文档库 最新最全的文档下载
当前位置:文档库 › 用示波器测量时间

用示波器测量时间

用示波器测量时间
用示波器测量时间

实验报告5-

实验题目:用示波器测量时间

实验目的:了解示波器的基本原理和结构,学习使用示波器观察波形和测量信

号周期及其时间参数。

实验原理:

1.用x 轴时基测时间参数

设待测信号接y 轴输入端,则T y 是待测信号的周期,T x 是x 轴扫描信号的周期,N 是一个扫描周期内所显示的待测信号的波形周期个数。

x 轴扫描信号的周期,实际上是以时基单位(时间/cm 或时间/度)来标示的,为此,在实际测量中,采用(1)式的形式

波形厘米数时基单位?=x T (1)

式中的波形厘米数,可以是信号一个周期的读数(可测待测信号的周期)、正脉冲(或负脉冲)的信号宽度的读数或待测信号波形的其他参数。 2.用李萨如图形测信号的频率

如果将不同的信号分别输入到y 轴和x 轴的输入端,当两个信号的频率满足一定的关系时,在荧光屏上将显示出李萨如图形,可用测量李萨如图形的相位参数或波形的切点数来测量时间参数。

二个互相垂直的振动(有相同的自变量)的合成李萨如图形。

(1) 频率相同而振幅和相位不同时,两正交正弦电压的合成图形。设此两正弦

电压分别为:

t A x ωc o s

= )c o s

(?ω+=t B y (2) 消去自变时t ,得到的轨迹方程为:

??2

2222s i n c o s 2=-+AB xy B

y A x (3) 这是一个椭圆方程。当两个正交电压的相位差φ取0~2π的不同值时,合成的圆形如图所示。

(2) 两正交正弦电压的相位差一定,频率比为一个有理数时,合成的圆形是一

条稳定的闭合曲线。图是几种频率比时的图形,频率比与图形的切点数之间有下列关系:

垂直切线上的切点数

水平切线上的切点数

x

y f f

实验器材:信号发生器、示波器、公用信号源 实验内容:

1. 用x 轴的时基测信号的时间参数

(1) 测量示波器自备方波输出信号的周期(时基分别为0.1ms/cm ,0.2ms/cm ,

0.5ms/cm )。哪种时基测出的数据更准确?为什么?

(2) 选择信号发生器的对称方波接y 输入(幅度和y 轴量程任选),信号频率

为200Hz~2kHz (每隔200Hz 测量一次),选择示波器合适的时基,测量对应频率的厘米数、周期和频率(注明x 轴的时基)。以信号发生器的频率为x 轴,示波器测量的频率为y 轴,作y-x 曲线,求出斜率并讨论。

(3) 选择信号发生器的非对称方波接y 轴,频率分别为200Hz 、500Hz 、1kHz 、

2kHz 、5kHz 、10kHz 、20kHz ,测量各频率时的周期和正波的宽度(或占空比),用内容(2)的方法作曲线。

(4) 选择信号发生器的输出为三角波,频率为500Hz 、1kHz 、1.5kHz 、测量

各个频率时的上升时间、下降时间及周期。

2.

观察李萨如图形并测频率

用两台信号发生器(一台为本组专用,一台为公用)分别接y 轴和x 轴(x 轴选择外输入),取4/33/22/11/、、、 y x f f 时,测出对应的x y f f 和,画有关图形并求公用信号发生器的频率。

注意:观察李萨如图形时,通过本组信号发生器的频率微调旋钮,使李萨如图形尽可能稳定时,再读y 轴和x 轴的切点数。

数据记录与处理:

1.测量示波器自备方波输出信号的周期

用0.1ms/cm 时基测出的数据更准确,因为时基越小,即精度越高,因而测出的数据越准确。

2. 测量信号发生器的对称方波的周期和频率

200

400

600

800

1000120014001600180020002200

0500

1000

1500

2000

2500

斜率与1有较大的误差,这主要是由于在测量时为了便于读数,调节了扫描微调旋钮,使信号频率发生了变化。

3.量信号发生器的非对称方波的周期和正波的宽度(或占空比)以及频率

05000100001500020000

5000

10000

15000

20000

4.测量信号发生器的三角波的上升时间、下降时间及周期

5. 观察李萨如图形并测频率

计算得公用信号发生器频率为500Hz

思考题

1.用示波器测频率有何优缺点?

答:优点:直观,易于观察;缺点:表面刻度盘上刻度精度不够,高频率的信号测量不够精确。

2.在本实验中,观察李萨如图形时,为什么得不到稳定的图形?

答:两台信号发生器的相位差不是相同的。

3.假定在示波器的y轴输入一个正弦电压,所用的水平扫描频率为120Hz,在荧光屏上出现三个稳定完整的正弦波形,那么输入信号的频率是多少?

这是否是测量信号频率的好方法?为什么?

答:输入信号大概为360Hz。这种测量方法的数据测量不够准确,因为测量无法确定是否是完整的确定的n个周期,所以不能够确定周期的个数,故不能准确地测出示波器和信号发生器频率之比。

用示波器测量时间

实验报告 PB06013212 王主光实验题目:用示波器测量时间 实验目的:了解示波器的基本原理和结构,学习使用示波器观察波形和测量信号周期及其时间参数. 实验原理: 1.示波器的基本结构 示波器的结构如图3.2.2-1所示,由示波管(又称阴极射线管)、放大系统、衰减系统、扫描和同步系统及电源等部分组成. 为了适用于多种量程,对于不同大小的信号,经衰减器分压后,得到大小相同的信号,经放大器放大后产生最大约20V左右的电压送至示波管的偏转板. 示波管是示波器的基本构件,它由电子枪、偏转板和荧光屏三部分组成,被封装在高真空的玻璃管内,其结构如图 3.2.2-2所示.电子枪是示波管的核心部分,它由阴极、栅极和阳极构成. (1)阴极——阴极的射线源:由灯丝(F)和阴极(K)构成,阴极表

面涂有脱出功较低的钡、锶氧化物,灯丝通电后,阴极被加热,大量的电子从阴极表面逸出,在真空中自由运动从而实现电子发射. (2)栅极——辉度控制:由第一栅极G1(又称控制级)和第二栅极G2(又称前加速级)构成,栅极是一个顶部有小孔的金属圆筒,它的电位低于阴极,具有反推电子的作用,只有少量电子能通过栅极,调节栅极电压可控制通过栅极的电子束的强弱,从而实现辉度调节.在G1的控制下,只有少量电子通过栅极,G2与A2相连,所加电位比A1高,G2的正电位对阴极发射的电子奔向荧光屏起加速作用. (3)第一阳极——聚焦:第一阳极(A1)呈圆柱形(或圆形),有好几个间壁,第一阳极上加有几百伏的电压,形成一个聚焦的电场,当电子束通过此聚焦电场时,在电场力的作用下,电子汇合于一点,结果在荧光屏上得到一个又小又亮的光点,调节加在A1上的电压可以达到聚焦的目的. 第二阳极——电子的加速:第二阳极(A2)上加有1000V以上

