文档库 最新最全的文档下载
当前位置:文档库 › 基于密码身份验证协议和多生物特征识别技术的下一代电子护照方案(IJIEEB-V5-N2-6)

基于密码身份验证协议和多生物特征识别技术的下一代电子护照方案(IJIEEB-V5-N2-6)

I.J. Information Engineering and Electronic Business, 2013, 2, 34-43

Published Online August 2013 in MECS (https://www.wendangku.net/doc/d210431621.html,/)

DOI: 10.5815/ijieeb.2013.02.06

Next Generation Electronic Passport Scheme using Cryptographic Authentication Protocols and Multiple Biometrics Technology

V.K. Narendira Kumar

Assistant Professor, Department of Information Technology, Gobi Arts & Science College (Autonomous),

Gobichettipalayam – 638 453, Erode District, Tamil Nadu, India.

Email ID: kumarmcagobi@https://www.wendangku.net/doc/d210431621.html,

B. Srinivasan

Associate Professor, PG & Research Department of Computer Science, Gobi Arts & Science College (Autonomous), Gobichettipalayam – 638 453, Erode District, Tamil Nadu, India.

Email ID: srinivasan_gasc@https://www.wendangku.net/doc/d210431621.html,

Abstract—Electronic passports (e-passports) are to prevent the illegal entry of traveller into a specific country and limit the use of counterfeit documents by more accurate identification of an individual. The e-passport, as it is sometimes called, represents a bold initiative in the deployment of two new technologies: cryptography security and biometrics (face, fingerprints, palm prints and iris). A passport contains the important personal information of holder such as photo, name, date of birth and place, nationality, date of issue, date of expiry, authority and so on. The goal of the adoption of

the electronic passport is not only to expedite processing

at border crossings, but also to increase security. The paper explores the privacy and security implications of this impending worldwide experiment in biometrics authentication technology.

Index Terms— Biometrics, Cryptographic, Electronic Passport, Face, Fingerprint, Palmprint, Iris.

I.INTRODUCTION

An electronic passport (e-Passport) is an identification document which possesses relevant biographic and biometric information of its bearer. It also has embedded in it a Radio Frequency Identification (RFID) Tag which is capable of cryptographic functionality. The successful implementation of biometric technologies in documents such as e-Passports aims to strengthen border security

by reducing forgery and establishing without doubt the identity of the documents' bearer.

The International Civil Aviation Organization has adopted a global, harmonized blueprint for the integration of biometric identification information into machine readable passports. The purpose of the new biometric passports is to prevent the illegal entry of travelers into a specific country and to limit the use of fraudulent documents by more accurate authentication

of individuals. This study aims to find out to what extent

the integration of biometric identification information into passports will improve their robustness against identity theft.

The International Civil Aviation Organization (ICAO), which plays a major role in setting global travel standards, has adopted a global, harmonized blueprint for the integration of biometric identification information into passports and other machine readable travel documents. The blueprint requires that a high-capacity contact-less integrated circuit containing a raw image file of the holder’s face in addition to other identity information such as name and date of birth be included in the machine readable passports and other travel documents.

The purpose of biometric passports is to prevent the illegal entry of travelers into a specific country and limit the use of fraudulent documents, including counterfeit and modified documents and the impostor’s use of legitimate documents.

The integration of biometrics can provide better verification performance than the individual biometrics. Biometrics will also increase robustness of the biometric systems against the spoofing attacks and solve the problem of non-universality. Since the facial image is the mandatory biometric identifier to be included in the future passports, researcher study focus on the use of the facial image, iris, palm print and finger prints for the identity verification of passport holders. In order of least secure and least convenient to most secure and most convenient, they are [1]:

Something you have - card, token, key.

Something you know- PIN, password.

Something you are - biometric.

The remaining sections are organized as follows: Brief outline of Biometric in the e-passports is presented in section 2. E-Passport methodology is mentioned in Section 3 and logical data structures are in the section 4. The other phases of the implementations of the e-passport protocol are briefly explained in section 5. Experimental results are given in Section 6. Finally, Section 7 describes the concluding remarks.

II.LITERATURE SURVEY

Juels et al (2005) discussed security and privacy issues that apply to e-passports. They expressed concerns that, the contact-less chip embedded in an e-passport allows the e-passport contents to be read without direct contact with an IS and, more importantly, with the e-passport booklet closed. They argued that data stored in the chip could be covertly collected by means of “skimming” or “eavesdropping”. Because of low entropy, secret keys stored would be vulnerable to brute force attacks as demonstrated by Laurie (2007). Kc and Karger (2005) suggested that an e-passport may be susceptible to “splicing attack”, “fake finger attack” and other related attacks that can be carried out when an e-passport bearer presents the e-passport to hotel clerks. There has been considerable press coverage (Johnson, 2006; Knight, 2006; Reid, 2006) on security weaknesses in e-passports. These reports indicated that it might be possible to “clone” an e-passport.

2.1. Purpose of the Study

The primary objective of the study is to produce new knowledge with respect to security of biometric techniques in an e-passport setting. The results of the work should be useful for those making e-passport design decisions with respect to security and biometric technologies in an e-passport setting.

2.2. Statement of the Problem

The purpose of biometric passports is to prevent the illegal entry of travelers into a specific country and to limit the use of fraudulent documents by more accurate identification of individuals. It is interesting to find out to what extent the integration of cryptographic security and biometric identification information into passports will improve their robustness against identity theft.

2.3. Biometric

Biometric technologies are automated methods of recognizing an individual based on their physiological or behavioral characteristics such as face, fingerprints, palm print and iris. Biometric systems are applications of biometric technologies and can be used to verify a person’s claimed identity and to establish a person’s identity [1].

In an ideal biometric system, every person possess the characte r is tic, no t wo p ers ons have the s a me characteristic, the characteristic remain permanent over time and does not vary under the conditions in which it is co llected and the b io met r ic s ys tem res is ts countermeasures. Evaluation of biometric systems quantifies how well biometric systems accommodate the properties of an ideal biometric system. All of existing biometric systems suffer from the same problems: false acceptance and false rejection caused by the variability of conditions at the human-machine interface. A common feature of any system that uses biometric is a trade-off between high security and a more usable system.

2.4. Multiple Biometric Systems

Limitations of unimodal biometric systems can be overcome by using multiple biometric systems. A multiple biometric system uses multiple applications to capture different types of biometrics. This allows the integration of two or more types of biometric recognition and verification systems in order to meet stringent performance requirements. Such systems are expected to be more reliable due to the presence of multiple, independent pieces of evidence. These systems are also able to meet the strict performance requirements imposed by various applications [3].

A multiple system could be, for instance, a combination of fingerprint verification, face recognition, voice verification and smart-card or any other combination of biometrics. This enhanced structure takes advantage of the proficiency of each individual biometric and can be used to overcome some of the limitations of a single biometric. For instance, it is estimated that 5% of the population does not have legible fingerprints, a voice could be altered by a cold and face recognition systems are susceptible to changes in ambient light and the pose of the subject's head. A multiple system, which combines the conclusions made by a number of unrelated biometrics indicators, can overcome many of these restrictions [5].

2.5. Technical Challenges

The electronic passport is secure will prove substantially more difficult than actually securing it biometric technology in passports. It is quite clear, however, that contactless chips offer significant advantages, including larger capacities and lower costs. The technology also has yet to experience widespread deployment in either the private or public sector, though such deployment can be expected in the private sector in the next few years. Contact-based chips simply lack the robustness of contactless technology. A lack of available barcodes, in addition to the fact that RFID is a superior tracking technology compared to virtually any available, has led major retailers like Walmart to investigate inclusion of RFID in its supply chain. As this deployment occurs, RFID may also become an integral part of numerous other everyday tasks, such as entering a place of work or making a credit card transaction.

III.SYSTEM METHODOLOGY

An e-passport bearer presents his/her document to a border security officer who scans the MRZ information in the e-passport through a MRZ reader and then places the e-passport near an e-passport reader to fetch data from the microchip. The current implementation consists of three protocols [7]:

Basic Access Control (BA C) protocol (optional): It provides encrypted communication between the chip and the Inspection System (IS).

Passive Authentication (PA) protocol (mandatory):

A border security officer reads and verifies the

authenticity of e-passport content stored in the chip.

Active Authentication (AA) protocol (optional): It provides integrity verification of e-passport’s data.

The two new protocols that intend to replace active authentication and thus now consists of the following four protocols:

Basic Access Control (BAC) protocol: It facilitates the e-passport and the IS to establish an encrypted

communication channel.

Chip Authentication (CA) protocol (mandatory): A mechanis m to detect cloned e-Passports

Passive Authentication (PA) protocol (mandatory): As in first generation passport standard.

Terminal authentication (TA): Only if all protocols are completed successfully, the e-passport releases

sensitive information like secondary biometric

identifiers. The e-passport performs the collection

of protocols as specified in the first generation e-

passports, therefore providing backward compatibility.

3.1. Biometrics in E-Passports

Biometrics in e-passports complying with the ICA O standard consists of a mandatory facial image and fingerprints. While the former are used by a significant number of countries and thus information on them is widely available, the latter is currently used seldom. Therefore, this section only covers the vulnerabilities of facial images, fingerprints, palm print and iris images [8].

