文档库 最新最全的文档下载
当前位置:文档库 › 监控相机镜头评价指标及测试方法初探

监控相机镜头评价指标及测试方法初探

监控相机镜头评价指标及测试方法初探
监控相机镜头评价指标及测试方法初探

监控相机镜头评价指标及测试方法初探

1 前言

监控是CCD成像器件诞生后最早进入现实应用的领域之一。早期,由于监控目的和成本约束,对成像分辨率和像质要求均比较低。随着CCD器件发展以及周边电子产品(记录、存贮、处理等)性能提升和价格平抑,高品质的监控需求逐步实现技术可行,从标准视频格式到标清格式,再到目前的高清格式,高清监控已经成为主流发展趋势。

分辨率不断提高带来的好处是可以看到更多细节,为后期的处理、识别等应用带来更多信息素材,但同时也要求与之密切相关的光学系统提升才能得以保障。光学系统主要指成像镜头。在高清监控应用中,由于分辨率大幅提升,传统的CCTV镜头已经很难实现匹配,新应用中的镜头在重要光学参数上已经接近专业摄影镜头的要求。尽管如此,由于监控相机的特性,镜头的要求与传统摄影镜头又有所区别。

根据监控的基本要求以及当前监控相机的参数特点,对监控镜头的要求主要应从以下几个方面考虑。

1. 焦距与视场角:监控的一项重要指标是工作距离与监控范围,相机一旦选定,上述指标主

要由镜头的焦距和视场角决定。

2. 清晰度与MTF:图像能否捕捉到足够的细节信息,与相机的分辨率关系很大,而镜头则是

保障成像质量的重要约束。

3. 场曲和像散:同上,视场边缘位置的MTF相对中心位置的退化,即边缘清晰度下降。

4. 自动变焦和自动对焦:当改变视场范围和对重点监控区域改变分辨率时,需要自动变焦来

实现,此过程中自动对焦必不可少。

5. 色散:不同光谱的光线经过镜头后像点的分离,彩色监控中控制色散尤为重要。

6. 自动光圈(F数):全天候监控时,环境光强度变化时,镜头应具备自动调节能力。

7. 抗逆光:局部强光,如日光反射、强光灯等会导致图像的像质下降,需要镜头具备一定的

抗逆光能力。

8. 其他(偏振、滤光):一些特殊要求下,需要特定光谱或抗眩光成像时,需要考虑镜头镀

滤光膜或偏光膜。

上述针对监控的一些通用要求列出了对监控镜头的需要关注的功能、参数、指标,在具体操作时应当如何控制、选择、评价,本文以高清监控为例,在下面进行详细探讨。

2 监控镜头指标评测方法

2.1 焦距与视场角

监控的一项重要指标是工作距离与监控范围(视场)。工作距离也就是物距,物体到镜头的距离u,视场角则是镜头能够接收到达成像面上的光线的角度2θ,如上图所示。则当工作距离一定时,镜头的视场角越大,能够监测的视场范围也越大。视场可用如下公式描述:

FOV = 2 * u * tanθ;

相应的,像场大小公式为:

FOI (Field of Image)= 2 * v * tanθ;

在实际选型时,镜头的视场角应保证像场大于或等于CCD像面尺寸,因此监控范围的大小最终是由CCD像面尺寸与镜头视场角共同决定的。一般情况下,镜头会标明支持CCD的尺寸,如1/2”—2/3”。有些情况下,则给出视场角为某一角度,此时可用上面的公式计算。

举例说明,由于一般监控的工作距离较大,而镜头焦距f 较小,即u >> f,此时v ≈ f。例如选用

焦距f = 25mm的镜头,视场角2θ = 30°,则镜头可支持最大像面尺寸为13.4mm,略大于2/3”的CCD尺寸(对角线11mm)而小于1”的CCD尺寸(对角线16mm)。

下表给出了常用CCD 芯片的尺寸对比。

对角线(in) 1/4 1/3 1/2 2/3 1

长边(mm) 3.2 4.8 6.4 8.8 12.8

短边(mm) 2.4 3.6 4.8 6.6 9.6

2.2 像质、分辨率(MTF)、场曲、畸变

像质就是指镜头的成像质量,用于评价一个镜头的成像优劣。传函(调制传递函数的简称,用MTF表示)和畸变就是用于评价像质的两个重要参数。

MTF:在成像过程中的对比度衰减因子,主要描述了镜头对细节的表现能力。

高清监控相机通常为1/2”—2/3”,像元尺寸为4.5~5.5μm,对应空间频率为

110lp/mm~90lp/mm。如下图所示,为某个镜头中心视场的MTF曲线。

图中横坐标是空间频率,纵坐标就是MTF值。由于实际成像中总有像差存在,成像的对比度总是下降的,作为对比度衰减因子的MTF也总是小于1的。像面上任何位置的MTF值都是空间频率的函数。一般地,空间频率越高,MTF值越低,意味着高频信息对比度衰减更快。例如图中80 Lp/mm的空间频率对应的MTF=0.52,意即对于中心视场来说,空间频率为80 Lp/mm的信号成像对比度要下降大约一半(相对于实际目标来说)。

监控应用主要供人眼观察,系统的MTF>0.22即可满足人眼观察的要求,因此对镜头来说,MTF>0.3即可满足要求。

需要注意的是,对于同一款镜头,不同的视场位置以及不同光圈下,MTF的数值是不同的。

◆光圈变小会导致衍射效应增大,从而导致MTF下降。

由于镜头自身像差通常在视场中心最小,在边缘较大,因此视场边缘的MTF通常比中心低。场曲就是一个典型的像差形式。

●场曲:在一个平坦的影象平面上, 影像的清晰度从中央向外发生变化,聚焦形成弧型, 就叫

场曲。

场曲导致视场边缘相对中心清晰度下降,也即MTF下降。以下图为例。

中心图像边缘图像

用一个全黑环境下的点状LED光源来演示镜头在实拍时场曲造成的影响。当处于画面的边角位置,最大光圈时,点状光源的形状已经完全被破坏了。当光圈收缩到F2.5时,表现得到了大幅改观。而中心图像则完全可以接受,光圈变化差异不大。

鉴于上述因素,对一个监控镜头,应当根据应用需求全面关注其MTF的分布,例如全天候监控要求光圈可变的镜头,就要注意光圈较小时的MTF,而对全视场均要求较高分辨率的场合就需要对视场边缘的MTF有所约束。

下图是某镜头MTF测试数据图表,横坐标为光圈的F数,纵坐标为MTF值的百分数。在MTF=50%的情况下,这支镜头最大光圈时中心分辨率达到35线对/毫米(lp/mm),边缘分辨率接近25线对/毫米。中央分辨率在F4时达到最佳,而边缘分辨率则在F5.6时最佳:分别为45.6线对/毫米和35线对/毫米。

MTF的测试可用标准测试靶标来进行。并通过对比度来计算MTF值。靶标如下图所示:

畸变:畸变可以看作是像面上不同局部的放大率不一致引起的,是一种放大率像差。

理想成像中,物像应该是完全相似的,就是成像没有带来局部变形,如下图1。但是实际成像中,往往有所变形,如图2、图3。畸变的产生源于镜头的光学结构,成像特性使然。

图1 无畸变图2 正畸变图3 负畸变

一般情况下,监控类应用不承担高精度测量任务,因此对畸变可容忍度较高。但畸变过大会影响观察效果,因此畸变率控制在5%~10%以内通常可以满足绝大部分监控需求了。

2.3 色散

色散是由于的镜头对不同波长的光线聚焦不在同一个焦平面(不同波长的光线的焦距是不同的),或者和镜头对不同波长的光线放大的程度不同而形成的。

理论上色散在影像中央及边缘都可以发生,不过由于边缘的光程较长,因此色散也就特别明显。由于短波长的折射率较高,因此紫色对色差也特别敏感。由色差而形成的紫边,通常可以在画面边缘看到,而由于紫色折射得较多,所以紫边一般都是由内向外扩散。此外,远摄镜头的光程长,色散的现像也就特别容易看到。