示波器实验报告

一仪器的原理及结构 1.示波器 示波器是一种用途广泛的电子测量仪器。利用它可以测出电信号的一系列参数,如信号电压(或电流)的幅度、周期(或频率)、相位等,数字示波器还可以测量信号的频谱特性。实验室拥有的主要是模拟示波器,数字示波器虽有自动测试功能,给操作带来方便,但显示的波形是量化的不够细腻,观察波形没有模拟示波器清晰,特别是观察含有干扰信号的波形时有一定的困难。模拟示波器的组成包括示波管、水平/垂直部分、触发部分及电源等组成。 (1)电子示波管 如图1所示,主要由电子枪、偏转系统、荧光屏三部分组成。电子枪包括灯丝、阴极、栅极和阳极。偏转系统包括Y轴偏转板和X轴偏转板两部分,偏转板上电压形成的电场力将电子枪图 1 示波管结构图 发射出来的电子束,按照偏转板上电压的大小作出相应的偏移。荧光屏是位于示波管顶端涂有荧光物质的透明玻璃屏,当电子枪发射出来的电子束轰击到屏时,荧光屏被击中的点上会发光,显示出曲线或波形。 (2)水平/垂直部分 示波器的水平部分产生扫描电压,使电子在水平方向上偏转,形成时间轴;垂直部分处理被测信号,在荧光屏上还原出被测信号的电压波形。 (3)示波器的使用 ①寻找扫描光迹,将示波器Y轴显示方式置“Y1”或“Y2”,输入耦合方式置“GND”,开机预热后,若在显示屏上不出现光点和扫描基线,可按下列操作去找到扫描线:适当调节亮度旋钮;触发方式开关置“自动”;适当调节垂直()、水平()“位移”旋钮,使扫描光迹位于屏幕中央。 ②双踪示波器一般有五种工作方式,即“Y1”、“Y2”、“Y1+Y2”三种单踪显示方式和“交替”“断续”二种双踪显示方式。“交替”显示一般适宜于输入信号频率较高时使用。“断续”显示一

示波器电源测试的步骤

示波器电源测试的步骤 时间:2012-10-17 16:46:12 来源:作者: 过去大家习惯用万用表进行电源测试,如果测试参数很多的时候非常麻烦。而现在使用示波器提供了许多自动测量功能,可以使用这些功能简单实现幅度测量(幅度、高、低、最大值、最小值、RMS、峰到峰值、正/ 负过冲、平均值、周期平均值、周期RMS)、定时测量(周期、频率、上升/ 下降时间、正/ 负占空比、正/ 负脉宽、突发宽度、延迟、相位)、综合测量。在实践中,很多工程师对于利用示波器进行电源测试的要点并不是很清楚,这里零星总结一些步骤和要点供大家参考。(这里的陈述是根据本人所使用的泰克混合信号示波器MSO4000系列(MSO4034)以及泰克的探头配置,不同示波器和探头会有些差异) 选择示波器的几个要点 1. 记录长度及分析工具 对许多电源测量,必需捕获1/4 周期或1/2 周期(90度或180度)的工频信号,有些测量甚至要求捕获整个周期,这需要示波器具有足够的记录长度以满足要求(MSO4034记录深度为10M,一般的电源测试足够了)。 比长记录长度更重要的是提供能够利用所有这些数据的工具(如泰克的Wave Inspector)。否则处理几百万点的记录长度,也就是几千屏的信号活动无疑是大海捞针。 2.电压探头和电流探头之间的时滞 每只电压探头和电流探头都有自己的特性传播延迟。电流探头和电压探头之间的延迟差称为时滞,会导致幅度和定时测量不准确。在探头没有正确“校正时滞”时,测量精度会下降,如开关损耗。我所用的泰克TekVPI探头连接到泰克4000系列示波器时,它们会自动设置相应的时滞校正值,在电源测量中实现最大精度。 3. 探头偏置 差分探头一般会有较小的电压偏置。这会影响精度,在继续测量前必须消除这个电压偏置。大多数差分电压探头拥有内置的DC 偏置调节控制功能,可以相对简单地消除偏置。 某些探头内置了自动消磁/自动清零程序,如在使用TekVPI探头时,只需在探头“comp”框上按一个按钮就可以了。 安全准确地测试电压波形和电流波形 在使用数字示波器进行电源测量时,必需测量设备中的电压及电流。要求使用两只不同的探头:一只电压探头(通常是高压差分探头),一只电流探头。 测量经过MOSFET的电流相对简单,可以使用许多不同的霍尔效应电流探头完成,如TCP0030。而测量电压则会面临更多的问题。MOSFET没有连接到交流电源接地或电路输出接地上。因此,不可能使用示波器进行接地参考电压测量,因为把探头的地线连接到任何MOSFET端子上都会使通过示波器接地的电路短路。 进行差分测量是测量MOSFET 电压的最佳方式。在差分测量中,可以测量漏极到源极电压,即MOSFET漏极和源极端子中的电压。漏极到源极电压可以位于几十伏到几百伏电压的顶部,具体视电源的范围而定。 测量瞬时功率 检定开关晶体管中的瞬时功耗是几乎每个电源设计项目的一部分。选择能够在最坏情况操作极限下经济可靠地运行的元件至关重要。某些厂家的电流和电压探测解决方案为这些测量提供了理想选择。除提供安全测量解决方案外,它们还提供了非常简便的时滞校正功能。自动设置相应的时滞校正值,在电源测量中实现最大精度。为电压波形和电流波形及以瓦特为单位的演算波形提供正确的标度和单位。下面用泰克4000系列示波器介绍测量的简单步骤:连接探头;按Autoset,示波器自动调节垂直设置、水平设置;触发设置,以查看波形;把演算波形定义为Ch1 * Ch2;打开Area测量,测量曲线下的面积(能量);光标读数表明瞬时功率。通过使用测量选通,我们可以把Area测量限制在特定区域,查看与MOSFET 的启动时间(Ton)和关闭(Toff)时间有关的功率损耗。

