文档库 最新最全的文档下载
当前位置:文档库 › SANGFOR_AF_参数V1.0-1108

SANGFOR_AF_参数V1.0-1108

SANGFOR_AF_参数V1.0-1108
SANGFOR_AF_参数V1.0-1108

深信服NGAF

深信服NGAF

深信服NGAF

燃气轮机性能指标主要影响因素及提高性能途径研究

燃气轮机性能指标主要影响因素及提高性能途径研究 摘要: 本文以9e燃机为例,概括介绍了国内已经投产的燃气轮机的主要性能指标,并通过对不同设计和运行条件下技术性能指标的对比,分析对燃气轮机性能指标产生影响的主要影响因素,从而总结和简述了提高性能指标的主要途径。 关键词: 燃气轮机;性能指标;功率;热耗率;影响因素;abstract:illustrated by 9e gas turbine, the main technical performance parameters of gas turbine in china are described, and with the comparison of the technical parameters under different design and operation condition, an analysis on the main influencing factors is presented, so as to summarizethe major way to improve the performance parameters. keywords: gas turbine; performance parameter; power; heat rate; influencing factor 中图分类号:th138.23 文献标识码:a文章编号:2095-2104(2012) 1.引言 燃气轮机是从本世纪50年代开始逐渐登上发电工业舞台的。但是由于当时机组的单机容量较小,而热效率又比较低,因而在电力系统中只能作为紧急备用电源和调峰机组使用。 60年代时欧美的大电网曾发生过电网瞬时解列的大事故,这些事

滑坡稳定性计算书

第一部分参数选取 根据钻探揭露,滑带土为黄褐色粉质亚粘土夹少量砂板岩角砾,位于人工堆积层与下层基岩之间,深度在2-7m不等,厚约0.2-0.3m,断面光滑。 2、滑带土参数的取值 (1)参数反演 滑坡中的滑带土为基覆交界面的亚粘土层,由于野外取样时,所取滑带土样为已经扰动过的土样,因此在进行岩土试验参数统计及经验类比的取值时,滑带土的C、φ值采用滑坡在暴雨工况下,取稳定系数为1.03时反演取值,其反演计算模型,选定H1滑坡的2-2’剖面。反演计算剖面及内容见计算书。 采用反演公式和 经反演,滑坡滑带土在暴雨条件下C、φ值见下表。 (2)工程类比经验:借鉴蜀通公司对H2滑坡所做的勘查工作,天然条件下C 值为6.7KPa,φ为18.5°,暴雨条件下C值为3.3-4.6KPa,φ为12.3°。 (3)试验值: (4)综合取值: 根据滑带土的试验、剖面反演及工程类比的结果,滑带土而天然工况下的取值主要依据试验结果,在暴雨工况下参数取值主要采取加权平均,对试验值、反演值和工程类比值采取加权平均方法从而得出暴雨工况下的滑带土的c、φ值。目前各滑坡处于蠕动变形阶段,因此对试验值取较高的权重。三种取值的权重分别是0.5、0.3、0.2。据此得出暴雨工况下的滑带土的参数值。 滑带土参数取值为天然重度为19.0 kN/m3,饱和重度为20.5kN/m3,天然条件下C值为7.0KPa,φ为18.5°;饱和条件下c值为3.8KPa,φ为13.0°。 一、2-2’反演 滑坡剩余下滑力计算 计算项目: 2-2暴雨 ===================================================================== 原始条件: 滑动体重度= 19.000(kN/m3) 滑动体饱和重度= 20.500(kN/m3) 安全系数= 1.030 不考虑动水压力和浮托力 不考虑承压水的浮托力 不考虑坡面外的静水压力的作用 不考虑地震力 坡面线段数: 41, 起始点标高 0.000(m) 段号投影Dx(m) 投影Dy(m) 附加力数 1 0.144 0.351 0 2 0.386 1.579 0 3 0.279 0.673 0 4 0.541 0.977 0 5 0.232 0.793 0 6 0.601 0.846 0 7 0.475 0.781 0 8 0.266 0.496 0 9 0.353 0.812 0 10 0.518 0.658 0 11 0.110 0.265 0 12 0.102 0.204 0 13 0.197 0.490 0 14 0.234 0.464 0 15 0.197 0.147 0