色散现像在镜头边缘较为明显,而紫边一般都是由内向外扩散。

影像中央的色散紫边较少

在一幅照片中,紫边比其他色散现象更加显而易见。特别当逆光拍摄或拍摄对比极强烈的物体时,紫边尤其容易出现。高光溢出也是导致紫边清晰可见的原因之一。

灯光紫边非常明显紫边控制很好为解决色差问题,镜头厂商就想尽办法从镜片的构造入手,包括采用不同折射、散射特性的镜片组合以及低色散材料。例如Canon 以人工萤石晶体(CaF2)的低色散特性大大减少镜头色差,并于1969 年推出首支采用萤石镜片的超远摄镜头FL-F300mm f/5.6。

色散评测可以采用如下方法,对高反差靶标(见下图)成像,测量中心视场、边缘视场高反差过渡带的RGB分量变化曲线,过渡带宽以及RGB分离较大说明色散严重。

高反差靶标色差现象的实拍表现

下面为某变焦镜头测试曲线图:

广角中心色散广角边缘色散

长焦中心色散长焦边缘色散

2.4 自动变焦、自动对焦、后焦调整,自动光圈

自动变焦:监控通常要求全景大视场和局部区域放大两种兼而备之,及所谓镜头的广角端和长焦端,故而监控镜头需要通过大范围变焦来实现广角和长焦,也就是通过自动改变镜头焦距,在短

焦时实现大视场,在长焦时实现高分辨率。

景深与自动对焦:镜头在长焦端时,景深较小。通过下面的公式可以作出解释。

公式中F为光圈数,δ为像元尺寸,L是工作距离,f是镜头焦距。以F=22,f = 300mm,δ=4.65μm,目标距离L=200m为例,景深范围约为(200+59=259m,200-37=163m),景深约为96m;当目标距离L=100m时,景深范围则变为(100+13=113m,100-10=90m),景深仅为23m。通过上面计算可以看出,长焦端监控时,对近距离目标和远距离目标不能同时保证清晰成像,因此需要自动对焦,即对不同的目标通过调整像距来改变聚焦面与CCD靶面的距离,达到清晰成像。

后焦调整:一般镜头的自动对焦只能在一定范围改变像面位置,当调整到极限位置仍然不能保证像面与CCD靶面重合,此时就需要调整后焦,也就是人为改变CCD与镜头之间的距离,使成像清晰。

后焦调整的原因是,镜头大范围变焦时,像距变化范围也很大,对于广角端,例如镜头焦距10mm,对30m~∞成像,像距约为10mm ~ 10.003mm,变化范围很小;当长焦端焦距300mm,对30m~300m清晰成像,则像距为300.3mm ~303mm,变化范围2.7mm,变化范围较大,由于景深原因,当长焦端对焦清晰后,变焦到广角端时,后焦可能超出广角端的像距范围,因此需要调整后焦保证广角端清晰。反复重复这个过程,使长焦端和广角端都能够清晰成像,就是后焦调整。

自动光圈(F数):全天候监控时,环境光强度变化时,镜头自动调节光圈使通光量改变以保证成像亮度。需要注意的是,当光圈改变后,景深也随之变化,低照度环境下大光圈采集图像,景深是比较小的,此时必须通过自动对焦才能保证不同距离目标的清晰成像。

2.5 抗逆光

摄影镜头的抗逆光能力的大小,也是一个衡量镜头性能的重要指标之一。监控镜头设计要求能够适应各种环境下的拍摄,对镜头抗逆光的能力提出了很高的要求。

通常在逆光条件下往往在拍摄到的照片上会发现意外形成的光斑或者鬼影,取景时特别是太阳出现在画面内或者画面周边,光斑的产生一直困扰着我们。它们产生的原因主要来至于镜片表面的反射以及镜头内部侧壁的反射。目前,为了消除这样的不必要的反射,通常采用的手法就是对镜片进行多层镀膜以及对内壁进行消光处理。

镀膜能够增加光线通过镜片的通光量达到减少反射,最终减少由于多次反复于镜片之间的光线而有效降低逆光下光斑的发生。当我们观察镜片表面时,能够看到的颜色就是被反射回来的光线所至,一般来讲,颜色越深,越暗说明反射越少,该种镀膜越有效。

另一方面,由于变焦镜头相比定焦镜头移动的镜片数量,行程也大,这一部分对应的镜筒内壁的消光处理也越难。我们只要将变焦镜头的光圈全开在灯光下就可以清楚地观察该镜头内壁的处理的效果了。通常消光处理工艺因厂家不同有很大的差异。

为了量化比较镜头的抗光斑能力,可采取如下方法测试:在视场内放置标准MTF靶标,同时放置强光光源,形成逆光拍摄。此时比较线对对比度下降程度(即MTF退化)即可定量说明镜头的抗光斑能力。

实际上,镜头抗光斑能力从图像上主观判断也是比较直观的。下图为几种镜头逆光拍摄效果对比,镜头水平一目了然。

Sigma AF70-200 Canon EF70-200 Nikon AF-S 80-200

2.6 其他考虑(偏振、滤光)

偏光镜:光线在光滑物体表面反射会形成强烈的反光,自然光通常为圆偏振光,但经过反射后则形成线偏振光,此时使用偏振镜就可以消除这种反光。用于消除光滑镜面反光的偏振滤镜即偏光镜。

在监控中经常会遇到玻璃反光景物的拍摄,例如下图,玻璃橱窗场表面反光导致内部景物不清晰,采用偏光镜后消除了表面反射光,内部景物清晰了。

中性滤光镜:简称ND。中色滤光镜对各种光的吸收率相等,是用来减低通过镜头的光量。当使用最小光圈或最快快门还曝光过度时,便需要中色滤光镜来减低曝光值。它分为二倍、四倍、八倍三种,所谓的倍数是指曝光倍数而言。

红外线滤光镜:它吸收红外线以外的所有可见光线,仅通过红外线。专用于红外监控。

摄像机性能指标的测试方法

摄像机性能指标的测试方法 在不同使用环境下,怎样选购合适的摄像机,本文对摄像机的主要性能参数,测试方法和采购时应注意的事项介绍一些经验和看法 如何正确认识摄像机的分辨率指标 分辨率 分辨率是衡量摄像机优劣的一个重要参数,指的是当摄像机摄取等间隔排列的黑白相间条纹时,在监视器上人眼能够看到的最大线数,当超过这一线数时,屏幕上就只能看到灰蒙蒙的一片而不能分辨出黑白相间的线条。清晰度又分为水平分辨率和垂直分辨率。 测试方法 摄像机拍摄综合测试图,用目视法观察监视器上图像中心楔上能分辨的最大线数或十组中心清晰度线段能分辨的最大线数。 测试时应注意 (1)要使用成像质量好的镜头,因为镜头的好坏影响最终的测试结果。 (2)显示时使用黑白监视器,线数应在600线以上,如果使用彩色敬爱那时起,要将色饱和度旋纽调至最低,避免色度信号对亮度信号的干扰。 采购时应注意 (1)使用索尼、松下原装摄像机做横向对比,观察两种摄像机在分辨黑白线条组时差距; 原装机的性能指标真实可靠,通过对比,可以对采购摄像机的清晰度指标得出正确的结论。 (2)购买单板机时,有时配套的镜头成像质量较差,除了要测试中心分辨率外,还是测试四个角的分辨率,不能出现模糊和变形,否则,就要更换较好的镜头。 最低照度指标要有相关的条件 最低照度的概念 摄像机产生的亮度输出电平,是额定电平(700mv)的一半时,被摄物体的最小照度。 测试方法 (1)对比法:敬爱能够摄像机置于暗室,选择一部名厂的原装摄像机作对比,使用三个同型号的手动光圈镜头,暗室内装有调压器控制的200v白炽灯,以调压器调节电压的高低来调节暗室内灯的明暗,电压可以从0伏调到220伏,室内光亮也可以从最暗调至最亮,将两部摄像机分别对准层次丰富的物体,调低室内的光亮度,直至看不清物体的暗部层次,或者将镜头光圈调小一级作对比,根据名厂的原装摄像机标称的最低照亮度之推测出待测摄像机的最低照度值。 (2)仪器法:同样在暗室中测试,将摄像机对准十级灰度测试卡,调低室内的光亮度,直至摄像机输出的视频信号在示波器上的幅度降至350mv,再用测光表测量测试卡表面的照度值,计算出最低照度。 测试时应注意的事最低照度的数值与下列四个因素有关 (1)镜头的光圈 (2)光源的色温 (3)视频信号的幅度 (4)反射率(目标的反射率和背景) 只有表明以上四个相关条件,测试出的最低照度才是有意义的,不能抛开上述四项测试条件而单纯比较某品牌摄像机的照度标称值和另一个品牌摄像机的照度标称值去比较,否则根本不能得出那部摄像机的低照度特性更好的结论。

