文档库 最新最全的文档下载
当前位置:文档库 › 钢管工艺复习题

钢管工艺复习题

钢管工艺复习题
钢管工艺复习题

钢管工艺复习题

1.管材的定义及作用?

凡是两端开口并具有中空封闭型断面,且长度与断面周长成较大比例的钢材,统称为钢管而比值较小的钢材称为管段或管件。

用途:输送流体做结构件

2.管材按生产方式分哪几种?按尺寸分哪几种?

按生产方式:(1)热加工管(无缝钢管):热轧穿孔、挤压、P.P.M(压力穿孔)、冲压法;(2)焊管(有缝钢管):包括直缝钢管与螺旋焊管;(3)冷加工管:冷轧、冷拔和冷旋压。

按产品尺寸:(1)特厚管:D/S≤10;(2)厚壁管:D/S=10~20(3)薄壁管:D/S=20~(3)薄壁管:D/S=20~40 (4)极薄壁管:D/S≥40

3.钢管生产的一般模式是什么?

钢管生产的一般模式为:坯料→成型→精整→一次成品→再加工→二次成品。4.管坯主要有哪几种?

(1)连铸圆坯:是目前国际上应用较多的坯料,也是衡量一个国家钢管生产技术水平的标志之一。其具有成本低、能耗少、组织性能稳定等特点,是管坯发展的主流,也是钢管实现连轧的首要条件。

(2)轧坯:一般为圆坯,生产中也经常使用。

(3)铸(锭)坯:主要有方(锭)坯,用于P.P.M轧制方式(或压力穿孔)。

(4)锻坯:用于穿孔性能较差的合金钢与高合金钢管的生产。

5.管坯的截断方式有哪几种?适合什么情况

⑴剪断:适用于中小断面的管坯,生产效率高,费用低,但管坯易被压扁(现场,一般压扁度不超过8~10%,切斜度不超过6mm),对于易产生裂纹的管坯(如GCr15等),应预热200℃~300℃。

⑵火焰切割:适合大断面、合金钢等管坯,操作方便,费用低,但金属损耗大(烧损、氧化),断面质量差。

⑶折断:适合Dp>υ140mm或σb>60Kg/mm2管坯。先在要折断处切口,然后放入折断压力机中折断,支点间距一般为(4~5) Dp。

⑷锯断:适合小断面管坯,合金钢及高合金钢等;是切断质量最好的方法。

6.坯料加热遵循的原则?

加热目的:提高塑性,降低变形抗力,为穿孔和轧管准备良好的加工组织,改善金属的性能。

坯料加热一般遵循三个原则:⑴温度准确,确保可穿性最好的温度;⑵加热均匀,纵向、横向都均匀,内外温差不大于30~50℃,最好小于15℃;⑶烧损少,并且不产生有害的化学成分变化(C↑或C↓)

7.坯料加热温度制定,需考虑哪些因素?

(1)加热温度在Fe-C相图中的单相奥氏体区AC3线以上30~50℃,固相线以下100 ℃。即:在800~1300 ℃选取,(2)加热温度考虑坯料的化学成分;(3)

(3)加热温度考虑坯料尺寸大小。(4)加热温度考虑工艺条件

8.环形加热炉有哪些优点

优:1)适合加热圆形管坯,适应多种不同直径和长度的复杂坯料;2)管坯加热时间短、受热均匀、加热质量好;3)炉底转动,坯料与炉底无相对滑动,氧化铁皮不易脱落,且炉子装出料炉门在一侧,密封好,冷空气吸入少、氧化铁皮少;门在一侧,密封好,冷空气吸入少、氧化铁皮少;4)管坯放置位置灵活(可放料也可空出),便于更换管坯规格,操作灵活。5)机械化和自动化程度高。

9.管坯定心的定义,目的和方式?