信号波形测量习题

第七章信号波形测量 一、填空题 1: 示波管由____、偏转系统和荧光荧三部分组成。电子枪 2: 示波器荧光屏上,光点在锯齿波电压作用下扫动的过程称为____。扫描 3: 调节示波器“水平位移”旋钮,是调节____的直流电位。X偏转板 4: 欲在x=10cm长度对的信号显示两个完整周期的波形,示波器应具有扫描速度为 _____。 20ms/cm 5: 取样示波器采用_____取样技术扩展带宽,但它只能观测_____信号。非实时,重复6: 当示波器两个偏转板上都加_____时,显示的图形叫李沙育图形,这种图形在_____和频率测量中常会用到。正弦信号相位 7、示波器为保证输入信号波形不失真,在Y轴输入衰减器中采用_______ 电路。RC分压(或阻容分压) 8、示波器的“聚焦”旋钮具有调节示波器中________极与________极之间电压的作用。第一阳(或A1) 第二阳(或A2,或G2) 9、在没有信号输入时,仍有水平扫描线,这时示波器工作在________状态,若工作在 _____状态,则无信号输入时就没有扫描线。连续扫描触发扫描 10、双扫描示波系统,采用A扫描输出________波,对B扫描触发,调节________来实现延迟扫描的延时调节。锯齿延迟触发电平 二、判断题: 1、双踪示波器中电子开关的转换频率远大于被测信号的频率时,双踪显示工作在“交替”方式。( )错 2、示波器的电阻分压探头一般为100∶1分压,输入阻抗很高,一般用来测量高频高电压。( )错 3、用示波器测量电压时,只要测出Y轴方向距离并读出灵敏度即可()错 4、电子示波器是时域分析的最典型仪器。()对 5、用示波法测量信号的时间、时间差、相位和频率都是以测量扫描距离D为基础的。()对 三、选择题: 1: 通用示波器可观测( C)。 A:周期信号的频谱; B:瞬变信号的上升沿 C:周期信号的频率; D:周期信号的功率 2: 在示波器垂直通道中设置电子开关的目的是_ A ___。 A:实现双踪显示; B:实现双时基扫描 C:实现触发扫描; D:实现同步

用示波器测量时间

实验报告 姓名:叶洪波 学号:PB05000622 用示波器测量时间 实验原理 1、 示波器的基本结构(略) 2、 示波器显示波形的原理 扫描电压的周期T x (或频率 x ν)与被测信号的周期T y (或y ν)必须满足 n T T x y = ,y ν=n x ν,n=1,2,… 3、 用x 轴时基测时间参数 一个周期的时间=时基*一个周期的波形厘米数 4、 李萨如图形测信号的频率 (1)、频率相同而振幅和相位不同时,两正交正弦电压的合成图形为椭圆。 (2)、两正交正弦电压的相位差一定,频率比为一个有理数时,合成的圆形是一条稳定的闭合曲线。 频率比与图形的切点数之间有如下关系: 竖直切线上的切点数 水平切线上的切点数 = x y νν 实验内容 1、 x 轴的时基测信号的时间参数 (1) 测量示波器自备方波输出信号的周期(时基分别为0.1ms/cm ,0.2ms/cm ,0.5ms/cm )。哪种时基测 出的数据更准确?为什么? 荧光屏上的最小刻度为0.2cm 。 测量厘米数时基分别为0.1ms/cm 、 0.2ms/cm 、 0.5ms/cm 时, 时间的最大误差分别为0.02ms 、0.04ms 、0.10ms 。 因此应选择时基为0.1ms/cm ,这样结果的误差较小,置信度较大。 (2) 选择信号发生器的对称方波接y 输入(幅度和y 轴量程任选),信号频率为200Hz~2kHz (每隔200Hz 测量一次),选择示波器合适的时基,测量对应频率的厘米数、周期和频率(注明x 轴的时基)。以信号发生器的频率为x 轴,示波器测量的频率为y 轴,作y-x 曲线,求出斜率并讨论。

示波器使用100问答,示波器使用教程

示波器使用100问答,示波器使用教程 1.对一个已设计完成的产品,如何用示波器经行检测分析其可靠性? 答:示波器早已成为检测电子线路最有效的工具之一,通过观察线路关键节点的电压电流波形可以直观地检查线路工作是否正常,验证设计是否恰当。这对提高可靠性极有帮助。当然对波形的正确分析判断有赖于工程师自身的经验。 2.决定示波器探头价格的主要因素是什么? 答:示波器的探头有非常多的种类,不同的性能,比如高压,差分,有源高速探头等等,价格也从几百人民币到接近一万美元。价格的主要决定因素当然是带宽和功能。探头是示波器接触电路的部分,好的探头可以提供测试需要的保真度。为做到这一点,即使无源探头,内部也必须有非常多的无源器件补偿电路(RC网络)。 3.一般的安捷伦示波器探头的使用寿命有多长时间?探头需不需要定期的标定? 答:示波器的探头寿命不好说,取决于使用环境和方法。 标准对于探头没有明确的计量规定,但是对于无源探头,至少在更换探头,探头交换通道的时候,必须进行探头补偿调整。所有有源探头在使用前应该有至少20分钟的预热,有的有源探头和电流探头需要进行零点漂移调整。 4.什么是示波器的实时采样率? 答:实时采样率是指示波器一次采集(一次触发)采样间隔的倒数。据了解,目前业界的最高水平是四个通道同时使用。 5.什么是示波器的等效时间采样? 答:等效时间采样指的是示波器把多次采集(多次触发)采集到的波形拼凑成一个波形,每次采样速率可能很慢,两次采集触发点有一定的偏移,最后形成的两个点间的最小采样间隔的倒数称为等效采样速率。其指标可以达到很高,如1ps。 6.什么是功率因数?如何如何测量? 答:功率因数:在直流电路里,电压乘电流就是有功功率。但在交流电路里,电压乘电流是视在功率,而能起到作功的一部分功率(即有功功率)将小于视在功率。有功功率与视在功率之比叫做功率因数,以COSΦ表示,其实最简单的测量方式就是测量电压与电流之间的相位差,得出的结果就是功率因数。 7.如何表达和测试功率密度? 答:功率密度就是单位体积里的功率,一般电源里用W/in3。 8.有无办法利用示波器测出高频变压器或电感磁芯的工作情况?