长江三峡大石板滑坡计算参数反分析

收稿日期:2005Ο04Ο19 基金项目:国家重点基础研究发展规划项目(2002C B412707) 作者简介:高德军(1970— ),男,山东临朐人,博士研究生,主要从事岩石力学方面的研究.长江三峡大石板滑坡计算参数反分析 高德军1,徐卫亚1,郭其达2 (1.河海大学岩土工程研究所,江苏南京 210098;2.三峡大学土木工程学院,湖北宜昌 443002) 摘要:在研究长江三峡库区大石板滑坡约束条件和某一确定计算状态的基础上,利用极限平衡理论 方法对滑坡的滑带土进行了计算参数反分析,并通过敏感性分析确定了计算参数的取值.结果表明:计算参数c (黏聚力),φ(摩擦角)值的反分析存在解的非唯一性,只有确定了边坡的临界状态并选定相应的评估指标后,才有可能获得准确结果;反分析得到的滑带土c ,φ值与临界状态的滑带赋存条件相对应,当进行其他工况的稳定分析及工程设计时,应根据经验及工程类比结果进行折减. 关键词:长江三峡;大石板;滑坡;反分析;计算参数中图分类号:P642.22 文献标识码:A 文章编号:1000Ο1980(2006)01Ο0074Ο05边坡滑带土的黏聚力(c )和内摩擦角(φ)等力学计算参数的取值正确与否,会直接影响到边坡的稳定计算和工程设计.目前确定c ,φ值的方法有试验、工程类比和反分析3种.试验方法是确定滑带土计算参数的途径之一,但c ,φ值需通过大量试验才能得出.此外,试样的失真、滑带土的非均匀性、试验误差和试验结果的多样性等,也会给试验成果的选用带来识别上的很大困难.工程类比法是一种经验估算方法.由于滑坡的成因、结构条件、边界条件、土体性质及研究者的经验等存在一定的差异,工程类比法也不可能准确地得出滑 带土的计算参数.在工程设计中,常采用反分析方法确定计算参数(等效力学计算参数)[1Ο5] . 目前,边坡稳定分析常用的方法是弹塑性有限元法和刚塑性体极限平衡法[6Ο9] .由于极限平衡法不仅物理概念清晰,求解方便,可同时求出滑坡的不平衡力(剩余下滑力),为滑坡加固提供设计依据,而且滑坡稳定分析与加固设计采用同一理论模型,计算结果更为可靠,因而在工程中得到广泛应用. 本文以长江三峡库区大石板滑坡为例,在研究滑坡体边界条件和计算状态的基础上,利用极限平衡理论方法对滑坡的滑带土进行了计算参数反分析. 1 反分析基本原理 1.1 土体边坡计算参数反分析的定义 边坡反分析就是先根据确定的边界条件和工况状态下的稳定状态评估指标建立数学模型,然后利用此模型反演边坡土体的计算参数c ,φ值.由于反分析c ,φ时是通过1个方程来求解2个未知参数,因而其解具有不确定性.一般情况下,采用反分析方法时需结合试验、经验或敏感性分析等方法才能确定出参数的取值.1.2 反分析过程11211 建模 反分析建模常用的方法是极限平衡分析法.极限平衡分析法的基本假定是:土体为理想刚塑性材料;加荷过程中土体不发生任何变形;达到极限平衡状态时土体将沿某破裂面发生剪切变形. 工程上最常用的平面极限平衡计算方法为条分法.条分法包括毕肖普法、改进瑞典条分法、传递系数法、分块极限平衡法和简布法等[10].在条分法中,稳定状态评估指标(稳定系数)K 的表达式为 K = ∑n i =1 E i ∑n i =1 T i = ∑n i =1 E (x i ,y 1i ,y 2i ,y 3i ,ρg ,ρw g ,c ,φ )∑n i =1 T (x i ,y 1i ,y 2i ,y 3i ,ρg ,ρw g )(1) 第34卷第1期2006年1月河海大学学报(自然科学版)Journal of H ohai University (Natural Sciences )V ol.34N o.1Jan.2006

简析燃气轮机发电机组的现状及未来发展正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 简析燃气轮机发电机组的现状及未来发展正式版

简析燃气轮机发电机组的现状及未来 发展正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 火力发电的历史久远,为世界经济发展提供着充足的能源。但是,随着环境保护观念深入人心,世界资源日益紧缺,火力发电已经成为我国经济转型、产业结构调整的重点对象。作为新型发电模式,燃气轮机发电具备快速启停、高效率以及较小占地规模的有点,污染小。在我国工业实践中,受到制造技术的商业秘密制约,自主创造能力十分薄弱,进口是主要来源,并没有在全国推广开来。本文主要浅析燃气轮发电机组的当前发展情况,并展望未来趋势,希望引起工业领域人员的重

视。 1.燃气轮机及其发电机组现状浅析 1.1.燃气轮机浅析 作为旋转式动力机械,气体以连续流动的方式在燃气轮机中通过热能向机械能的转化,进而推动发电机组旋转。从世界范围来看,第一台燃气轮机由瑞士一家企业制造,时间为1939年。经数十年发展,机车与坦克动力、舰船动力、管线动力与发电等都有燃气轮机的身影。从结构上划分,轻型与重型燃气轮机为工业燃气轮机类型。当前,俄、英、美等发达国家已经将燃气轮机完全应用到了水面舰艇上。此外,海上采油、输油输气的管线加压装置也由轻型燃气轮机构成,实现了41.6%的热

GBT14411-2008轻型燃气轮机控制和保护系统

GB/T14411-2008轻型燃气轮机控制和保护系统 Controlandprotectivesystemforaero-derivativegasturbine 本标准代替GB/T14411-I993((轻型燃气轮机控制和保护系统》。 本标准与G13/T14411-1993相比主要变化如下: —修改了标准适用范围(本版的第1章); —修改了清吹要求(本版的3.2.1.5); —补充了正常停机和紧急停机要求(本版的3.2.3.2、3.2.3.3); —增加了同步控制、瞬时超速限制和输出功率限制要求(本版的33.5,3.4.8、3.4.9); --—补充了数字电子控制系统的性能指标要求(本版的3.4.3.2); —删除了环境试验条款(1993年版的5.3); —修改了数字控制系统要求,整合成3.1(1993年版的第7章); —修改了保护装置中信号器和监控参数相关要求(本版的4.3.4、4.3.5); —增加了环境条件要求(本版的第7章)。 本标准由中国航空工业第一集团公司提出。 本标准由中国航空工业第一集团公司归口。 本标准起草单位:中航世新燃气轮机股份有限公司、中国航空综合技术研究所、江苏中航动力控制有限公司。 本标准主要起草人:田祥泰、于培敏、张华、孟凡涛、俞建峰。 本标准所代替标准的历次版本发布情况为: —GB/TI441I-1993。