(1)管坯定心:是指在管坯前端面钻孔或冲孔。

(2)定心目的:使顶头鼻部正确地对准管坯轴线,防止穿孔时穿扁;减小毛管壁厚不均;改善二次咬入条件。

(3)定心方式:a:热定心:效率高,应用广;

b:冷定心:效率较低,仅用于穿孔性能较差的钢材,如高合金钢、高碳钢及重要用途的钢材。

10.二辊斜轧穿孔机的工具有哪些?构成什么孔型?

(1)曼乃斯曼穿孔机构成了一个“环形封闭的孔型”。

(2)狄舍尔穿孔机

(3)双支撑的菌式穿孔机

(4)三辊穿孔机:构成“封闭的环形孔型”,

(5)推轧穿孔法

11穿孔机轧辊的结构及各部分的作用?

Ⅰ:入口锥:咬入管坯,实现管坯穿孔;

Ⅱ:轧制带:起过渡带作用;

Ⅲ:出口锥:实现毛管减壁,平整毛管表面,均匀壁厚及完成毛管归圆。

12.穿孔机顶头的作用、结构及各部分的作用?

作用:实现从实心管坯到中空毛管的变形,这一变形是钢管穿孔的主要变形,因而其工作条件非常恶劣,对穿孔质量和生产有重大影响。

L0鼻部:对正管坯定心孔,便于穿正;

L2 (平整段:锥角与辊同):均整毛管内外表面;

L3 (反锥):甩圆并防止毛管脱出顶头时划伤。

13.二辊斜轧穿孔变形区的组成及各部分的作用?

Ⅰ穿孔准备区:从管坯开始咬入到与顶头鼻部接触止,即轧实心管坯。

作用:⑴顺利实现管坯一次咬入;⑵为二次咬入积累足够的剩余摩擦力。

积累足够的剩余摩擦力。⑶径向压缩,一部分横向变形,一部分纵向延伸,因而管坯头部形成一个喇叭口状的凹陷(即疏松区)。

Ⅱ穿孔区:从金属与顶头相遇开始到顶头的平整段为止。

作用:实现穿孔并使毛管减壁。主要是纵向变形(延伸)较大,因为,辊表面与顶

头越来越近,被压缩的金属向纵向、横向运动,但横向有导板(导盘)的阻挡,因此,纵向变形是主变形,变形量可达到5左右。

Ⅲ辗轧区(平整区),与顶头平整段对应的部分。

作用:辗轧(均整)管壁,改善管壁的尺寸精度和内外表面质量(顶头母线与辊母线平行)

Ⅳ转圆区(归圆区),平整段后,轧辊与毛管接触的部分。

作用:靠轧辊的旋转加工把椭圆形毛管转圆。

变形特点:实际上是塑性弯曲变形,但由于该区较短且变形量不大,一般不与考虑。

14.曼氏穿孔机穿孔后的毛管会出现什么情况?为什么?

外径大小会出现了头粗尾细中间均的现象(曼乃斯曼穿孔机表现尤为突出)。

原因:(1)管坯头部进入时,由于顶头正面有阻力,相当于冲压镦粗,且管坯头部无外端约束(由最小阻力法则,轴向μ↓,横向μ↑),金属向外侧流动↑,因而使管坯头部变粗;

(2)中间部分管坯两侧有外端约束,阻碍了金属的横向流动,所以中间均匀;(3)当尾部进入时,顶头正面阻力,瞬间减少,导致轴向阻力↓↓,因而,轴向μ↑,横向μ↓,故出现尾细。

15.穿孔机咬入时,需校核哪几个条件?为什么?

(1)一次咬入条件:必须同时满足旋转和前进的条件。

1)旋转条件:管坯旋转动力矩>管坯旋转阻力矩

即: n(M T- M N)≥0

式中:M T= ? T·d(旋转摩擦力矩);M N = ? P·c (旋转阻力矩);n : 轧辊数目

2)前进条件:管坯轴向咬入力>管坯轴向阻力

即: n (T X- N X) +P0≥ 0

式中: T X: 摩擦力的轴向分力; N X: 正压力的轴向分力; P0:外加顶推力,非顶推时其值为0; n : 轧辊数目。

(2)二次咬入条件:也必须同时满足旋转和前进的条件。

1)旋转条件:由于旋转条件只是增加一项顶头的惯性阻力矩,因为顶头是从动的,其值相对较小,故影响不大,因而旋转条件等同于一次咬入。

2)前进条件:需克服顶头的轴向阻力Q0

n (T X- N X) -Q0≥ 0

16.斜轧穿孔时,附加变形包括哪些?怎样产生的?如何减少?

