文档库 最新最全的文档下载
当前位置:文档库 › 高中数学复习指导:圆锥曲线中“一定二动”问题的类比与推广

高中数学复习指导:圆锥曲线中“一定二动”问题的类比与推广

高中数学复习指导:圆锥曲线中“一定二动”问题的类比与推广
高中数学复习指导:圆锥曲线中“一定二动”问题的类比与推广

高中数学类比推理 同步练习北师大版选修2-2

类比推理 同步练习 1. 将下列平面内成立的结论类比地推广到空间,并判断类比的结论是否成立。 (1) 如果一条直线和两条平行线中的一条相交,则必和另一条相交。 (2) 如果两条直线同时垂直于第三条直线,则这两条直线相互平行。 2. 根据三角形的性质,推测空间四面体的性质, (3) 三角形的两边之和大于第三边; (4) 三角形的三条内角平分线交于一点且该点是三角形内切圆圆心。 3. 类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列哪些性质,你认为比较恰当的是____________________。 (1)各棱长相等,同一顶点上的任两条棱的夹角都相等; (2)各面都是全等的正三角形,相邻两个面所成二面角都相等; (3)各面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等。 4. 在ABC ?中,射影定理可以表示为B c C b a cos cos +=,其中c b a ,,依次为角 C B A ,,的对边,类比以上定理,给出空间四面体性质的猜想。 5. 在等差数列{}n a 中,若010=a ,则有等式 ),19(*192121N n n a a a a a a n n ∈<+++=+++- 成立,类比上述性质,在等比数列{}n b 中,若19=b ,则有等式__________________________成立。

6. 若+ ∈R a a 21,,则有不等式2 212 22122?? ? ??+≥+a a a a 成立,请你类比推广此性质。 参考答案 1. (1)如果一个平面和两个平面中的一个相交,则必和另一个相交。结论是正确 的。 (2)如果两个平面同时垂直于第三个平面,则这两个平面互相平行。结论错误。 2. (1)四面体任意三个面的面积之和大于第四个面的面积; (2)四面体的六个二面角的平分面交于一点,且该点是四面体内切球的球心。 3 (1)(2)(3)。 4. 四面体ABC P -中,S S S S ,,,321分别表示面ABC PAC PBC PAB ????,,,的面积,γβα,,依次表示面PAB 、面PBC 、面PAC 与底面面ABC 所成的二面角大小,则空间中的射影定理可表示为:γβαcos cos cos 321S S S S ++=。 5. ),17(*172121N n n b b b b b b n n ∈<=- 。

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

高三数学解答题难题突破 圆锥曲线中的三点共线问题

高三数学解答题难题突破 圆锥曲线中的三点共线问题 【题型综述】 三点共线问题证题策略一般有以下几种:①斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;②距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;③向量法:利用向量共线定理证明三点共线;④直线方程法:求出过其中两点的直线方程,在证明第3点也在该直线上;⑤点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.⑥面积法:通过计算求出以这三点为三角形的面积,若面积为0,则三点共线,在处理三点共线问题,离不开解析几何的重要思想:“设而不求思想”. 【典例指引】 类型一 向量法证三点共线 例1 (2012北京理19)(本小题共14分)已知曲线C :22 (5)(2)8m x m y -+-=(m R ∈) (Ⅰ)若曲线C 是焦点在x 轴上的椭圆,求m 的取值范围; (Ⅱ)设m =4,曲线C 与y 轴的交点为A ,B (点A 位于点B 的上方),直线4y kx =+与曲线交于不同的两点M ,N ,直线1y =与直线BM 交于点G ,求证:A ,G ,N 三点共线.

