文档库 最新最全的文档下载
当前位置:文档库 › Linux下文件系统的性能测试

Linux下文件系统的性能测试

Linux下文件系统的性能测试
Linux下文件系统的性能测试

Linux下文件系统的写入性能

Chen0x

Xiaochen0x@https://www.wendangku.net/doc/d911100902.html,

当今社会对存储的要求越来越高,在不同环境下对于文件系统的选择尤为重要,因此我们要为此做大量测试。今天测试比较的是reiserfs、ext4和vfat。

ReiserFS曾今是个高效存储和快速小文件I/O的文件系统不过因为开发人员进了监狱无人维护现在性能理论上应该低于ext4。Ext4是一种针对ext3系统的扩展日志式文件系统是专门为Linux 开发的原始的扩展文件系统(ext 或extfs)的第四版。VFAT是Windows 95/98等以后操作系统后Windows系统硬盘分区格式的一种,单个文件最大只支持4GB。

连续写测试:

测试方法在每个文件系统下写一个2G的大文件。

# time(dd if=/dev/zero of=a.iso bs=1M count=2048)

测试环境:

1.直挂式环境

ext4 vfat reiserfs

Real 0m19.559s 0m27.987s 0m24.868s

User 0m0.010s 0m0.009s 0m0.012s

Sys 0m4.045s 0m6.737s 0m6.457s

2.nfs环境

ext4 vfat reiserfs

Real 0m54.122s 0m31.939s 0m29.887s

User 0m0.014s 0m0.0135s 0m0.012s

Sys. 0m4.732s 0m4.580s 0m4.433s

3.Iscsi环境

ext4 vfat reiserfs

Real 0m22.116s 0m21.099s 0m25.104s

User 0m0.013s 0m0.011s 0m0.005s

Sys. 0m4.892s 0m6.177s 0m7.269s

由测试可以看出在本地环境下ext4对于连续文件写入速度最优vfat最差,在nfs环境下reiserfs最优而ext4最差在iscsi时vfat最优但是与ext4差距很小reiserfs最差。nfs环境的写入速度最差,本地写入速度最快。ext4适合本地大文件写入,对于大文件写入的情况共享存储最好选择iscsi环境在此环境下小于4GB的文件可以选vfat或ext4大于4GB选ext4。

随机写测试:

测试方法在每个文件系统下写10000个1k的文件。

# vim /boot/grub/grub.conf ——添加mem=256M (减少内存对测试的影响)

# vim /etc/inittab ——改换级别3 (同上)

# echo 3 > /proc/sys/vm/drop_cashing #每次执行前都要清空缓存

# time(for ((i=1;i<=10000;i++));do dd if=/dev/zero of=$i bs=1k count=1;done)

测试环境:

1.直挂式环境

ext4 vfat reiserfs

Real 0m58.685s 1m16.119s 1m4.859s

User 0m8086s 0m8.148s 0m8.758s

Sys 0m53.441s 1m9.513s 0m59.306s

2.nfs环境

ext4 vfat reiserfs

Real 9m13.375s 2m45.351s 1m5.388s

User 0m9.391s 0m9.475s 0m9.202s

Sys. 0m59.904s 0m59.126s 0m59.640s

3.iscsi环境

ext4 vfat reiserfs

Real 0m48.515s 1m8.780s 0m58.251s

User 0m7.279s 0m7.626s 0m8.482s

Sys. 0m43.638s 1m3.335s 0m52.470s

由测试可以看出在本地环境下ext4对于随机文件写入速度依然最优vfat依然最差,在nfs环境下reiserfs依旧最优而ext4最差在iscsi时ext4最优vfat最差。Nfs环境的写入速度太差,不推荐在共享环境下使用,本地写入速度最快。ext4适合本地随机写入,同时也适合共享随机写入,共享环境下有iscsi的环境就别用nfs环境。

总结:综合而言exit4的性能要优于vfat和reiserfs,在共享环境下我们要选择iscsi而不是nfs。思考:1.文件系统对连续读,随机读以及inode的存取性能如何测试。

