高的特点,将蒸汽和有机溶剂的混合物引入冷凝器,使其冷凝,冷凝液经疏水阀进入分离器,利用溶剂比水轻的特点,分离回收。 5、凝水净化: 为保证冷凝水的洁净,避免有机溶剂的凝水排入水体,在分离器内分离后的水中通入压缩空气,使水中有机溶液剂充分解脱。被压缩空气逐出的含有机物空气折返废气系统,重新吸附。净化后的冷凝水,排入下水道。 6、连续吸附措施: 在连续生产的工厂中,吸附系统也需相应连续工作,可在废气净化系统设计中,选用双罐系列,以便吸附、再生交替连续使用。 7、再生周期: 再生周期应根据净化后排气中有害气体浓度而定。当有害气体浓度接近超标数值时,即应停止吸附,进行再生。帮系统初始工作阶段需及时测定排出口有害气体浓度,以便掌握合理吸附再生周期。

实验十活性炭动态吸附实验装置

实验十活性炭动态吸附 实验装置 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】

实验五活性炭动态式吸附实验 一、实验目的 1、熟悉动态吸附实验的基本操作过程; 2、加深理解吸附的基本原理; 3、掌握用连续流法确定活性炭动态吸附处理污水设计参数的方法。 二、实验装置及材料 每套试验装置分两组,每组由三根活性碳柱串联而成,活性碳有机玻璃管尺寸:直径×高度=φ35mm×1000mm×3根×2组;活性碳装填厚度:500mm。 连续式活性炭吸附装置具体结构如图1所示。 图1连续式活性炭吸附装置 三、实验步骤 1、绘制亚甲基蓝标准曲线 用移液管分别吸取浓度为100mg/L亚甲基蓝标准溶液5、10、20、30、40mL于100mL容量瓶中,用蒸馏水稀释至100mL刻度处,摇匀,以蒸馏水为参比,在波长470nm处,用1cm比色皿测定吸光度,绘出标准曲线。 2、配制10mg/L的亚甲兰溶液,测定其吸光度,并记入到表1中。 3、在有机玻璃管中装入经水洗烘干后的活性炭。 4、打开进水泵,调节流量计分别以40、80、120mL/min的流量进行实验。

5、在每一流速运行稳定后,每隔10-30min 由各炭柱取样,测定出水吸光度,至出水中吸光度达到进水吸光度的0.9-0.95为止,记录结果在表1。 四、实验相关知识点 活性炭具有良好的吸附性能和稳定的化学性质,是目前国内外应用比较多的一种非极性吸附剂。与其它吸附剂相比,活性炭具有微孔发达、比表面极大的特点。通常比表面极可以达到500~1700m 2/g ,这是其吸附能力强,吸附容量大的主要原因。 活性炭作为吸附剂的吸附操作有间歇式和连续流动态式。由于间歇式静态吸附法处理能力低,设备多,故在工程中多采用活性炭进行连续吸附操作。连续流活性炭吸附性能可用博哈特(Bohart )和亚当斯(Adams )关系式表达,即 t Kc 1v H KN exp ln 1c c ln 00B 0-??????-??? ??=?? ????-(式1) 因?? ? ??v H KN ex p 0》1,所以上式等号右边括号内的1可忽略不计,则工作时间t 由上式可得 ?? ???????? ??--=1c c ln KN v H v C N t B 0000(式2) 式中t ——工作时间,h ; v ——流速,即空塔速度,m/h ; H ——活性炭层高度,m ; K ——速度常数,m 3/(mg/h)或L/(mg/h); N 0——吸附容量,即达到饱和时被吸附物质的吸附量,mg/L ; c 0——入流溶质浓度,mol/m 3或(mg/L); c B ——允许流出溶质浓度,mol/m 3或(mg/L)。 工作时间为零的时候,能保持出流溶质浓度不超过c B 的炭层理论高度称为活性炭层的临界高 度H 0。其值可根据上述方程当t=0时进行计算,即 ??? ? ??-=1c c ln KN v H B 000(式3) 在试验时,如果取工作时间为t ,原水样溶质浓度为c 01,用三个活性炭住串联,第一个柱子 出水为c B1,即为第二个活性炭柱的进水c 02,第二个活性炭柱的出水为c B2,就是第三个活性炭柱 的进水c 03,由各柱不同的进出水浓度可求出流速常数K 值及吸附容量N 。 五、实验数据及结果整理