用示波器测量相位差实验报告

竭诚为您提供优质文档/双击可除用示波器测量相位差实验报告 篇一:示波器的使用及测量相位差 示波器的使用及测量相位差 摘要:示波器一般由示波管、扫描信号发生器、信号输入和放大系统、同步系 统以及电源五部分组成。用示波器可以观察电信号波形以及测量电压、频率和相位差等。本文就是主要介绍如何利用示波器测量两个正弦电压的相位差,主要采用李萨如图形法和双踪法。 关键词:示波器测量相位差李萨如图法双踪法实验目的: 1.了解示波器的结构和原理。 2.掌握示波器各旋钮、按钮、按键的作用和使用方法。 3.学会用示波器采用李萨如图法和示踪法测量相位差。 4.能对实验结果进行分析,比较各种测量方法的优缺点,对实验数据进行不确定度处理,写出合格的实验报告。 实验原理:示波器的工作原理:示波器一般由示波管、扫描信号发生器、信号

输入和放大系统、同步系统以及电源五部分组成。示波器内有电子枪,电子枪发射电子束经Y轴偏转板或x轴偏转板会发生偏转,从而打在荧屏上。人们可以根据显示在荧屏上波的形状、幅度来判断信号源的电压、频率等的大小。用示波器测量相位差的原理:(1)用李萨如图法测量。使示波器工作在x-Y方式,分别把两个信号输入到x偏转板和Y偏转板,然后移相,则得到如图所示的李萨如图(1).从示波器屏幕上读出A和b的值(格数),则信号的相位差为 (2)双踪法。使示波器工作在扫描工作方式,选择交替显示,调节两条扫描线重合。把两待测信号通过示波器的两个输入通道输入,得到如上图(2)图所示,读出一个信号周期T所占的格数n(T)及?t的对应格数n(?t),则相位差?? 2?n(?t) n(T) 实验内容与步骤:(一)测量正弦电压的电压和频率、周期 (1)首先将示波器的各个旋钮的功能和用法弄清楚。(2)第二,将示波器的各个旋钮调到实验所需的正常状态,然后使之处于工作 状态。(3)第三,用信号发生器作为信号源,调节输出电压峰峰值为2V,频率为10khZ,

实验3示波器的一般使用和常用参数测量

示波器的一般使用和常用参数测量 一.实验目的 1.了解示波器的组成框图及工作原理 2.掌握示波器各控制开关和旋钮的意义和功能。学会示波器的一般使用方法, 3.学会用示波器测量直流电压和交流电压 4.学会用示波器观察信号波形和测量信号频率 二.实验仪器 1.双踪示波器 2.函数信号发生器 3.数字频率计数器 4.数字万用表 三.预习内容 1.示波器的组成框图及基本工作原理 2.示波器的调节机构 3.用示波器测量电压,频率的方法 四.双路示波器主要调节机构名称及功能介绍 1.电源开关:按入为打开电源,弹出为关上电源。 2.辉度:控制光迹扫描线的亮度 3.聚焦:控制光迹扫描线条的聚焦,使之清晰 4.光迹旋转 5.通道输入选择开关:控制输入信号通过耦合电容(AC方式)接Y放大器,或直接(DC 方式)接到Y放大器,或对地短路为零输入(GND方式)。 6.Y轴位移;X轴位移;分别控制光迹在垂直方向和水平方向的移动 7.Y轴量程与Y轴增益:Y轴量程(也称Y系统偏转因数)选择开关与Y 轴增益旋钮套装在一起。中间为增益旋钮,外部为量程开关。定量测量输入信号电压值时,按Y轴输入信号的幅度选择量程。示波器屏幕上垂直方向共分为10 大格,开关位置所标电压值定义为每格显示的电压值。上述定义只有在增益旋钮顺时针旋到底时才成立。 8.X轴量程;X轴细调:X轴量程(也称X轴扫描因数)开关用来选择X 扫描时基。当X轴细调旋钮顺时针旋到底时,X轴量程开关位置所标数值定义为屏幕上水平方向每格显示的时间,量纲单位为mS或μS。据此可根据显示的信号波形读出信号周期,换算出信号频率。 9.触发电平:调节X 扫描电路,使之与所测信号同步(被测信号的频率是X扫描频率的整数倍)。使屏幕显示波形稳定。 10.触发源选择开关:一般选择通常或自动。 五.实验内容及步骤 1.熟习实验所用示波器各主要开关和旋钮的位置。 2.把该示波器主要技术指标填入表1中。

利用数字示波器测试开关电源的方法

利用数字示波器测试开关电源的方法 从传统的模拟型电源到高效的开关电源,电源的种类和大小千差万别。它们都要面对复杂、动态的工作环境。设备负载和需求可能在瞬间发生很大变化。即使是“日用的”开关电源,也要能够承受远远超过其平均工作电平的瞬间峰值。设计电源或系统中要使用电源的工程师需要了解在静态条件以及最差条件下电源的工作情况。 过去,要描述电源的行为特征,就意味着要使用数字万用表测量静态电流和电压,并用计算器或PC进行艰苦的计算。今天,大多数工程师转而将示波器作为他们的首选电源测量平台。现代示波器可以配备集成的电源测量和分析软件,简化了设置,并使得动态测量更为容易。用户可以定制关键参数、自动计算,并能在数秒钟内看到结果,而不只是原始数据。 电源设计问题及其测量需求 理想情况下,每部电源都应该像为它设计的数学模型那样地工作。但在现实世界中,元器件是有缺陷的,负载会变化,供电电源可能失真,环境变化会改变性能。而且,不断变化的性能和成本要求也使电源设计更加复杂。考虑这些问题: 电源在额定功率之外能维持多少瓦的功率?能持续多长时间?电源散发多少热量?过热时会怎样?它需要多少冷却气流?负载电流大幅增加时会怎样?设备能保持额定输出电压吗?电源如何应对输出端的完全短路?电源的输入电压变化时会怎样? 设计人员需要研制占用空间更少、降低热量、缩减制造成本、满足更严格的EMI/EMC标准的电源。只有一套严格的测量体系才能让工程师达到这些目标。 示波器和电源测量 对那些习惯于用示波器进行高带宽测量的人来说,电源测量可能很简单,因为其频率相对较低。实际上,电源测量中也有很多高速电路设计师从来不必面对的挑战。 整个开关设备的电压可能很高,而且是“浮动的”,也就是说,不接地。信号的脉冲宽度、周期、频率和占空比都会变化。必须如实捕获并分析波形,发现波形的异常。这对示波器的要求是苛刻的。多种探头——同时需要单端探头、差分探头以及电流探头。仪器必须有较大的存储器,以提供长时间低频采集结果的记录空间。并且可能要求在一次采集中捕获幅度相差很大的不同信号。 开关电源基础 大多数现代系统中主流的直流电源体系结构是开关电源(SMPS),它因为能够有效地应对变化负载而众所周知。典型SMPS的电能信号路径包括无源器件、有源器件和磁性元件。SMPS尽可能少地使用损耗性元器件(如电阻和线性晶体管),而主要使用(理想情况下)无损耗的元器件:开关晶体管、电容和磁性元件。