常规指标测试方法

常规指标测试方法 COD:重铬酸钾法;波长λ=435;5ml比色皿 测量范围:1~1500mg/L 测试步骤: 于5ml比色皿中加入少量Hg2SO4(作为屏蔽剂),再加硝解液3ml(也可以分开加:先加 2.25ml Ag2SO4+ H2SO4,再加0.75mlK2CrO7)最后加入2ml水样,盖紧瓶塞,摇匀于150℃硝解2h,完全冷却后测量COD值 试剂: ①10g Ag2SO4用于1L浓H2SO4(98%),Ag2SO4:H2SO4=1:100 ②49.032g K2CrO7溶于1L的水中 ※硝解液即将①和②按3:1的比例混合配制而成 注意: 1.水样若浓度过高,则须先稀释,一般测量在600~800mg/L内较精 确 2.一般可先将硝解液加于试管中别用,减少润洗造成的浪费 3.空白可用一星期 4.若水样浓度高,进行稀释时一般取5ml水样,取太少误差相对较大

测试方法: 方法①:以0.45μm滤膜过滤后测试COD 方法②:离心机(转速为4500rpm)离心40min后取上清液测COD

5 1.取水样160ml 2.称取0.4gLiOH于黑色胶漏 3.瓶口涂加润滑剂后,将胶漏置于其中 4.于35°条件下硝解5天

NH4+–N 纳氏试剂光度法;420nm;50ml比色管 步骤: 1.取1ml水样 2.加水至50ml刻度线 3.加入1ml酒石酸钾钠 4.加入1.5ml纳氏试剂 5.摇匀静置10min 试剂: 1.酒石酸钾钠: 称取50g酒石酸钾钠(KNaC4H6·4H2O)溶于100ml水中,加热煮沸以去除氨氮,冷却,定容至100ml 2.钠氏试剂: 称取16gNaOH,溶于50ml水中,充分冷却至室温 称取7g碘化钾(KI)+10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌条件下缓缓注入NaOH溶液中,定容至100ml,贮于聚乙烯瓶中

频响指标以及测试方法

频响 频率响应 简称频响,英文名称是Frequency Response,在电子学上用来描述一台仪器对于不同频率的信号的处理能力的差异。同失真一样,这也是一个非常重要的参数指标。一个“完美”的 交流放大器,应该在频响指标上具有如下的素质:对于任何频率的信号都能够保持稳定的放大 率,并且对于相应的负载具有同等的驱动能力。显然这在目前技术水平下是完全不可能的,那么 针对不同的放大器就有了不同的“前缀”,对于音频信号放大器(功率放大器或者小信号放大 器)来说,我们还应该加上如此的“前缀”:在人耳可闻频率范围内以及“可能”影响到该范围 内的频率的信号。这个范围显然缩小了很多,我们知道,人耳的可闻频率范围大约在20~20KHz, 也就是说只要放大器对这个频率范围内的信号能够达到“标准”即可。实际上,根据研究表明, 高于这个频段以及部分低于这个频段的一些信号虽然“不可闻”,但是仍然会对人的听感产生影 响,因此,这个范围还要再扩大,在现代音频领域中,这个范围通常是5~50KHz,某些高要求的放 大器甚至会达到0.1~数百KHz。 但是,上述要求表面上好像是比“完美”低了很多,却仍然是“不可能完成的任务”,目前我们 连这样的要求也不可能达到。于是,就有了“频响”这个指标。(附言:指标本身就代表着“不 完美”,如果一切都“完美”了,指标也就没有存在的理由了。) 放大器有两种失真:线性失真和非线性失真。我们通常把后者叫做“失真”,而把前者用其它方 式表达出来。非线性失真我们已经知道了是一种什么情况了。而线性失真就是指频率和相位方面 的“误差”,即频率失真和相位失真。 频率失真及其产生原因 频率失真是一种“线性失真”,意思是说,发生这种失真时放大器的输出信号波形和输入波形仍 然是“相似形”,它不会使放大器对要处理的信号产生“形变”。一个单纯的频率失真可以看成 放大器对于不同频率的信号放大倍数不同,例如,1个十倍放大器,对1KHz的信号的放大倍数是10 倍,而对于10KHz的交流信号可能放大倍数就变成了9.99倍,于是,我们就可以说这台放大器有频

视频监控系统产品的介绍

视频监控系统产品介绍

XI’AN DATANG TELEPHONE CORP.

声明 声明 Copyright 2006 Xi’an Datang Telephone Corp.,大唐电信. 所有。 本产品或文档按照限制其使用、复制、分发和反编译的许可证进行分发。未经Datang 及其许可证颁发机构的书面授权,不得以任何方式、任何形式复制本产品或本文档的任何部分。第三方软件,包括字体技术,由Datang 供应商提供许可和。 Datang、Datang 徽标、大唐是 Xi’an Datang Telephone Corp.在中国和其它国家的商标、注册商标或服务标记。 免责声明 本书按“现有形式”提供,不承担明确或隐含的条件、述和保证,包括对特定目的的商业活动和适用性或非侵害性的任何隐含保证,除非这种不承担责任的声明是不合法的。

容介绍 本书首先介绍了工业电视及大屏幕的开发背景,然后从系统概述、系统结构、系统提供的功能、系统技术指标等方面对工业电视及大屏幕进行了全面描述,最后介绍产品的特点及优势。 相关标准 Q/DT 901-2006 大唐电信企业标准 GB/T 3873—1983 通信设备产品包装通用技术条件 GB/T 6388—1986 运输包装收发货标记 《矿井通风安全监测装置的使用管理规定》煤安字[1995]第562号 《煤矿通信、检测、控制用电工电子产品通用技术要求》MT209-1990 《煤矿通信、检测、控制用电工电子产品基本实验方法》MT210-1990 《煤矿安全监控系统主要性能测试方法》MT/T772-1998 《煤矿安全规程》2004年版 《煤矿电气图专用图形符号》MT/T 570—1996 《安全防工程程序与要求》GA/T75 《煤矿监控系统设计规》中国统配煤矿总公司(90) 名称缩写和术语约定 无