2.为何测连续写入时无需考虑内存的干扰。

(完整版)linux文件系统管理-权限管理实验4报告

实验报告 课程Linux系统应用与开发教程实验名称linux文件系统管理-权限管理(高级设置) 一、实验目的 1、掌握Linux文件系统权限的设置 2、掌握linux用户帐号与组管理 3、掌握linux 文件共享的设置方法 4、掌握linux 文件共享的权限设置方法 二、实验内容 1、使用root帐号通过系统提供的6个虚拟控制台登陆到linux,或在x-windows开启一个终端。 2、完成以下的实验内容 (1)、假设你是系统管理员:现要在公司linux服务器系统中新增一些用户与一个用户组。 ?使用groupadd account 添加一个名为account的组 ?使用useradd -G account acc-user1,(该命令将添加一个用户名为acc-user1的用户, 同时会建立一个与用户名同名的私有组(该私有组为用户的默认组,这个组中只有一个用户名),并把该用户将加入account的标准组,同时,按同样的方法建立acc-user2、acc-user3、acc-user4。 ?建立用户后,请使用x-window中的用户与组管理工具查看用户与组建立情况,检查用户与组的归属情况。 (2)、开启多个控制台,分别使用acc-user1、acc-user2、acc-user3登陆系统(可以在控制台分别登陆,也可以在X-windows中多开几个终端程序,默认使用root登陆,然后使用su命令通过切换用户的方式登陆,其语法为“su - user-name”,提示可以在登陆成功后运行命令“id”查看当前登陆的用户属于哪些组,当前的默认组是什么?) (3)、为account组建立一个公共共享目录/home/account-share,满足以下的权限设定要求,以及设置何种的umask: ?该目录的拥有者为acc-user1,所属组为account。 ?在该目录下建立一个/home/account-share/full-share的子目录,修改该目录的权限,使得account组的成员均能在对该目录有完全控制权限,account组外的其他用户没有任何权限,即account组的成员都可以在该目录下建立文件,同时在该子目录full-share下建立的文件,只有文件建立者有权限删除,并且每个用户在该子目录full-share下建立的文件也能自动与该account组成员可读共享。 ?在/home/account-share/为每个用户建立一个与用户名同名的子目录(如/home/account-share/acc-user1为用户acc-user1的目录,其拥有者为acc-user1,所在的组为account),配置该子目录的拥有者有完全控制权限,而同组用户只能读取,同时在用户在该目录下建立的文件,可供同组用户读。 (4)、考虑完成以上的共享目录权限设置,应注意哪些设置。包括目录的权限,目录的拥有者,目录所在的组,具体文件的权限,umask设置等。 (5)、实验报告应体现出使用不同身份的用户对所配置目录的访问测试过程。 三、实验环境 安装有vmware或visual pc软件的window主机,系统中有提供turbolinux或redhat的硬盘

linux_操作系统优化方案

按照传统,Linux不同的发行版本和不同的内核对各项参数及设置均做了改动,从而使得系统能够获得更好的性能。下边将分四部分介绍在Red Hat Enterprise Linux AS和SUSE LINUX Enterprise Server系统下,如何用以下几种技巧进行性能的优化: 1、Disabling daemons (关闭daemons) 2、Shutting down the GUI (关闭GUI) 3、C hanging kernel parameters (改变内核参数) 4、Kernel parameters (内核参数) 5、Tuning the processor subsystem(处理器子系统调优) 6、Tuning the memory subsystem (内存子系统调优) 7、Tuning the file system(文件系统子系统调优) 8、Tuning the network subsystem(网络子系统调优) 1 关闭daemons 有些运行在服务器中的daemons (后台服务),并不是完全必要的。关闭这些daemons可释放更多的内存、减少启动时间并减少C PU处理的进程数。减少daemons数量的同时也增强了服务器的安全性。缺省情况下,多数服务器都可以安全地停掉几个daemons。 Table 10-1列出了Red Hat Enterprise Linux AS下的可调整进程. Table 10-2列出了SUSE LINUX Enterprise Server下的可调整进程

注意:关闭xfs daemon将导致不能启动X,因此只有在不需要启动GUI图形的时候才可以关闭xfs daemon。使用startx 命令前,开启xfs daemon,恢复正常启动X。 可以根据需要停止某个进程,如要停止sendmail 进程,输入如下命令: Red Hat: /sbin/service sendmail stop SUSE LINUX: /etc/init.d/sendmail stop 也可以配置在下次启动的时候不自动启动某个进程,还是send mail: Red Hat: /sbin/chkconfig sendmail off SUSE LINUX: /sbin/chkconfig -s sendmail off 除此之外,LINUX还提供了图形方式下的进程管理功能。对于Red Hat,启动GUI,使用如下命令:/usr/bin/redhat-config-serv ices 或者鼠标点击M ain M enu -> System Settings -> Serv er Settings -> Serv ices.

操作系统实验5文件系统:Linux文件管理

实验5 文件系统:Linux文件管理 1.实验目的 (1)掌握Linux提供的文件系统调用的使用方法; (2)熟悉文件和目录操作的系统调用用户接口; (3)了解操作系统文件系统的工作原理和工作方式。 2.实验内容 (1)利用Linux有关系统调用函数编写一个文件工具filetools,要求具有下列功能:*********** 0. 退出 1. 创建新文件 2. 写文件 3. 读文件 4. 复制文件 5. 修改文件权限 6. 查看文件权限 7. 创建子目录 8. 删除子目录 9. 改变当前目录到指定目录 10. 链接操作 *********** 代码: #include #include #include #include #include #include #include #include void menu(void); void openfile(void); void writefile(void); void readfile(void); void copyfile(void); void chmd(void); void ckqx(void); void cjml(void); void scml(void); void ggml(void); void ylj(void); int main() { int choose; int suliangjin=1;

menu(); scanf("%d",&choose); while(choose!=0) { switch(choose) { case 1:openfile();break; case 2:writefile();break; case 3:readfile();break; case 4:copyfile();break; case 5:chmd();break; case 6:ckqx();break; case 7:cjml();break; case 8:scml();break; case 9:ggml();break; case 10:ylj();break; } menu(); scanf("%d",&choose); } return 0; } void menu(void) { printf("文件系统\n"); printf("1.创建新文件\n"); printf("2.写文件\n"); printf("3.读文件\n"); printf("4.复制文件\n"); printf("5.修改文件权限\n"); printf("6.查看文件权限\n"); printf("7.创建子目录\n"); printf("8.删除子目录\n"); printf("9.改变目前目录到指定目录\n"); printf("10.链接操作\n"); printf("0.退出\n"); printf("请输入您的选择...\n"); } void openfile(void) { int fd; if((fd=open("/tmp/hello.c",O_CREAT|O_TRUNC|O_RDWR,0666))<0) perror("open");