示波器使用简易说明

实验常用电子仪器的使用 一、实验目的 1、学习电子电路实验中常用的电子仪器——示波器、函数信号发生器等的主要性能及正确使用方法。 2、初步掌握用双踪示波器观察正弦信号波形和读取波形参数的方法 二、实验仪器 1、函数信号发生器EE1641C 2、DS1062E-EDU数字示波器 3、高级电路实验箱 三、实验原理 初步了解示波器面板和用户界面 1. 前面板:DS1000E-EDU系列数字示波器向用户提供简单而功能明晰的前面板, 以进行基本的操作。面板上包括旋钮和功能按键。旋钮的功能与其它示波器类似。显示屏右侧的一列 5 个灰色按键为菜单操作键(自上而下定义为 1 号至 5 号)。通过它们,您可以设置当前菜单的不同选项;其它按键为功能键,通过它们,您可以进入不同的功能菜单或直接获得特定的功能应用。

电压参数的自动测量 DS1000E-EDU, DS1000D-EDU 系列数字示波器可自动测量的电压参数包括峰峰值、最大值、最小值、平均值、均方根值、顶端值、低端值。下图表述了各个电压参数的物理意义。 电压参数示意图 峰峰值(Vpp):波形最高点至最低点的电压值。 最大值(Vmax):波形最高点至 GND(地)的电压值。 最小值(Vmin):波形最低点至 GND(地)的电压值。 幅值(Vamp):波形顶端至底端的电压值。 顶端值(Vtop):波形平顶至 GND(地)的电压值。

底端值(Vbase):波形平底至 GND(地)的电压值。 过冲(Overshoot):波形最大值与顶端值之差与幅值的比值。 预冲(Preshoot):波形最小值与底端值之差与幅值的比值。 平均值(Average):单位时间内信号的平均幅值。 均方根值(Vrms):即有效值。依据交流信号在单位时间内所换算产生的能量,对应于产生等值能量的直流电压,即均方根值。 2、函数信号发生器 函数信号发生器按需要输出正弦波、方波、三角波三种信号波形。输出电压最大可达20VP -P。通过输出衰减开关和输出幅度调节旋钮,可使输出电压在毫伏级到伏级范围内连续调节。函数信号发生器的输出信号频率可以通过频率分档开关进行调节。 函数信号发生器作为信号源,它的输出端不允许短路。 例一:测量简单信号 观测电路中的一个未知信号,迅速显示和测量信号的频率和峰峰值。 1. 欲迅速显示该信号,请按如下步骤操作: (1) 将探头菜单衰减系数设定为1X,并将探头上的开关设定为1X。 (2) 将通道1的探头连接到电路被测点。

用示波器测时间

实验题目:用示波器测量时间 实验目的:1. 了解示波器的基本原理和结构;2. 学习使用示波器观察波形和测量信号周期及其时间参数。 实验原理 1. 示波器的基本结构 示波器由示波管、放大系统、衰减系统、扫描和同步系统及电源等部分组成。示波管是示波器的基本构件,它由电子枪、偏转板和荧光屏三部分组成,被封装在高真空的玻璃管内。电子枪是示波管的核心部分。 (1) 阴极:实现电子发射。 (2) 栅极:由第一栅极和第二栅极构成,只有少量电子通过第一栅极,第二栅极对阴极 发射的电子奔向荧光屏起加速作用。 (3) 第一阳极:第一阳极上加有几百伏的电压,形成一个聚焦的电场,当电子束通过此 聚焦电场时,调节加在上的电压可以达到聚焦的目的。 (4) 第二阳极:第二阳极上加有1000V 以上的电压。聚焦后的电子经过这个高压电场的 加速获得足够的动能,使其成为一束高速的电子流。这些能量很大的电子打在荧光屏上可引起荧光物质发光。 (5) 偏转板:由两对相互垂直的金属板构成,在两对金属板上分别加以直流电压,以控 制电子束的位置,适当调节这个电压值可以把光点或波形移到荧光屏的中间部位。 (6) 荧光屏:荧光屏能在高能电子的轰击下发光。辉光的强度取决于电子的能量和数量。 在电子射线停止作用之后,余辉使我们能在屏上观察到光点的连续轨迹。 垂直偏转板(y 轴)及水平偏转板(x 轴)所形成的二维电场,使电子束发生位移: y y y y D V V S y = = x x x x D V V S x = = (1) 其中,S 和D 分别为偏转板的偏转灵敏度和偏转因数 示波器显示波形的原理 在x 轴偏转板上加一个随时间t 按一定比例增加的电压V x ,V x 周期性变化,并且由于发光物质的特殊性使光迹有一定保留时间,于是就得到一条“扫描线”,称为时间基线。

示波器的平均值参数、参数的统计平均值及波形平均算法

示波器的平均值参数、参数的统计平均值及波形平均算法 ——兼答“一周一问”之No.006问 文档编号:HWTT0065

示波器的平均值参数、参数的统计平均值及波形平均算法 ——兼答“一周一问”之No.006问 汪进进,王雨森 深圳市鼎阳科技有限公司 N0.006问:平均值的物理意义及其和FFT的关系 今天问个简单的问题: 示波器测量参数的平均值算法的物理意义是什么?平均值是否等于FFT的直流(0Hz)的大小? -------------------------------------- 这个问题很简单,简单得都没人想理会。但是就看这三个回答还是能撩人兴致的,看了后甚至有一下子被蒙住了的感觉。 回答1: 大海象 平均值对于周期信号来说,是直流分量,其等于0hz fft,但是对于非周期信号来说,平均值不等于0hz大小,物理意义上为积分

"平均值对于周期信号来说,是直流分量,其等于0hz fft,但是对于非周期信号来说,平均值不等于0hz大小。" 这个回答是对的,但为什么平均值在物理意义上是积分呢? 积分的物理意义又是什么?我不理解这后半句哦。 回答2: d.sen 示波器测量参数的平均值指的是正弦交流电全波整流并完全滤波后的电压。对正弦波而言,平均值的意义就是全波整流后,频域上的直流分量。 这里面正弦波理解为周期性信号,所以平均值就是直流分量。结论和第1个回答是一致的。 回答2: 叶叶 平均值在数学上是微分方程在一个周期内的平均值一样的算法,这个微分方程就是我们所测的波形,物理意义并不是0Hz的大小,而是要算出包含所有的高频分量后的数学平均值。 这个说法看不太懂了,跪求大师给出详细解释哦。 当我启动了伟大的搜索引擎搜索"平均值"三个字之后,得知“平均值”是初二数学上的