【测试】频响指标以及测试方法

【关键字】测试 频响 频率响应 简称频响,英文名称是Frequency Response,在电子学上用来描述一台仪器对于不同频率的信号的处理能力的差异。同失真一样,这也是一个非常重要的参数指标。一个“完美”的 交流缩小器,应该在频响指标上具有如下的素质:对于任何频率的信号都能够保持稳定的缩小 率,并且对于相应的负载具有同等的驱动能力。显然这在目前技术水平下是完全不可能的,那么 针对不同的缩小器就有了不同的“前缀”,对于音频信号缩小器(功率缩小器或者小信号缩小 器)来说,我们还应该加上如此的“前缀”:在人耳可闻频率范围内以及“可能”影响到该范围 内的频率的信号。这个范围显然缩小了很多,我们知道,人耳的可闻频率范围大约在20~20KHz, 也就是说只要缩小器对这个频率范围内的信号能够达到“标准”即可。实际上,根据研究表明, 高于这个频段以及部分低于这个频段的一些信号虽然“不可闻”,但是仍然会对人的听感产生影 响,因此,这个范围还要再扩大,在现代音频领域中,这个范围通常是5~50KHz,某些高要求的放 大器甚至会达到0.1~数百KHz。 但是,上述要求表面上好像是比“完美”低了很多,却仍然是“不可能完成的任务”,目前我们 连这样的要求也不可能达到。于是,就有了“频响”这个指标。(附言:指标本身就代表着“不 完美”,如果一切都“完美”了,指标也就没有存在的理由了。) 缩小器有两种失真:线性失真和非线性失真。我们通常把后者叫做“失真”,而把前者用其它方 式表达出来。非线性失真我们已经知道了是一种什么情况了。而线性失真就是指频率和相位方面 的“误差”,即频率失真和相位失真。 频率失真及其产生原因 频率失真是一种“线性失真”,意思是说,发生这种失真时缩小器的输出信号波形和输入波形仍 然是“相似形”,它不会使缩小器对要处理的信号产生“形变”。一个单纯的频率失真可以看成 缩小器对于不同频率的信号缩小倍数不同,例如,1个十倍缩小器,对1KHz的信号的缩小倍数是10 倍,而对于10KHz的交流信号可能缩小倍数就变成了9.99倍,于是,我们就可以说这台缩小器有频 率失真了。在电声学上,我们把这种现象称为“频响曲线的不平直”,这里面的“曲线”我们稍

频率响应分析仪知识

频率响应分析仪知识 一、概述 (一)用途 频率响应分析仪是测量被测系统频率特性的仪器。早期频率特性的测量是用信号源、电压表、频率计、相位计、示波器等单机组成,仪器操作复杂,易受干扰,测量精度低。进入60年代,国外开发出以数字相关滤波为核心技术的频率响应分析仪,提高了测量精度。随着技术发展,智能化、数字化程度不断提高,测量功能、精度得到了快速发展,拓宽了仪器应用范围。目前,频率响应分析仪广泛地应用于航空航天、军工、机械制造的振动分析,大型机械的故障监测与诊断,自控系统、伺服系统的设计与调试,电子元件、压电元件的阻抗与谐振测试,高压电网滤波器调试,桩基检测,自动控制系统科研与教学等领域。 (二)分类与特点 频率响应分析仪可以分为基础型频率响应分析仪、教学型频率响应分析仪、多通道频率响应分析系统等类型产品。 ●基础型频率响应分析仪的特点 性能指标高,接口齐全,方便与各种测试仪器及计算机联接组成测试系统,适用于各种领域的频率响应测试。 ●教学型频率响应分析仪的特点 性能指标一般,频率范围窄,适用于低成本测试,如教学以及要求性能指标不高,能满足一定要求的场合。 ●多通道频率响应分析仪的特点 性能指标高,多通道测试可达32通道,适用于大型机械、桥梁、堤坝等大型系统多点测试。 (三)产品国内外现状 国内生产频率响应分析仪的厂家主要有:天津中环电子仪器。天津中环电子仪器自1958年建厂以来,一直致力于频率响应测试产品的研发,80年代与英国solartron公司合作,开发出以TD1250频率响应分析仪为代表的系列产品,同类产品技术水平国内领先。国外厂家主要有:英国solartron公司和日本NF回路设计株式会社。英国solartron公司以数字相关滤波为技术核心的产品,频率范围10微赫到65千赫(1250),以及10微赫到32兆赫(1260)等,具有双通道及四通道测试功能,1250侧重于低频与超低频,主要用于机械、自控等领域,1255上限频率较高,满足低频测试的同时可用于电子元件、压电元件等测试。 (四)技术发展趋势 ●小型化成为频率响应分析仪的主要发展趋势; ●提高功能指标精度,嵌入式、PLD的采用是未来的趋势; ●降低成本,向教学普及扩大应用范围是未来主要发展方向。 二、基本工作原理 频率响应分析仪主要由:发生器、分析器、控制器、运算器、键盘与显示器、接口、选件等构成。频率响应分析仪的原理框图如下图1所示。

视频监控系统产品介绍

视频监控系统产品介绍 XI’AN DATANG TELEPHONE CORP.

声明 版权声明 Copyright 2006 Xi’an Datang Telephone Corp.,西安大唐电信有限公司. 版权所有。 本产品或文档按照限制其使用、复制、分发和反编译的许可证进行分发。未经 Datang 及其许可证颁发机构的书面授权,不得以任何方式、任何形式复制本产品或本文档的任何部分。第三方软件,包括字体技术,由 Datang 供应商提供许可和版权。 Datang、Datang 徽标、大唐是 Xi’an Datang Telephone Corp.在中国和其它国家的商标、注册商标或服务标记。 免责声明 本书按“现有形式”提供,不承担明确或隐含的条件、陈述和保证,包括对特定目的的商业活动和适用性或非侵害性的任何隐含保证,除非这种不承担责任的声明是不合法的。

内容介绍 本书首先介绍了工业电视及大屏幕的开发背景,然后从系统概述、系统结构、系统提供的功能、系统技术指标等方面对工业电视及大屏幕进行了全面描述,最后介绍产品的特点及优势。 相关标准 Q/DT 901-2006 西安大唐电信有限公司企业标准 GB/T 3873—1983 通信设备产品包装通用技术条件 GB/T 6388—1986 运输包装收发货标记 《矿井通风安全监测装置的使用管理规定》煤安字[1995]第562号 《煤矿通信、检测、控制用电工电子产品通用技术要求》MT209-1990 《煤矿通信、检测、控制用电工电子产品基本实验方法》MT210-1990 《煤矿安全监控系统主要性能测试方法》MT/T772-1998 《煤矿安全规程》2004年版 《煤矿电气图专用图形符号》MT/T 570—1996 《安全防范工程程序与要求》GA/T75 《煤矿监控系统设计规范》中国统配煤矿总公司(90) 名称缩写和术语约定 无

实验方法汇总(水质监测指标)

实验方法汇总 第一部分水样的采集和储存 第一节进水取样 用烧杯从进水箱中取样,根据不同指标的测定频率确定取样量的大小,从中取约20mL水样过0.45um滤膜后存于聚乙烯瓶中,标明取样日期后4℃储存于冰箱中用于硝氮、亚硝氮的测定;另取约10mL水样过玻璃纤维膜后用硫酸调pH至小于2,存于玻璃试管中,标明取样日期后4℃储存于冰箱中用于TOC 的测定。其余水样用于COD、氨氮、色度、pH、总铁、蛋白质和多糖指标的测定,测定BOD的当天取样量约300mL。 第二节出水取样 用烧杯从出水口接取一定量水样,其它同进水。 第三节上清液取样 将适量混合液用定性滤纸过滤,取滤液进行各项指标的测定,具体同进水取样,将过滤后余下的污泥倒回反应器内(整个实验中,除测定MLVSS外,其它指标测定完毕后都要将污泥倒回反应器内)。