MB方程为: 6 2 M M kx y x x + =-,则 3 1 6 M M x G kx ?? ? + ?? ,, ∴ 3 1 6 M M x AG x k ?? =- ? + ?? ,,()2 N N AN x x k =+ ,, 欲证A G N ,,三点共线,只需证AG,AN共线 即 3 (2) 6 M N N M x x k x x k +=- + 成立,化简得:(3)6() M N M N k k x x x x +=-+ 将①②代入易知等式成立,则A G N ,,三点共线得证。 类型二斜率法证三点共线 例2.(2017?上海模拟)已知抛物线y2=4x的焦点为F,过焦点F的直线l交抛物线于A、B两点,设AB的中点为M,A、B、M在准线上的射影依次为C、D、N. (1)求直线FN与直线AB的夹角θ的大小; (2)求证:点B、O、C三点共线.

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

高中数学圆锥曲线轨迹问题题型分析

有关圆锥曲线轨迹问题 根据动点的运动规律求出动点的轨迹方程,这是解析几何的一大课题:一方面求轨迹方程的实质是将“形”转化为“数”,将“曲线”转化为“方程”,通过对方程的研究来认识曲线的性质;另一方面求轨迹方程是培养学生数形转化的思想、方法以及技巧的极好教材。该内容不仅贯穿于“圆锥曲线”的教学的全过程,而且在建构思想、函数方程思想、化归转化思想等方面均有体现和渗透。 轨迹问题是高考中的一个热点和重点,在历年高考中出现的频率较高,特别是当今高考的改革以考查学生创新意识为突破口,注重考查学生的逻辑思维能力,运算能力,分析问题和解决问题的能力,而轨迹方程这一热点,常涉及函数、三角、向量、几何等知识,能很好地反映学生在这些能力方面的掌握程度。 求轨迹方程的的基本步骤:建设现代化(检验) 建(坐标系)设(动点坐标)现(限制条件,动点、已知点满足的条件)代(动点、已知点坐标代入)化(化简整理)检验(要注意定义域“挖”与“补”) 求轨迹方程的的基本方法:直接法、定义法、相关点法、参数法、交轨法、向量法等。 1.直接法:如果动点运动的条件就是一些几何量的等量关系,这些条件简单明确,不需要特殊的技巧,易于表述成含x,y 的等式,就得到轨迹方程,这种方法称之为直接法; 例1、已知直角坐标系中,点Q (2,0),圆C 的方程为 122=+y x ,动点M 到圆C 的切线长与MQ 的比等于常数 )0(>λλ,求动点M 的轨迹。 【解析】设MN 切圆C 于N ,则2 2 2 ON MO MN -=。设),(y x M ,则 2222)2(1y x y x +-=-+λ 化简得0)41(4))(1(22222=++-+-λλλx y x (1) 当1=λ时,方程为4 5 = x ,表示一条直线。 (2) 当1≠λ时,方程化为2 222 222)1(31)12(-+=+--λλλλy x 表示一个圆。 ◎◎如图,圆1O 与圆2O 的半径都是1,124O O =. 过动点P 分别作圆2O 、圆2O 的切线PM PN ,(M N ,分别为切点) ,使得PM =. 试建立适当的坐标系,并求动点P 的轨迹方程. 【解析】以12O O 的中点O 为原点,12O O 所在直线为x 轴,建立如图所示的平面直角坐标系,则 1(20)O -,,2(20)O ,.