附加变形:附加变形是指轧件的内部变形,也称无用变形,由轧件的不均匀变形引起的。增大轧件的变形应力,引起毛管中产生缺陷的几率增大。包括纵向变形、切向变形、扭转变形。

①纵向剪切变形:指内外层金属沿纵向产生附加相互剪切。即外层金属拉动内层金属,而内层阻碍外层,因而各层沿纵向相互剪切,其大小用β角(指管壁金

属纤维某点的切线与管壁垂线夹角)表示,β角越大,纵向剪切变形越严重。

产生原因:穿孔时,轧辊带动毛管外层金属轴向延伸,而顶头阻止内层金属轴向

流动,从而导致各层金属轴向流动的差异,产生了纵向剪切应力。它易导致表面

裂纹(横裂)缺陷。

减少措施:采用主动顶头,或加润滑剂等来减少。

② 横向剪切变形:内外层金属沿横向产生附加相互剪切。

轧制时,外层金属切向流动的角速度大于内层,使金属纤维弯曲成C 型,减壁量

越大,金属切向流动的角速度的差异就越大,弯曲就越大,其大小用γ表示(指

在管壁厚度的0.5s 处的切线与过该点的径向线之间的夹角),γ角越大,横向剪切变形越严重。

产生的原因:顶头的阻力与轧辊的动力共同作用的结果。是造成毛管纵裂、折叠、

分层等缺陷的原因。

减少措施:加润滑剂降低顶头阻力。

③ 扭转变形:是由于变形区中管坯各截面的角速度不同引起的。是不可避免的。

由于 所以管坯各截面处的转速并不相同,必然产生扭转现象,这样使坯料表面原有的裂纹、起皮、夹层等缺陷,扭转后很容易形成外折叠。减少扭转的方法主要是降

低β1、β2。

纵向剪切变形 横向剪切变形

17.什么是孔腔,孔腔形成的机理有哪些?影响孔腔形成的因素有哪些?

孔腔:旋转横锻、横轧或斜轧实心工件时,工件产生的纵向内撕裂。

a)切应力理论:认为中心撕裂是管坯中心受交变的剪切应力作用的结果,断裂为

韧性破裂。代表人物是德国的E .吉贝尔(Siebel),目前欧美仍采用此理论。

b)正应力理论 :认为中心破裂是管坯中心受横向拉应力作用的结果,属于脆性

断裂。代表人物是前苏联,B.C 萨米尔诺夫.

c) 综合应力理论:认为孔腔形成是由于中心金属受交变的切应力和很大的拉应

力共同作用的结果,属于韧、脆性断裂。

影响孔腔形成的因素:

(1)钢的自然塑性(化学成分、冶炼质量、组织状态等): 塑性↑,可穿性↑,孔

纵向剪切变形 αηcos y g px

x px n D D n =γ s

内表面

β 外表面

腔↓。

(2)送进角α:若α↑,变形区↓,交变应力↓,孔腔↓。

(3)穿孔温度t℃:无论t℃↑还是t℃↓,使塑性↓,孔腔↑。

(4)封闭孔型的椭圆度系数ξ:(ξ=导板间距/轧辊间距,曼:ξ不能太小,否则不利于变形;狄:ξ可小些,且变形好些。),若ξ↑,横向σy↑,孔腔↑(交变τ↑)。

(5)顶前压缩量△h:若△h↑,不均匀变形↑,σy↑,交变τ↑,孔腔↑。

(6)轧辊的入口锥角β1:若β1↓,变形较均匀,附加应力不易产生,孔腔↓。

(7)主动导盘:有利于纵向变形,变形不均匀性↓,孔腔↓。

(8)轧辊磨损:增加滑动,光转不走,从而使交变τ↑,孔腔↑。

凡是增加不均匀变形的因素,凡是使金属塑性变差的因素,都能促进孔腔形成。18设计穿孔机轧辊时,轧辊直径、入口锥长度、出口锥长度、入口锥角、出口锥角都考虑哪些因素?