第二部分理化指标的测定方法 第一节DO、水温的测定 采用溶解氧仪进行DO和水温的测定:将溶氧仪的电极与仪器连接并将电极浸没入反应器内混合液液面以下(每次的测定位置都固定在同一死角处并保证温度感应部分也没入水面以下),打开溶解氧仪,调至显示mg/L单位的状态下,待读数稳定后记录下DO和水温。测试完毕后关掉溶氧仪,拔下电极依次用清水和蒸馏水清洗后,用滤纸小心擦干电极后将溶氧仪放回固定位置处。 第二节pH的测定 1.仪器:pH计10mL小烧杯 2.试剂 用于校准仪器的标准缓冲液,按《pH标准溶液的配制》中规定的数量称取试剂,溶于25 oC水中,在容量瓶内定容至1000ml、水的电导率应低于 2μS/cm,临用前煮沸数分钟,赶走二氧化碳,冷却。取50ml冷却的蒸馏水,加1滴饱和氯化钾溶液,测量pH值,如pH在6~7之间即可用于配制各种标准缓冲液。 pH标准液的配制 标准物质 pH(25 oC)每1000ml水溶液中所含试剂的质量(25 oC) 基本标准 酒石酸氢钾(25 oC饱 3.557 6.4gKHC4H4O6①

饲料六大指标检测.

饲料、粪便常规指标检测 1.水分 原理:样品在103度烘箱内,在大气压下烘干,直至恒重。遗失的质量为水分。在该温度下干燥,不仅饲料中的吸附水被蒸发,同时一部分胶体水分也被蒸发,另外还有少量其他易挥发物质挥发。 步骤:1.洁净的称样皿(103±2度烘箱中烘30min, 干燥器中冷却30分钟后称重,准确至0.001g.(重复操作,直至2次质量之差小于0.0005g为恒重。 2.分析天平称取5g左右式样到称样皿中(每个样品2个平行,还要2个对照盖子无需盖严,留缝在103度烘箱中烘4h,取出盖好盖子,冷却30分钟称重。标准:GBT 6435-2006 饲料中水分和其他挥发性物质含量的测定 2.粗灰分 原理:试样在550度灼烧后,所得残渣,用质量分数表示。残渣中主要是氧化物,盐类等矿物质,也包括混入饲料中的沙石,土等,故称粗灰分。 步骤:1.将坩埚于马弗炉中灼烧(550℃,30min,干燥器中冷却至室温后称重,准确至0.001g。 2.称取5克试样放入坩埚(每个样品2个平行,还要2个对照,在电炉上低温炭化至无烟为止。 3.炭化后,将坩埚移入马弗炉中,与550℃下灼烧3h。 4.观察是否有炭粒,如无炭粒,继续于马弗炉中灼烧1h,如果有炭粒或怀疑有炭粒,将坩埚冷却,用蒸馏水润湿,在103℃的干燥箱中仔细蒸发至干,再将坩埚至于马弗炉中灼烧1h,至于干燥器中冷却称重,准确至0.001g。

注意事项:1.样品自然放在坩埚中,勿压,避免样品氧化不足。2.样品开始炭化时,应有坩埚盖,防止损失,并打开部分坩埚盖,便于气流流通。3.炭化时,温度应逐渐上升,防止火力过大而使部分样品颗粒被逸出的气体带走。4.灼烧温度不宜超过600度,否则会引起磷硫等盐的挥发。 标准:GBT6438-2007 饲料中粗灰分的测定 3.粗脂肪 原理:油重法:用乙醚等有机溶剂反复浸提饲料样品,使其中脂肪溶于乙醚,并收集于盛醚瓶中,然后将所有的浸提溶剂加以蒸发回收,直接称量盛醚瓶中的脂肪重,即可计算出饲料样品中的脂肪含量。 步骤:1.索氏提取器干燥处理。抽提瓶(内有数粒沸石——(103±2度烘箱,烘干30分钟——干燥器冷却30分钟——称重——重复操作至两次之差小于0.0008g为恒重。2.试样的称取与烘干。分析天平称试样1.3g——滤纸包——铅笔注明标号——103度烘箱烘干2h——干燥器冷却——称重。(此步骤中,要带手套称重,且保证滤纸包长度可全部浸于石油醚中为准。3.试样的反复抽提。滤纸包——抽提管——抽提瓶加石油醚60~100毫升——60~75度水浴加热——石油醚回流——控制回流速度和时间。(抽提前,先将滤纸包浸泡在石油醚较长时间,可减少抽提时间;一般控制回流10次/h,共回流约50次,本实验中,滤纸包已在石油醚浸泡20h以上,回流(3~4次/h,共回流2h;检查抽提管流出的石油醚挥发后不留下油迹为抽提终点。4.抽提后的烘干称重。取出滤纸包——干净表面皿——晾干——装入称样皿——103度烘箱烘至恒重——称重。 注意事项:1.全部称重操作,样品包装时要带乳胶或尼龙手套。2.测定样品在浸提前必须粉碎烘干,以免在浸提过程中样品水分随乙醚溶解样品中糖类而引起误差。3.除样品需干燥外,索氏提取器也应干燥。4.实验所用提取试剂为石油醚,需要无水,无醇,无过氧化物,否则会使测定结果偏高,或者过氧化物会导致脂肪氧化,在烘干时有引起爆炸的危险。5.加热乙醚或石油醚严禁用明火直接加热。

功放机指标测试方法概要

文件名称:功放机电性能测试方法指引 文件编号:TPPEAV201105090001 版本号:A0版 受控状态: 是□否□ 拟制: 批准: 日期: 注: 1.目的 ——使QC岗位所有人员能按标准进行岗位操作,以便满足岗位能力要求;——使各岗位QC操作方法统一,避免操作方法不规范导致失误。 2.适用范围 ——使用于本厂所有质量管理人员及在岗QC。

功放机电性能测试方法指引 一、各声道额定输出功率测试方法: 1.测试所用基本设备仪器: 音频信号源负载盒双针毫伏表调压器 双踪示波器失真测试仪 2.测试条件: ~220V电压8Ω负载1KHz/500mv正弦波信号 各仪器按要求连接好。 3.测试步骤:(以主声道为例,其它声道测试方法同) a.将主音量逐步加大,看示波器上的波形有0.7%失真为宜,然后读出 双针毫伏表各指针此时所得到的伏度数;(要求主高音、低音、平 衡居中) b.此时双针毫伏表上各指针所得到的伏度数即为主声道额定输出伏度 (毫伏表上有两个读数具体到主左、右声道时可根据接仪器时的接 线而定); c.具体的输出功率再进行换算,我们在生产中只测出各声道额定输出 伏度即可; d.名词解释额定输出功率:也叫最大不失真输出功率,将被测功 放机置于~220V电压、8Ω负载、1KHz/500mv正弦波信号下将 音量逐步加大,看示波器上的波形有0.7%失真时读出双针毫伏表 各指针此时所得到的伏度数,然后进行换算所得到的功率。

e.毫伏表的量程根据各声道的输出功率而定,这样能准确反映测量值, 误差小,同时避免损坏仪器。 二、主左、右声道串音测试方法: 1.测试所用基本设备仪器: 音频信号源负载盒双针毫伏表调压器 双踪示波器 2.测试条件: ~220V电压8Ω负载1KHz/500mv正弦波信号 各仪器按要求连接好。 3.测试步骤:(要求主高音、低音、平衡居中) a.将主声道置于额定输出功率,读出左声道现在的dB数,记为L1【此 时L1的dB数计算方法为:若毫伏表在“30V/+30dB”档位,毫伏表 显示的左声道指针在-7dB,那么L1的读数为+30dB+(-7dB) =23dB】; b.然后拔掉左声道的输入信号,此时毫伏表上左声道的指针读数基本 为0,再逆时针旋转控制左声道的毫伏表量程钮,直到能读取毫伏 表左声道指针显示dB数为宜,此时的读数记为L2【此时L2的dB 数计算方法为:若毫伏表在“100mv/-20dB”档位,毫伏表显示的左 声道指针在-8dB,那么L2的读数为-20dB+(-8dB)= -28dB】; c. L1的绝对值加L2的绝对值即为右声道串左声道的声道串音(R/L) 【按a 、b两点给出的数据计算R/L=23 dB的绝对值+(-28dB) 的绝对值】;