3.2. Face Image

Facial images are the most common biometric characteristic used by humans to make a personal recognition, hence the idea to use this biometric in technology. This is a nonintrusive method and is suitable for covert recognition applications. The applications of facial recognition range from static ("mug shots") to dynamic, uncontrolled face identification in a cluttered background (subway, airport). Face verification involves extracting a feature set from a two-dimensional image of the user's face and matching it with the template stored in a database. The most popular approaches to face recognition are based

on either: 1) the location and shape of facial attributes such as eyes, eyebrows, nose, lips and chin, and their spatial relationships, or 2) the overall (global) analysis

of the face image that represents a face as a weighted combination of a number of canonical faces. It is questionable if a face itself is a sufficient basis for recognizing a person from a large number of identities with an extremely high level of confidence. Facial recognition system should be able to automatically detect a face in an image, extract its features and then recognize it from a general viewpoint (i.e., from any pose) which is a rather difficult task. Another problem is the fact that the face is a changeable social organ displaying a variety of expressions [4]. 3.3. Fingerprint

A fingerprint is a pattern of ridges and furrows located on the tip of each finger. Fingerprints were used for personal identification for many centuries and the matching accuracy was very high. Patterns have been extracted by creating an inked impression of the fingertip on paper. Today, compact sensors provide digital images of these patterns. Fingerprint recognition for identification acquires the initial image through live scan of the finger by direct contact with a reader device that can also check for validating attributes such as temperature and pulse. In real-time verification systems, images acquired by sensors are used by the feature extraction module to compute the feature values. The feature values typically correspond to the position and orientation of certain critical points known as minutiae points. The matching process involves comparing the two-dimensional minutiae patterns extracted from the user's print with those in the template. One problem with the current fingerprint recognition systems is that they require a large amount of computational resources

[2].

3.4. Palm Print

The palm print recognition module is designed to carry out the person identification process for the unknown person. The palm print image is the only input data for the recognition process. The person identification details are the expected output value. The input image feature is compared with the database image features. The relevancy is estimated with reference to the threshold value. The most relevant image is selected for the person’s identification. If the comparison result does not match with the input image then the recognition process i s declared as unknown person. The recognition module is divided into four sub modules. They are palm print selection, result details, ordinal list and ordinal measurement. The palm print image selection sub module is designed to select the palm print input image. The file open dialog is used to select the input image file. The result details produce the list of relevant palm print with their similarity ratio details [1]. The ordinal list shows the ordinal feature based comparisons. The ordinal measurement sub module shows the ordinal values for each region.

3.5. Iris Recognition

Iris recognition technology is based on the distinctly colored ring surrounding the pupil of the eye. Made from elastic connective tissue, the iris is a very rich source of biometric data, having approximately 266 distinctive characteristics. These include the trabecular meshwork, a tissue that gives the appearance of dividing the iris radically, with striations, rings, furrows, a corona, and freckles. Iris recognition technology uses about 173 of these distinctive characteristics. Iris recognition can be used in both verification and identification systems. Iris recognition systems use a small, high-quality camera to capture a black and white, high-resolution image of the iris. The systems then define the

boundaries of the iris, establish a coordinate system over the iris, and define the zones for analysis within the coordinate system [9].

3.6. Biometric System Modules

Enrollment Unit: The enrollment module registers individuals into the biometric system database. During the phase, a biometric reader scans the individual’s biometric characteristic to produce its digital representation.

Feature Extraction Unit: The module processes the input sample to generate a compact representation called the template, which is then stored in a central database or a smartcard issued to the individual.

Matching Unit: The module compares the current input with the template. If the system performs identity verification, it compares the new characteristics to the user’s master template and produces a score or match value (one to one matching). A system performing identification matches the new characteristics against the master templates of many users resulting in multiple match values (one too many matching).

Decision Maker: The module accepts or rejects the user based on a security threshold and matching score. IV.E-PASSPORT LOGICAL DATA STRUCTURE The ICAO issued a standardized data structure called Logical Data Structure (LDS) for the storage of data elements. This was to ensure that global interoperability for e-Passport Tags and Readers could be maintained. The specifications state that all the 16 data groups are write protected and can be written only at the time of issue of the e-Passport by the issuing state shown in table 1. A hash of data groups 1-15 are stored in the security data element (SOD), each of these hashes should be signed by the issuing state.

TABLE 1: Passport Logical Data Structure

Requirements of the Logical Data Structure:ICA O has determined that the predefined, standardized LDS must meet a number of mandatory requirements:

Ensure efficient and optimum facilitation of the rightful holder. Ensure protection of details recorded in the optional capacity expansion technology. Allow global interchange of capacity expanded data based on the use of a single LDS common to all. Address the diverse optional capacity expansion needs of issuing state. It provides expansion capacity as user needs and available technology evolve.

Researcher analyzes e-passport protocols by first identifying their security goals. Researcher assumes that a country implements the highest level of Cryptographic security and multiple biometrics for e-passports.

4.1. Data Confidentiality

Data confidentiality ensures the privacy of e-passport details and encryption is the common technique that provides confidentiality [11]. In the case of e-passport, encryption is used to create a secure channel between the e-passport reader and the microchip. Note that the cryptographic keys used for encryption have to be guarded against unauthorized access (data elements within the LDS or keys stored in the DF).

4.2. Data Integrity

Data integrity prevents against illegal modifications of information exchanged between the e-passport reader and the microchip. Also the DF, SOD and LDS should be secure against any unauthorized modifications, i.e., any data tampering should be easily detectable by the border security centre.

4.3. Data Authentication

Data origin authentication ensure that the source of the transmission in a protocol is authentic, i.e., the data on the chip should be bound to information on MRZ and to the data that appears in the e-passport bio-data page currently being examined by a border security officer.

4.4. Mutual Authentication

Mutual authentication is the process where both participants prove their identities to each other. As in the goal 3, where the e-passport reader authenticates an e-passport, this goal protects the e-passport bearer, as it is crucial for an e-passport to authenticate the e-passport reader before divulging any personal information. This prevents an unauthorized e-passport reader from obtaining biometric and personal details from an e-passport.

4.5. Certificate Manipulation

Certificates acts as an off-line assurance from a trusted authority that the certified public key really does belong to the principal who is in possession of corresponding secret key. However, it is the responsibility of the protocol to validate that the corresponding secret key is actually held by the principal claiming ownership of the public key. The e-passport reader should have a guarantee that certificates presented by the e-passport are valid and match the data on the e-passport. ICA O has implemented a PKI which

would store signature certificates from issuing state and organizations.

V.IMPLEMENTATION OF E-PASSPORT

SYSTEM

In order to implement this electronic passport system using cryptographic security and multiple biometrics technology efficiently, https://www.wendangku.net/doc/d210431621.html, program is used. This program could speed up the development of this system because it has facilities to draw forms and to add library easily. There are three ways of doing authentication and authorization in https://www.wendangku.net/doc/d210431621.html,:

Windows Authentication:In this methodology https://www.wendangku.net/doc/d210431621.html, web pages will use local windows users and groups to authenticate and authorize resources.

Forms Authentication:This is a cookie based authentication where username and password are stored on client machines as cookie files or they are sent through URL for every request. Form-based authentication presents the user with an HTML-based Web page that prompts the user for credentials. Passport Authentication:Passport authentication is based on the passport website provided by the https://www.wendangku.net/doc/d210431621.html,. So when user logins with credentials it will be reached to the passport website where authentication will happen. If Authentication is successful it will return a token to your website.

Anonymous Access: If you do not want any kind of authentication then you will go for Anonymous access. 5.1. E-Passport Authenticate

Figure 1 shows the different entities involved in authenticate with e-Passport scenario and the traffic that is exchanged between them. A TCP connection from the e-Passport to the user is created as soon as the user loads the login page. In the current implementation this is accomplished by placing an https://www.wendangku.net/doc/d210431621.html, owned by the identity provider on the web page (to be more precise, what is placed on the web page is an HTML tag linking to code on the web server). The website is signed by the identity provider and also loaded from the passport web server so that the Runtime Environment at the user’s client trusts this piece to allow it to set up a connection back to the passport server. The website was given permission to connect to the contactless reader in a passport policy file which was installed during enrollment. The TCP connection is used for subsequent communication between the identity provider and the user’s e-Passport.

Using the managed passport acquired during enrollment the user can attempt to login. One extra step is taken by the identity provider after receiving a token request from the client. In this extra step the identity provider checks if the user has a valid passport and it reads the user’s details from the passport. As soon as the client actually requests a token at the identity provider, the identity provider will look at the provided token and send the appropriate BA C data to the passport authenticating the identity provider at the passport. The identity provider will request the e-Passport’s AA public key and SOD. With the SOD it can check if the public key has been signed by the issuing country. It can then send a random challenge to the e-Passport which encrypts it using the AA private key. This proves that the passport is authentic and not a simple clone. The identity provider will request the minimal needed information from the e-Passport to confirm to the token request. The token is sent back to the client and from here on the normal Information scenario continues [6].

To summarize, the identity provider uses BAC, AA, and PA and then reads Data Group. Based on the results of the security protocols the identity provider knows that the information in Data Group correctly identifies a citizen of the issuing country (for as far as the identity provider trusts the country’s CSC, of course). Remember that Data Group contains basic textual card holder information (name, date of birth, date of expiry of document, document number, gender, nationality, and in the case even the citizen ID). The information in this data group is used in the token created by the identity provider and only the required fields (as requested by the relying party’s policy) are sent to the relying party (via the user’s client). No other information is sent to the relying party and the relying party needs to trust the identity provider that it has done its job in checking the validity of the user’s e-Passport.

5.2. E-Passport Initial Setup

All entities involved in the protocol share the public quantities p, q, g where:

p is the modulus, a prime number of the order 1024 bits or more.

q is a prime number in the range of 159 -160 bits.

g is a generator of order q, where Ai < q, g i ≠ 1 mod

p.

Each entity has its own public key and private key pair (PK i,SK i) where PK i = g(SK i) mod p

Entity i’s public key (PK i) is certified by its root certification authority (j), and is represented as

CERT j(PK i, i).

The public parameters p, q, g used by an e-Passport are also certified by its root certification authority. 5.3. Phase One – IS Authentication

Step 1 (IS) When an e-Passport is presented to an IS, the IS reads the MRZ information on the e-

Passport using an MRZ reader and issues the command GET CHA LLENGE to the e-Passport

chip.

Step 2 (P) The e-Passport chip then generates a randomeP £ R 1 ≤ eP ≤ q - 1 and computes KeP =

geP mod p, playing its part in the key agreement

process to establish a session key. The e-Passport

replies to the GET CHA LLENGE command by sending KeP and its domain parameters p, q, g.

eP → IS : KeP , p, q, g

Step 3 (IS) On receiving the response from the e-Passport, the IS generates a random IS £R 1 ≤ IS≤

q - 1 and computes its part of the session

key as KIS = gIS mod p. The IS digitally signs the

message containing MRZ value of the e-Passport

and KeP.