活性炭吸附塔计算书

科文环境科技有限公司 计算书 工程名称: 活性炭吸附塔 工程代号: 专业: 工艺 计算: 校对: 审核: 2016年5月13日 活性炭吸附塔 1、设计风量:Q = 20000m3/h = 5.56m3/s。 2、参数设计要求: ①管道风速:V i = 10~20m/s, ②空塔气速为气体通过吸附器整个横截面的速度。空塔风速:V2= 0.8~1.2m/s, ③过滤风速:V3 = 0.2~0.6m/s, ④过滤停留时间:T i = 0.2~2s, ⑤碳层厚度:h = 0.2~0.5m, ⑥碳层间距:0.3~0.5m。 活性炭颗粒性质: 平均直径d p=0.003m,表观密度p=670kg/m3,堆积密度p=470kg/m3 孑L隙率0.5~0.75,取0.75 3、(1)管道直径d取0.8m,则管道截面积A i=0.50m2 则管道流速V1=5.56 £.50=11.12m/s,满足设计要求。 (2)取炭体宽度B=2.2m,塔体高度H=2.5m,

则空塔风速V2=5.56艺2 25=1.01m/s,满足设计要求。 (3)炭层长度L1取4.3m, 2层炭体, 则过滤风速V3=5.56艺2 -4.3乞弋.75=0.392m/s满足设计要求。 (4)取炭层厚度为0.35m,炭层间距取0.5m, 则过滤停留时间T i=0.35 4.392=0.89s满足设计要求。 (5)塔体进出口与炭层距离取0.1m,则塔体主体长度L' =4.3+0.2=4.5m 3 B2H2d 、3 2.222.520.8 两端缩口长L = -_ = - =0.73m 3 2 2 3 2 2 则塔体长度L=4.5+0.73 :2=5.96m 4、考虑安装的实际情况:塔体尺寸LXBXH = 6mX2.2m>2.5m 活性炭吸附塔 1、设计风量:Q = 20000m3/h = 5.56m3/s。 2、参数设计要求: ①管道风速:V1 = 10~20m/s, ②空塔气速为气体通过吸附器整个横截面的速度。空塔风速:V2= 0.8~1.2m/s, ③过滤风速:V3 = 0.2~0.6m/s, ④过滤停留时间:「= 0.2~2s, ⑤碳层厚度:h = 0.2~0.5m, ⑥碳层间距:0.3~0.5m。 活性炭颗粒性质: 平均直径d p=0.003m,表观密度p=670kg/m,堆积密度p=470kg/m 3、(1)管道直径d取0.8m,则管道截面积A1=0.50m2 则管道流速V1=5.56 4.50=11.12m/s,满足设计要求。 (2)取炭体宽度B=2.2m,塔体高度H=2.5m, 则空塔风速V2=5.56 4.2 4.5=1.01m/s,满足设计要求。 (3) 假定吸附床到达穿透时间时全部处于饱和状态,即达到它的平衡吸附量a也称a为静活度,同时根据朗格谬尔等温线假定静活度不在与气象浓度有关。在吸附作用时间Z 内,所吸附污染物的量为: X=aSL p b