⑴轧辊直径的确定:考虑强度、咬入、穿孔效率等。

L1:入口锥长度,考虑压下量

L2:出口锥长度,考虑扩径量

⑶入、出口锥角的确定

β1:为改善毛管质量和咬入条件,提高生产效率,尽量取小一些。若β1↓,咬入↑,但L1↑,顶前易形成孔腔,对表面质量不利,且轧制力↑。经验值:β1=2.5~4.5°,常取3°~3°30′。

β2:若β2↑,扩径量↑,螺旋壁厚不均严重;β2↓,可改善毛管质量和壁厚不均,但也限制了扩径量。经验值:β2=2.5~4.5°;用小管坯生产大口径管时,β2有时可达8°。

19.毛管轧制的目的?

轧制目的:穿孔以后的毛管必须进行壁厚加工,同时还要对外径进行加工,才能投入使用。毛管轧制就是对穿孔以后的毛管进行壁厚加工,实现减壁延伸,使壁厚接近或等于成品壁厚。

20.毛管轧制的方法包括哪些?

毛管轧制的方法包括:

(1)斜轧:斜轧延伸机(芯头)、狄舍尔延伸机(芯棒)、锥形辊延伸机(芯棒)以及三辊轧管机(ASSEL)等;

(2)纵轧:自动轧管机、连轧管机、三辊连轧管机等;按照机架形式及内变形工具的类型,纵轧基本可分三类:空心、长芯棒、短芯头。

21.连轧管机组有哪些优点?

1. 在连续的8-9机架中以大压下量一次完成轧制,高效获得长尺钢管(33米、240根/时)。

2.钢管质量高:可减小穿孔变形,从而↓穿孔表面缺陷。交替轧制钢管,消除穿孔螺旋壁厚不均,调质磨光的特殊芯棒使内外表面平滑。

3.容易实现自动化:芯棒循环使用,只穿孔需换顶头。整个热轧线可全部自动化。

4.产品范围广:连轧管机本身生产规格少,容易掌握,但可通过配备张力减径机就能生产出多种不同规格的品种。

适合生产小口径无缝钢管

22.自动轧管机组的变形过程包括哪几个阶段?

自动轧管时的变形过程:三个阶段

①压扁变形:开始,四点接触,塑性弯曲变形;

②减径变形:轴向延伸,管壁有所增加;

③减壁变形:顶头参与,壁厚减薄,延伸增加。

23.短而固定顶头轧管时,横断面为什么会出现严重的壁厚不均?怎样控制? 采用短而固定顶头轧管时的变形特点

1)特点:在其横截面上产生严重的变形不均。

因为:在孔型顶部,在顶头作用下,管壁被压缩,纵向延伸增加,管壁减薄。在孔型开口处,由于侧壁有斜度,宽展向内、外壁发展,所以,管壁厚增加,因而轴向延伸降低,导致管边部产生轴向拉应力,顶部产生轴向压应力,壁厚严重不均。

2)克服横向变形不均的措施 <1>合适的宽高比。即 ,薄管取小值,若太小,易出“楞子”,甚至咬入困难;太大,尺寸不精,不均变形严重。

<2>轧制温度要准确。温度无论升高或降低,都会使金属的塑性降低,导致横裂缺陷。

<3>采用多面孔型。尽量与实际情况吻合,减少横向变形不均。

<4>适当的压下量。至少轧两2~3道次,(碳:2道;合:3道)

<5>合适的顶头锥角rt 。一般rt=7~12°(常用的12°15′)。太大,正面阻力大,不利于二次咬入;太小,摩擦阻力大。

<6>顶头润滑,以降低摩擦阻力。(加NaCl ,在1100℃升华,液化后做润滑剂。)

<7>设均整工序。靠扩径改善横向壁厚不均,可提高均匀度18~20%。

24.均整机的作用?