有机肥料国家标准及各个指标的检测方法

有机肥料的国家标准及各个指标的检测方法 简介:本文介绍了生物有机肥肥料的国家标准,以及各个指标的检测方法。具体包括:有效活菌数,有机质,水分,PH,粪类大肠菌群数,蛔虫卵死亡率,N,P5O2,K2O,重金属等指标的测定方法和流程。可供同行人士参考,可大大缩减您查阅资料的时间,本文采用word文字编辑,下载后可以直接复制粘贴。一.各个指标的标准 1.各个技术指标 项目指标要求 有效活菌数≧0.2亿/g 有机质(以干计)≧45% 水分≦30% PH 5.5-8.5 粪大肠菌群数≦100个/g 蛔虫卵死亡率≧95% ≧5% 总养分质量分数(N+P5O2+K2O,以烘干 计) 2.重金属指标 项目指标要求 总AS ≦15mg/kg 总Cd ≦3mg/kg 总Pb ≦50mg/kg 总Cr ≦150mg/kg 总Hg ≦2mg/kg 二.各个指标检测方法 1.有效活菌数的测定 (1)稀释 称取固体样品10g,加入带玻璃珠的100ml的无菌水中,静置20分钟,在旋转式摇床上200r/min充分震荡30分钟,即成母液菌悬液。 用5ml无菌转液管分别吸取5ml上述母液菌悬液加入45ml无菌水中,按1

比10进行系列稀释,分别得到10-1,10-2,10-3、、、稀释倍数的菌悬液。 (2)加样及培养 每个样品取3个连续适宜稀释度,用0.5ml无菌移液管分别吸取不同稀释度菌悬液0.1ml,加至预先制备好的固体培养基平板上,分别用无菌玻璃刮刀将不同稀释度的菌悬液均匀地涂布于琼脂表面。 每一稀释度重复3次,同时以无菌水作空白对照,于适宜的条件下培养。 (3)菌落识别 根据所检测菌种的技术资料,每个稀释度取不同类型代表菌落通过涂片、染色、镜检等技术手段确认有效菌。当空白对照培养皿出现菌落数时,检测结果无效,应该重做。 (4)菌落计数 以出现20-30个菌落数的稀释度的平板为计数标准,(丝状真菌为10-150个菌落数),分别统计有效活菌数目和杂菌数目。当只有一个稀释度,其有效菌平均菌落数在20-300个之间时,则以该菌落数计算。若有两个稀释度,其有效菌落数在20-300个之间时,应该两者菌落总数之比值决定,若其比值小于等于2应该计算两者的平均数;若大于2,则以稀释度小的菌落数平均数计算。有效活菌数按下列公式计算,同事计算杂菌数。 N1=(x*k*v1/m0*v2)*108 N2=(x`*k*v1/v0*v2)*108 式中: N1——————质量有效活菌数,单位为亿每克; N2——————体积有效活菌数,单位为亿每毫升; x·——————有效菌落平均数; K———————稀释倍数; V1———————基础液体积,单位为毫升; V2———————菌悬液加入量,单位为毫升; V0———————样品量,单位为毫升; M0———————样品量,单位为克。 2.有机质的测定 (1)方法原理 用定量的重铬酸钾-硫酸溶液,在加热条件下,使有机肥料中的有机碳氧化,

视频信号指标与测试方法

1.视频信号幅度: 标准的视频信号幅度是1Vp-p,由两个测试指标组成: 1) 白条幅度(视频电平):700mV 2) 同步脉冲幅度:300mV 图1 视频信号 幅度对视频的影响: l 同步幅度:超出指标值会引起图像扭曲,甚至图像显示无法观看 l 白条幅度:超出指标值会造成图像过亮或过暗 2.亮度非线性 从消隐电平(黑电平)到白电平之间变化的线性度。 5级幅度的阶梯信号(每级140mV)通过被测通道后,计算相应各阶梯幅度值之间的最大差值.

图2 亮度非线性计算 亮度非线性对视频的影响: l 图象失去灰度,层次减少。 l 分辨率降低,产生色饱和度失真(由于色度信号是叠加在亮度信号上)。 3.K系数 把各种波形失真按人眼视觉特性给予不同评价的基础上来度量图象损伤,这里的失真是短时间波形失真。 一般用“2T正弦平方波失真”( K-2T)作为测试指标。

图3 2T脉冲 图4 K-2T计算 K系数对视频的影响: 导致图像出现多轮廓、造成重影,使清晰度下降。 4.微分增益(DG): 由图像亮度信号幅度变化引起的色度信号幅度失真。 5级带色度调制的阶梯信号通过被测通道后,计算各阶梯上的色度幅度值之间的最大差值。

图5 DG测试信号调制的五阶梯 图6 微分增益(DG)计算 微分增益(DG)对视频的影响 l 不同亮度背景下的色饱和度失真,影响彩色效果。比如:穿鲜红衣服从暗处走向亮处,鲜红衣服会变浓或变淡。 5.微分相位(DP): 由图像亮度信号幅度变化引起的色度信号相位失真。

5级带色度调制的阶梯信号通过被测通道后,计算各阶梯上的色度副载波的相位角和消隐电平上副载波信号的相位角之差,超前为正。 DP的测试信号与DG相同。 微分相位(DP)对视频的影响 在不同亮度背景下,色调产生失真,影响彩色效果。例如:鲜红衣服从暗处走到明处,鲜红衣服就偏黄或偏紫。 6.色度/亮度增益差 把一个具有规定的亮度和色度分量幅度的测试信号通过被测通道,输出端信号中亮度分量和色度分量幅度比的改变称色度/亮度增益差。 图7 20T脉冲