目录 目录 (2) 1范围 (4) 2规范性引用文件 (4) 3控制系统 (4) 3.1基本要求 (4) 3.2控制功能 (4) 3.2.1起动 (4) 3.2.2加、减负荷 (5) 3.2.3停机 (6) 3.2.4防止喘振 (7) 3.3燃料调节 (7) 3.3.1概述 (7) 3.3.2稳态转速调整 (7) 3.3.3恒速控制 (7) 3.3.4变速控制 (8) 3.3.5同步控制 (8) 3.4性能指标 (8) 3.4.1死区 (8) 3.4.2漂移 (8) 3.4.3转速控制系统的稳定性 (8) 3.4.4温度控制系统的稳定性 (8) 3.4.5电功率控制系统的稳定性 (9) 3.4.6机械驱动控制系统的稳定性 (9) 3.4.7整个系统的稳定性 (9) 3.4.8瞬时超速限制 (9) 3.4.9输出功率限制 (9) 4保护系统 (9) 4.1保护要求 (9) 4.1.1燃料切断 (9) 4.1.2超速保护 (10) 4.1.3过低转速保护 (10) 4.1.4火普保护 (10) 4.1.5熄火保护 (10) 4.1.6控制及保护系统故障保护 (11) 4.2保护功能 (11) 4.2.1概述 (11) 4.2.2超速保护 (12) 4.2.3超温保护 (12) 4.2.4超扭保护 (12) 4.2.5低转速保护 (12) 4.2.6振动保护 (12) 4.2.7喘振保护 (12) 4.2.8滑油压力低 (12) 4.2.9点火不成功 (12) 4.2.10熄火保护 (12) 4.2.11转速悬挂保护 (12) 4.2.12轴位移保护 (13) 4.2.13进气过滤器压差高 (13) 4.2.14轴承温度高保护 (13) 4.2.15控制及保护系统故障 (13)

第一讲燃气轮机基本原理及9E燃机性能型号参数

第一讲:燃气轮机基本原理及9E燃机性能型号参数授课内容: 第一章:绪论 1):燃气轮机发电装置的组成 2):燃气轮机发展史 3):我国燃气轮机工业慨况 4):GE公司燃气轮机产品系列及其编号 第二章:燃气轮机热力学基础知识 1):工质的状态参数 2):理想气体状态方程 3):功和热量 第三章:燃气轮机热力循环 1):燃气轮机热力循环的主要技术指标 2):燃气轮机理想简单循环 3):燃气—蒸汽联合循环 第四章:9E燃机性能型号参数 1):PG9171E型燃机型号简介 2):PG9171E型燃机性能参数简介

第一章绪论 第一节燃气轮机发电装置的组成 燃气轮机是近几十年迅速发展起来的热能动力机械。现广泛应用的是按开式循环工作的燃气轮机。它不断地由外界吸入空气,经过压气机压缩,在燃烧室中通过与燃料混合燃烧加热,产生具有较高压力的高温燃气,再进入透平膨胀作功,并把废气排入大气。输出的机械功可作为驱动动力之用。因此,由压气机、燃烧室、透平再加上控制系统及基本的辅助设备,就组成了燃气轮机装置。如果用以驱动发电机供应电力,就成了燃气轮机发电装置。 (幻灯)

第二节 燃气轮机发展史 燃气轮机是继汽轮机和内燃机问世以后,吸取了二者之长而设计出来的,它

是内燃的,避免了汽轮机需要庞大锅炉的缺点;又是回转式的,免去了内燃机中将往复式运动转换成旋转运动而带来的结构复杂,磨损件多,运转不平稳等缺点。但由于燃气轮机对空气动力学和高温材料的要求超过其他动力机械,因此,发展燃气轮机并使之实用化,人们为之奋斗了很长时间。如果从1791年英国人约翰·巴贝尔(John Baber)申请登记第一个燃气轮机设计专利算起,经过了半个世纪的奋斗,到1939年,一台用于电站发电的燃气轮机(400OkW)才由瑞士BBC公司制成,正式投运。同时Heinkel工厂的第一台涡轮喷气式发动机试飞成功,这标志着燃气轮机发展成熟而进入了实用阶段·在此以后,燃气轮机的发展是很迅速的。由于燃气轮机本身固有的优点和其技术经济性能的不断提高,它的应用很快地扩展到了国民经济的很多部门· 首先在石油工业中,由于油田的开发和建设,用电量急剧增加·建造大功率烧煤电站不具备条件(没有煤炭,交通不便,水源紧张,施工困难等),周期也不能满足要求·而燃气轮机电厂功率不受限制,建造速度抉,对现场条件要求不高,油田有充足的可供燃用的气体和液体燃料·不少油田还利用开发过程中一时难以利用的伴生气作燃气轮机燃料,价格便宜,发电成本低,增加了燃气轮机的竞争力,所以在油田地区,燃气轮机装置被广泛应用,除用于发电外,还在多种生产作业申用燃气轮机带动压缩机(例如天然气管道输送,天然气回注,气田采油等)和泵(例如原油管道输送和注水等)。 其他工业部门,如炼油厂、石油化工厂、化工厂、造纸厂等等;它们不仅需要机械动力,而且需要大量热(例如蒸汽)。这时用燃气轮机来功热联供,在满足这两方面需要的同时,还能有效地节能,故应用发展较快。 实践证明,燃气轮机作为舰船推进动力,其优点显著,特别是排水量为数千

联合循环燃气轮机发电厂简介

联合循环燃气轮机发电厂简介 联合循环发电:燃气轮机及发电机与余热锅炉、蒸汽轮机共同组成的 循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回收转换为蒸汽,再将蒸汽注入蒸汽轮机发电。形式有燃气轮机、蒸汽轮机同轴推动一台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机各自推动各自发电机的多轴联合循环。胜利油田埕岛电厂采用的是美国GE公司的MS9001E然气轮机,其热效率为33.79%,余热锅炉为杭州锅炉厂的立式强制循环余热锅炉。1.燃气轮机 1.1 简介燃气轮机是一种以空气及燃气为工质的旋转式热力发动机,它的结构与飞机喷气式发动机一致,也类似蒸汽轮机。主要结构有三部分: 1 、燃气轮机(透平或动力涡轮); 2、压气机(空气压缩机); 3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室与高温压缩空气混合,在定压下 进行燃烧。生成的高温高压烟气进入燃气轮机膨胀作工,推动动力叶片高速 旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命 周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。重型燃 气轮机为工业型燃机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、热电联产。埕岛电厂采用的 MS9001E燃气轮发电机组是50Hz, 3000转 /分,直接传动的发电机。该型燃气轮发电机组最早 于 1987年投入商 业运行,基本负荷燃用天然气时的功率为123.4MW热效率为 33.79%,排气温度539C,排气量1476X103公斤/小时,压比为12.3,燃气初