类比推理题库汇总

1.肇事逃逸∶法律严惩 A. 欺人太甚∶义气相投 B. 兢兢业业∶得到好评 C. 态度粗鲁∶脾气不好 D. 志得意满∶志气大长 2.《水浒传》∶林冲 A. 《西厢记》∶李生 B. 《琵琶行》∶白居易 C. 《世说新语》∶周处 D. 《蜀道难》∶李白 3.犬∶忠诚 A. 猪∶屠宰 B. 鸡∶鸡汤 C. 牛∶勤劳 D. 羊∶羊奶 4.社会∶和谐 A. 关系∶冷淡 B. 剥削∶反抗 C. 反感∶同情 D. 银行∶贷款 5.教室∶自习 A. 商场∶保洁 B. 学校∶宣传 C. 公路∶驾车 D. 邮局∶邮票 6.改革∶开放 A. 进口∶出口 B. 上楼∶出门 C. 苗头∶倾向 D. 江西∶湖南 7.历史∶明智 A. 新闻∶广播 B. 法律∶约束 C. 制度∶学问 D. 政策∶援藏 8.枕戈待旦∶刘琨 A. 望梅止渴∶杨修 B. 黄粱一梦∶尾生 C. 洛阳纸贵∶左思 D. 结草衔环∶吴起 9.但丁∶米开朗琪罗 A. 薄伽丘∶拉伯雷 B. 莎士比亚∶狄更斯 C. 雨果∶乔托 D. 司汤达∶达•芬奇 10. 岳飞∶戚继光 A. 文天祥∶郑成功 B. 杨业∶祖逖 C. 邓世昌∶林则徐 D. 杨靖宇∶袁崇焕 11. 氏族∶部落 A. 氯化氢∶盐酸 B. 短篇小说∶小说 C. 市场经济∶商品经济 D. 导弹∶直升机 12. 菡萏∶荷花 A. 土豆∶马铃薯 B. 西红柿∶番茄 C. 香瓜∶甜瓜 D. 蚍蜉∶大蚂蚁 13. 面条∶食物

A. 苹果∶水果 B. 手指∶身体 C. 蔬菜∶萝卜 D. 食品∶巧克力 14. 瓷器∶黏土 A. 空气∶氧气B桌子∶木头 C. 水杯∶玻璃 D. 布∶棉花 15. 剪刀∶布料 A. 弓箭∶战争 B. 水缸∶盛水 C. 秤砣∶钉子 D. 鸬鹚∶鱼 16. 阿波罗∶太阳 A. 维纳斯∶文学 B. 狄安娜∶月亮 C. 马尔斯∶侵略 D. 该隐∶大地 17. 航空母舰∶大海 A. 轮船∶长江 B. 飞机∶机场 C. 卫星∶月亮 D. 雄鹰∶高空 18. 检察院∶检察官 A. 公安局∶小偷 B. 政府机关∶公务员 C. 工人∶工地 D. 研究所∶建筑师 19. 封面∶书本 A. 政治∶统治 B. 宗教∶上层建筑 C. 雇员∶工厂 D. 毛笔∶宣纸 20. 强盗∶抢劫 A. 电脑∶聊天 B. 学生∶实践 C. 考生∶作答 D. 司机∶送货 参考答案及解析 1. 【答案】B 【解析】题干两个词语之间是因果关系,B对应正确。 2. 【答案】C 【解析】题干中两个词语是作品与作品中人物的关系,C对应正确。 3. 【答案】C 【解析】题干中两个词语是象征关系,C对应正确。 4. 【答案】A 【解析】题干中两个词语是修饰关系,后者修饰前者,A对应正确。 5. 【答案】C 【解析】题干中两个词语前者是后者对应的环境,故选C。 6. 【答案】A 【解析】题干中两个词语是并列关系,且一个对内,一个对外,A对应正确。 7. 【答案】B 【解析】“读史可以明智”,题干中两个词语是事物与其作用之间的关系;法律具有约束作用,所以选B。 8. 【答案】C 【解析】题干中成语的来源与后面的人物有关,望梅止渴对应的是曹操,黄粱一梦对应的是卢生,结草衔环对应的是魏颗。C 项对应正确。

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中数学圆锥曲线小结论

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为 直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.

高二数学类比推理综合测试题 (1)

类比推理 一、填空题 1.下列说法正确的是______ A .由合情推理得出的结论一定是正确的 B .合情推理必须有前提有结论 C .合情推理不能猜想 D .合情推理得出的结论无法判定正误 2.下面几种推理是合情推理的是______ ①由圆的性质类比出球的有关性质 ②由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180° ③教室内有一把椅子坏了,则该教室内的所有椅子都坏了 ④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得出凸多边形的内角和是(n -2)·180° 3.三角形的面积为S =12(a +b +c )·r ,a 、b 、c 为三角形的边长,r 为 三角形内切圆的半径,利用类比推理,可以得到四面体的体积为______ A .V =13abc B .V =13Sh C .V =13(S 1+S 2+S 3+S 4)r ,(S 1、S 2、S 3、S 4分别为四面体四个面 的面积,r 为四面体内切球的半径) D .V =13(ab +bc +ac )h (h 为四面体的高)