示波器的测量

示波器的测量 1.1 示波器的应用 1.实训目的 1﹚掌握示波器、交流毫伏表、音频信号发生器的基本应用。 2﹚掌握示波器观察信号波形和测量直流电压幅度、周期的方法。 2.实训内容 ﹙1﹚示波器的校准 ﹙2﹚利用示波器1khz,0.5Vp-p的方波校准信号作为示波器的输入信号,调出图1-1所示正常波形。 ﹙3﹚将扫描基线移动的格数、垂直偏转因数和稳定电压原指示电压值填入表1-1中。 图1-1 表1-1直流电压测量 ﹙4﹚正弦波电压幅度、周期的测量 1﹚用信号发生器产生下表中的输入信号,用示波器测量信号的周期和电压,将测量数据填入表1-2

表1-2 正弦波电压幅度、周期的测量 1.2 示波器的特殊应用 1.用示波器测量脉冲信号的上升时间和下降时间。 1)用函数信号发生器产生频率为20KHz的矩形波脉冲信号。 2)按图1-2连接电阻和电容,组成一个低通网络。 图1-2 低通滤波电路 3)因为函数信号发生器输出的脉冲信号上升时间较小,不易测量,所以把脉冲信号通过低通网络后送到示波器测量,以加大脉冲信号的上升时间,便以测量。 4)调节示波器X轴的偏转因素选择开关,尽量使屏幕上突出显示脉冲的上升沿部分或下降沿部分。并配合使用X轴位移旋钮,使对应上升沿10%(或下降沿90%)高度处的测量点对齐X轴的某个刻度线,然后读出对应上升沿90%(或下降沿10%)高度处另一测量点到上一测量点的相对时间值。该相对时间值便是所测脉冲的上升时间(或下降时间)。读数等于刻度个数乘上X轴偏转因数。 5)注意以上操作只有在X轴细调(V ariable)旋钮顺时针旋到底后读数才是正确的。2.用双踪法测量两个信号的相位差 1)先用信号发生器产生一个频率为20KHz的幅度为1V的正弦信号。 2)再按图1-3连接电阻和电容,组成一个阻容延迟网络。信号发生器输出信号一路直接作为信号1送入示波器CH1通道,另一路通过阻容延迟网络后作为信号2 送入示波器CH2通道。由于信号2 通过延迟网络,所以信号2比信号1在时间上要延迟,两个信号之间存在着相位差。 图1-3阻容延迟网络

示波器测量时间学PB姓名朱业俊

试验名称 :用示波器测量时间 试验目的: 本实验的目的是了解示波器的基本原理和结构,学习使用示波器观察波形和测量信号周期及其时间参数。 实验原理 1.示波器的基本结构 示波器的结构如图所示,由示波管(又称阴极射线管)、放大系统、衰减系统、扫描和同步系统及电源等部分组成。 示波管是示波器的基本构件,它由电子枪、偏转板和荧光屏三部分组成.电子枪是示波管的核心部分,它由阴极、栅极和阳极构成。 (1) 阴极——阴极的射线源: (2) 栅极——辉度控制:由第一栅极G 1(又称控制级)和第二栅极G 2(又称前加速级) 构成, (3) 第一阳极——聚焦: (4) 第二阳极——电子的加速: (5) 偏转板:由两对相互垂直的金属板构成,在两对金属板上分别加以直流电压,以控 制电子束的位置,适当调节这个电压值可以把光点或波形移到荧光屏的中间部位。 (6) 荧光屏:荧光屏(P )上面涂有硅酸锌、钨酸镉、钨酸钙等磷光物质,能在高能电子 的轰击下发光。余辉使我们能在屏上观察到光点的连续轨迹。 自阴极发射的电子束,经过第一栅极(G 1)、第二栅极(G 2)、第一阳极(A 1)、第二阳极(A 2)的加速和聚焦后,形成一个细电子束。垂直偏转板(常称y 轴)及水平偏转板(常称x 轴)所形成的二维电场,使电子束发生位移,位移的大小,与y 偏转板及x 偏转板上所加的电压有关: y y y y D V V S y = = x x x x D V V S x = = ( 1)

式(1)中的S y 和D y 为y 轴偏转板的偏转灵敏度和偏转因数,S x 和D x 为x 轴偏转板的偏转灵敏度和偏转因数。它们均与偏转板的参数有关,是示波器的主要技术指标之一。 2.示波器显示波形的原理 由式(1),y 轴或x 轴的位移与所加电压有关。如图,在x 轴偏转板上加一个随时间t 按一定比例增加的电压V x ,光点从A 点向B 点移动。V x 周期性变化(此种变化称为锯齿波),并且由于发光物质的特殊性使光迹有一定保留时间(由荧光屏的发光物质而定),于是就得到一条“扫描线”,称为时间基线。 如果在x 轴上加有锯齿形扫描电压的同时,在y 轴上加一正弦变化的电压,则电子束受到水平电场和垂直电场的共同作用而呈现二维图形。很显然,为了得到清晰稳定的波形,上述扫描电压的周期T x (或频率f x )与被测信号的周期T y (或f y )必须满足 n T T x y = ,x x nf f =,n=1,2,… (2) 以保证T x 轴的起点始终与y 轴周期信号固定一点相对应(称“同步”),波形才稳定。否则,波形就不稳定而无法观测。 由于扫描电压发生器的扫描频率f x 不会很稳定。因此,要保证式(2)始终成立,示波器需设置扫描电压同步电路,即触发电路. 用x 轴时基测时间参数 在实验中或工程技术上都经常用示波器来测量信号的时间参数,如信号的周期或频率,信号波形的宽度、上升时间或下降时间,信号的占空比(宽度/周期)等。 x 轴扫描信号的周期,实际上是以时基单位(时间/cm 或时间/度)来标示的,一般的示波管荧光屏直径以10cm 的居多,则式(2)的T x ,由时基(时间/cm )乘上10cm ,如时基为cm ,则扫描信号的周期为1ms 。为此,在实际测量中,将式(2)改成式(3)的形式 波形厘米数时基单位?=x T (3) 3.用李萨如图形测信号的频率