1)均整的作用:①均整钢管的壁厚,消除轧管造成的壁厚不均;②光滑内外表面,消除轧管造成的直道表面缺陷;③使钢管圆正;④如果三辊均整,可实现15~20%的减壁量;⑤对厚壁管起到定径的任务。

25.均整机的特征?

①实现“三点轧制”。在车辊时,两轧辊直径相差2~3mm ;并使均整中心线比机器中心线低4~10 mm 。轧制时,轧辊只贴下导板运行,上导板只起导向作用。“三点轧制”保证了轧制线的稳定。

②扩径均整。扩径量的大小与钢种、壁厚有关,还与下道工序的定径机能力有关;扩径量一般为 。(合金钢、薄壁管取小值;普碳钢、厚壁管取大值。)

07.1~04.1 b a

26.钢管定径、减径、张力减径的作用,各机组的管径及壁厚变化情况?

定径的作用:在较小的减径率条件下,将钢管轧成合格的尺寸精度和真圆度的成品管。

在轧制过程中一般没有减壁现象,而且由于直径减小而使得壁厚略有增加。定径机的单机减径率一般为3~5%,最大总减径率为30%左右。

减径的作用:除起定径的作用外,尚有较大的减径率,以实现大口径管料生产小口径钢管的目的。

由于机架间少张力或无张力,所以没有减壁现象,相反由于径向压下较大,管壁增厚现象较定径明显。特别是横向壁厚不均显著,常出现内四方(二辊)和内六方(三辊)现象。无张力减径的单机减径率一般为3~3.5%,总减径率为45%以下。

27.无张力减径时,钢管出现“内方”的原因?减少措施有哪些?

经多机架二辊轧制,有可能出现钢管“内方”缺陷。经过多机架三辊轧制,有可能出现钢管“内六方”缺陷。

在孔型顶部及附近的金属受减径变形而产生延伸和宽展时,由于受孔型槽壁的限制,宽展(管壁增厚)只能向内进行;而辊缝处金属可以向两侧增厚。同时,孔型顶部处的单位压力最大,辊缝处最小,迫使孔型顶部处金属向辊缝处流动。因此,在定、减径过程中出现壁厚增厚不均,孔型顶部增厚最小,辊缝处增厚最大。由于相临机架辊缝互成90,故出现上述缺陷

减少“内方”或“内六方”的措施:

① 采用三辊式定、减径机,采用三辊时的“内六方”缺陷比二辊的“内方”缺陷更接近圆形;

② 调整定、减径机使钢管轧制时产生小的旋转,以使各架辊缝不固定在钢管横断面四点上,可以减少横向壁厚不均;

③ 带微张力轧制,促进金属延伸,减少横向壁厚不均;

④ 各机架间呈不同角度布置,即后机架与前机架成某一较小的角度(会使设备布置复杂化,较少采用)

28.定减径时,减径率的分配原则?

始轧、终轧变形量较小,中轧变形量较大;

一般,5~7架定径机总减径率:εD=3~15%;

12架定径机总减径率:εD=30%左右,单机最大减径率为3~5%,经常被

控制在3~3.5%以下;

24架减径机的总减径率:εD ≤45%,单机最大减径率也被控制在3~3.5%

以下,超过此值则会出现内方缺陷

对于成品架: (易变形,尺寸不易控制,所以取0); 首架及成品前架: (首架小,易咬入;成品前架要保证精度)

中间各架平均分配: ,通常平均减径率: 29钢管冷却时,冷床为何倾斜布置?

z

z

s d 1001=?D ε()211D D n D εεε==?-?D

i D εε=?%5~3=D ε

为了使钢管冷却均匀,不产生弯曲,一般钢管冷床多被做成沿前进方向往上倾斜(斜度为2%左右)的台架,并用带钢性拨爪的链式托运机拖运。由于台架是向上倾斜的,所以钢管在行进过程中会靠着拨爪的侧面旋转上行,从而使钢管得到均匀冷却。

30.什么是轧制表?轧制表编制的内容包括哪些?