音频指标简介及测试原理方法

音频指标测试均是针对有输入和输出的设备而言,就是声音信号经过了一个通道以后,输出与输入之间的差别。两者差别越小那么性能越好,而且在一般情况下声音经过某一个通道或某一系统后,一般都有对原信号的放大和衰减。 信噪比、失真率、频率响应这三个指标是音响器材的“基础指标”或“基本特性”,我们在评价一件音响器材或者一个系统水准之前,必须先要考核这三项指标,这三项指标中的任何一项不合格,都说明该器材或者系统存在着比较重大的缺陷 1、信噪比SNR(Signal to Noise Ratio): (1)简单定义:狭义来讲是指放大器的输出信号的电压与同时输出的噪声电压的比,常常用分贝数表示,设备的信噪比越高表明它产生的杂音越少。一般来 说,信噪比越大,说明混在信号里的噪声越小,声音回放的音质量越高,否 则相反。信噪比一般不应该低于70dB,高保真音箱的信噪比应达到110dB以 上。音频信噪比是指音响设备播放时,正常声音信号强度与噪声信号 强度的比值 (2)计算方法:信噪比的计量单位是dB,其计算方法是10LG(PS/PN),其中Ps 和Pn分别代表信号和噪声的有效功率,也可以换算成电压幅值的比率关系:20LG(VS/VN),Vs和Vn分别代表信号和噪声电压的“有效值”。 (3)测量方法:信噪比通常不是直接进行测量的,而是通过测量噪声信号的幅度换算出来的,通常的方法是:给放大器一个标准信号,通常是0.775Vrms 或2Vp-p@1kHz,调整放大器的放大倍数使其达到最大不失真输出功率或幅度(失真的范围由厂家决定,通常是10%,也有1%),记下此时放大器的输出幅Vs,然后撤除输入信号,测量此时出现在输出端的噪声电压,记为Vn,再根据SNR=20LG(Vn/Vs)就可以计算出信噪比了. 或者是10LG(PS/PN),其中Ps和Pn分别代表信号和噪声的有效功率 计权:这样的测量方式完全可以体现设备的性能了。但是,实践中发现,这种测量方式很多时候会出现误差,某些信噪比测量指标高的放大器,实际听起来噪声比指标低的放大器还要大。经过研究发现,这不是测量方法本身的错误,而是这种测量方法没有考虑到人的耳朵对于不同频率的声音敏感性是不同的,同样多的噪声,如果都是集中在几百到几千Hz,和集中在20KHz以上是完全不同的效果,后者我们可能根本就察觉不到. 这样就引入了权的概念。噪声中对人耳影响最大的频段“权”最高,而人耳根本听不到的频段的“权”为0。这种计算方式被称为“A计权”,已经称为音响行业中普遍采用的计算方式。 2 、频响范围: (1)频率响应是指在振幅允许的范围内音响系统能够重放的频率范围,以及在此范围内信号的变化量称为频率响应。 (2)测试方法:要求输入信号幅值为一个固定值(要在动态范围之内,音响设备我们可以取100mv)。当输入信号为正常频率时(不能有失真,可以定位1KZ),记录这个时候的输出电压的大小V1。然后开始逐渐降低输入信号的频率,当降低到一定程度时,输出信号的幅值会开始减小。继续降低频率,直到输出电压为0.707V1

各生理指标的测定方法

各生理指标的测定方法 一、脯氨酸含量的测定 1.茚三酮法 1.1原理 在正常环境条件下,植物体内游离脯氨酸含量较低,但在逆境(干旱、低温、高温、盐渍等)及植物衰老时,植物体内游离脯氨酸含量可增加10-100倍,并且游离脯氨酸积累量与逆境程度、植物的抗逆性有关。 用磺基水杨酸提取植物样品时,脯氨酸游离于磺基水杨酸的溶液中,然后用酸性茚三酮加热处理后,溶液即成红色,再用甲苯处理,则色素全部转移至甲苯中,色素的深浅即表示脯氨酸含量的高低。在520nm波长下比色,从标准曲线上查出(或用回归方程计算)脯氨酸的含量。 1.2步骤 试剂:(1)25%茚三酮:茚三酮------------0.625g 冰乙酸------------15ml 6mol/L磷酸--------10ml 70°C水浴助溶; (2)6mol/L磷酸:85%磷酸稀释至原体积的2.3倍; (3)3%磺基水杨酸:磺基水杨酸------3g 加蒸馏水至------100ml 实验步骤: (1)称取0.1g样品放入研钵,加5ml 3%磺基水杨酸研磨成匀浆,100°C沸水浴15min; (2)冰上冷却,4000rpm离心10min; (3)提取液2ml+冰醋酸2ml+25%茚三酮2ml混合均匀,100°C沸水浴30min,冰上冷却; (4)加4ml甲苯混合均匀,震荡30s,静置30min; (5)以甲苯为空白对照,再520nm下测定吸光值。 1.3计算方法 脯氨酸含量(μg/gFW)= X * 提取液总量(ml)/ 样品鲜重(g)*测定时提取液用量(ml)*10^6 公式中:X-----从标准曲线中查得的脯氨酸含量(μg) 提取液总量---------------------------5ml 测定时提取液用量---------------------2ml 问题及质疑: 1.酸性体系下,脯氨酸与茚三酮加热反应后的最终产物为红色,再实验过程中,仅有少数时候能发现红色产物。原因有待确定。 2.经查看文献资料,反应步骤已经是优化的,没有问题。甲苯萃取脯氨酸与茚三酮的反应产物,消除了多余未反应的茚三酮,磺基水杨酸,提取液中其他杂质(如色素)以及PH变化

金属常规力学指标测试

实验一金属常规力学指标测定 一、实验目的 1、掌握金属材料常规力学指标的测试方法。 2、掌握各个常规力学指标的作用及意义。 3、了解各个指标的相互关系。 4、熟悉所用测试仪器及设备的原理和操作使用。 二、实验方法及采用标准 1、金属拉伸试验标准GB/T 2、金属冲击试验标准GB/T 229-2007 3、金属扭转试验标准GB/T 10128-2007 三、实验数据处理 1、依据国家标准,分别计算各个力学参数指标。 (一)金属拉伸实验标准GB/T 材料的弹性、强度、塑形、应变硬化和韧性等许多重要的力学性能指标统称为拉伸性能,它是材料的基本力学性能。拉伸实验是标准拉伸试样在静态轴向拉伸力不断作用下以规定的拉伸速度拉至断裂,并在拉伸过程中连接记录力与伸长量,从而求出其强度判据和塑性判据的力学性能试验。 (1)试验要求 1)原始标距的标记 对于比例试样,应将原始标距的计算值修约至最接近5mm的倍数,中间数值向较大一方修约。标距的标记应精确到取值数值的 1%。 2)原始横截面积的测定 圆形截面试样应在试样工作段的两断及中间处两个相互垂直的方向上各测一次直径,取其算术平均值,选用三处测得横截面积中的最小值。 (2)拉伸性能的测定 利用试验机的绘图装置得到力-位移关系曲线,如下: 图1 拉伸试验力-位移曲线

1)断后伸长率测定 为了测定断后伸长率,应将试样断裂的部分仔细地对接在一起使其轴线处于同一直线上,并采取特别措施确保试样断裂部分适当接触后测量试样断后标距。按下式计算断后伸长率A: 式中:L o—原始标距;L u—断后标距。 应使用分辨力足够的量具或测量装置测定断后伸长量L u- L o,并精确到±。 0.25mm 2)断面收缩率的测定 将试样断裂部分仔细地配接在一起,使其轴线处于同一直线上。断裂后最小横截面积的测定应准确到2% ±。原始横截面积与断后最小横截面积之差除以原始横截面积的百分率得到断面收缩率,按下式计算: 式中:S o—平行长度部分的原始横截面积;S u—断后最小横截面积 3)抗拉强度的测定 对于呈现明显屈服现象的金属材料,从记录的力-位移图,读取屈服阶段之后的最大力。最大力除以原始横截面积得到抗拉强度。 4)屈服强度的测定 对有明显屈服现象的材料,应测定其上、下屈服强度。上、下屈服强度的判定采用以下基本原则: i.屈服前的第一个峰值应力为上屈服强度,不管其后的峰值应力比它大 或者比它小。 ii.屈服阶段中如果呈现两个或两个以上的谷值应力,舍去第一个谷值应力不计,取谷值应力中最小者判为下屈服强度。 iii.屈服阶段中呈现屈服平台,平台应力判为下屈服强度;如呈现多个而且后者高于前者的屈服平台,判第一个平台应力为下屈服强度。 iv.正确的判定结果应该是下屈服强度低于上屈服强度。 试验时记录力-位移曲线,从曲线图读取力首次下降前的最大力和不计初始瞬时效应时屈服阶段中的最小力或屈服平台的恒定力,将它们分别除以试样原始横截面积得到上屈服强度和下屈服强度。 上屈服强度: 下屈服强度: (3)试验结果数值的修约 1)强度性能值修约至1MPa。 2)屈服点延伸率修约至%,其他延伸率和断后伸长率修约至%。 3)断面收缩率修约至1%。