氮氧化物废气处理工艺方案

浙江嘉化能源化工股份有限公司4000吨/年BA技改项目 氮氧化物废气处理工艺方案 一、工艺技术及介绍 1.1 工艺技术介绍 CN型氮氧化物废气处理反应器是南京市环境保护科学研究院的专利技术,常熟市胜诺环保设备有限公司获独家授权制造并且在全国范围内市场推广的专利产品。专利号ZL 02 2 63020.1。 该技术是基于南京市环境保护科学研究院《炽热碳还原处理氮氧化物废气的工艺研究》,原理是利用以NO、NO2为代表的气相氮氧化物在高温条件下都可以被碳还原成氮气,达到从废气中去除氮氧化物的目的。 该技术的特点是对废气中氮氧化物浓度变化范围适应性宽,并且呈现出废气中氮氧化物浓度越高处理效率越高的特点。 与传统的氮氧化物废气选择性催化法、氨-碱溶液两级吸收法、碱-亚硫酸铵吸收法、硝酸氧化-碱吸收法、尿素还原法和丝光沸石吸附法等处理工艺比较,CN型氮氧化物废气处理反应器具有运行稳定、运行费用低、没有二次污染物产生、操作简单、投资小和保证达标排放等优势,在大多数情况下只需一台废气处理反应炉就可以全部解决问题,无需任何的能力装置,自身的热气体拨风系统可以将废气自动引入处理装置,省却了废气引风系统,降低了设备投资。在工厂需要时还可以副产热水回收热能。 CN型氮氧化物废气处理反应器,它具有的设备单一、工艺简单

和易操作性使得它几乎是可以无故障、长周期的运行;先进、独到的技术使得氮氧化物废气的处理变得简单;卓越的性能确保用户氮氧化物废气能够达标排放;低成本运行使得氮氧化物废气的处理不再是企业的负担。 氮氧化物废气处理反应器在催化剂制造、金属溶解、贵金属冶炼、硝化反应、金属表面处理、多晶硅表面清洗等硝酸使用行业已经有很好的应用,并得到了用户的广泛赞誉。 本反应器采用氮氧化物废气处理专利技术(专利号ZL 02 2 63020.1)进行处理。原理为:2NO+ C = CO2+ N2 2NO2 + 2C = 2CO2+ N2 该化学反应是一个可以自发进行的放热反应。在常温下该化学反应不能自发进行是因为反应活化能的势垒阻隔。提高反应温度到600-800℃可以克服反应活化能的势垒阻隔,在此条件下反应对NO 和NO2没有选择性,都能反应,并且反应迅速进行,该反应的反应热本身可以维持反应体系的温度。所以简而言之,该反应器就是让NO 和NO2废气通过燃烧的焦炭层,让焦碳和NO、NO2在高温下发生还原反应,把废NO、NO2气还原成氮气。因为氧气会消耗焦炭,所以整个系统要严格控制氧的进入。本专利技术可以做到排气筒目测无黄烟,可以保证排放废气中氮氧化物浓度在240 mg/m3以下。 本工艺装置在常熟市开拓催化剂公司(硝酸溶金属和转炉分解硝酸盐)、德国南方公司(硝酸镍分解)、山东玉皇集团公司(硝酸溶铁)、山东万达集团公司(硝酸溶铁)、川化集团公司(硝酸溶铜溶锌)、西