轧制表是指计算轧管工艺过程、变形工序主要参数的表格,是轧管工艺过程的基础。

内容:①成品尺寸及技术标准。②管坯尺寸及技术条件。③各轧机的变形分配。(穿孔、轧管、均整、定减径等的μ、△s)。④轧后钢管或毛管尺寸。(D 外、L、s)⑤工具尺寸及轧机调整参数等。

31.穿孔时,顶前压下率εdq、顶头位置c值及轧辊送进角α、孔型椭圆度的大小对轧制过程有什么影响?

顶前压下率:

指坯料在碰到顶头前的径向压下程度。过大,易形成孔腔,影响穿孔质量;过小则坯中心不易产生有利的“疏松”状态,造成顶头阻力过大而“轧卡”. 一般顶前压下率6~8%,最大压下率10~15%。顶头位置C:C指顶头鼻部伸出碾轧带的距离,其大小直接影响穿孔能否进行及穿后毛管的质量。C过大则不利于咬入,顶头阻力大,易轧卡;c过小则坯料中心容易出现“孔腔”,影响毛管质量. 轧辊送进角α:当增加α弊少利多,α增加可提高穿孔效率和改善毛管质量,不利是穿孔负荷增加。

孔型椭圆度:ξ=A/B=导板间距/轧辊间距=1.03~1.18

ξ取太小:尺寸精度高,但咬入困难,易出现前轧卡;ξ取太大:交变应力严重,易出现内折,外螺旋道,甚至出现后卡。孔型椭圆度越大,横向壁厚不均越大。

32.自动轧管机如何调整?

①二辊必须水平,防止孔型错位,出现蛇形弯。如:管向左弯。说明右边压

下量大了,不水平,上调右边压下螺丝。

①出、入口导管轴线必须与孔型中心线重合。如:咬入时抬头,轧出时低头,

说明轧制线高了。应调整受料槽高度。

①“管转”说明孔型左右错位,调整方法是钢管向哪边转,上辊就向哪边串。

顶头圆柱带中心线应与轧辊中心线重合。

33.钢管内、外表面的缺陷有哪些?怎样产生的?

一、外表面缺陷

(1)外折

坯料外表面原有的缺陷(裂纹、皮下气泡、夹杂等),经穿孔的螺旋运动轧制后,将其折叠在一起。

(2)发纹

钢质不良(皮下气泡、夹杂等)引起的,穿孔轧制后,呈螺旋状细如毛发的裂纹(肉眼看不见,酸洗后出现)

(3)离层

钢管内表面出现互不焊合,彼此分离的现象,由于管坯中存在非金属夹杂物(硫、氧化物等)引起的,这种情况对轴承钢最不利,轴承要求内表面耐磨,如出现离层则强度下降。

( 4)压痕

钢管表面出现凹坑,主要由于坯料表面质量不佳、氧化铁皮或工具磨损屑压在钢管表面造成的。

(5 )划伤

直道:定径工具磨损造成的。

螺旋道:穿孔、均整机磨损造成的,重的穿孔机磨损,轻的均整机磨损。

(6)耳子、棱子

轧管机过充满造成的。(轻者为棱子、重者为耳子)

(7)轧折

钢管进定(减)径机时,如果均整后直径大于定(减)径机孔型宽或压下量过大时,会使薄壁管外管壁折进去,产生轧折。

二、内表面缺陷

(1)内折

1)过早形成孔腔;

2)定心孔太小、太深;

3)穿孔顶头鼻子堆了。

(2)内划道

顶头磨损造成的。

(3)内裂

1)钢质不良

2)冷却不均,内表面通过顶头冷却水冷却,会造成冷却不均。

14.曼氏穿孔机穿孔后的毛管会出现什么情况?为什么?