SIS = SIGNSKIS (MRZ || KeP)

It then contacts the nearest DV of the e-Passports

issuing country and obtains its public key. The IS

encrypts and sends its signature SIS along with the

e-Passport’s MRZ information and KeP using the

DV’s public key PKDV.

IS → DV: ENCPK DV (SIS, MRZ, KeP),

CERTCVCA (PKIS, IS)

Step 4 (DV) The DV decrypts the message received from the IS and verifies the CERTCVCA (PKIS, IS) and the signature SIS. If the verification holds, the

DV knows that the IS is genuine, and creates a digitally-signed message SDV to prove the IS’s authenticity to the e-Passport.

SDV = SIGNSKDV (MRZ || KeP || PKIS),

CERTCVCA (PKDV, DV)

The DV encrypts and sends the signature SDV

using the public key PKIS of IS.

DV → IS: ENCPKIS (SDV, [PKeP])

The DV may choose to send the public key of the e-

Passport if required. This has an obvious advantage,

because the IS system now trusts the DV to be genuine. It can obtain a copy of e-Passport’s PK to

verify during e-Passport authentication.

Step 5 (IS) after decrypting the message received, the IS computes the session key KePIS = (KIS) eP

and encrypts the signature received from the DV,

the e-Passport MRZ information and KeP using

KePIS. It also digitally signs its part of the session

key KIS.

IS → eP: KIS, SIGNSKIS (KIS, p, q, g),

ENCKePIS (SDV, MRZ, KeP)

Step 6 C On receiving the message from the IS, the e-Passport computes the session key KePIS =

(KIS)eP. It decrypts the message received using the

session key and verifies the signature SDV and

VERIFYPKIS (SIGNSKIS (KIS, p, q, g)). On successful verification, the e-Passport is convinced

that the IS system is genuine and can proceed further in releasing its details. All further communications between an e-Passport and IS are

encrypted using the session key KePIS.

5.4. Phase Two - e-Passport Authentication

Step 1 C The IS issues an INTERNA L AUTHENTICATE command to the e-Passport. The

e-Passport on receiving the command, the e-

Passport creates a signature SeP = SIGNSKeP

(MRZ || KePIS) and sends its domain parameter certificate to the IS. The entire message is encrypted using the session key KePIS.

eP → IS : ENCKePIS (SeP , CERTDV (PKeP),

CERTDV (p, q, g))

Step 2 (IS) The IS decrypts the message and verifies CERTDV (p, q, g), CERTDV (PKeP) and

SeP. If all three verifications hold then the IS

convinced that the e-Passport is genuine and authentic.

During the IS authentication phase, and IS sends the e-Passport’s MRZ information to the nearest e-Passport’s DV, which could be an e-Passport country’s embassy. Embassies are DV’s because they are allowed to issue e-Passports to their citizens and because most embassies are located within an IS’s home country, any network connection issues will be minimal. Sending the MRZ information is also advantageous, because the embassy now has a list of all its citizens that have passed through a visiting country’s border security checkpoint. We do not see any privacy implications, because, in most cases, countries require their citizens to register at embassies when they are vi siting a foreign country.

VI.EXPERIMENTA L RESULTS

A successful design, deployment and operation of biometric passport systems depend highly on the results for existing biometrical technologies and components. These existing technologies as well as new solutions need to be evaluated on their passport system performance. However it is often forgotten that the biometric (iris, finger, face, palm prints.) is only one part of a fully deployed application. As biometric (sub) systems are often not designed with security and or privacy in mind, system integrators will need to address the requirements of the deployed application in this light. The fears and concerns of a significant segment of the user population need to be addressed as early as possible in the design process, to ensure that appropriate mechanis ms are in place to reassure such users. These concerns may relate to privacy or to safety issues, which may be addressed in part through legal and regulatory measures. This article discusses the requirements, design and application scenarios of biometrical systems in general and the introduction of a new biometrical passport in particular.

The e-passport authentication system is divided into enrollment module and authentication module. The passport users who are included in the enrollment module are e-passport holder, Immigration administrator. Figure 2 shows the enrollment module in the e-passport authentication architecture design.

The e-passport holder registers to the system by providing the personal data and some important documentation to the immigration officer. After that, Immigration Administrator will make the enrollment for the e-passport holder by filling the data into the enrollment system. After enrollment process, the data of the e-passport holder will be encrypted by proposed cryptography technique and stored into immigration database and RFID tag inside the e-passport. Besides that, Enrollment module also includes the modifying process and deleting process. Modifying process will be carried out if there was a special request from e-passport holder to change the information of the e-passport, the e-passport spoil, or finished pages. Deleting process will

be carried out if the previous e-passport validation date was expired or the e-passport holder lost their passport. They have to register a new e-passport in order to get an e-passport again.

Figure 1: Message sequence chart of authenticate with e-Passport scenario

Figure 2: Enrollment Module of E-passport Authentication Architecture

The passport user involve in the authentication module are e-passport holder and check point officer. When e-passport holder arrives to check point, e-passport holder will put the e-passport onto RFID reader, and a signature required key in by e-passport holder so that authentication process can be performed to verify an e-passport holder. After authentication process authenticated the e-passport holder, RFID reader will read the encrypted data which was stored inside the RFID tag in e-passport. The encrypted data will be sent to the system to match with the encrypted data in the database system. If the encrypted data in the e-passport match with the encrypted data which is stored inside the database during enrollment process, the encrypted data in the e-passport will be decrypted by a certain key. Then the check point officer has to check and verify the identity of the e-passport holder. Figure 3 shows the authentication module in the e-passport authentication architecture design. The attributes inherent in the e-Passport provide a here to fore unavailable means of improving the security of the international travel system.

Figure 3: Authentication Module of E-passport Authentication Architecture

These are described below under three general categories: preventing the use of multiple identities; linking the bearer to the document in a traditional border operations environment; and serving as a strong token to drive a biometric identification process. After these uses have been explored in some detail, the paper will examine why the e-Passport may not be universally accepted by states as the sole device used to fully automate the border clearance process for registered participants as envisioned by the process flow.

Accuracy of the biometric matching functions of the system. Issuing States must encode one or more facial, fingerprint, palm print or iris biometrics on the MRTD as per LDS standards (or on a database accessible to the Receiving State). Given an ICAO standardized biometric image and/or template, receiving States must select their own biometric verification software, and determine their own biometric scoring thresholds for identity verification acceptance rates – and referral of imposters.

-Passport Holder RFID Reader

E-Passport Authentication

System

Check Point Officer

TABLE 2: Comparison of Biometric Technologies

Every type of biometric measurement can be classified with a number of characteristics that should be considered in a selection process see table 2. Being familiar with these characteristics will help you to better understand how to think objectively about each type. Sure, some of the available biometric technologies are cool, but it’s no longer we have to make rational decisions about purchasing and using technology. Universality: This refers to whether each person has the characteristic being measured. For instance, nearly everyone in your organization will have at least one finger for fingerprint biometrics, but gait-based biometrics may be more difficult if you have any wheelchair-bound staff members.

Uniqueness: How well the particular biometric distinguishes people. Palm is the best, and fingerprints and iris scans are pretty good too.

Permanence: A good biometric system should measure something that changes slowly (if at all) over time. DNA and fingerprints are very good over the long term; handwriting and voice change somewhat from decade to decade.

Collectability: This refers to how easily the biometric can be measured. face scores very low (it isn’t easy to collect); fingerprint and palm-scan biometrics rate quite high. Gait requires a person to walk over a distance, which would be hard to do while sitting at a workstation. Retina scan requires the subject get really close to a digital camera.

Performance: This refers to the overall technology burden: how much equipment, time, and calculation go into performing a comparison. The fingerprint method fares very well; fingerprint readers are small, compact, and accurate. Biometrics tends to be costly, slow, and labor-intensive.

Accuracy: How well does a biometric system distinguish between subjects, and what are the false acceptance and false rejection rates?

Acceptability: W ill users be willing to use the biometric technology? face will score low because of privacy reasons. Retina scans will score low because some people will be uncomfortable putting their eye really close to something that seems intrusive. Similarly, people won’t mind swiping a finger across a surface-type fingerprint scanner or getting an iris photographed from a few feet away, but some are squeamish about sticking their fingers into a device (too many “B” movies).

Circumvention: This refers to how easily a forgery can be made that will fool the biometric system (early fingerprint devices, for example, could be fooled with “gummy fingers”). Proof of life testing — a feature that determines whether a sample comes from a living body part — is incorporated into many biometric systems so digital images of body parts are less likely to fool the system. But circumvention also refers to whether someone can attack a biometric system in other ways, such as replaying known good credentials through a network connection.

VII.CONCLUSIONS

The work represents an attempt to acknowledge and account for the presence on e-passport using biometrics recognition towards their improved identification. The application of facial, fingerprint, palm print and iris recognition in passports requires high accuracy rates; secure data storage, secure transfer of data and reliable generation of biometric data. The passport data is not required to be encrypted, identity thief and terrorists can easily obtain the biometric information. The discrepancy in privacy laws between different countries is a barrier for global implementation and acceptance of biometric passports. A possible solution to un-encrypted wireless access to passport data is to store a unique cryptographic key in printed form that is also obtained upon validation. The key is then used to decrypt passport data and forces thieves to physically obtain passports to steal personal information. More research into the technology, additional access and auditing policies, and further security enhancements are required before biometric recognition is considered as a viable solution to biometric security in passports. The adversaries might

exploit the passports with the lowest level of security. The inclusion of multiple biometric identification information into machine readable passports will improve their robustness against identity theft if additional security measures are implemented in order

to compensate for the limitations of the biometric technologies. It enables countries to digitize their security at border control and provides faster and safer processing of an e-passport bearer. E-passports may provide valuable experience in how to build more secure and biometric identification platforms in the years to come.

REFERENCES

[1] A.K.Jain, R.Bolle, “Biometrics-Personal

Identification in Networked Society” Norwell,

1999, Page No. 23-36.