燃气轮机系统建模与性能分析

燃气轮机系统建模与性能分析 摘要:燃气轮机机组具有超强的北线性,人们掌握它的具体实施工作过程运行 规律是很难得。在我过电力工业中对它的应用又不断加强。为了更加透彻的解决 这个问题,本文将通过建立燃气轮机机组系统建模及模拟比较研究机组设计和运 行中存在的问题,从而分析它的性能。 关键词:燃气轮机;系统建模;性能 1模拟对象燃气轮机的物理模型 在标准IS0工况条件(15℃101.3kpa及相对湿度60%)下,压气机不断从大气中 吸入空气,进行压缩。高压空气离开压气机之后,直接被送入燃烧室,供入燃料 在基本定压条件下完成燃烧。燃烧不会完全均匀,造成在一次燃烧后局部会达到 极高的温度,但因燃烧室内留有足够的后续空间发生混合、燃烧、稀释及冷却等 复杂的物理化学过程,使得燃烧混合物在离开燃烧室进入透平时,高温燃气的温 度己经基本趋于平均。在透平内,燃气的高品位焙值(高温、高压势能)被转化为功。 1.1燃气轮机数值计算模型与方法 本文借助于 GateCycle软件平台,搭建好的燃气轮机部件模块实现燃气轮机以上物理模型的功能转化,进行燃气轮机的热力学性能分析计算的。在开始模拟燃 气轮机之前,首先对燃气轮杋部件模块数学模型及计算原理方法进行简单介绍。1.2压气机数值计算模型 式中,q1 、q2 、ql 分别为压气机进、出口处空气、压气机抽气冷却透平的 空气的质量流量; T1*、 p1* 分别为压气机进出口处空气的温度、压力; T2*、 p2* 分别为压气机出口处空气的温度、压力 ηc、πc分别为压气机绝热压缩效率,压气机压比 γa为空气的绝热指数;ρa为大气温度;?1为压气机进气压力损失系数 ιcs、ιc分别为等只压缩比功和实际压缩比功 i*2s、i*2、i*1分别为等只压缩过程中压气机出口处空气的比焓,实际压缩过程中压气机出日处空气的比烩和压气机进日处空气的比焓; 当压气机在非设计工况下工作时,一般计算方法是将压气机性能简单处理编制成 数表,通过插值公式求得计算压气机的参数,即在压气机性能曲线上引入多条与 喘振边界平行的趋势线,这样可以把压比,流量,效率均视为平行于喘振边界的 等趋势线和转速的函数。本文采用了同样的计算方法,在计算燃气轮机变工况性 能过程中引入无实际物理涵义的无量纲参变量CMV(compressor map variable),仅相当于引入的平行于压气机喘振边界的趋势线,压气机的质量流量、压力和效 率计算是通过上下游回馈的热力计算结果,插值寻找能够使得上下游热力参数 (压力,温度,输出功率,转速,流量)计算收敛的工作点,即压气机的变工况 工作点。 1.3燃烧室数值计算模型 其中 式中: α为过量空气系数: L0为燃料的理论空气量:

临界状态滑坡土层参数反演在工程中的应用

文章编号:1009-6825(2013)01-0048-02 临界状态滑坡土层参数反演在工程中的应用 收稿日期:2012-10-26作者简介:王树州(1983-),男,硕士,工程师; 刘强(1978-),男,工程师 王树州 刘强 (安徽省交通规划设计研究院有限公司,安徽合肥230008) 摘 要:针对芜湖至铜陵高速K51+354 K51+500段出现的裂缝及下挫现象,分析了其产生变形的原因,通过不平衡推力法算出 滑坡剩余下滑力, 提出了采用抗滑桩结合挡土墙支护边坡的方案,并在工程运用中得到了很好的效果。关键词:滑坡,临界状态,反演,裂缝及下挫,不平衡推力法 中图分类号:TU435 文献标识码:A 0引言 随着国民经济的飞速发展,大量铁路、公路、矿山等设施的修建,特别是丘陵和山区建设中,人类工程活动中开挖和堆填的边坡数量会越来越多, 高度也将越来越大。如北京—福州高速公路福建段200余千米内高度大于30m 的边坡多达150多处。由于地质条件复杂, 加之人类改造自然规模愈来愈大,设计施工方法不当,高边坡开挖后发生变形和造成灾害的事故频繁发生,给工程运营和人身安全带来很大隐患。 芜湖至铜陵高速K51+354 K51+500为开挖路段,右侧挖方较长,坡高较大,最大坡高31m 。该项目已建成运营近三年时间,于2010年4月K51+420 K51+480段右侧一级坡出现裂缝宽2cm 5cm ,一级坡护面墙局部开裂,二级坡裂缝宽10cm 30cm ,二级坡平台下挫20cm 40cm ,估计松动方量4000m 3,坡 脚未出现剪出口。该滑坡体处于蠕动变形阶地, 若遇到暴雨天气,雨水下渗,有可能会加速下滑,危及人的生命安全。 1滑坡区工程地质概况1.1地形地貌 边坡区地貌属低山丘陵区,区内地形较简单,岗凹相间内,岗丘顶部浑圆,坡面平缓,覆盖层主要为残坡积层,凹地上部覆盖第四系全新统冲积层。 1.2地层结构及岩土体特征 滑坡区上部覆盖层为第四系中更新统残坡积层(Q el +dl 2 )的粗粒土和高液限粘土,粗砾土层厚7.5m 10.7m ,高液限粘土层厚8.0m 12.4m ,工程性质差;下伏基岩为三叠系下统南陵湖组(T 1n )灰岩。 1.3水文地质特征 滑坡区主要赋存少量残坡积松散层孔隙水,主要来源于大气 降水补给,季节性变化较大,但由于上部的碎石土夹砂砾石及少量细粒土,渗透性较好,降雨时大量的地表水下渗,而中部高液限 粘土及下部基岩为相对不透水层,致使高液限粘土含水量增高, 而高液限粘土遇水后性质变差,形成软弱层,对边坡稳定不利,滑坡区应设置好防渗及排水措施。 2滑坡基本特征及成因分析2.1 滑坡基本特征 滑坡区位于K51+354 K51+500的右侧,整体坡度为36?, 坡形整体呈上缓下陡,只有护面墙护坡,如图1所示。该滑坡分三级台阶,第三级台阶的护面墙已经损坏,可能是导致降雨入渗的主要原因。第一、第二级台阶的护面墙也有拉裂地方。滑坡区右侧一级坡出现裂缝宽2cm 5cm ,二级坡裂缝宽10cm 30cm ,二级坡平台下挫20cm 40cm ,如图2所示。 图1 滑坡区地貌特征 图2第二级台阶开裂下挫 2.2滑坡成因分析 1)雨水下渗。边坡排水沟、截水沟日渐淤积堵塞,护面墙开裂,导致降雨下渗不能及时的排出坡体,使得坡体含水率增高。而第一级、第二级台阶主要分布着高液限粘土,富含高岭土,具有膨胀性,当坡体含水率增高时,坡体内土体膨胀,膨胀力使得护面墙开裂,同时土体的抗剪强度降低。三级坡的粗粒土夹有少量的 砾石, 渗透性较好,又是雨水下渗的良好通道。2)支挡不足。该边坡坡度较高,1?1 1?1.3的坡率只能保证每一级台阶是安全的,整体边坡是欠稳定的。整个边坡缺乏有效的支挡, 仅仅修筑护面墙是不能抵抗坡体变形产生的下滑力櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅 。On engineering features of collapsible loess ZHANG Ai-fang (Shanxi Jinzheng Construction Engineering Program Management ,Co.,Ltd ,Hejin 043304,China ) Abstract :According to the distribution regions ,the horizontal and vertical distribution features of the collapsible loess of Shanxi Aluminum Plant ,the paper illustrates the conditions for the self-weight collapsibility ,features for the moment of the self-weight collapsible deformation after being soaked in water ,as well as the scopes for the deformation ,identifies the deformation features of the natural and compacted foundation un-der the measurement of additional collapsible volume ,and concludes the measured self-weight collapsible volume is less than the one of the in-door test calculation ,and the adopted correction factors in the new regulation is fundamentally consistent.Key words :collapsibility deformation ,subsidiary stress ,self-weight collapsible volume · 84·第39卷第1期2013年1月 山西 建筑 SHANXI ARCHITECTURE Vol.39No.1Jan.2013

滑坡勘察中几个常用参数及计算方法

滑坡勘察中几个常用参数及计算方法 [摘要]本文主要结合C与Φ的关系,从参数反演法与经验法或类比法两大方面对计算参数的确定做了详细论述,同时对稳定性系数的确定方法做了简要论述,其中提及传递系数法的显示解与隐式解。 [关键词]滑坡勘察计算参数计算方法 与普通建筑的岩土工程勘察相比较,滑坡勘察具有下列特点:重视地质环境条件的调查,由此探明滑坡的主要作用因素与演化过程;重视滑坡地质结构的调查,由此完成滑坡稳定性的研究;重视变化成因的研究,由此主要成因的特点与强度等。结合滑坡勘察的上述特点,本文主要讨论计算参数的确定,同时分析传递系数法的相关内容。 1计算参数的确定 滑坡勘察方面计算参数的确定方法并不单一,常见的确定方法包括试验法(如原位试验或室内试验)、参数反演法、经验法(或类比法)。本章节主要结合C与Φ的关系,从参数反演法、经验法两大方面展开论述。 1.1C与Φ的关系 滑坡面抗剪强度满足函数表达式: 若滑坡土保持饱水状态,那么C=0,此时滑坡面抗剪强度满足函数表达式: 结合上述函数表达式可知,抗剪强度与作用到滑动面的法向应力呈正相关;内聚力与内摩擦力分别为常数与变量。滑体厚度往往会影响到滑动面的抗剪强度,其中滑体厚度与内摩擦角的作用呈正相关,与内聚力的作用呈负相关。滑体厚度一般以4m为界线,若滑体厚度4m,那么滑坡面的抗剪强度受到内摩擦力的控制。结合抗剪强度相等原则,往往用某定值的综合内摩擦角Φ取代内聚力与内摩擦力,即综合摩擦角或似摩擦角,由此简化计算过程。 1.2参数反演法 参数反演法(或参数反分析法)是指事先恢复已破坏斜坡的滑动后滑坡状态或原始状态,然后再基于滑坡的破坏机理创建极限平衡方程,由此反求出滑动面的C、Φ值。由此可见,参数反演法具有如下特点:明确反映变形破坏机制;尽量简化计算步骤;方便校核。参数反演分析过程应尤其注意如下事项:尽量模拟滑坡蠕滑状态的边界条件,特别要注意地下水位的模拟,若该步骤难以实现,那么必须探明勘探阶段雨季的最高地下水位;主滑剖面与分析剖面必须完全一致;参数反演分析的理论方法与设计阶段采用的推力及稳定性计算方法必须完全一致。