穿孔时的变形及应力状态条件较差,毛管内外表面易产生缺陷;

不锈钢管道焊接工艺

不锈钢管道焊接工艺 1 技术特征 1.1材质规格:304( 相当于0Cr18Ni9) 1.2工作介质: 水软水 1.3设计压力: 2工作压力:5Kg/CM1.42试验压力: 7.5Kg/CM1.52 本工程编制依据2.1 F43C技术文件. 2.2 国标GB50236-98《现场设备、工业管道焊接工程施工及验收规范》 2.3 国标GB50235-97《工业金属管道施工及验收规范》 2.4 本公司焊接工艺评定报告:HG1 3 焊工 3.1 焊工应具有“锅炉压力容器压力管道焊工考试规则”规定的焊工考试合格证。 3.2 焊工进入现场后应按GB50236-98规定先进行焊接实际操作考试合格,经总包方认可发证后方能担任本项目的焊接工作。 4 焊接检验 4.1焊接检验人员应熟悉F43C技术文件及有关国标和本工艺。 4.2对管材焊材按规定进行检验、填表验收。 对违反者进行教育帮,对焊工是否执行本工艺进行全面监督检查4.3.. 助得以改正。对严重违反者或教育不改者有权令其停止焊接工作。以

确保焊接质量。 4.4 做好本工艺第7条“焊接后检查和管理工作”。 4.5 邀请和欢迎总包方和监理方检查人员检查焊接质量。 5 焊前准备 5.1.1 管材、焊材必须具有符合规定的合格证明,并与实物核对无误。 5.1.2 管材型号为304级相当等于我国的0Cr18Ni9规格标准。按项目图纸规定。 5.1.3 不锈钢焊丝型号规格为:H0Cr20Ni10Ti φ2.5mm φ2.0mm 5.1.4 不锈钢电焊条型号规格:A132 φ3.2mm φ2.5mm 5.1.5 铈钨电极型号规格:WCe-20 φ2.0mm 5.1.6 氩气纯度为99.99%。 5.2 焊件准备 5.2.1 焊接口的分布位置必须符合国标GB50235-97和GB50236-98规范的规定。 5.2.2 管道为V型坡口,对接接头、组对应符合图1要求: 注:间隙3.5~4mm为焊接时的数据,组对点固焊时,应适当大于此数据,以补收缩。 .. . 图1.焊口组对数据

无缝钢管的热轧工艺

无缝钢管 1.无缝钢管的制造加工方法: (1)热轧(挤压无缝钢管):圆管坯→加热→穿孔→三辊斜轧、连轧或挤压→脱管→定径(或减径)→冷却→矫直→水压试验(或探伤)→标记→入库 (2)冷拔(轧)无缝钢管:圆管坯→加热→穿孔→打头→退火→酸洗→涂油(镀铜)→多道次冷拔(冷轧)→坯管→热处理→矫直→水压试验(探伤)→标记→入库 2.热轧 (1)热轧的概念: 热轧(hot rolling)是相对于冷轧而言的,冷轧是在再结晶温度以下进行的轧制,而热轧就是在再结晶温度以上进行的轧制。 (2)热轧的优缺点 优点: a.热轧能显著降低能耗,降低成本。热轧时金属塑性高,变形抗力低,大大减少了金属变形的能量消耗。

b.热轧能改善金属及合金的加工工艺性能,即将铸造状态的粗大晶粒破碎,显著裂纹愈合,减少或消除铸造缺陷,将铸态组织转变为变形组织,提高合金的加工性能。 c.热轧通常采用大铸锭,大压下量轧制,不仅提高了生产效率,而且为提高轧制速度、实现轧制过程的连续化和自动化创造了条件。 缺点: a.经过热轧之后,钢材内部的非金属夹杂物(主要是硫化物和氧化物,还有硅酸盐)被压成薄片,出现分层(夹层)现象。分层使钢材沿厚度方向受拉的性能大大恶化,并且有可能在焊缝收缩时出现层间撕裂。焊缝收缩诱发的局部应变时常达到屈服点应变的数倍,比荷载引起的应变大得多。 b.不均匀冷却造成的残余应力。残余应力是在没有外力作用下内部自相平衡的应力,各种截面的热轧型钢都有这类残余应力,一般型钢截面尺寸越大,残余应力也越大。残余应力虽然是自相平衡的,但对钢构件在外力作用下的性能还是有一定影响。如对变形、稳定性、抗疲劳等方面都可能产生不利的作用。 c.热轧不能非常精确地控制产品所需的力学性能,热轧制品的组织和性能不能够均匀。其强度指标低于冷作硬化制品,而高于完全退火制品;塑性指标高于冷作硬化制品,而低于完全退火制品。 d.热轧产品厚度尺寸较难控制,控制精度相对较差;热轧制品的表面较冷轧制品粗糙Ra值一般在0.5~1.5μm。因此,热轧产品一般多作为冷轧加工的坯料。