LINUX性能调优方法总结

LINUX性能调优方法总结 大多数 Linux 发布版都定义了适当的缓冲区和其他 Transmission Control Protocol(TCP)参数。可以修改这些参数来分配更多的内存,从而改进网络 性能。设置内核参数的方法是通过 proc 接口,也就是通过读写 /proc 中的值。幸运的是,sysctl 可以读取 /etc/sysctl.conf 中的值并根据需要填充 /proc,这样就能够更轻松地管理这些参数。清单 2 展示在互联网服务器上应用于 Internet 服务器的一些比较激进的网络设置。 # Use TCP syncookies when needed net.ipv4.tcp_syncookies = 1 # Enable TCP window scaling net.ipv4.tcp_window_scaling: = 1 # Increase TCP max buffer size net.core.rmem_max = 16777216 net.core.wmem_max = 16777216 # Increase Linux autotuning TCP buffer limits net.ipv4.tcp_rmem = 4096 87380 16777216 net.ipv4.tcp_wmem = 4096 65536 16777216 # Increase number of ports available net.ipv4.ip_local_port_range = 1024 65000 将这些设置添加到 /etc/sysctl.conf 的现有内容中。第一个设置启用TCP SYN cookie。当从客户机发来新的 TCP 连接时,数据包设置了 SYN 位,服务 器就为这个半开的连接创建一个条目,并用一个 SYN-ACK 数据包进行响应。在正常操作中,远程客户机用一个 ACK 数据包进行响应,这会使半开的连接 转换为全开的。有一种称为 SYN 泛滥(SYN flood)的网络攻击,它使 ACK 数据包无法返回,导致服务器用光内存空间,无法处理到来的连接。SYN cookie 特性可以识别出这种情况,并使用一种优雅的方法保留队列中的空间(细节参见参考资料一节)。大多数系统都默认启用这个特性,但是确保配 置这个特性更可靠。 启用 TCP 窗口伸缩使客户机能够以更高的速度下载数据。TCP 允许在未从远程端收到确认的情况下发送多个数据包,默认设置是最多 64 KB,在与延迟比 较大的远程客户机进行通信时这个设置可能不够。窗口伸缩会在头中启用更多的位,从而增加窗口大小。 后面四个配置项增加 TCP 发送和接收缓冲区。这使应用程序可以更快地丢掉它的数据,从而为另一个请求服务。还可以强化远程客户机在服务器繁忙时发

NOSLinux 【单元测验】Linux文件系统与磁盘管理(2)

【单元测验】Linux文件系统与磁盘管理(2) 回顾第 1 次试答 结束回顾 开始时间2012年03月 22日星期四 08:18 完成于2012年03月 22日星期四 08:23 耗时 5 分钟 1 秒 分数6/16 成绩37.5超出最大限度 100(38%) 反馈要加油啰 Question 1 分数: 1 以下命令返回的结果是什么?ln file1 file2 选择一个答案 A. file2将成为file1的符号链接 B. 命令格式错误,需要使用参数 C. 无论file1的尺度是多少,file2将固定为5字节 D. file1和file2有相同的索引节点 链接文件分为硬链接(不加参数)和符号链接(加-s参数) 硬链接内容和原文件保持同步,他们具有相同的索引节点信息(磁盘的具体物理位置),移动、删除或修改他们中的任何一个都不影响通过另一个访问该文件 符号链接只是快捷方式,原文件删除,将导致该符号链接失效 正确 这次提交的分数:1/1。 Question 2 分数: 1 以下哪个命令可将file1复制给file2? 选择一个答案 A. cat file1 > file2 B. copy file1 file2 C. cat file1 file2> file1 D. cp file | file2

cp命令可以复制文件,格式为 cp 源文件目标文件,无需加管道符号“|” cat本来是输出文件内容到屏幕,加了“>”重定向符号后也可以将文件内容重定向输出指定文件中,这样就可以实现复制文件的目的 正确 这次提交的分数:1/1。 Question 3 分数: 1 如果newdir/file2文件不存在,但是目录newdir已存在,mv file1 newdir/file2命令将有什么结果? 选择一个答案 A. file1将被复制到newdir并命名为file2 B. 将报错,因为以上不是有效的命令 C. file1将被移动到newdir并重命名为file2 D. file1将被删除 mv可以更名也可以移动,具体看命令参数 mv 文件1 文件2——将文件1更名为文件2 mv 目录1 目录2——将目录1更名为目录2 mv 文件1 目录2——将文件1移动到目录2 mv 文件1 目录1/文件2——将文件1移动到目录1,并更名为文件2 正确 这次提交的分数:1/1。 Question 4 分数: 1 如何从文件中查找显示所有以“#”打头的行? 选择一个答案 A. grep -n "#" file B. find "\#" file C. grep -v "#" file D. wc -l "#" find查找的对象和结果都是文件 grep查找的对象和结果是输出结果中的行 -c 显示符合条件的行数 -i查找时不区分大小写 -n显示行号

(整理)linux系统监控性能评估.