岩体参数的反演方法综述

岩体参数的反演方法综述1 费文平,马亢 四川大学水利水电学院,成都 (610065) E-mail:wpfei7206@https://www.wendangku.net/doc/df10431532.html, 摘要:岩体参数的反演分析是水电工程的设计与数值计算的基础,直接影响到计算结果的真实性。归纳总结了岩体参数的各种反演方法,分析比较了其优缺点和适用条件,提出了岩体参数反演分析方法的发展趋势。 关键词:岩体,参数,反演方法 1.引言 岩体参数(如弹模、泊松比等)的反演分析是根据少数的已知测点的位移值或应力值等,来反演分析岩体的材料参数的过程,是水电工程的设计与数值计算的基础。岩体力学参数的确定是岩土工程数值计算中的关键问题。由于岩体的参数往往难以确定,对数值计算的结果会造成很大的影响,而实验室内对岩体参数的测定均存在尺度效应问题,且考虑到经济成本,现场取样的数量往往不多,因而无法得到整个工程区的岩体真实参数。采用反演分析的方法可以综合考虑诸多地质因素的影响,更加经济准确地得到岩体的参数[1-3]。 岩体参数反演计算的方法主要有[4-30]:①正反分析法;②逆反分析法;③局部最优化方法;④人工神经网络法;⑤遗传算法;⑥粒子群算法;⑦梯度类方法;⑧混合算法。 2.岩体参数反演分析方法的分类及特点 2.1 正反分析法 正反分析法先假定待反演的岩体参数,通过正演分析得到岩体结构的位移或应力等,然后将其与实际观测值相比较,并按一定方式修改调整待反演参数,逐步逼近实测值,从而确定待反演的岩体参数。正反分析法程序编制简单,计算方法灵活,可适用于线性或非线性的岩体参数反演问题,但需要大量的调整试算。 2.2 逆反分析法 逆反分析法通过求逆直接建立待反演参数与实测值之间的关系式,求解这些关系式组成的方程组就可得到反演计算结果。该法计算原理直观简明,但程序编制复杂,只适用于线性的岩体参数反演分析。 2.3 局部最优化方法 优化分析法致力于寻找使计算结果与观测结果之间的误差为最小的解答。局部最优化方法包括单纯形法、模式搜索法、鲍威尔法、变量轮换法、混合罚函数法、复合形法等,它们对初值的依赖性较强,在选用时应注意参数先验信息的确定,因而需要有一定的工程经验。否则,需采用以下的优化反演分析方法。 2.4 人工神经网络法 人工神经网络法对人类大脑的一种物理结构上的模拟,通过网络训练,调整网络内部权1本课题得到高等学校博士学科点专项科研基金(项目编号:20040610095)的资助。

燃气轮机

论燃气轮机 一、燃气轮机概述 燃气轮机是以连续流动的燃气作为工质带动叶轮高速旋转,将燃料的能量转变为有用功的内燃式动力机械。它是以燃气而不是以水蒸气作为工质,因此可省去锅炉、冷凝器、给水处理等大型设备。不仅如此,燃气轮机与以煤为燃料的蒸汽轮机相比,它具有重量轻、体积小、装置效率高、污染少、开停灵活等优点。 二、燃气轮机的类型及其工作原理 (一)燃气轮机的类型 燃气轮机从负荷情况上划分可分为重型和轻型两类。一般工业上用于拖动发电机组发电,或用于机械驱动的燃气轮机都是重型燃气轮机;而用于飞机发动机的燃气轮机为轻型燃气轮机。 燃气轮机从结构上划分,燃气轮机可分为单轴、双轴和多轴燃气轮机。单轴燃气轮机因其压气机、透平与负载共轴,负载的转速变化规律直接影响压气机转速,使吸入压气机的空气量发生变化,甚至使压气机喘振而发生事故。为了使负载变化规律对压气机转速的影响降低到最小程度,即负载变化规律不直接影响压气机的转速,负载转速的变化规律只能通过内部气体工质的工作过程来间接影响压气机的工况,人们设法使压气机与负载不共轴,因而产生了双轴和多轴燃气轮机。 由上可见,在实际选型时,选用单轴、双轴还是多轴燃气轮机,取决于系统中负载的变化情况,当系统负载变化不大时,一般选用单

轴燃气轮机,如大型火力发电厂用于拖动发电机的燃气轮机;当系统负荷变化较大时,可视其具体情况选用双轴或多轴燃气轮机。(二)燃气轮机的工作原理 燃气轮机的工作过程是压气机(即压缩机)连续地从大气中吸入空气并将其压缩;压缩后的空气进入燃烧室,与喷入的燃料混合后燃烧,成为高温燃气,随即流入燃气涡轮中膨胀作功,推动涡轮叶轮带着压气机叶轮一起旋转;加热后的高温燃气的作功能力显著提高,因而燃气涡轮在带动压气机的同时,尚有余功作为燃气轮机的输出机械功。燃气轮机由静止起动时,需用起动机带着旋转,待加速到能独立运行后,起动机才脱开。燃气轮机的工作过程是最简单的,称为简单循环。燃气初温和压气机的压缩比,是影响燃气轮机效率的两个主要因素。提高燃气初温,并相应提高压缩比,可使燃气轮机效率显著提高。 三、燃气轮机的优缺点 与活塞式内燃机和蒸汽动力装置相比较,燃气轮机的主要优点是小而轻。此外,燃气轮机占地面积小,当用于车、船等运输机械时,既可节省空间,也可装备功率更大的燃气轮机以提高车、船速度。 燃气轮机的主要缺点是效率不够高,在部分负荷下效率下降快,空载时的燃料消耗量高。不同的应用部门,对燃气轮机的要求和使用状况也不相同。功率在10兆瓦以上的燃气轮机多数用于发电,而30~40兆瓦以上的几乎全部用于发电。 四、燃气轮机的发展历程及应用领域