[2]Barral and A. Tria. “Fake Fingers in Fingerprint

Recognition: Glycerin Supersedes Gelatin”, In

Formal to Practical Security. Springer, 2000. Page

No. 83-92.DOI:10.1007/978-3-642-02002-5_4. [3]Bergman, “Multi-Biometric Match-on-Card

Alliance Formed,” Biometric Technology Today,

vol. 13, no. 5, 2003. Page No. 1-9.

[4] C.Hesher, A.Srivastava, G.Erlebacher, “A Novel

Technique for Face Recognition using Range

Images” in the Proceedings of Seventh International Symposium on Signal Processing and

Its Application, 2005. Page No. 58-69.

DOI:10.1109/ISSPA.2003.1224850.

[5]Chang, “New Multi-Biometric Approaches for

Improved Person Identification,” PhD Dissertation,

Department of Computer Science and Engineering,

University of Notre Dame, 2006. Page No. 153-

159.

[6] D. Monar, A. Juels, and D. Wagner, “Security and

Privacy Issues in E-Passports”, Cryptology ePrint

Archive, Report 2005/095, 2007. Page No. 72-78.

DOI:10.1109/SECURECOMM.2005.59.

[7]Gaurav S. Kc and Paul A. Karger. “E-Passport

Authentication Protocols”, IBM Technical Report

(RC 23575), IBM T. J.Watson Research Labs,

April 2008. Page No. 315-322.

[8]HOME AFFAIRS JUSTICE, “EU Standard

Specifications for Security Features and

Biometrics in Passports and Travel Documents”,

Technical report, European Union, 2010. Page No.

62-65.

[9]John Daugman, “How Iris Recognition Works.”

IEEE Transactions on Circuits and Systems for

Video Technology, 14(1):21–30, 2010. Page No.

103-109.DOI:10.1109/TCSVT.2003.818350.

[10]KLUGLER, D., “Advance Security Mechanisms

for E-Passport Protocols Implementation, Technical Report”, Federal Office for Information

Security (BSI), Germany, 2011. Page No. 41-46. [11]Riscure Security Lab, “E-Passport Privacy Attack”,

at the Cards Asia Singapore, April 2011. Page No.

1-56. First Author Profile:

Mr. V.K. NARENDIRA

KUMAR M.C.A., M.Phil.,

Assistant Professor, Department of

Information Technology, Gobi

Arts & Science College

(Autonomous), Gobichettipalayam

– 638 453, Erode District, Tamil

Nadu, India. He received his M.Phil Degree in Computer Science from Bharathiar University in 2007. He has author more than 40 international journal article publications. He has authored or co-authored more than 60 technical papers and conference presentations. He is an editorial board member for several scientific international journals. His research interests are focused on Internet Security, Biometrics, Advanced Networking, Visual Human-Computer Interaction, and Multiple Biometrics Technologies.

Second Author Profile:

Dr. B. SRINIVASAN M.C.A.,

M.Phil., M.B.A., Ph.D., Associate

Professor, PG & Research

Department of Computer Science,

Gobi Arts & Science College

(Autonomous), Gobichettipalayam

– 638 453, Erode District, Tamil

Nadu, India. He received his Ph.D. Degree in Computer Science from Vinayaka Missions University in 11.11.2010. He has author or co-authored more than 30 international journal article publications.

He has authored or co-authored more than 70 technical papers and conference presentations. He is a reviewer

for several scientific e-journals. His research interests include automated biometrics, computer networking, Internet security, and performance evaluation.

技术开发合作协议

技术开发合作协议文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

合同编号: 技术开发合同 项目名称:PC预制件模具开发 委托方(甲方): 受托方(乙方): 签订时间: 签订地点: 有效期限:2016年04月22日~2018年04月22日 委托方(甲方): 住所地: 法定代表人: 项目联系人: 通讯地址: 电话:传真:/ 电子信箱: 受托方(乙方): 住所地: 项目负责人: 项目联系人: 通讯地址: 电话:传真:/ 电子信箱: 本合同甲方委托乙方研究开发PC预制件模具开发项目,并支付项目合作费,乙方接受委托并进行此项研究开发工作。双方经过友好协商,在真实、平等、自愿的基础上,根据《中华人民共和国合同法》规定,达成如下协议并由双方共同恪守。 第一条合作形式、技术目标、任务指标、分工要求和提交成果 1.1合作形式 甲方与乙方采取长期战略合作的开发形式,与该项目有关的知识产权归属甲方所有。 1.2技术目标:

本次项目通过完成PC预制件模具开发产品设计开发,使产品主要技术性能达到国内领先水平,并形成甲方自有风格和知识产权。 1.3任务指标 见甲乙双方确认的PC预制件模具开发具体的《项目任务书》。 1.4分工要求 1)方案设计、技术设计、工程图设计、力学计算等工作以乙方为主、甲方协助; 2)技术文件、样机试制、试验整改、项目定型等工作以甲方为主、乙方协助; 3)乙方完成方案设计后,技术设计阶段由甲方安排专业组进行对接参与,详细分工计划由双方协商。 1.5提交成果 乙方向甲方提交该项目的研究成果为总体设计方案、全套工程图纸、产品清单。 第二条合同履行计划 依据需要制定开发计划,以甲方书面通知为准,作为本合同附件具备同等效力。 第三条双方责任 甲方责任: 1)甲方向乙方提供开展该项目研发工作所需的技术资料,负责对乙方技术设计和工程图设计提供工艺指导和制造规范要求; 2)甲方按合同规定准时向乙方支付研发经费; 3)甲方负责样机试制、试验、整改生产组织; 4)甲方负责产品定型、鉴定和项目验收组织。 乙方责任: 1)乙方按甲方要求安排专业研发人员参与PC预制件模具开发产品研发,确保项目设计质量及项目可持续性。 2)乙方设计开发时要充分考虑甲方生产制造和采购平台体系,满足甲方生产工艺制造要求。 3)乙方按本协议第一条第1.4项要求,向甲方提供该合作项目的研究成果。

化学工程与工业生物工程专业就业方向与就业前景

化学工程与工业生物工程专业就业方向与就 业前景 1、化学工程与工业生物工程专业简介 化学工程与工业生物工程专业以生物学、化学、工程学的基本理论为依据,利用酶工程、细胞工程、发酵工程研究生物产品的生产过程,研制开发新的生物工程产品以及对生物产品进行分析测定的技术。旨在培养能在化学工程及生物技术领域从事科学研究、产品及过程设计、新技术与设备研发以及技术管理的高级专门人才,能立足于服务于石油化工、环境保护、能源、食品等传统石油化学工业及生物工程与技术、生物化学工程、生物医药工程等新兴产业。 2、化学工程与工业生物工程专业就业方向 本专业学生毕业后可在工业企业、金融银行、咨询服务或政府部门担任化学工程与工业生物工程师、系统分析员、生产工程师、管理顾问、操作分析员以及类似的职位。 从事行业: 毕业后主要在制药、石油、新能源等行业工作,大致如下:1制药/生物工程 2石油/化工/矿产/地质 3新能源 4环保

5其他行业 6快速消费品(食品、饮料、化妆品) 7机械/设备/重工 8建筑/建材/工程 从事岗位: 毕业后主要从事销售工程师、电气工程师、ie工程师等工作,大致如下: 1化学工程师 2工艺工程师 3研发工程师 4销售工程师 5全国代理商 6销售经理 7区域代理商 8化验员 工作城市: 毕业后,上海、广州、北京等城市就业机会比较多,大致如下: 1上海 2广州 3北京 4杭州 5深圳 6苏州

7南京 8武汉 3、化学工程与工业生物工程专业就业前景怎么样 化学工程与工业生物工程专业在专业学科中属于工学类中的化学与制造类,其中化学与制造类共5个专业,化学工程与工业生物工程专业在化学与制造类专业中排名第5,在整个工学大类中排名第139位。 截止到2013年12月24日,46122位化学工程与工业生物工程专业毕业生的平均薪资为4406元,其中应届毕业生工资3805元,0-2年工资3855元,3-5年工资4704元,10年以上工资5704元,6-7年工资6290元,8-10年工资6736元。化学工程与工业生物工程专业就业岗位最多的地区是武汉。薪酬的地区是常德。

几种常见的生物特征识别方式

生物识别技术主要是指通过人类生物特征进行身份认证的一种技术,这里的生物特征通常具有唯一的(与他人不同)、可以测量或可自动识别和验证、遗传性或终身不变等特点。所谓生物识别的核心在于如何获取这些生物特征,并将之转换为数字信息,存储于计算机中,利用可靠的匹配算法来完成验证与识别个人身份的过程。 方法/步骤 1.指纹识别 指纹是指人的手指末端正面皮肤上凸凹不平产生的纹线。纹线有规律的排列形成不同的纹型。纹线的起点、终点、结合点和分叉点,称为指纹的细节特征点。指纹识别即指通过比较不同指纹的细节特征点来进行鉴别。由于每个人的指纹不同,就是同一人的十指之间,指纹也有明显区别,因此指纹可用于身份鉴定。 指纹识别技术是目前最成熟且价格便宜的生物特征识别技术。目前来说指纹识别的技术应用最为广泛,我们不仅在门禁、考勤系统中可以看到指纹识别技术的身影,市场上有了更多指纹识别的应用:如笔记本电脑、手机、汽车、银行支付都可应用指纹识别的技术。 2.静脉识别 静脉识别系统就是首先通过静脉识别仪取得个人静脉分布图,从静脉分布图依据专用比对算法提取特征值,通过红外线CMOS摄像头获取手指静脉、手掌静脉、手背静脉的图像,将静脉的数字图像存贮在计算机系统中,将特征值存储。静脉比对时,实时采取静脉图,提取特征值,运用先进的滤波、图像二值化、细化手段对数字图像提取特征,同存储在主机中静脉特征值比对,采用复杂的匹配算法对静脉特征进行匹配,从而对个人进行身份鉴定,确认身份。全过程采用非接触式。 3.虹膜识别 虹膜是位于人眼表面黑色瞳孔和白色巩膜之间的圆环状区域,在红外光下呈现出丰富的纹理信息,如斑点、条纹、细丝、冠状、隐窝等细节特征。虹膜从婴儿胚胎期的第3个月起开始发育,到第8个月虹膜的主要纹理结构已经成形。除非经历危及眼睛的外科手术,此后几乎终生不变。 虹膜识别通过对比虹膜图像特征之间的相似性来确定人们的身份,其核心是使用模式识别、图像处理等方法对人眼睛的虹膜特征进行描述和匹配,从而实现自动的个人身份认证。英国国家物理实验室的测试结果表明:虹膜识别是各种生物特征识别方法中错误率最低的。从普通家庭门禁、单位考勤到银行保险柜、金融交易确认,应用后都可有效简化通行验证手续、确保安全。如果手机加载“虹膜识别”,即使丢失也不用担心信息泄露。机场通关安检中采用虹膜识别技术,将缩短通关时间,提高安全等级。 4.视网膜识别 视网膜是眼睛底部的血液细胞层。视网膜扫描是采用低密度的红外线去捕捉视网膜的独特特征,血液细胞的唯一模式就因此被捕捉下来。视网膜识别的优点就在于它是一种极其固定的生物特征,因为它是“隐藏”的,故而不可能受到磨损,老化等影响;使用者也无需和设备进行直接的接触;同时它是一个最难欺骗的系统,因为视网膜是不可见的,故而不会被伪造。另一方面,视网膜识别也有一些不完善的,如:视网膜技术可能会给使用者带来健康的损坏,这需要进一步的研究;设备投入较为昂贵,识别过程的要求也高,因此角膜扫描识别在普遍推广应用上具有一定的难度。 5.面部识别 面部识别是根据人的面部特征来进行身份识别的技术,包括标准视频识别和热成像技术两种。 标准视频识别是透过普通摄像头记录下被拍摄者眼睛、鼻子、嘴的形状及相对位置等面部特征,然后将其转换成数字信号,再利用计算机进行身份识别。视频面部识别是一种常见