软水各项指标测试方法

软水各项指标测试方法 本测试方法参照采用GB 6682—92《分析试验室用水规格和试验方法》取样与储存: 容器: 可使用密闭的、专用玻璃仪器,新容器在使用前需用盐酸(20%)浸泡2~3天,再用待测水反复冲洗,并注满待测水浸泡6h以上。 取样 至少应取3L有代表性水样。取样前用待测水反复冲洗容器,取样时要避免沾污。取样后的运输过程中应避免沾污。 试验方法 在试验方法中,各项试验必须在洁净环境中进行,并采取适当措施,以避免对试样的污染。本试验所用试剂均为分析纯试剂。 1. pH值的测定 1.1 仪器 1.1.1 PHS—3C型数字式酸度计 1.1.2 复合电极一支 1.1.3 洗瓶 1.2 试剂 1.2.1 邻本二甲酸氢钾 1.2.2 磷酸二氢钾 1.2.3 硼砂 1.3 检定

仪器使用前,先要标定。一般来说,仪器在连续使用时,每天要标定一次。 1.3.1 在测量电极插座处拔去短路插头。 1.3.2在测量电极插座处插上复合电极。 1.3.3如不用复合电极,则在测量电极插座处插上电极转换器的插头,玻璃 电极插头插入转换器插座处,参比电极接入参比电极接口处。 1.3.4把选择开关旋钮调到pH当。 1.3.5调节温度补偿旋钮,使旋钮白线对准溶液温度值。 1.3.6把斜率调节旋钮顺时针旋到底(即调到100%位置)。 1.3.7把清洗过的电极插入pH值为6.86的缓冲溶液中。 1.3.8调节定位调节旋钮,使仪器显示读数与该缓冲溶液当时温度下的pH 值相一致(如用混合磷酸盐定位温度为100C时,pH=6.92)。 1.3.9用蒸馏水清洗电极,再插入pH=4.00(或pH=9.18)的标准缓冲溶液中, 调节斜率旋钮使仪器显示读数与该缓冲溶液中当时温度下的pH值一致。 1.3.10重复1.3.7—1.3.9直至不用再调节定位或斜率调节旋钮为止。 1.4 测量pH值 经标定过的仪器,既可用来测量被测溶液。被测溶液与标定溶液温度相同与否,测量步骤也有所不同。 1.4.1被测溶液与定位溶液温度相同时测量步骤如下: 1.4.1.1用蒸馏水清洗电极头部,用被测溶液清洁一次。 1.4.1.2 把电极浸入被测溶液中,用玻璃棒搅拌溶液,使溶液均匀,在显示 屏上读出溶液的pH值。 1.4.2被测溶液与定位溶液温度不同是测量步骤如下: 1.4. 2.1用蒸馏水清洗电极头部,用被测溶液清洁一次; 1.4. 2.2用温度计测出被测溶液的温度值; 1.4. 2.3调节温度调节钮,使白线对准被测溶液的温度值; 1.4. 2.4把电极插入被测溶液内,用玻璃棒搅拌溶液,使溶液均匀后读出该

视频传输通道指标测试方法

高速公路机电系统视频传输通道指标检测方法 1、所用仪器 川嘉CJ-MVA150型视频综合测试仪 图1 川嘉CJ-GV100型信号发生器 图2 2、仪器连接 图3 视频传输通道包含了外场光端机、光纤、局端光端机或光传输平台。一般

情况下视频图像的传输模式为“外场摄像机—管理所—分中心”,视频传输通道测试要选择最长的通路。 信号发生器连接在外场光端机的视频信号输入端,相当于摄像机提供输入信号;视频综合测试仪的输入端连接在局端光端机或光传输平台的视频信号输出端。 在分中心或者管理所连接视频综合测试仪时,要注意与选择的外场光端机对应通道的一致性,这需要施工安装人员的协助。断开摄像机与外场光端机的连接,在分中心必然失去一路监视图像;信号发生器与外场光端机连接,分中心可以看到信号发生器发送的模拟图像,将视频综合测试仪连接到这路图像的输出端子上,就保持了与外场光端机对应通道的一致性。 3、测试方法 视频传输通道测试项目包含了视频电平、同步脉冲幅度、回波、亮度非线性、色度/亮度增益差、色度/亮度时延差、微分增益、微分相位、幅频特性、视频信杂比十个测试指标。 川嘉CJ-MVA150型视频综合测试仪上视频电平对应的名称为条电平、同步脉冲幅度对应的名称为行同步电平、视频信杂比对应的名称为亮度加权信噪比、幅频特性对应的名称为频率响应;其余名称均一致。 3.1测试前准备 (1)通道的选定 起点的确定:根据施工图上视频传输通道图,确定测试的外场光端机数量与具体位置。一般道路监控系统和收费系统用点对点光端机,隧道内摄像机用节点光端机。节点光端机的选择要考虑传输链路,至少要包含传输链路最远端和最近端的光端机;即每条传输链路最远端的光端机对应的视频通道要测试,

视频监控产品的介绍

第1章主要设备介绍 一、监控系统应用软件 网络管理中心对大型视频监控系统的设备和数据进行集中管理,中心可同时连接管理任意数量的前端设备;中心通过图形化的方式,对远程设备进行异地配置、状态监视、远程控制等,远程告警信息可通过列表或图形化的方式实时显示,同时也可实现远程视音频的多路传输、多画面显示、网络端存储、远程控制等功能。系统采用模块化设计。软、硬件均采用商业化,通用化,模块化结构,使系统具有很强的扩展能力,便于维护、管理和升级,最大限度保护用户的已有投资。摒弃了嵌入式系统在视频监控记录领域发展不太成熟、标准混乱、功能单一、升级困难、极易淘汰、维护不便等诸多问题。 主要功能 ①、监视类 ◆可连接前端任意一台分控主机,并可传输任意一路图像至中心,同时自动上电视墙 对于前端图像,可调整其用CIF和D1格式上传并在中心解码显示和上电视墙。可在中心主机上任意回放前端任意一路图像,提供多种查询方式(如时间或报警信息)时间颗粒可具体到分,并可对图像任意剪辑。同时为了满足诉讼证据的应用,还有水印加密技术,防止人为篡改。 ◆中心提供电子地图和视频两种浏览模式,点击电子地图上的相应视频(有名称提示)则自动转换到视频模式,在视频模式下右击则自动转换到地图模式。视频模式(单画面、四画面、8画面、16画面均可调)

◆客户端浏览。在网络上,可通过C/S结构或B/S结构(IE)的客户 端进行网络实时视频监看、抓拍、录像、以及远程实时控制等功能。 同时针对多个客户端同时访问前端某一台或几台主机的情况下,系统 提供有用户数量控制,当过多的用户同时访问某一台主机时,系统会 自动将某个低权限的用户菪掉。当多个用户同时控制某一个云台时, 高权限的用户能够自动抢断控制权。 ②、报警类 ◆前端任意一路报警输入后,均可将相应的图像上传至中心主机(报警联动设置视频上传),并在中心主机上自动放大相应的视频,并可在指定的电视墙上显示。前端任意一路报警输入后,均可自动弹出相应的电子地图,同时相应的报警输入在地图上闪烁,有相应的声音提示。并可通过打印机以流水方式打印报警及故障信息。 ◆监控界面和电子地图报警界面可在一台中心主机上运行但在两个显示器上显示 ◆中心主机可设置轮循,设置相应的切换时间,系统就会自动在相应的时间间隔里自动轮换切换视频上电视墙。 ◆当硬盘出现故障无法写入数据时,可触发报警并通过相应的报警输出予以提示。 ◆根据前端不同的警情在系统中做不同的报警联动设置,这样在不同警情发生时,系统就会根据相应的判断将警情做不同的处理,或向本地报警或跨越不同级别将警情向上传输。 ③、远程控制及维护类

相关文档
相关文档 最新文档