燃气轮机的选型

燃气轮机的选型 在燃气轮机选型时,对其热力性能方面的考虑应注意以下几点: (1)机组热效率和燃料成本相结合的综合经济性。单方面考虑热效率高低常常是不全面的,一般需把机组热效率和燃用的燃料成本结合起来,更全面权衡机组的经济性。因为有时地理因素更优先于热效率,如某些地区的用户可能更注重燃气轮机对燃用廉价原油和重油的能力与相应的长热部件寿命性能。 (2)热力循环系统优化的问题。影响燃气轮机热力性能的因素有很多,如透平初温、压气机压比、回热度(若采用回热循环)等热力参数,压气机、透平、燃烧室等部件效率,进、排气道等各部分流阻损失等。其中许多参数受到设计制造时的技术与设计水平所制约,一般要根据设计和技术条件选取,如透平初温就要根据高温材料和冷却技术来确定。而压气机压比要通过热力循环设计优化分析来确定。 (3)机组的全工况或变工况热力特性。实际上,随着环境大气条件、外界负荷或系统本身等变化,燃气轮机及其联合循环装置总是处于非设计工况下运行,全面考虑全部可能运行区域的特性,就更为重要和实用。主要包括: 1)随大气条件变化的机组变工况特性。由于燃气轮机的工质来自大气环境、又排回大气,其输出功率对大气条件,特别是对大气温度非常敏感。通过燃气轮机及其联合循环性能(设计工况的效率与功率)相对比值随大气温度变化的典型规律。大气温度总在变化,随着温度的升高,燃气轮机及其联合循环相对的输出功率都会下降,但联合循环的功率减小要比燃气轮机平缓,燃气轮机效率下降,而联合循环的效率稍有增加;反之,当温度下降时,两者的输出功率都会增加,燃气轮机效率提高,联合循环效率稍有降低。至于大气压力则与机组安装地区的海拔高度有密切关系,燃气轮机及其联台循环的功率都与大气压力成正比,而两者的效率与此无关。但当分析机组安装地点的海拔高度对燃气轮机性能影响时,要考虑大气温度和压力两个因素的综合影响。 2)随外界负荷变化的机组变工况特性。燃气轮机是通过调节燃料量、也就是调节透平初温来适应外界负荷变化,而不像汽轮机那样是通过改变蒸汽工质质量流量来改变功率,所以机组热经济性随负荷变化而变化趋势就非常明显。 2.燃料与环境问题 (1)燃料问题。燃气轮机燃用的燃料对电站的环境特性,还有经济性、安全性和可靠性等都有很大的影响,主机选型时需全面考虑可供燃用的燃料问题,包括燃料的来源、供应量、质量以及候选机组对其适应性与要求等。燃气轮机适合燃用气体燃料和从高级的航空煤油到低级的锅炉渣油的液体燃料。但所用燃料的各种品质会严重影响燃气轮机装置的运行、维护和成本。因此,燃料的最佳选择应

滑坡计算参数反演分析

滑坡计算参数反演分析的优化算法 1 引言 在滑坡稳定性计算和工程设计中,滑带土的粘聚力(C)和内摩擦角(?)取值正确与否至关重要。目前确定滑带土抗剪强度参数(C、?)值的方法有试验、工程类比和反演分析3种。滑带土剪切试验分为现场或室内两种,受试样和试验条件的限制,滑带土试验数据通常很离散,需要进行分析计算来确定。工程类比法在确定滑带土的抗剪强度参数时具有很强的主观性,在确定类比指标时又受到类比滑坡客观条件的限制。反演分析是确定滑带土抗剪强度参数的一种有效的方法,根据滑坡的宏观变形状况假设滑坡的稳定性系数,再反算滑带土抗剪强度参数。反算是滑坡稳定性计算的逆过程,得到的参数更符合滑坡的变形情况,参数可以作为试验数据选取的参考,若没有试验数据时,可以直接作为稳定性计算、工程设计的参数。 目前,滑带土抗剪强度参数反演分析的方法分为单参数反演和双参数反演两种。前者假定一个参数已知的前提下,反算另外一个参数,通常选择对滑坡稳定性影响较敏感的作为未知参数。后者在反演中有两个未知的参数,通常选择两个距主滑动面等距的剖面建立极限平衡方程求解。本文以三峡库区太山庙滑坡为例,在C、?值未知的情况下,综合采用经验类比和反演分析方法确定滑带土的抗剪强度参数,分析时兼顾了滑坡的区域相似性和个体特性,所得到的结果更为准确、可靠。 2 滑坡概况 欧家湾滑坡位于奉节县白帝镇坪上村2、3组,长江支流石马河左岸,属于三峡库区三期专业监测崩塌滑坡灾害点。滑坡无详细的勘察资料,仅在监测设计阶段做了地面调查。 滑坡自然坡角约25~40°,滑坡前缘临近石马河处零星分布石马河一级阶地,滑坡区属低山丘陵剥蚀地貌。滑坡体的主滑方向为5°,平面形态呈箕形,由后缘向前缘逐渐变宽,滑坡东西宽约350~400m,南北向主轴长约420m。后缘高程约325m,前缘高程约170m,左侧以山脊为界,右侧以冲沟为界,总变形规模约507×104m3。滑体主要由第四系碎块石土夹粘性土组成,滑床为巴东组第三段(T2b3)的泥灰岩,岩层产状为280°∠3°,为斜交坡,图1是滑坡的工程地质剖面图。 图1 欧家湾庙滑坡工程地质剖面图 Fig.1 The engineering geological profile of Oujiawan landslide 滑坡为老滑坡,滑坡区经过过去的剧烈滑动后,在改变了当时的地形地貌后形成了现今的老滑坡体地形。经对现场的调查踏勘发现,滑坡体上树木歪斜,现仍有滑移变形产生。在滑坡中部多户民房附近,近年每逢雨季都有蠕动滑移。从地表调查和发展趋势上看,目前该滑坡处于不稳定状态。 3 滑带土抗剪强度参数统计 对三峡库区二期崩塌滑坡治理工程和三期规前勘(调)察中的崩塌滑坡点的勘察试验资料进行分类统计,得到本区滑带土抗剪强度参数值,可以用于验证和优化反演得到的参数。经统计得到适合该滑坡的抗剪强度参数分布函数如表1,图2是滑带抗剪强度参数统计直方图。 表1 T2b1和T2b3滑带土的抗剪强度参数统计表 Table 1 The shear strength parameters statistic table of sliding zone of T2b1 and T2b3 strata