2020年(生物科技行业)生物技术创新与生物产业促进计划

(生物科技行业)生物技术创新与生物产业促进计划

附件2: 生物技术创新和生物产业促进计划 简介 壹、背景 2008年4月18日,中国科学院生命科学和生物技术局在天津举行的中国工业生物技术发展高峰论坛?2008上,倡议成立“中国工业生物技术产业化促进会”。 2008年5月23日,在北京举行的绿色农业技术集成和示范研讨会上,成立了“中国绿色生态农业科技创新联盟”,37家科研院所和企业单位加盟。 2008年6月22日,在长沙举行的第二届中国生物产业大会上,中国科学院研究机构和40余家工业生物技术企业建立了工业生物产业创新联盟伙伴关系,且签署了备忘录。 2008年8月2日,在常州举行的中国药物产业科技创新高峰论坛上,45家医药研究机构和40多家企业成立了中国药物产业科技创新联盟。 工业生物技术科技创新联盟、绿色生态农业科技创新联盟和药物产业科技创新联盟共同组成了生物产业科技创新联盟(简称“创新联盟”),共募集意向性的企业科技创新基金逾25亿元。目前,生物产业科技创新联盟得到了越来越多的科研机构、企业、地方政府的关注和支持,联盟的规模和影响不断扩大。 在推动生物产业科技创新联盟的基础上,2008年底,中国科学院启动《生物技术创新和生物产业促进计划》(简称“专项计划”)。在国家有关部门的支持下,该计划作为应对金融危机支撑经济发展的科技创新专项行动计划之壹,力争为“保增长、扩内需、调结构”发挥重要作用。

二、中国科学院的生物技术概况 中国科学院作为国立科研机构,致力于解决事关国家全局和长远发展的基础性、战略性、先导性、系统性的重大科技问题,致力于促进科技成果的转移转化和高技术产业化,致力于支持和提升我国产业的竞争力。 中国科学院的生命科学和生物技术研究发展迅速,近年来取得了壹批具有国际先进水平的理论创新成果。和此同时,在农业、人口健康、生态环境、工业生物技术领域形成了壹批高水平的技术创新成果。知识创新工程三期以来,中国科学院以提升科技创新能力为主线,以促进我国生物产业快速、持续、健康发展为目标,依托人口健康和医药创新基地、先进工业生物技术创新基地和现代农业科技创新基地,全面推动生命科学的原始创新研究和生物技术的应用和推广研究。在新药创制、诊断试剂开发、农作物品种培育、生物农药研制、工业酶和大宗发酵产品开发等若干重要领域又形成了壹批关键核心技术,积累了壹批有潜在应用价值的技术成果,有望产生重大的经济和社会效益。 三、主要任务 瞄准国家重大需求,通过国家资金引导,优化资源配置,强强联合,使国内外生物技术创新成果不断向国内优势企业、行业龙头企业转移转化,带动国家和地方生物产业发展。 1、探索高效的产学研结合技术转移模式,促使壹批自主创新的关键技术实现产业化,为传统产业的结构调整和振兴,为新兴产业的形成和发展提供强有力的科技支撑。 2、将技术研发和产业发展结合起来,促进企业成为技术创新的

食品生物技术论文

姓名: ** 班级: *** 学号: *** 指导老师: *** 完成日期:2012****

生物技术在食品中的应用 ******(***) [摘要] 目前,生物技术在食品工业中的作用表现在4个方面:一是食品原料和微生物的改良,提高食品营养价值及加工性能;二是生产各种功能食品有效成分、新型食品和食品添加剂;三是可直接应用于食品生产过程中物质的转化;四是工业化生产预定的食品或食品的功能成分。此外,在食品生产相关领域,如食品包装、食品检测等方面,生物技术也得到越来越广泛的应用。随着现代生物技术的迅猛发展,生物技术在食品工业中的应用也日益广泛和深入。它的发展对于解决现存的食物资源短缺问题、丰富食品种类、满足不同消费需求,开发新型功能性食品等均有突出贡献。现以基因工程和酶工程为主要内容,分析生物技术在食品工业中的应用。 [关键词] 生物技术基因工程酶工程食品工业应用 [正文] 现代生物技术在食品中及食品加工制造上的应用,涉及基因工程、细胞工程、发酵工程、酶工程以及现代分子检测技术。其中基因工程技术为核心技术,它能带动其他技术的发展。 基因工程技术是指将外源的核酸分子(目的基因)导入到原来没有这类基因的宿主生物体内,并能持续稳定的繁殖,从而使宿主生物产生新的性状。基因工程的基本程序:①获取所需的目的基因;②把目的基因与选好的载体(如小型环状DNA分子)连接在一起,即重组;③把重组载体转入宿主细胞;④对重组分子进行选择;⑤表达成蛋白,采用合适条件,获得高表达的产品。 自1973年美国斯坦福大学和旧金山大学Coken和Boyer两位科学家成功地实现了DNA分子重组实验,揭开了基因工程发展的序幕,人类有能力按照自己的意愿去操作不同的基因,再接着1982年抗卡那霉素向日葵、1997年克隆羊多莉的诞生...基因工程的兴起和发展,使得转基因生物技术为食品行业的发展注入了新的动力,直接加快了对粮食产量的提高和食品营养的改善,解决了了发展中国家人民的温饱问题。 目前,基因工程在食品工业中的应用主要包括改良食品加工的原料、改良食品微生物菌种性能、应用于食品酶制剂的生产、改良食品加工工艺以及保健食品等。其中,改良食品加工的原料可分为改良动物性食品源和改良植物性食品源。例如为了提高奶牛的产奶量但又不影响奶的质量,可采用基因工程技术生产的牛生长激素BST注射到母牛上,便可达到提高母牛产奶的目的。为了提高猪的瘦肉含量或降低猪脂肪含量,则采用基因重组的猪生长激素,注射至猪上,便可使猪

技术开发委托合作协议

合同编号: 技术开发(委托)合同项目名称: 委托方(甲方): 委托代理人 电话:传真: 受托方(乙方): 委托代理人 电话:传真: 签订时间: 签订地点: 有效期限:

本合同甲方委托乙方研究开发项目,并支付研究开发经费和报酬, 乙方接受委托并进行此项研究开发工作。双方经过平等协商,在真实、充分地表达各自意愿的基础上,根据《中华人民共和国合同法》的规定,达成如下协议,并由双方共同恪守。 第一条本合同研究开发项目的要求如下: 1、技术目标:实现: 2.技术内容: 第二条乙方应在本合同生效后 3 日内向甲方提交研究开发计划。研究开发计划应包括开发周期计划、参加人员、交货时间等; 第三条甲方应向乙方提供的技术资料及协作事项如下: 1.技术资料清单: 2.提供方式:直接当面提供给甲方指定人员 3.其他协作事项:另一方尽可能给予帮助或者协助。 本合同履行完毕后,上述技术资料按以下方式处理:退回当事人一方; 第四条甲方应按以下方式支付研究开发经费和报酬: 1.研究开发经费和报酬总额为:人民币××元整(¥元) 2. 研究开发经费由甲方分期支付乙方。具体支付方式和时间如下: 预付,项目验收完成后付,余下月付清。 乙方开户银行名称、帐号为: 账户名称: 开户银行: 帐号: 第五条本合同的变更必须由甲乙双方协商一致,并以书面形式签约确定。 第六条未经甲方同意,乙方不得将本合同项目部分或全部研究开 发工作转让第三人承担。

第七条在本合同履行中,一方发现技术风险存在并有可能致使研究开发失败或部分失败的情形时,应当在 5 日内通知另一方并采取适当措施减少损失。逾期未通知并未采取适当措施而致使损失扩大的,应当就扩大的损失承担赔偿责任。 第八条在本合同履行中,因作为研究开发标的的技术已经由他人 公开(包括以专利权方式公开),一方应在 5 日内通知另一方解除合同。逾期未通知并致使另一方产生损失的,另一方有权要求予以赔偿。 第九条保密 乙方确认并同意保密信息是甲方有价值的、专用的、独特的财产,因此,乙方同意从甲方披露信息之日起: 1.1 不向任何第三方披露任何保密信息,除非得到甲方事先的书面同 意; 1.2 不把保密信息用于双方合作项目以外的任何其他目的; 1.3 不把任何保密信息披露给除为实施合同的目的而需要知晓保密信息的职员以外的任何其他人员; 1.4 在没有甲方许可的情况下,不准用任何方式复印或复制任何保密信息以用于项目以外的任何目的; 1.5 除非得到甲方事先的书面同意, 乙方不得以任何方式改变保密信息的任何部分, 或分解保密信息或试图改变或分解保密信息, 乙方也不准让他人去做或试图这样做。 1.6 乙方同意以对待自己专有和秘密信息的同样的注意去对待以上列举的义务,但是这些注意在任何情况下不能低于合理的注意。 1.7 甲方向乙方披露的所有的保密信息和复印件都由甲方享有所有权。在合同终止之时以及在甲方要求的任何时候,甲方可以选择要求乙方