总控服务器性能: 一、Cpu性能评估 Vmstat命令的参数解释: 对上面每项的输出解释如下: procs r列表示运行和等待cpu时间片的进程数,这个值如果长期大于系统CPU的个数,说明CPU 不足,需要增加CPU。? b列表示在等待资源的进程数,比如正在等待I/O、或者内存交换等。 Memory swpd列表示切换到内存交换区的内存数量(以k为单位)。如果swpd的值不为0,或者比较大,只要si、so的值长期为0,这种情况下一般不用担心,不会影响系统性能。 free列表示当前空闲的物理内存数量(以k为单位)? buff列表示buffers cache的内存数量,一般对块设备的读写才需要缓冲。 cache列表示page cached的内存数量,一般作为文件系统cached,频繁访问的文件都会被cached,如果cache值较大,说明cached的文件数较多,如果此时IO中bi比较小,说明文件系统效率比较好。 swap si列表示由磁盘调入内存,也就是内存进入内存交换区的数量。 so列表示由内存调入磁盘,也就是内存交换区进入内存的数量。 一般情况下,si、so的值都为0,如果si、so的值长期不为0,则表示系统内存不足。需要增加系统内存。? IO项显示磁盘读写状况? Bi列表示从块设备读入数据的总量(即读磁盘)(每秒kb)。 Bo列表示写入到块设备的数据总量(即写磁盘)(每秒kb) 这里我们设置的bi+bo参考值为1000,如果超过1000,而且wa值较大,则表示系统磁盘IO有问题,应该考虑提高磁盘的读写性能。 system 显示采集间隔内发生的中断数 in列表示在某一时间间隔中观测到的每秒设备中断数。 cs列表示每秒产生的上下文切换次数。 上面这2个值越大,会看到由内核消耗的CPU时间会越多。 CPU项显示了CPU的使用状态,此列是我们关注的重点。 us列显示了用户进程消耗的CPU 时间百分比。us的值比较高时,说明用户进程消耗的cpu 时间多,但是如果长期大于50%,就需要考虑优化程序或算法。 sy列显示了内核进程消耗的CPU时间百分比。Sy的值较高时,说明内核消耗的CPU资源很多。 根据经验,us+sy的参考值为80%,如果us+sy大于 80%说明可能存在CPU资源不足。 id 列显示了CPU处在空闲状态的时间百分比。 wa列显示了IO等待所占用的CPU时间百分比。 wa值越高,说明IO等待越严重,根据经验,wa的参考值为20%,如果wa超过20%,说明IO等待严重,引起IO等待的原因可能是磁盘大量随机读写造成的,也可能是磁盘或者磁盘控制器的带宽瓶颈造成的(主要是块操作)。综上所述,在对CPU的评估中,需要重点注意

linux系统性能优化及瓶颈分析

linux系统性能优化及瓶颈分析 一,用vmstat分析系统I/O情况 [root@localhost ~]# vmstat -n 3 (每个3秒刷新一次) procs-----------memory--------------------swap--- ---io---- --system---- ------cpu-------- r b swpd free buff cache si so bi bo in cs us sy id wa 1 0 144 186164 105252 2386848 0 0 18 166 83 2 48 21 31 0 2 0 144 189620 105252 2386848 0 0 0 177 1039 1210 34 10 56 0 0 0 144 214324 105252 2386848 0 0 0 10 1071 670 32 5 63 0 0 0 144 202212 105252 2386848 0 0 0 189 1035 558 20 3 77 0 2 0 144 158772 105252 2386848 0 0 0 203 1065 2832 70 14 15 0 IO -bi:从块设备读入的数据总量(读磁盘)(KB/S) -bo:写入到块设备的数据总量(写磁盘)(KB/S) 随机磁盘读写的时候,这2个值越大(如超出1M),能看到CPU在IO等待的值也会越大 二,用iostat分析I/O子系统情况 如果你的系统没有iostat,sar,mpstat等命令,安装sysstat- 7.0.2-1.el5.i386.rpm包,iostat工具将对系统的磁盘操作活动进行监视。它的特点是汇报磁盘活动统计情况,同时也会汇报出CPU 使用情况。同vmstat

详细分析Linux文件系统格式优劣

?摘要:Linux支持多种文件系统,包括ext2、iso9660、jffs、ext3、vfat、ntfs、romfs和nfs等,为了对各类文件系统进行统一管理,Linux引入了虚拟文件系统VFS(Virtual File System) ?标签:文件系统 ?Linux由于其开源安全特性正在被多数企业所接受。Linux支持很多种文件系统,ext3、vfat、ntfs、romfs和nfs等,为了对各类文件系统进行统一管理,Linux引入了另一个文件系统VFS(Virtual File System)。下面我们就分析一下他的各种文件系统格式的特点 基于RAM的文件系统 (1)Ramdisk Ramdisk是将一部分固定大小的内存当作分区来使用。它并非一个实际的文件系统,而是一种将实际的文件系统装入内存的机制,并且可以作为根文件系统。将一些经常被访问而又不会更改的文件(如只读的根文件系统)通过Ramdisk放在内存中,可以明显地提高系统的性能。 在Linux的启动阶段,initrd提供了一套机制,可以将内核映像和根文件系统一起载入内存。 (2)ramfs/tmpfs Ramfs是LinusTorvalds开发的一种基于内存的文件系统,工作于虚拟文件系统(VFS)层,不能格式化,可以创建多个,在创建时可以指定其最大能使用的内存大小。(实际上,VFS 本质上可看成一种内存文件系统,它统一了文件在内核中的表示方式,并对磁盘文件系统进行缓冲。 Ramfs/tmpfs文件系统把所有的文件都放在RAM中,所以读/写操作发生在RAM中,可以用ramfs/tmpfs来存储一些临时性或经常要修改的数据,例如/tmp和/var目录,这样既避免了对Flash存储器的读写损耗,也提高了数据读写速度。 Ramfs/tmpfs相对于传统的Ramdisk的不同之处主要在于:不能格式化,文件系统大小可随所含文件内容大小变化。 Tmpfs的一个缺点是当系统重新引导时会丢失所有数据。 3.网络文件系统NFS(NetworkFileSystem) NFS是由Sun开发并发展起来的一项在不同机器、不同操作系统之间通过网络共享文件的技术。在嵌入式Linux系统的开发调试阶段,可以利用该技术在主机上建立基于NFS 的根文件系统,挂载到嵌入式设备,可以很方便地修改根文件系统的内容。 附录:NOR闪存与NAND闪存比较