如何用数字示波器测试开关电源

如何用数字示波器测试开关电源? 从传统的模拟型电源到高效的开关电源,电源的种类和大小千差万别。它们都要面对复杂、动态的工作环境。设备负载和需求可能在瞬间发生很大变化。即使是“日用的”开关电源,也要能够承受远远超过其平均工作电平的瞬间峰值。设计电源或系统中要使用电源的工程师需要了解在静态条件以及最差条件下电源的工作情况。过去,要描述电源的行为特征,就意味着要使用数字万用表测量静态电流和电压,并用计算器或PC进行艰苦的计算。今天,大多数工程师转而将示波器作为他们的首选电源测量平台。现代示波器可以配备集成的电源测量和分析软件,简化了设置,并使得动态测量更为容易。用户可以定制关键参数、自动计算,并能在数秒钟内看到结果,而不只是原始数据。 电源设计问题及其测量需求 理想情况下,每部电源都应该像为它设计的数学模型那样地工作。但在现实世界中,元器件是有缺陷的,负载会变化,供电电源可能失真,环境变化会改变性能。而且,不断变化的性能和成本要求也使电源设计更加复杂。考虑这些问题: 电源在额定功率之外能维持多少瓦的功率?能持续多长时间?电源散发多少热量?过热时会怎样?它需要多少冷却气流?负载电流大幅增加时会怎样?设备能保持额定输出电压吗?电源如何应对输出端的完全短路?电源的输入电压变化时会怎样? 设计人员需要研制占用空间更少、降低热量、缩减制造成本、满足更严格的EMI/EMC标准的电源。只有一套严格的测量体系才能让工程师达到这些目标。 示波器和电源测量 对那些习惯于用示波器进行高带宽测量的人来说,电源测量可能很简单,因为其频率相对较低。实际上,电源测量中也有很多高速电路设计师从来不必面对的挑战。 整个开关设备的电压可能很高,而且是“浮动的”,也就是说,不接地。信号的脉冲宽度、周期、频率和占空比都会变化。必须如实捕获并分析波形,发现波形的异常。这对示波器的要求是苛刻的。多种探头——同时需要单端探头、差分探头以及电流探头。仪器必须有较大的存储器,以提供长时间低频采集结果的记录空间。并且可能要求在一次采集中捕获幅度相差很大的不同信号。 开关电源基础 大多数现代系统中主流的直流电源体系结构是开关电源(SMPS),它因为能够有效地应对变化负载而众所周知。典型SMPS的电能信号路径包括无源器件、有源器件和磁性元件。SMPS尽可能少地使用损耗性元器件(如电阻和线性晶体管),而主要使用(理想情况下)无损耗的元器件:开关晶体管、电容和磁性元件。 SMPS设备还有一个控制部分,其中包括脉宽调制调节器脉频调制调节器以及反馈环路1等组成部分。控制部分可能有自己的电源。图1是简化的SMPS示意图,图中显示了电能转换部分,包括有源器件、无源器件以及磁性元件。 SMPS技术使用了金属氧化物场效应晶体管(MOSFET)与绝缘栅双极晶体管(IGBT)等功率半导体开关器件。这些器件开关时间短,能承受不稳定的电压尖峰。同样重要的是,它们不论在开通还是断开状态,消耗的能量都极少,效率高而发热低。开关器件在很大程度上决定了SMPS的总体性能。对开关器件的主要测量包括:开关损耗、平均功率损耗、安全工作区及其他。

用示波器测量时间2

实验步骤:1.用x 轴的时基测信号的时间参数 (1) 测量示波器自备方波输出信号的周期(时基分别为0.1ms/cm ,0.2ms/cm ,0.5ms/cm )。 (2) 选择信号发生器的对称方波接y 输入(幅度和y 轴量程任选),信号频率为200Hz~2kHz (每隔200Hz 测量一次),选择示波器合适的时基,测量对应频率的厘米数、周期和频率(注明x 轴的时基)。以信号发生器的频率为x 轴,示波器测量的频率为y 轴,作y-x 曲线,求出斜率并讨论。 (3) 选择信号发生器的非对称方波接y 轴,频率分别为200Hz 、500Hz 、1kHz 、2kHz 、5kHz 、 10kHz 、20kHz ,测量各频率时的周期和正波的宽度(或占空比),用内容(2)的方法作曲线。 (4) 选择信号发生器的输出为三角波,频率为500Hz 、1kHz 、1.5kHz 、测量各个频率时的 上升时间、下降时间及周期。 2.观察李萨如图形并测频率 用两台信号发生器(一台为本组专用,一台为公用)分别接y 轴和x 轴(x 轴选择外输入),取4/33/22/11/、、、=y x νν 时,测出对应的x y f f 和,画有关图形并求公用信号发生器的频率。 数据处理和误差分析: 1.(1)测量示波器自备方波输出信号的周期 时基ms/cm 0.10.20.5波形厘米数/cm 10.2 5.1 2.2周期ms 1.02 1.02 1.10 表1 哪种时基测出的数据更准确?为什么? 答:0.1cm/ms 更为准确,因为时基越小,读数带来的误差就越小,数据也就越准确。解释不太好. (2)选择信号发生器的对称方波接Y 输入,信号频率为200Hz~2kHz ,测量对应频率的厘米数、周期和频率。

音频测试-示波器-使用方法

音频测试-示波器-使用方法

类别音频设备版本R1文件编号C304-OSCILL- 制定部门品保部制定日期2011年11月30日页次2/7 ★目的:介绍示波器的使用方法,使相关人员能正确操作示波器。 ★示波器的概述 示波器是利用电子束的电偏转来观察电压波形的一种常用电子仪器,主要用于观察和测量电信号。下图1为我厂常用的20MHz的双踪示波器。 ★示波器的操作方法 第一步骤:示波器的连接 图 1 图 2 图 3 探头接在 CH1通道上

类 别 音频设备 版 本 R1 文件编号 C304-OSCILL- 制定部门 品保部 制定日期 2011年11月30日 页 次 3/7 1) 连接电源线 用220V AC 线把示波器连上220V 市电。(如上图2) 2) 连接信号线 将探头插入到示波器左边的CH1接口并顺时针扭动半圈(如上图3)。当探头接在示波器的CH1通道上时,模式开关须打在CH1上(如下图4)。当探头接在示波器的CH2通道上时,模式开关须打在CH2上。(如下图5) 3) 信号耦合开关的选择(AC GND DC ) 信号耦合开关一般紧挨着输入通道,CH1通道和CH2通道各有1个。当只用来观察被测信号中的交流成分时,将开关拔至AC 档(本厂一般选择此档);当信号的直流成份和交流成分都要观察或信号的频率较低时,将开关拔至DC 档;当开关拔至GND 档时,输入端处于接地状态,用以确定输入端为零时光迹所在位置。(如下图6) 第二步骤:开机与光迹调节 上述步骤完成后,接下来需要开机预热和调节光迹。(如下图7和图8) 图 5 电源开关 电源指示灯 亮度调节 聚焦调节 光迹平行度调节 光 迹 正弦波信号光迹 模式开关选择 CH1通道 图 6 图 4 模式开关选 择 探头接在 CH2通道上 信号耦合 选择开关