(建筑电气工程)联合循环燃气轮机发电厂简介精编

(建筑电气工程)联合循环燃气轮机发电厂简介

联合循环燃气轮机发电厂简介 [摘要]以埕岛电厂为例,简要介绍联合循环发电厂几种主要设备及其各自的特点。 [关键词]联合循环燃气轮机余热锅妒简介 1引言 联合循环发电:燃气轮机及发电机和余热锅炉、蒸汽轮机共同组成的循环系统,它将燃气轮机排出的功后高温乏烟气通过余热锅炉回收转换为蒸汽,再将蒸汽注入蒸汽轮机发电。形式有燃气轮机、蒸汽轮机同轴推动壹台发电机的单轴联合循环,也有燃气轮机、蒸汽轮机各自推动各自发电机的多轴联合循环。胜利油田埕岛电厂采用的是美国GEX公司的MS9001E燃气轮机,其热效率为33.79%,余热锅炉为杭州锅炉厂的立式强制循环余热锅炉。 1.燃气轮机 1.1简介 燃气轮机是壹种以空气及燃气为工质的旋转式热力发动机,它的结构和飞机喷气式发动机壹致,也类似蒸汽轮机。主要结构有三部分:1、燃气轮机(透平或动力涡轮);2、压气机(空气压缩机);3、燃烧室。其工作原理为:叶轮式压缩机从外部吸收空气,压缩后送入燃烧室,同时燃料(气体或液体燃料)也喷入燃烧室和高温压缩空气混合,在定压下进行燃烧。生成的高温高压烟气进入燃气轮机膨胀作工,推动动力叶片高速旋转,乏气排入大气中或再加利用。 燃气轮机具有效率高、功率大、体积小、投资省、运行成本低和寿命周期较长等优点。主要用于发电、交通和工业动力。燃气轮机分为轻型燃气轮机和重型燃气轮机,轻型燃气轮机为航空发动机的转型,其优势在于装机快、体积小、启动快、简单循环效率高,主要用于电力调峰、船舶动力。重型燃气轮机为工业型燃机,其优势为运行可靠、排烟温度高、联合循环组合效率高,主要用于联合循环发电、

GE公司F级燃气轮机总体性能参数

GE公司F级燃气轮机 1 F级燃气轮机产品系列及其性能演变 F级燃气轮机已有多种多样的型号可满足不同用户的需要,在MS6000、MS7000、MS9000系列中都有F级的产品,表1列出F级燃气轮机最新机型简单循环的性能,表2列出50Hz的F级燃气 表1 F级最新机型燃气轮机简单循环性能 基本参数MS9351FA MS7241FA MS6101FA 净出力/MW 255.6 171.7 70.1 效率/% 36.9 36.4 34 透平进口温度/℃1327 1327 1288 压比15.4 15.5 14.9 质量流量/kg·s-1624 432 198 排气温度/℃609 602 597 频率/Hz 50 60 50/60 表2 50HzF级燃气轮机联合循环性能 基本参数S109FA S209FA S106FA S206FA 净出力/MW 390.8 786.9 107.4 218.7 净热耗率/kJ·(kWh)-16350 6305 6767 6654 净效率/% 56.7 57.1 53.2 54.1 MS9001FA、MS7001FA、MS6001FA型燃气轮机都有18级的压气机和3级的涡轮机,以冷端驱动和轴向排气为特点,有利于联合循环布置。F级燃气轮机采用GE公司传统可靠的分管式燃烧系统,

并可配备双燃料燃烧系统,如在以天然气为主燃料时,可以轻油为辅助燃料。当天然气供应发生故障时,机组可自动切换到轻油燃烧,使燃机不因燃料供应故障而停机,进一步保证了机组的可靠性和可用性。机组也可根据要求,在一定条件下使用双燃料混合燃烧。此外,F级燃气轮机可燃用低热值燃料,从而扩大了发电厂的燃料使用范围和灵活性。F级燃气轮机应用于IGCC电厂,可 GE公司在其制造MS6000型、MS7000型和MS9000型机组的基础上,发展完善了底盘部套、控制和辅机组合一体的快装模块结构,这种标准化布置可减少管道、布线及其他现场相关联接的工 F级燃气轮机还显示出不同寻常的环保特点。由于机组的效率高,单位发电量的NO x和CO排放量较少。采用干式低NO x(DLN)燃烧室,大大降低了NO x的排放。180多台采用干式低NO x燃烧室的F级燃气轮机已累计运行近30 0万h。有些电厂的NO x排放量甚至低于10mg/kg。 1.1 7F和7FA、7FB型燃气轮机 自从1987年生产第一台7F型燃气轮机后,经过不断改进,形成了一系列F级的燃气轮机。图1以7000系列中的F级燃气轮机为例,展示了F级燃气轮机的发展过程。(图中华氏温度t F 换算因数为)其主要性能见表3。 图1 F级燃气轮机的发展过程 表3 7F系列燃气轮机主要性能

相关文档
相关文档 最新文档