Linux 性能调优的几种方法

Linux 性能调优的几种方法 按照传统,Linux不同的发行版本和不同的内核对各项参数及设置均做了改动,从而使得系统能够获得更好的性能。下边将分四部分介绍在Red Hat Enterprise Linux AS和SUSE LINUX Enterprise Server系统下,如何用以下几种技巧进行性能的优化: 1、Disabling daemons (关闭daemons) 2、Shutting down the GUI (关闭GUI) 3、Changing kernel parameters (改变内核参数) 4、Kernel parameters (内核参数) 5、Tuning the processor subsystem(处理器子系统调优) 6、Tuning the memory subsystem (内存子系统调优) 7、Tuning the file system(文件系统子系统调优) 8、Tuning the network subsystem(网络子系统调优) 1 关闭daemons 有些运行在服务器中的daemons (后台服务),并不是完全必要的。关闭这些daemons可释放更多的内存、减少启动时间并减少CPU处理的进程数。减少daemons数量的同时也增强了服务器的安全性。缺省情况下,多数服务器都可以安全地停掉几个daemons。 Table 10-1列出了Red Hat Enterprise Linux AS下的可调整进程. Table 10-2列出了SUSE LINUX Enterprise Server下的可调整进程

注意:关闭xfs daemon将导致不能启动X,因此只有在不需要启动GUI图形的时候才可以关闭xfs daemon。使用startx命令前,开启xfs daemon,恢复正常启动X。

Linux 0.1.1文件系统的源码阅读

Linux 0.11文件系统的源码阅读总结 1.minix文件系统 对于linux 0.11内核的文件系统的开发,Linus主要参考了Andrew S.Tanenbaum 所写的《MINIX操作系统设计与实现》,使用的是其中的1.0版本的MINIX文件系统。而高速缓冲区的工作原理参见M.J.Bach的《UNIX操作系统设计》第三章内容。 通过对源代码的分析,我们可以将minix文件系统分为四个部分,如下如1-1。 ●高速缓冲区的管理程序。主要实现了对硬盘等块设备进行数据高速存取的函数。 ●文件系统的底层通用函数。包括文件索引节点的管理、磁盘数据块的分配和释放 以及文件名与i节点的转换算法。 ●有关对文件中的数据进行读写操作的函数。包括字符设备、块设备、管道、常规 文件的读写操作,由read_write.c函数进行总调度。 ●涉及到文件的系统调用接口的实现,这里主要涉及文件的打开、关闭、创建以及 文件目录等系统调用,分布在namei和inode等文件中。 图1-1 文件系统四部分之间关系图

1.1超级块 首先我们了解一下MINIX文件系统的组成,主要包括六部分。对于一个360K软盘,其各部分的分布如下图1-2所示: 图 1-2 建有MINIX文件系统的一个360K软盘中文件系统各部分的布局示意图 注释1:硬盘的一个扇区是512B,而文件系统的数据块正好是两个扇区。 注释2:引导块是计算机自动加电启动时可由ROM BIOS自动读入得执行代码和数据。 注释3:逻辑块一般是数据块的2幂次方倍数。MINIX文件系统的逻辑块和数据块同等大小 对于硬盘块设备,通常会划分几个分区,每个分区所存放的不同的文件系统。硬盘的第一个扇区是主引导扇区,其中存放着硬盘引导程序和分区表信息。分区表中得信息指明了硬盘上每个分区的类型、在硬盘中其实位置参数和结束位置参数以及占用的扇区总数。其结构如下图1-3所示。 图1-3 硬盘设备上的分区和文件系统 对于可以建立不同的多个文件系统的硬盘设备来说,minix文件系统引入超级块进行管理硬盘的文件系统结构信息。其结构如下图1-4所示。其中,s_ninodes表示设备上得i节点总数,s_nzones表示设备上的逻辑块为单位的总逻辑块数。s_imap_blocks 和s_zmap_blocks分别表示i节点位图和逻辑块位图所占用的磁盘块数。 s_firstdatazone表示设备上数据区开始处占用的第一个逻辑块块号。s_log_zone_size 是使用2为底的对数表示的每个逻辑块包含的磁盘块数。对于MINIX1.0文件系统该值为0,因此其逻辑块的大小就等于磁盘块大小。s_magic是文件系统魔幻数,用以指明文件系统的类型。对于MINIX1.0文件系统,它的魔幻数是0x137f。

linux 实验报告 文件系统与文件管理

学生课程实验报告书课程:《linux网络操作系统》 级系 专业班 学号: 姓名: 指导教师:

一、实验项目:用户与组群管理 二、实验日期: 三、实验原理: 1.熟悉Linux下常用的操作指令。 2.加深对文件,目录,文件系统等概念的理解。 3.掌握Linux文件系统的目录结构。 4.掌握有关Linux文件系统操作的常用命令。 5.了解有关文件安全方面的知识。 四、实验仪器: PC机 Redhat网络操作系统 五、实验步骤(纸张不够写可另外加纸并应装订): 进入虚拟机,并在此平台上练习文件管理有关命令.一般在[root @ localhost xxxx]$ 提示符下键入有关命令。 1.浏览文件系统 〈1〉运行pwd命令,确定你当前的工作目录。 〈2〉利用以下命令显示当前工作目录的内容:(理解各字段彻底意义。) 〈3〉运行以下命令:(反馈信息中.代表本身目录,..代表其父目录;选项a可以显示隐藏文件;选项i 可以显示文件的I节点号) ls –ai 〈4〉使用mkdir命令建立一个子目录subdir,并用ls查看当前目录。 〈5〉使用带-d选项的ls命令,你只能看到有关子目录的信息(.表示本身目录)。

〈6〉使用cd命令,将工作目录改到根目录(/)上。 ①用相对路径将工作目录改到根目录。 ②用绝对路径将工作目录改到根目录。 〈7〉使用ls命令列出根目录的内容,再分别列出各子目录的内容,体会各目录作用及访问权限。 〈8〉使用ls-l命令列出/dev的内容。 Ls –l /dev 列出/dev目录的内容,文件太多显示多屏,各行第一个字符为b的表示块特别文件;各行第一个字符为c的表示字符特别文件。 〈9〉使用不带参数的命令cd,然后用pwd命令确定你当前的工作目录是什麽。 〈10〉使用命令cd ../..,你将工作目录移到什麽地方? 2.查看你的文件 〈1〉利用cd命令,将工作目录改到你的主目录上。 〈2〉将工作目录改到你的子目录subdir,然后运行命令: date > file1 将当前日期和时间存放到新建文件file1中。 Ls –l 反馈信息中有新文件 file1。请注意并记下文件长度为:

linux性能调优篇

TOP命令的掌握 top命令经常用来监控linux的系统状况,比如cpu、内存的使用,程序员基本都知道这个命令,但比较奇怪的是能用好它的人却很少,例如top监控视图中内存数值的含义就有不少的曲解。 Top衍生出iftop 和iotop Iftop可以用来监控网卡的实时流量(可以指定网段)、反向解析IP、显示端口信息等,详细的将会在后面的使用参数中说明。 Iotop命令是专门显示每个进程的IO的命令,界面风格类似top命令。这个命令只有在kernelv2.6.20及以后的版本中才有,而iostat是显示每个硬盘的总体IO 本文通过一个运行中的WEB服务器的top监控截图,讲述top视图中的各种数据的含义,还包括视图中各进程(任务)的字段的排序。 top进入视图 top视图01 【top视图01】是刚进入top的基本视图,我们来结合这个视图讲解各个数据的含义。 第一行: 10:01:23 —当前系统时间

126 days, 14:29 —系统已经运行了126天14小时29分钟(在这期间没有重启过) 2 users —当前有2个用户登录系统 load average: 1.15, 1.42, 1.44 — load average后面的三个数分别是1分钟、5分钟、15分钟的负载情况。 load average 见下文 第二行: Tasks —任务(进程),系统现在共有183个进程,其中处于运行中的有1个,182个在休眠(sleep),stoped 状态的有0个,zombie状态(僵尸)的有0个。 第三行:cpu状态 6.7% us —用户空间占用CPU的百分比。 0.4% sy —内核空间占用CPU的百分比。 0.0% ni —改变过优先级的进程占用CPU的百分比 92.9% id —空闲CPU百分比 0.0% wa — IO等待占用CPU的百分比 0.0% hi —硬中断(Hardware IRQ)占用CPU的百分比 0.0% si —软中断(Software Interrupts)占用CPU的百分比 第四行:内存状态 8306544k total —物理内存总量(8GB) 7775876k used —使用中的内存总量(7.7GB) 530668k free —空闲内存总量(530M) 79236k buffers —缓存的内存量(79M) 第五行:swap交换分区 2031608k total —交换区总量(2GB) 2556k used —使用的交换区总量(2.5M) 2029052k free —空闲交换区总量(2GB) 4231276k cached —缓冲的交换区总量(4GB) 这里要说明的是不能用windows的内存概念理解这些数据,如果按windows的方式此台服务器“危矣”:8G的内存总量只剩下530M的可用内存。Linux的内存管理有其特殊性,复杂点需要一本书来说明,这里只是简单说点和我们传统概念(windows)的不同。 第四行中使用中的内存总量(used)指的是现在系统内核控制的内存数,空闲内存总量(free)是内核还未纳入其管控范围的数量。纳入内核管理的内存不见得都在使用中,还包括过去使用过的现在可以被重复利用的内存,内核并不把这些可被重新使用的内存交还到free中去,因此在linux上free内存会越来越少,但不用为此担心。 如果出于习惯去计算可用内存数,这里有个近似的计算公式:第四行的free + 第四行的buffers + 第五行的cached,按这个公式此台服务器的可用内存:530668+79236+4231276 = 4.7GB。 对于内存监控,在top里我们要时刻监控第五行swap交换分区的used,如果这个数值在不断的变化,说明内核在不断进行内存和swap的数据交换,这是真正的内存不够用了。