如何用示波器进行射频信号测量

前言--如何用示波器进行射频信号测量连载(一) 前面推出了《数字工程师需要掌握的射频知识》连载后,反响强烈。有些工程师朋友联系我说,除了数字工程师要用到射频仪器外,有些射频工程师也会用到示波器做射频信号测试,但是不清楚精度如何,以及和频谱仪等传统仪器的区别,希望能对这方面做些讲解。 为此,我对示波器做射频信号测试的应用案例和注意事项做了一些整理,将陆续连载,希望能给大家提供一些帮助。 时域测量的直观性 要进行射频信号的时域测量的一个很大原因在于其直观性。比如在下图中的例子中分别显示了4个不同形状的雷达脉冲信号,信号的载波频率和脉冲宽度差异不大,如果只在频域进行分析,很难推断出信号的时域形状。由于这4种时域脉冲的不同形状对于最终的卷积处理算法和系统性能至关重要,所以就需要在时域对信号的脉冲参数进行精确的测量,以保证满足系统设计的要求。 更高分析带宽的要求 在传统的射频微波测试中,也会使用一些带宽不太高(<1GHz)的示波器进行时域参数的测试,比如用检波器检出射频信号包络后再进行参数测试,或者对信号下变频后再进行采集等。此时由于射频信号已经过滤掉,或者信号已经变换到中频,所以对测量要使用的示波器带宽要求不高。 但是随着通信技术的发展,信号的调制带宽越来越宽。比如为了兼顾功率和距离分辨率,现代的雷达会在脉冲内部采用频率或者相位调制,典型的SAR成像雷达的调制带宽可能会达到2GHz以上。在卫星通信中,为了小型化和提高传输速率,也会避开拥挤的C波段和Ku 波段,采用频谱效率和可用带宽更高的Ka波段,实际可用的调制带宽可达到3GHz以上甚至更高。 在这么高的传输带宽下,传统的检波或下变频的测量手段会遇到很大的挑战。由于很难

示波器测量小信号方法

如何用示波器测量小信号 饶志华肖静刘滨 东华理工大学 用数字示波器测量小信号时,由于信号幅度较小,极容易受噪声干扰。经总结,用数字示波器测小信号可以按照如下步骤进行: 1、将信号好输入示波器(这里以p-p value=5mv,f=1KHz的余弦信号为例) 2、按”auto set”按钮获取波形,见图1 图1按”auto set”获取波形 3、按触发菜单按钮”trig menu”,在显示屏幕上弹出触发菜单,见按菜单旁边对应的按钮, 选取图示的触发方式,见图2 图2按触发菜单按钮选取合适触发方式

4、调节相应的幅度旋钮”scale”,将波形的幅度展宽(图中信号是从第一路输出),见图3。 图3调节幅度旋钮将波形的幅度展宽 5、调节相应的频率旋钮”scale”,将波形在时域上展开,仅在屏幕上仅显示1-3个周期(待补 图) 6、如果这时后的波形看不到余弦信号的样子,则可能是示波器抓取波形失败,则重复以上 步骤。 7、这时候示波器上显示的波形由于受噪声影响,重影非常明显,这时可以按捕获按 钮”acquire”,选取“取平均次数,即用多次采样的次来作为测量值,故可以中和掉噪声,这时候可以看到细小清晰的波形。(待补图) --------------- 注:实际信号发生器输出的波形噪声没有那么严重,大部分噪声是来自周围环境的噪声和信号发生器和示波器的接入方式,当采取同轴电缆将信号发生器和示波器直接连接起来的时候,不用求平均值的方式也可以得到较好的信号,这也从一方面说明了当用放大器放大小信号时,示波器上的输出信号不像输入信号般有非常大的噪声。

按下测量按钮,则可以得到测量波形的各项参数值。(待补图)

用示波器测量信号的电压和频率

用示波器测量信号的电压及频率 长江大学马天宝应物1203班 1、示波器和使用 -【实验目的】 1.了解示波器的大致结构和工作原理。 2.学习低频信号发生器和双踪示波器的使用方法。 3.使用示波器观察电信号的波形,测量电信号的电压和频率。 【实验原理】 一、示波器原理 1.示波器的基本结构 示波器的种类很多,但其基本原理和基本结构大致相同,主要由示波管、电子放大系统、扫描触发系统、电源等几部分组成,如图4.9-1所示。 (1)示波管 示波管又称阴极射线管,简称CRT,其基本结构如图4.9-2所示,主要包括电子枪、偏转系统和荧光屏三个部分。 电子枪:由灯丝、阳极、控制栅极、第一阳极、第二阳极五部分组成。灯丝通电后,加热阴极。阴极是一个表面涂有氧化物的金属圆筒,被加热后发射电子。控制栅极是一个顶端有小孔的圆筒,套在阴极外面,它的电位相对阴极为负,只有初速达到一定的电子才能穿过栅极顶端的小孔。因此,改变栅极的电位,可以控制通过栅极的电子数,从而控制到达荧光屏的电子数目,改变屏上光斑的亮度。示波器面板上的“亮度”旋钮就是起这一作用的。阳极电位比阴极高得多,对通过栅极的电子进行加速。被加速的电子在运动过程中会向四周发散,如果不对其进行聚焦,在荧光屏上看到的将是模糊一片。聚焦任务是由阴极、栅极、阳极共同形成的一种特殊分布的静电场来完成的。这一静电场是由这些电极的几何形状、相对位置及电位决定的。示波器面板上的“聚焦”旋钮就是改变第一阳极电位用的,而“辅助聚焦”就是调节第二阳极电位用的。 偏转系统:它由两对互相垂直的平行偏转板——水平偏转板和竖直偏转板组成。只有在偏转板上加上一定的电压,才会使电子束的运动方向发生偏转,从而使荧光屏上光斑的位置发生改变。通常,在水平偏转板上加扫描信号,竖直偏转板上加被测信号。

相关文档
相关文档 最新文档