4.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列哪些性质,你认为比较恰当的是____ ①各棱长相等,同一顶点上的任两条棱的夹角都相等 ②各个面都是全等的正三角形,相邻两个面所成的二面角都相等 ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等 A .① B .①② C .①②③ D .③ 5.类比三角形中的性质: (1)两边之和大于第三边 (2)中位线长等于底边的一半 (3)三内角平分线交于一点 可得四面体的对应性质: (1)任意三个面的面积之和大于第四个面的面积 (2)过四面体的交于同一顶点的三条棱的中点的平面面积等于第 四个面面积的14 (3)四面体的六个二面角的平分面交于一点 其中类比推理方法正确的有______ A .(1) B .(1)(2) C .(1)(2)(3) D .都不对 6.由代数式的乘法法则类比推导向量的数量积的运算法则: ①“mn =nm ”类比得到“a ·b =b ·a ”;

《圆锥曲线解题十招全归纳》

《圆锥曲线解题十招全归纳》 招式一:弦的垂直平分线问题 例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在,求出0x ;若不存在,请说明理由。 招式二:动弦过定点的问题 例题2、已知椭圆C :22 221(0)x y a b a b +=>>, 且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。 (I )求椭圆的方程; (II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论

招式三:过已知曲线上定点的弦的问题 例题4、已知点A 、B 、C 是椭圆E :22221x y a b += (0)a b >>上的三点,其中点A 是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。(I)求点C 的坐标及椭圆E 的方程; (II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线x =PQ 的斜率。 招式四:共线向量问题 1:如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N 点,0,2=?=的轨迹为曲线E.I )求曲线E 的方程;II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足λ=,求λ的取值范围.

2:已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线2 14 y x =的焦点,离心率 为 5 .(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=,2MB BF λ= ,求证:1210λλ+=-. 3、已知△OFQ 的面积S=26, 且m FQ OF =?。设以O 为中心,F 为焦点的双曲线经过Q , 2)14 6 ( ,||c m c -==,当||取得最小值时,求此双曲线方程。 类型1——求待定字母的值 例1设双曲线C :)0(12 22>=-a y a x 与直线L :x+y=1相交于两个不同的点A 、B ,直线L 与y 轴交 于点P ,且PA=PB 12 5 ,求a 的值

学年高中数学 推理与证明 类比推理学案含解析北师大版选修

类比推理 1.通过具体实例理解类比推理的意义.(重点) 2.会用类比推理对具体问题作出判断.(难点) [基础·初探]教材整理1 类比推理 阅读教材P 5“类比推理”至P 6 前16行,完成下列问题. 由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理. 类比推理是两类事物特征之间的推理.

类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是________(填序号). ①各棱长相等,同一顶点上的任两条棱的夹角都相等; ②各个面都是全等的正三角形,相邻两个面所成的二面角都相等; ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等. 【解析】正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对. 【答案】①②③ 教材整理2 合情推理 的最后4个自然段,完成下列问题. 阅读教材P 6 合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式. 合情推理的结果不一定正确. 下列说法正确的是( ) A.由合情推理得出的结论一定是正确的

B.合情推理必须有前提有结论 C.合情推理不能猜想 D.合情推理得出的结论不能判断正误 【解析】根据合情推理可知,合情推理必须有前提有结论.【答案】B [质疑·手记] 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑: [小组合作型]

高中数学中的类比推理问题

类比推理问题一咼考命题新亮点 类比是常见而重要的一种数学思想方法,它是指在新事物与已知事物之间的某些方面作类似的 比较,把已经获得的知识、方法、理论迁移到新事物中,从而解决新问题。类比不仅是一种富有创 造性的方法,而且更能体现数学的美感。 (一)不同知识点之间的类比 数学中的不同知识点在教材中是相对分散的,知识点之间的联系需要教师通过自己的数学设计 展示给学生,从而使得学生的概念图网络更加丰富和结构化。它不仅可以在知识复习中使用,也可 以在新知识的学习中进行。 1、立体几何中的类比推理 【例1】若从点0所作的两条射线 0M 、ON 上分别有点Ml 、M2与点Ni 、N 2,则三角形面积之 别有点Pi 、P2与点Qi 、Q2和Ri 、R2,则类似的结论为: ______________________________________ 【分析】在平面中是两三角形的面积之比,凭直觉可猜想在空间应是体积之比,故猜想 OP. OQ. OR. - J J (证明略) 「,」(明略) 评注 本题主要考查由平面到空间的类比。要求考生由平面上三角形面积比的结论类比得出空 间三棱锥体积比的相应结论。 【例2】在 丄二町 中有余弦定理: 丄N :::__/_.拓展到空间,类 比三角形的余弦定理,写出斜三棱柱亠"-」的3个侧面面积与其中两个侧面所成二面角之间 的关系式,并予以证明。 【分析】根据类比猜想得出 瞌如=认 +孔的鸟—23_^斗 ■'?「.’ '其中T 为侧面为 -与“〔丁 I 所成的二面角的平面角。 证明:作斜三棱柱-甘- 的直截面DEF,则一-二匕 为面与面"I' 所成角, 比为: _二:若从点0所作的不在同一个平面内的三条射线 Q 舗 了 OP 、0Q 和OR 上分

高考的数学中圆锥曲线重要结论地最全的总结

高考数学圆锥曲线重要结论 一、定义:第一定义:平面内到两定点F1(-c,0),F2(c,0)的距离和为定值(大于两定点间的距离|F1F2|)2a的点的轨迹叫椭圆,两定点叫椭圆的焦点,两焦点间的距离叫焦距,与坐标轴的交点叫顶点。 第二定义:平面内到一个定点F的距离与到定直线1的距离比为常数e(0

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

高中数学类比推理综合测试题有答案

高中数学类比推理综合测试题(有答案)选修2-2 2.1.1 第2课时类比推理 一、选择题 1.下列说法正确的是()A.由合情推理得出的结论一定是正确的 .合情推理必须有前提有结论B .合情推理不能猜想CD.合情推理得出的结论无法判定正误 ] B[答案[解析] 由合情推理得出的结论不一定正确,A不正确;B正确;合情推理的结论本身就是一个猜想,C不正确;合情推理结论可以通过证明来判定正误,D也不正确, 故应选B. 2.下面几种推理是合情推理的是() ①由圆的性质类比出球的有关性质②由直角三角形、等腰三角形、等边三角形的内角和是180,归纳出所有三角形的内角和都是180 ③教室内有一把椅子坏了,则该教室内的所有椅子都坏了 ④三角形内角和是180,四边形内角和是360,五边形内角和是540,由此得出凸多边形的内角和是(n-2)180 A.①② 页 1 第 B.①③④ C.①②④.②④D [答案] C[解析] ①是类比推理;②④

都是归纳推理,都是合情推理. 3.三角形的面积为S=12(a+b+c)r,a、b、c为三角形的边长,r为三角形内切圆的半径,利用类比推理,可以得到 四面体的体积为() 13abcV=A.=13ShB.VC.V=13(S1+S2+S3+S4)r,(S1、S2、S3、S4分别为四面体四个面的面积,r为四面体内切球的半径) 为四面体的高)+bc+ac)h(h13(abD.V=答案[] C[解析] 边长对应表面积,内切圆半径应对应内切球半径.故应选C. 4.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列哪些性质,你认为比较恰当的是() ①各棱长相等,同一顶点上的任两条棱的夹角都相等 ②各个面都是全等的正三角形,相邻两个面所成的二面角都 页 2 第 相等 ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等 .①A B.①②C.①②③ D.③ [答案] C[解析] 正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹

高考数学圆锥曲线的常用公式及结论(非常推荐)

高考数学常用公式及结论 圆锥曲线 1.椭圆22 221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=??=?. 2.椭圆22 221(0)x y a b a b +=>>焦半径公式 )(21c a x e PF +=,)(2 2x c a e PF -=. 3.椭圆的的内外部 (1)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的内部22 00221x y a b ?+<. (2)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的外部22 00221x y a b ?+>. 4. 椭圆的切线方程 (1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=. (2)过椭圆22 221(0)x y a b a b +=>>外一点00(,)P x y 所引两条切线的切点弦方程 是 00221x x y y a b +=. (3)椭圆22 221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是 22222A a B b c +=.

5.双曲线22 221(0,0)x y a b a b -=>>的焦半径公式 21|()|a PF e x c =+,2 2|()|a PF e x c =-. 6.双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部22 00221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部22 00221x y a b ?-<. 7.双曲线的方程与渐近线方程的关系 (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-22 22 b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦 点在x 轴上,0<λ,焦点在y 轴上). 8. 双曲线的切线方程 (1)双曲线22 221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是 00221x x y y a b -=. (2)过双曲线22 221(0,0)x y a b a b -=>>外一点00(,)P x y 所引两条切线的切点弦 方程是 00221x x y y a b -=.

高中数学圆锥曲线问题常用方法经典例题(含答案)

专题:解圆锥曲线问题常用方法(一) 【学习要点】 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则 有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)

高中数学 类比推理学案 苏教版选修

高中数学类比推理学案苏教版选修 1、通过具体实例理解类比推理的意义、 2、会用类比推理对具体问题作出判断、学习重难点:类比推理学习过程:一、复习回顾(归纳推理) 1、归纳推理:从个别事实中推演出一般性的结论的推理称为归纳推理、 2、归纳推理的思维过程大致是:实验、观察→概括、推广→猜测一般性结论、 3、归纳推理带有一定的猜测性,由其得到的结论不一定正确、 4、简单应用(1)如图,观察图形规律,在其右下角的空格处画上合适的图形,应为________、(2)如图所示四个图形中,着色三角形的个数依次构成一个数列的前4项,则这个数列的一个通项公式为________、(3)如图所示,图(a)是棱长为1的小正方体,图(b)、图(c)是由这样的小正方体摆放而成、按照这样的方法继续摆放,自上而下分别叫第1层,第2层,…,第n层、第n层的小正方体的个数记为Sn、解答下列问题、(1)按照要求填表:n1234…Sn136…(2)S10=________,Sn=________、(4)将全体正整数排成一个三角形数阵:1234 5 67 8 9 1011 12 13 14 15……………………按照以上排列的规律,第n行(n≥3)从左向右的第3个数为________、二、类比推理:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理结合具体实例来理解类比推理:

1、工匠鲁班类比带齿的草叶,发明了锯 2、仿照鱼类的外型和它们在水中沉浮的原理,发明了潜水艇、 3、教材案例 24、试通过圆与球的类比,由“半径为R的圆的内接矩形中,以正方形的面积为最大,最大值为”,猜测关于球的相应命题: _________________________________________________________、三、简单应用 1、把下面在平面内成立的结论类比地推广到空间,结论仍然正确的是________、(填序号)①如果一条直线与两条平行线中的一条相交,则也与另一条相交;②如果一条直线与两条平行线中的一条垂直,则也与另一条垂直;③如果两条直线同时与第三条直线相交,则这两条直线相交或平行;④如果两条直线同时与第三条直线垂直,则这两条直线平行、 2、类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质中,你认为比较恰当的是________、(填序号)①各棱长相等,同一顶点上的两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等、 3、在平面几何里,有勾股定理:“设△ABC的两边A B、AC互相垂直,则AB2+AC2=BC2”、拓展到空间(如图),类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间

相关文档
相关文档 最新文档