Linux文件系统管理

实验:Linux文件系统管理 -=-==----------------------------= 实验环境: 安装了Red Hat Enterprise Linux 6.0 可运行系统,并且是成功验证系统。 实验目标: 增加有关分区和文件系统的技能和知识,掌握常见磁盘分区的相关操作及一般步骤。 实验背景: 无论是Windows 还是Linux,我们日常操作与使用几乎都是围绕文件系统而展开的。 有一天你突然发现你的现有的硬盘空间不够用了,巧的是你还有一些的空余空间。遇事你打算把这些空余的空间开辟出来以便使用。 实验要求: 按要求新建磁盘分区: 存储空间文件系统 1024MB ext2 Block size:4K Laber:Music 512MB ext3 512MB vfat ------------------------------------------ 实验详解: 1、以root 用户的身份登录系统。如果你使用的是图形化环境,点击[应用程序(Applications)]->[附件(System Tools)]->[终端(Terminal)]来打开终端: 2、使用fdisk命令查看当前磁盘使用情况: [root@desktop2 ~]# fdisk -l Disk /dev/sda: 10.4 GB, 21474836480 bytes 255 heads, 63 sectors/track, 2610 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Device Boot Start End Blocks ID System /dev/sda1 * ……其余项省略 /dev/sda2 ……其余项省略 /dev/sda3 ……其余项省略 /dev/sda4 ……其余项省略 3、使用fdisk命令按照实验要求创建3 个新分区: [root@desktop2 ~]# fdisk /dev/sda This number of cylinder for this disk is set to 2610. There is nothing wrong with that, but this is larger than 1024, and could in certain setups cause problems with: 1) software that runs at boot time (e.g., old versions of LILO) 2) booting and partitioning software from other OSs (e.g., DOS FDISK, OS/2 FDISK) 在Command 命令处输入’n’,开始新建磁盘分区

《Linux操作系统性能监控工具和指标分析V1.0》

Linux操作系统性能监控工具和指标分析 目录 第一章绪论 (2) 1.1 Linux性能分析的目的 (2) 1.2Linux性能指标分析的命令 (2) 第二章性能分析 (5) 2.1 CPU性能评估标准 (5) 2.2Memory性能评估标准 (5) 2.3磁盘性能评估标准 (7) 2.4Network性能评估标准 (8) 2.5 监控工具 (9) 总结 (10) 参考文献 (11)

第一章绪论 Linux是一套免费使用和自由传播的类Unix操作系统,它主要用于基于Intel x86系列CPU的计算机上。这个系统是由全世界各地的成千上万的程序员设计和实现的。其目的是建立不受任何商品化软件的版权制约的、全世界都能自由使用的Unix兼容产品。 Linux之所以受到广大计算机爱好者的喜爱,主要原因有两个,一是它属于自由软件,用户不用支付任何费用就可以获得它和它的源代码,并且可以根据自己的需要对它进行必要的修改,无偿对它使用,无约束地继续传播。另一个原因是,它具有Unix的全部功能,任何使用Unix操作系统或想要学习Unix操作系统的人都可以从Linux中获益。 然而Linux下面的版本相当的多,Radhat、Ubuntu、CentOS、Debian、SUSE、Gentoo等都是Linux内核,我们下面主要针对Linux内核下,监控工具和命令的讲解(部份命令,需要下载不同的操作系统所对应的插件!!)。 1.1 Linux性能分析的目的 Linux操作系统是一个开源产品,也是一个开源软件的实践和应用平台,在这个平台下由无数的开源软件支撑,常见的有Apache、Tomcat、MySQL、PHP等。开源软件的最大理念是自由、开放,那么Linux 作为一个开源平台,最终要实现的是通过这些开源软件的支持,以最低廉的成本,达到应用性能的最优化。但是,系统的性能问题并非是孤立的,解决了一个性能瓶颈,可能会出现另一个性能瓶颈,所以说性能优化的最终目的是:在一定范围内使系统的各项资源使用趋于合理并保持一定的平衡,即系统运行良好的时候恰恰就是系统资源达到了一个平衡状态的时候。而在操作系统中,任何一项资源的过度使用都会破坏这种平衡状态,从而导致系统响应缓慢或者负载过高。例如,CPU资源的过度使用会造成系统中出现大量的等待进程,导致应用程序响应缓慢,而进程的大量增加又会导致系统内存资源的增加,当物理内存耗尽时,系统就会使用虚拟内存,而虚拟内存的使用又会造成磁盘I/O的增加并加大CPU的开销。因此,系统性能的优化就是在硬件、操作系统、应用软件之间找到一个平衡点。 我们本次所讲的Linux性能分析都是基于Linux的基本命令和使用一些免费工具来完成。 1.2 Linux性能指标分析的命令 性能调优的第一步是性能分析,下面从性能分析着手进行一些介绍,尤其对Linux性能分析工具基础命令的用法和实践进行详细介绍