2020年(生物科技行业)生物技术创新与生物产业促进计划

生物科技行业)生物技术创新与生物产业促进计划

附件2: 生物技术创新和生物产业促进计划 简介 壹、背景 2008 年4 月18 日,中国科学院生命科学和生物技术局在天津举行的中国工业生物技术发展高峰论坛?2008 上,倡议成立“中国工业生物技术产业化促进会”。 2008 年5 月23 日,在北京举行的绿色农业技术集成和示范研讨会上,成立了“中国绿色生态农业科技创新联盟”,37 家科研院所和企业单位加盟。 2008 年6 月22 日,在长沙举行的第二届中国生物产业大会上,中国科学院研究机构和40 余家工业生物技术企业建立了工业生物产业创新联盟伙伴关系,且签署了备忘录。 2008 年8 月2 日,在常州举行的中国药物产业科技创新高峰论坛上, 45 家医药研究机构和40 多家企业成立了中国药物产业科技创新联盟。 工业生物技术科技创新联盟、绿色生态农业科技创新联盟和药物产业科技创新联盟共同组成了生物产业科技创新联盟(简称“创新联盟”),共募集意向性的企业科技创新基金逾25 亿元。目前,生物产业科技创新联盟得到了越来越多的科研机构、企业、地方政府的关注和支持,联盟的规模和影响不断扩大。 在推动生物产业科技创新联盟的基础上,2008 年底,中国科学院启动《生物技术创新和生物产业促进计划》(简称“专项计划”)。在国家有关部门的支持下,该计划作为应对金融危机支撑经济发展的科技创新专项行动计划之壹,力争为“保增长、扩内需、调结构”发挥重要作用。 二、中国科学院的生物技术概况 中国科学院作为国立科研机构,致力于解决事关国家全局和长远发展的基础性、战略性、先导性、系统性的重大科技问题,致力于促进科技成果的转移转化和高技术产业化,致力于支持和提升我国产业的竞争力。

食品生物技术应用研究进展

食品生物技术应用研究进展 生物技术是对生命有机体进行加工改造和利用的技术,是21世纪高新技术的核心之一,发达国家皆将生物技术列为国家级重点科技并积极开发。生物技术已被应用于工农业、食品加工、医疗保健等众多领域中。而食品生物技术是生物技术的重要分支学科,主要指生物技术在食品工业中的应用。另外,在食品生产相关领域如食品包装、食品检测等方面,食品生物技术也得到越来越广泛的应用。 1 生物技术在食品工业中的应用 1.1 对食品资源的改造 1.1.1 生产转基因食品应用现代生物技术,特别是重组DNA技术,可将生物的特定性状转移到植物、动物和微生物中;与此同时,人们采用细胞生物学方法,建立了细胞融合技术,并进行动物、植物细胞大量控制性培养,按照预定的设计改造遗传物质,从而得到转基因动植物。如应用基因工程和细胞工程对各类植物进行改良,发展了植物抗病抗虫害品种:改良蔬菜、水果采收后的品质;改良植物原料加工特性。目前,生长速度快、抗病力强、肉质好的转基因兔、猪、鸡已经问世,为改善人们的膳食结构提供了一条新的思路和方法。 据统计,美国农业部现已批准生产的转基因农作物有7大类,35种。我国现已批准可商业化生产的有6项,涉及食品的有3项,包括转基因耐储藏番茄.抗黄瓜花叶病毒甜椒,抗花叶病毒番茄。处于中试阶段的与食品有关的转基因植物有抗除草剂水稻、抗虫水稻、抗病毒大白菜、抗病毒番茄、转Bt基因抗虫棉花、抗青枯叶病马铃薯、抗旱马铃薯、高氨基酸马铃薯等。

1.1.2改良食品原料发酵微生物食品原料加工中.一个非常重要的方面就是应用发酵技术进行微生物转化。持续创新使发酵食品不断得以改善并日趋多样化,但是许多创新只是局限于为现有产品选择新的可改变产品特性的生产菌。 用于发酵的微生物基因序列的揭示和高产量后基因组技术的出现使我们对传统加工方法的认识发生了巨大的变化。现在,有10种真菌基因组序列已被公开.而且通过公开的基因序列数据库,更多的真菌基因序列将被阐明。Jewett 等以黑匣子代谢组学方法为例进行了综述,为真菌基因组序列非依赖性的代谢作用多样性功能分析提供了可能。 根据它们高度的特异性和多样性.通过这些方法.通常可以确定其次级代谢产物。后基因组技术为开发发酵生物体的天然生物活性提供了新的可能.对改变微生物在相关生产条件下的性能有重要意义.这将为选择最佳的微生物菌种并利用这些微生物生产出有特色或新型的发酵产品提供新的方法。Van Hyckama Vlieg 等以乳酸乳球菌属微生物为例,对这些技术及其应用潜能进行了综述。 1.2对食品加工工艺的改进 1.2.1 延长食品保鲜期一方面.选育并推广适宜贮藏加工的品种,为食品生产提供更多易于贮藏的原料。主要是利用遗传工程技术选择培育对乙烯敏感性低的新品种.从基因工程角度解决农副产品的保鲜问题。另一方面,应用酶工程技术,利用生物酶制造一种有利于食品保质的环境.吸去瓶颈空隙中的氧而延长保鲜期:溶菌酶对革兰氏阳性菌有很强的溶菌作用,用于肉制品、干酪、水产品等的保鲜。 1.2.2 改进肉、奶、水产品的加工肉的加工保鲜方面主要是提高肉的综合品质以及瘦肉、肥肉、嫩肉的综合利用,如肉的嫩化、发酵香肠的生产和增加

生物化工的发展及应用

生物化工的发展及应用 随着当今科技的高速发展,生物学科逐渐和其他学科如化学、医学、食品等相融合形成许多新的学科。这其中生物学定律在化工专业中的正确应用形成了生化学科,其任务是把生命科学的发现转化为实际的产品、过程或系统,以满足社会的需要。随着生命科学的迅速发展,越来越多的生物高技术产品需要用高效的加工技术进行工业规模生产,才能在产品质量高、成本低、时间短的激烈竞争中立于不败之地,所以近年来生物化工发展非常迅速。生物化工内容广泛,包括生物化学工程和生物化学工业,是生物技术产业化的关键,又是化学工程发展的前沿科学,在21世纪有很大的发展空间。 1、 1.1生物化工的发展状况 近十年来,世界生物技术迅速发展促使生化领域取得了许多重大科技成果。能源方面,纤维素发酵连续制造乙醇已成功;农药方面,许多新型农药不断生产;环保方面,固定化酶处理氯化物已实际应用;微生物法生产丙烯酰胺、脂肪酸、乙二酸等产品的生产已达到一定规模;用微生物生产的高性能液晶、高性能膜、生物可降解塑料等技术不断成熟。 目前国外生物化工的发展有以下趋势:一是生物化工成为国外著名化学公司争夺的热点。生物技术从医药领域逐渐向化工领域转移,使传统的以石油为原料的化学工业发生变化,向条件温和、以可再生资源为原料的生物加工过程转移。许多著名的老牌化学工业公司已变成了以生物技术为主的大公司,如著名的杜邦公司在2001年宣称,该公司2002年生物技术产品的销售额将占其公司总销售额的20%。利用生物催化合成化学品不但具有条件温和、转化率高的优点,而且可以合成手性化合物及高分子。乙醛酸是合成香兰素和许多中间体的重要原料,而其化学生产法工艺的主要问题是反应条件苛刻、乙醛酸转化率低、环境污染严重。1995 年日本天野制药公司申请了第一个双酶法生产乙醛酸的工艺。1995 年底美国杜邦公司申请了基因工程菌方法生产乙醛酸的专利,乙醛酸的转化率达100%。三是利用生物技术生产有特殊功能、性能、用途或环境友好的化工新

生物技术介绍

生物技术 生物技术和生命科学将成为21世纪引发新科技革命的重要推动力量,基因组学和蛋白质组学研究正在引领生物技术向系统化研究方向发展。基因组序列测定与基因结构分析已转向功能基因组研究以及功能基因的发现和应用;药物及动植物品种的分子定向设计与构建已成为种质和药物研究的重要方向;生物芯片、干细胞和组织工程等前沿技术研究与应用,孕育着诊断、治疗及再生医学的重大突破。必须在功能基因组、蛋白质组、干细胞与治疗性克隆、组织工程、生物催化与转化技术等方面取得关键性突破。 生物技术之前沿: 靶标发现技术 靶标的发现对发展创新药物、生物诊断和生物治疗技术具有重要意义。重点研究生理和病理过程中关键基因功能及其调控网络的规模化识别,突破疾病相关基因的功能识别、表达调控及靶标筛查和确证技术,“从基因到药物”的新药创制技术。 动植物品种与药物分子设计技术 动植物品种与药物分子设计是基于生物大分子三维结构的分子对接、分子模拟以及分子设计技术。重点研究蛋白质与细胞动态过程生物信息分析、整合、模拟技术,动植物品种与药物虚拟设计技术,动植物品种生长与药物代谢工程模拟技术,计算机辅助组合化合物库设计、合成和筛选等技术。 基因操作和蛋白质工程技术 基因操作技术是基因资源利用的关键技术。蛋白质工程是高效利用基因产物的重要途径。重点研究基因的高效表达及其调控技术、染色体结构与定位整合技术、编码蛋白基因的人工设计与改造技术、蛋白质肽链的修饰及改构技术、蛋白质结构解析技术、蛋白质规模化分离纯化技术。 基于干细胞的人体组织工程技术 干细胞技术可在体外培养干细胞,定向诱导分化为各种组织细胞供临床所需,也可在体外构建出人体器官,用于替代与修复性治疗。重点研究治疗性克隆技术,干细胞体外建系和定向诱导技术,人体结构组织体外构建与规模化生产技术,人体多细胞复杂结构组织构建与缺损修复技术和生物制造技术。 新一代工业生物技术 生物催化和生物转化是新一代工业生物技术的主体。重点研究功能菌株大规模筛选技术,生物催化剂定向改造技术,规模化工业生产的生物催化技术系统,清洁转化介质创制技术及工业化成套转化技术。