废气处理方案活性炭处理

废气处理方案 无锡德尔迅实验设备有限公司 2018年5月14日 第一章概述 一、概况 业主实验室工作过程中有酸性废气、有机废气散发,这些气体影响了员工的工作环境和周边地区的居住环境,因此不能直排而污染大气层,为了改善这种状况,气体排放达到国家环保标准,该公司拟针对挥发性废气进行净化处理。 无锡德尔迅实验设备有限公司提供废气处理方案,供贵公司审核、选用。 (1)活性炭处理箱(抽屉式)尺寸:L3600*W1500*H1600(外径尺寸) (2)处理风量:23000≈30000风量、 (3)排放标准:处理完可以达到80%≈90% (4)可接受废气浓度90%以上 1、本项工程技术方案按废气挥发状况设计废气处理系统,同时对废气处理系统的设备和材料作选型。 2、合理性:全面规划,合理建设,统筹安排,充分考虑利用设施,使设施与格局和谐共存。根据技术成熟、经济合理的原则进行总体设计和单元设备设计,并充分注意节能,力求减少动力消耗,以节约能源,降低处理成本及运行费用。既要体现技术发展水平,又要脚踏实地立足厂情。 3、可靠性:采用技术可靠成熟的工艺;工程设计合理并留有余量;充分设置调节措施,工艺调节措施和配套措施;采用运行稳定可靠的设备,效率高,管理方便,维护维修工作量少;充分考虑冬季低温等各种不利因素下的系统稳定运行要求,设置必要的监控仪表,运行管理应结合实际,运行自动化,减少人为操作失误。监控仪表和自动化设备应维修维护方便。确保废气处理装置的稳定性和可靠性。 4、经济性:针对所有废气的特点和处理要求,进行各种高效处理设施的优化组合,以达到占地面积少、适用性强的目的,专用设备的选型进行充分比选,达到性能价格比的最优化,在保证质量和安全可靠的前提下,尽量降低系统造价和运行管理费用。充分发挥项目的社会效益、环境效益和

活性炭吸附实验讲义

活性炭吸附实验 一、实验目的 (1)了解活性炭吸附的工作原理和特点。 (2) 观察活性炭对色度较高工业废水(如:印染废水)和生活污水的色度的去除过程。 (3) 掌握活性炭吸附饱和后的再生方法。 二、实验原理 吸附是发生在固-液(气)两相界面上的一种复杂的表面现象,它是一种非均相过程。大多数的吸附过程是可逆的,液相或气相内的分子或原子转移到固相表面,使固相表面的物质浓度增高,这种现象就称为吸附;已被吸附的分子或原子离开固相表面,返回到液相或气相中去,这种现象称为解吸或脱附。在吸附过程中,被吸附到固体表面上的物质称为吸附质,吸附吸附质的固体物质称吸附剂。 活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。 活性炭吸附的作用产生于两个方面:一方面是由于活性炭内部分子在各个方面都受着同等大小力而在表面的分子则受到不平衡的力,这就使其他分子吸附于其表面上,此过程为物理吸附;另一方面是由于活性炭与被吸附物质之间的化学作用,此过程为化学吸附。活性炭的吸附是上述两种吸附综合作用的结果。当活性炭在溶液中吸附速度和解吸速度相等时,即单位时间内活性炭吸附的数量等于解吸的数量时,被吸附物质在溶液中的浓度和在活性炭表面的浓度均不再变化,而达到了平衡,此时的动态平衡称为活性炭吸附平衡。 三、实验设备与试剂 (1) 活性炭吸附实验装置:1套 (如下图)。 (2) 50mL比色管:6个 (3) 500mL烧杯:2个

(4) 色度较高工业废水(如:印染废水,可自配):5L (5) 生活污水: 5L 四、实验步骤 1、配制实验废水(染料废水) 采用两种染料配置实验用废水。一是生物染料,二是化工染料。分别称取1g质量的染料配置成5L的染料废水进行实验。 另从生活污水管道采集生活污水5L,待用。 2、实验装置运行 (1)连接好活性炭吸附实验装置。 (2)分别用生物染料废水、化工染料废水和生活污水按10L/h左右的进水流量进入活性炭吸附柱进行吸附实验。 (3)吸附完成后对出水水样测其色度。 (4)观察和分析活性炭是否达到饱和,如果饱和,则对其进行再生。 3、水样的测定 对原废水和吸附后废水分别采用“目测比色法”测定其色度。 五、实验数据记录与处理 参考表1记录实验数据。 表1 实验数据记录和处理 六、注意事项 (1) 实验前必须首先计算活性炭容积。 (2) 实验时要注意稳定流量。 七、思考题 (1) 活性炭吸附达到饱和后能否再次利用? (2) 活性炭饱和后如何再生?

相关文档
相关文档 最新文档