实验六 LINUX文件系统管理

实验6 Linux文件系统和权限管理 1 实验目的 1、掌握文件系统管理的常用命令。 2、掌握磁盘分区、挂载的方法。 2 实验环境 VMware中已经安装好CentOS6.2版本。 3 实验原理 1、Linux常用文件权限管理命令主要有:chmod、chown两个;而文件系统管理常用命令主要有fdisk、mkfs、mount/umount、df、du等,这些命令的使用可参见教材P86~P104或者帮助手册。 2、Linux常用文件权限管理命令主要有:chmod、chown两个;而文件系统管理常用命令主要有fdisk、mkfs、mount/umount等,这些命令的使用可参见教材P86~P104或者帮助手册。 4 实验任务 1、对硬盘进行分区、格式化操作,挂载和卸载等操作。 2、设置配置文件/etc/fstab实现设备的自动挂载。 5 实验步骤 1、创建硬盘分区sda5,要求其大小为200M,完成后效果 2、创建文件系统ext4,使用命令将sda5格式化的命令是。(自己验证) 3、使用命令将sda5挂载到/data目录下的操作是。完成后验证图,可以使用df命令验证。 4、使用命令卸载sda5的操作为。(自己验证) 5、修改配置文件/etc/fstab,使得系统开机后自动挂载sda5到/data下。(完成后自己验证) 6、使用命令在/etc目录下查找文件名前四个字符为init后面任意的文件。

7、使用命令在/目录下查找大小大于100M的文件。 8、为/etc目录下的inittab文件在root用户家目录下创建符号连接inittab_s和硬连接inittab_i 然后查看inittab_s和inittab_i的i节点号对比符号连接和硬连接的不同。

黑马程序员C语言教程:Linux系统性能优化思想

Linux系统性能优化思想 性能问题永远是永恒的主题之一,硬件问题、软件问题、网络环境等的复杂性和多变性. 导致了对系统的优化变得异常复杂,如何定位性能问题出在哪个方面,是性能优化的一大难题。 一、系统性能分析 1.1找出系统性能瓶颈 系统的性能决定任务有效性、稳定性和响应速度。Linux系统使用中常会遇到系统不稳定、响应速度慢等问题,如网页无法打开、打开速度慢等现象。有人会抱怨Linux系统不好,其实这些都是表面现象。操作系统完成一个任务是与系统自身设置、网络拓朴结构、路由设备、路由策略、接入设备、物理线路等多个方面都密切相关的,任何一个环节出现问题,都会影响整个系统的性能。 因此,当Linux应用出现问题时,应当从应用程序、操作系统、服务器硬件、网络环境等方面综合排查,定位问题出现在哪个部分,然后集中解决。 1.2提出优化方案 查找系统性能瓶颈是个复杂而耗时的过程,需要在应用程序、操作系统、服务器硬件、网络环境等方面进行查找和定位,影响性能最大的是应用程序和操作系统两个方面,而这两个方面出现的问题不易察觉,隐蔽性很强。 硬件、网络方面出现的问题,一般都能很快定位。一旦找到了系统性能问题,解决起来就非常容易。如发现系统硬件存在问题,如果是物理故障,那么更换硬件,如果是硬件性能不能满足需求,升级硬件就可以了; 如果发现是网络问题,比如带宽不够、网络不稳定,只需优化和升级网络即可; 如果是应用程序问题,修改或优化软件系统即可; 而如果是操作系统配置问题,则修改系统参数、修改系统配置。 可见,只要找到了性能瓶颈,就可以提供性能优化方案,有标准、有目的地进行系统优化。

1.3确保软硬件资源使用平衡 Linux操作系统平台由无数的开源软件支撑,常见的有Apache、Tomcat、Nginx、MySQL、Python等。开源软件的最大理念是自由、开放,Linux作为一个开源平台,最终要实现的是通过这些开源软件的支持,以最低廉的成本,达到应用性能的最优化。但是,系统的性能问题并非是孤立的,解决了一个性能瓶颈,可能会出现另一个性能瓶颈,所以说性能优化的最终目的是:在一定范围内使系统的各项资源使用趋于合理并保持一定的平衡,即系统运行良好的时候恰恰就是系统资源达到了一个平衡状态的时候。 而在操作系统中,任何一项资源的过度使用都会破坏这种平衡状态,从而导致系统响应缓慢或者负载过高。例如,CPU资源的过度使用会造成系统中出现大量的等待进程,导致应用程序响应缓慢,而进程的大量增加又会导致系统内存资源的增加,当物理内存耗尽时,系统就会使用虚拟内存,而虚拟内存的使用又会造成磁盘I/O的增加并加大CPU的开销。 因此,系统性能的优化就是在硬件、操作系统、应用软件之间找到一个平衡点。 二、分析优化涉及人员 2.1 系统管理员 在做性能优化过程中,系统管理人员承担着很重要的任务。 首先,系统管理人员要了解和掌握操作系统的当前运行状态,例如系统负载、内存状态、进程状态、CPU负荷等信息,这些信息是检测和判断系统性能的基础和依据; 其次,系统管理人员还有掌握系统的硬件信息,例如磁盘I/O、CPU型号、内存大小、网卡带宽等参数信息,然后根据这些信息综合评估系统资源的使用情况; 第三,作为一名系统管理人员,还要掌握应用程序对系统资源的使用情况,更深入的一点就是要了解应用程序的运行效率,例如是否有程序BUG、内存溢出等问题,通过对系统资源的监控,就能发现应用程序是否存在异常,如果确实是应用程序存在问题,需要把问题立刻反映给程序开发人员,进而改进或升级程序。 性能优化本身就是一个复杂和繁琐的过程,系统管理人员只有了解了系统硬件信息、网络信息、操作系统配置信息和应用程序信息才能有针对性地的展开对服务器性能优化,这就要求系统管理员有充足的理论知识、丰富的实战经验以及缜密分析问题的头脑。

相关文档
相关文档 最新文档