技术开发合作协议书范本(一)

编号:_______________ 本资料为word版本,可以直接编辑和打印,感谢您的下载 技术开发合作协议书范本(一) 甲方:___________________ 乙方:___________________ 日期:___________________

委托方:(甲方)_____________ 研究开发方(乙方)_____________ 一、 签订地点:____省____市(县) 签订日期:__年__月__日 有效期限:__年__月__日至__年__月__日 二、应达到的技术指标和参数: 三、研究开发计划: 四、研究开发经费、报酬及其支付或结算方式: (一)研究开发经费是指完成本项研究开发工作所需的成本;报酬是指本项目开发成是的使用费和研究开发人员的科研补贴。 本项目研究开发经费及报酬:____元 其中:甲方提供____元,乙方提供____元。如开发成本实报实销,双方约定如下:______。 (二)经费和报酬支付方式及时限(采用以下第种方式): ①一次总付:____元,时间:______ ②分期支付:____元,时间:__________元,时间:______ ③按利润____%提成,期限:______ ④按销售额____%提成,期限:______ ⑤其它方式:____________ 五、利用研究开发经费购置的设备、器材、资料的财产权属: 六、履行的期限、地点和方式:____________________ 本合同自____年____月____日至____年____月____日在______(地点)履行。 本合同的履行方式:_____________

2019化学工程与工业生物工程专业就业方向与就业前景分析

2019化学工程与工业生物工程专业就业方向与就业前 景分析 化学工程与工业生物工程专业以生物学、化学、工程学的基本理论为依据,利用酶工程、细胞工程、发酵工程研究生物产品的生产过程,研制开发新的生物工程产品以及对生物产品实行分析测定的技术。旨在培养能在化学工程及生物技术领域从事科学研究、产品及过程设计、新技术与设备研发以及技术管理的高级专门人才,能立足于服务于石油化工、环境保护、能源、食品等传统石油化学工业及生物工程与技术、生物化学工程、生物医药工程等新兴产业。 2、化学工程与工业生物工程专业就业方向 本专业学生毕业后可在工业企业、金融银行、咨询服务或政府部门担任化学工程与工业生物工程师、系统分析员、生产工程师、管理顾问、操作分析员以及类似的职位。 从事行业: 毕业后主要在制药、石油、新能源等行业工作,大致如下: 1制药/生物工程 2石油/化工/矿产/地质 3新能源 4环保 5其他行业 6快速消费品(食品、饮料、化妆品) 7机械/设备/重工 8建筑/建材/工程

从事岗位: 毕业后主要从事销售工程师、电气工程师、ie工程师等工作,大致如下: 1化学工程师 2工艺工程师 3研发工程师 4销售工程师 5全国代理商 6销售经理 7区域代理商 8化验员 工作城市: 毕业后,上海、广州、北京等城市就业机会比较多,大致如下: 1上海 2广州 3北京 4杭州 5深圳 6苏州 7南京 8武汉

3、化学工程与工业生物工程专业就业前景 化学工程与工业生物工程专业在专业学科中属于工学类中的化学 与制造类,其中化学与制造类共5个专业,化学工程与工业生物工程 专业在化学与制造类专业中排名第5,在整个工学大类中排名第139位。 截止到2013年12月24日,46122位化学工程与工业生物工程专业毕业生的平均薪资为4406元,其中应届毕业生工资3805元,0-2年工资3855元,3-5年工资4704元,10年以上工资5704元,6-7年工 资6290元,8-10年工资6736元。化学工程与工业生物工程专业就业 岗位最多的地区是武汉。薪酬的地区是常德。

几种典型生物特征识别技术

生物特征识别技术的发展方向和市场前景 各种生物特征识别技术,虽然这些技术能很好地解决传统安全保护方式存在的隐患,提供了相对方便、快速、准确的身份识别方法,但与此同时,这些单一的技术也存在着各自的缺点。就拿指纹识别来说,人们会突然失去可用的指纹,如手指过湿、过干或出现手指暴皮等特征损伤时,或者手指有污物,指纹图像会变的破损或模糊,这样成功比对的可能性就会降低,识别率会大幅度下降。而且这类情况在现实中是比较常见的如在煤矿里等。其他识别技术也有各自不同的缺点。 因此,生物特征识别领域又出现了一种新的方向,即多种生物特征识别技术结合使用。在国外,德国知名的法兰富尔协会研发了一种多重模板识别系统,DCSAG公司采用这种方法开发了身份识别系统BioID,提出了全方位生物特征识别的观点。在我们国内,也有不少的研究机构开始研究基于多特 征的识别技术。比如近期清华大学研制的TH.ID多模生物特征(人脸、笔迹签字、虹膜)身份识别认证系统,就是融合了人脸、笔迹和虹膜三种特征,因此识别率也很高。以后的研究,也将走这样的路线,即:将手指静脉和指纹两种特征结合起来以提高识别率和系统的稳定性。 近几年来,全球的生物特征识别技术已从研究阶段转向应用阶段,对该技术的研究和应用正进行的如火如荼,前景十分广阔。利用生物识别技术,使我们的日常生活更为方便、安全。这种新方法将在信息社会中起到越来越重要的作用,成为将来的主要发展方向。可见,人体生物特征识别是~项发 展前景极好的高新技术。逐渐被一些机构和消费者采用,成为一种越来越受欢迎的安全保障措旋,使得这项技术有着巨大的市场潜力。. 2006年1月,国际生物特征组织IBG(International Biometrie Group)最新的《2006.2010年生物识别市场研究报告》中给出的数据,如图1.1~1.4所示。 预计,受大量的政府项目等推动,全球生物识别产值将从2006年的$2.1B(billion)增长至2010年的$5.7B(billion);2006年,指纹识别有望占到生物识别市场43.6%的份额,面部识别约占19%。亚洲和北美将有望成为全球最大的生物识别市场。各种生物识别应用系统的产值估计会占到整个生物识别市场(包括相关的设备生产、系统开发等)的产值的5%。 产业预测表明整个生物特征市场会继续增长。其中指纹识别市场仍然占据主导地位,如图1.3 和1.4所示。随着科技的进步,特别是那些具有更高的识别性能的生物特征识别技术的发展,相信这种状况会改变的。 可以预见在不久的将来,生物特征识别技术必将越来越广泛地应用于生活和工作各个领域。从过去的10年的市场情况来看,指纹、人脸和掌型识别技术应用最为广泛,指纹识别占据了更大的优势,看起来用手作为生物特征识别的手段更易为大众所接受。国内市场上主要的生物特征识别产品基本上都是基于指纹识别技术的产品,而且已经应用到了很多的方面。另外几种被看好的技术是静脉、语音以及虹膜识别技术。 几种典型的生物特征识别技术 (1)指纹识别 每个人(包括指纹在内)皮肤纹路在图案、断点和交叉点上各不相同,也就是说,是唯一的,并且终生不变。依靠这种唯一性和稳定性,我们就可以把一个人同他的指纹对应起来,通过比较他的指纹和预先保存的指纹进行比较,就可以验证他的真实身份。这就是指纹识别技术。作为生物特征识别的

合成生物学与工业生物技术

合成生物学与工业生物技术 ◆杨 琛 姜卫红 杨 晟 赵国屏 中国科学院上海生命科学研究院植物生理生态研究所,上海200032 收稿日期:200928210 修回日期:200929227联系作者:姜卫红,研究员,whjiang@sibs .ac .cn 。 摘 要 合成生物学是近年来发展起来的新 兴学科,因其具有重要的研究意义和巨大的应用开发潜力而备受关注,发展极为迅速。本文对合成生物学的国内外研究概况、发展方向及其对工业生物技术领域的推动作用进行了概述。 关键词:合成生物学 工业生物技术中图分类号:Q812 文献标识码:A 文章编号:100922412(2009)0520038203 近年来,系统生物学理论与工程生物技术的发展使得合成生物学这一新兴研究领域应运而生,并取得重要进展。合成生物学是在基因组技术为核心的生物技术基础上,以系统生物学思想为指导,综合生物化学、生物物理和生物信息技术,利用基因和基因组的基本要素及其组合,设计、改造、重建或制造生物分子、生物体部件、生物反应系统、代谢途径与过程乃至具有生命活力的细胞和生物个体。合成生物学研究既是生命科学和生物技术在分子生物学和基因工程水平上的自然延伸,又是在系统生物学和基因组综合工程技术层次上的整合性发展。其主要目标,一方面是希望可以根据人类的意愿从头设计,合成新的生命过程或生命体;另一方面,是利用合成生物学的方法,将“综合、整体”的思路真正引入现代工业生物技术和生物医学等领域,通过对现有生物体的有目标的改造,以有助于解决人类发展面临的若干重大挑战,譬如合成新医药材料和新药品、生产生物燃料、清理有毒废物、减少二氧化碳排放等。因此,合成生物学具有重要的研究意义和巨大的应用开发潜力。 一、国内外研究概况 合成生物学首先被应用在天然药物的生物合 成、生物能源和生物基化学品领域,如:美国杜邦公司利用大肠杆菌合成了重要的工业原料1,32丙二醇;L iao 等在大肠杆菌中重构了异丁醇产生途径[1]; 2006年,美国加州大学Berkeley 分校的Keasling 实 验室将多个青蒿素生物合成基因导入酵母菌中产生了青蒿酸,并通过对代谢途径(网络)不断改造和优化,使产量实现了若干数量级的提高,具有了工业生产的潜力[2],该重要进展是合成生物学在工业应用中的一个标志性突破。 近年来,利用人工化学合成的手段合成生物遗传物质的研究进展非常迅速。2002年,美国W i m mer 实验室首次化学合成了脊髓灰质炎病毒的c DNA ,并反转录成有感染活性的病毒RNA ,开辟了利用已知基因组序列,不需要天然模板,从化学单体合成感染性病毒的道路[3]。2008年Venter 实验室合成了有 582970个碱基对的生殖道支原体(M ycoplas m a gen i 2ta lium )全基因组 [4] 。为了突出这是人工合成的基因 组,他们在基因组的多处插入了“水印”序列。至此,人工化学合成病毒和细菌基因组均已实现,这为运用合成生物学方法改造、构建新型细菌,以合成目标产物、降解有害物质等方面开辟了新的途径。 目前,美国约有20个实验室从事生命系统设计和合成生物学相关的研究,主要包括开发特殊和通用的标准合成元件、反向工程和重新设计已知的生物部件、发展设计方法和工具以及人工重新合成简单的微生物等。从2004年开始,每年召开合成和系统生物学的会议,促进了交流与合作,推动了这个新兴学科的迅速发展。欧盟国家中的剑桥大学和苏黎世大学的两个实验室也在开展合成生物学研究,目前正积极呼吁更多的实验室参与同美国的竞争。 我国科学工作者自20世纪70年代以来大力推进基因工程、蛋白质工程和代谢工程等技术的发展。近10年,又启动了基因组和生物信息的研究以及系统生物学的研究工作。因此,我们有条件及时进入合成生物学的研究领域,发展合成生物学技术,服务于我国生命科学和社会经济的发展。但是,如上所述,合成生物学并非简单的生物技术或生物工程的

食品生物技术导论期末复习

1-1食品生物技术:指以现代生命科学的研究成果为基础,结合现代工程技术手段和其他学科的的研究成果,用全新的方法和手段设计新型的食品原料。 ~在食品工业发展的地位:已经渗透到食品工业的方方面面,21世纪的食品工业将是建立在现代食品生物技术和现代食品工程技术两大支柱上的一个全新的朝阳产业。 1-2食品生物技术内容:细胞工程、酶工程、发酵工程、蛋白质工程、生物工程下游技术、现代分子检测技术 基因工程技术对未来新食品作用:利用基因工程对食品进行改良,以提高食品产量和质量,改善风味,使人们吃到更多、更好的食品。 1-4生物技术食品的安全性特别是遗传重组食品的潜在致敏性以及潜在毒性。每个物种的dna序列都是一个整体,虽然可能其中只有1% 的dna是有意义的,但由于人类的干预,很有可能致使这个dna序列产生新的,且是人类预想之外的启动子或者密码子,从而产生目标之外的蛋白质乃至目标之外的新性状。这就构成了一种潜在的威胁,在没有进行完备的论证之前,都不能确定其是好是坏! 2-1基因工程:用人工的方法把不同的遗传物质(基因)分离出来,在体外进行剪切、拼接、重组,形成基因重组体,然后再把重组体引入宿主细胞或个体中以得到高效表达,最终获得人们所需要的基因产物。 ~操作步骤:a.在供体细胞中用限制性内切酶切割基因,以分离出含有特定的基因片段或人工合成目的基因并制备运载体;b.把获得的目的基因与制备好的运载体用DNA连接酶连接组成重组体c.把重组体引入宿主细胞d.筛选。鉴定出含有外源目的基因的菌体或个体 2-2限制性内切酶:能在特定部位限制性地切割DNA分子。 命名原则:用具有某种限制性内切酶的有机体学名缩写来命名。 分类:Ⅰ型限制性内切酶、Ⅱ型~Ⅲ型~ 作用:在构建重组载体的时候,需用限制性内切酶切割目的基因和载体,再用连接酶将两者连接起来。 eg:EcoRⅠ即从大肠杆菌中分离出来的R株Ⅰ型限制性内切酶。 2-3理想的基因工程载体应具备的特征:a.能在宿主细胞内进行独立和稳定的DNA自我复制b.易于从宿主细胞中分离,并进行纯化c.在其DNA序列中有适当的限制性内切酶单一酶切位点d.具有能够直接观察的表型特征,在插入外源DNA后。 2-4目的基因:指根据基因工程的目的和设计所需要的某些DNA分子的片段,它含有一种或几种遗传信息的全套密码。 获得~方法:鸟枪法、物理化学法、化学合成法、酶促逆转录合成法。PCR扩增法 2-5构建一个理想的DNA重组体分子:目的基因的获得与序列分析,目的基因与与载体的连接(重组与克隆),重组DNA向受体的转化,重组体的筛选与外源基因的鉴定 2-8报告基因:是一种编码可被检测的蛋白质或酶的基因,也就是说,是一个其表达产物非常容易被鉴定的基因 2-10从不同水平上检测外源基因是否导入的方法:点杂交、Southern吸印杂交(DNA)、northern吸印杂交(RNA)、western吸印杂交(P2)、原位杂交技术 2-11反义RNA技术:把一段DNA序列以反义方向插入到合适的启动子和终止子之间,然后把此基因构建体转化到受体细胞中去,通过选择培养获得转化生物体的技术。 ~原理:反义基因转录生成的mRNA可以抑制具有同源性的内源基因的表达,用这种方法可获得特定基因表达受阻而其他不相关基因的表达不受影响的转基因植株。 ~特点:a.反义RNA可以高度专一地调节某一特定基因的表达,不影响其他基因的表达。b.转化到植物中的反义RNA的作用类似于遗传上缺陷性。c.反义基因整合到植物的基因组中可独立表达和稳定遗传,后代符合孟德尔遗传规律。d.反义基因不必了解其目的基因所编码

技术合作开发合同样本

编号: HZ-20210713 甲 方:______________________________ 乙 方:______________________________ 日 期:_________年________月_______日 技术合作开发合同样本 Other special terms will be listed bellow.

[标签: titlecontent] 合同编号:_________ 甲方:_________ 住所:_________ 法定代表人:_________ 项目联系人:_________ 联系方式:_________ 通讯地址:_________ 电话:_________ 传真:_________ 电子信箱:_________ 乙方:_________ 住所:_________ 法定代表人:_________ 项目联系人:_________ 联系方式:_________ 通讯地址: _________

电话:_________ 传真:_________ 电子信箱:_________ 本合同合作各方就共同参与研究开发_________项目事项,经过平等协商,在真实、充分地表达各自意愿的基础上,根据《中华人民共和国合同法》的规定,达成如下协议,并由合作各方共同恪守。 第一条项目名称 _________。 第二条技术内容、范围和要求 1.技术内容: (1)新技术; (2)新产品; (3)新工艺; (4)新材料。 2.技术范围:_________ 3.技术要求:_________。 第三条研究开发计划 本合同合作各方在研究开发项目中,分工承担如下工作: 1.甲方: (1)研究开发内容:_________ (2)工作进度:_________ (3)研究开发期限:_________

生物化工论文

生物化工的特点及发展状况 随着当今科技的高速发展,化工学科逐渐和其他学科如农业、医学、食品等相融合形成许多新的学科。这其中生物学定律在化工专业中的正确应用形成了生化学科,其任务是把生命科学的发现转化为实际的产品、过程或系统,以满足社会的需要。随着生命科学的迅速发展,越来越多的生物高技术产品需要用高效的加工技术进行工业规模生产,才能在产品质量高、成本低、时间短的激烈竞争中立于不败之地,所以近年来生物化工发展非常迅速。生物化工内容广泛,包括生物化学工程和生物化学工业,是生物技术产业化的关键,又是化学工程发展的前沿 科学,在21世纪有很大的发展空间。 一、生物化工的特点 生物技术是在生物学、分子生物学和生物化学等基础上发展起来的。是有基因工程、细胞工程、酶工程和发酵工程四大先进技术组成的新技术群。生物化工是生物学技术和化学工程技术相互融合的新型学科,它以生物来源的物质为原料,通过生物活性物质为催化剂使其转化,或用其他生物技术进行制备、纯化,从而得到我们预期的产品。生物化学包含生物化学工程和生物化学工程,是生物技术生产产业化的关键,又是化学工程发展的前言学科。 生物化工以应用基础研究为主,对生物技术的发展和生产有着十分重要的作用,它是基因工程、细胞工程、酶工程和发酵工程走向产业化的必由之路。生物化工的任务不仅把生命科学的上游技术转化为实际产品,以满足社会的需要,而且在创造新物质、新材料、设计新过程、生产新产品、创建新产业中也将起到关键作用。生物化学工程具有以下特点。 1、以生物为对象,常以有生命的活细胞或酶为催化剂,创造必要的生化反应条件,不依靠地球上的有限资源,着眼于再生资源的利用。 2、由于细菌不耐高温,需在常温常压下连续化生产,工艺简单,并可节约资源,减少环境污染。 3、定向的按人们的需要创造新物种,新产品和有济济价值的生命类物质,开辟了生产高纯度、优质、安全可靠的生物制品的新途径。 4、生物化工为生物技术提供了高效率的反应器、新型分离介质、工艺控制技术和后处理技术,扩大了生物技术的应用范围。但是由于生化反应机理的复杂性,也给反应和分离设备的设计带来了极大的困难。 总之,由于生物化工技术具有反应条件温和、选择性好、效率高、能耗低、可利用再生资源等优点,已成为化工领域战略转移的目标,使生物技术的开发逐渐从医药领域向大宗化学品领域扩展。 二、生物化工的发展状况 近十年来,世界生物技术迅速发展促使生化领域取得了许多重大科技成果。能源方面,纤维素发酵连续制造乙醇已成功;农药方面,许多新型农药不断生产;环保方面,固定化酶处理氯化物已实际应用;微生物法生产丙烯酰胺、脂肪酸、乙二酸等产品的生产已达到一定规模;用微生物生产的高性能液晶、高性能膜、生物可降解塑料等技术不断成熟。 目前国外生物化工的发展有以下趋势:

相关文档