碳钢管道焊接工艺规程(优选.)

碳钢管道焊接工艺指导书 1 范围 本标准适用于工业管道和公用管道的碳钢类钢材的焊接施工。 2 规范性引用文件 GB 50235-97 《工业金属管道工程施工及验收规范》 GB 50236-98 《现场设备、工业管道焊接工程施工及验收规范》 《焊工技术考核规程》 3 先决条件 3.1 材料 3.1.1 母材 进入现场的管材、管件等应符合相应标准和设计文件规定要求,并具有材料质量证明书或材质复验报告。 3.1.2 焊接材料(以下简称焊材) 3.1.2.1 进入现场的焊材应符合相应标准和技术文件规定要求,并具有焊材质量证明书。 3.1.2.2 施工现场的焊材二级库已建立并正常运行。焊材的管理按《焊接材料管理规范》规定要求执行。 3.2 主要设备及工具 3.2.1 设备 焊机等设备完好,性能可靠。计量仪表正常,并经检定合格且有效。 3.2.2 工具 角向磨光机、钢丝刷、凿子、榔头等焊缝清理与修磨工具配备齐全。 3.3 焊接工艺评定按相应规程、标准规定的要求已完成。 3.4 焊工按《锅炉压力容器焊工考试规则》规定要求,经考核具有相应的持证项目。 3.5 焊接环境 3.5.1 施焊环境应符合下列要求: 3.5.1.1 施焊环境温度应能保证焊件焊接时所需的足够温度和焊工操作技能不受影响;3.5.1.2 风速:手工电弧焊小于8m/s,气体保护焊小于2m/s;

3.5.1.3 焊接电弧在1m范围内的相对湿度小于90%。 3.5.2 焊件表面潮湿、覆盖有冰雪,或在下雨、下雪、刮风期间,必须采取挡风、防雨、防雪、防寒和预加热等有效措施。无保护措施,不得进行焊接。 4 焊接工艺流程 焊接工艺流程见图1。 焊接工艺流程图 5 工艺要点 5.1 坡口加工 5.1.1 管道的坡口形式和坡口尺寸应按设计文件或焊接工艺规定要求进行。 5.1.2 不等厚对接焊件坡口加工应符合《工业金属管道工程施工及验收规范》规定要求。 5.1.3 坡口加工宜采用机械方法,也可采用等离子切割、氧乙炔切割等热加工方法。在采用热加工方法加工坡口后,应除去坡口表面的氧化皮、熔渣及影响接头质量的表面层,并应将凹凸不平处打磨平整。

无缝钢管生产及设备

无缝管生产 manufacturing process of seamless tube and pipe 摘要:本文介绍了无缝钢管厂的生产工艺流程及设备无缝钢管为用穿孔等方法生产周边无接缝的钢管或其他金属管和合金管。无缝管的外径范围为 0.1~1425mm,壁厚为0.01~200mm。除圆形管外,还有各种异形断面管和交断面管。 关键字:生产工艺,设备,轧管,穿孔机 生产方法无缝管的生产方法很多。无缝钢管根据交货要求,可用热轧(约占80~90%)或冷轧、冷拔(约占10~20%)方法生产。热轧管用的坯料有圆形、方形或多边形的锭、轧坯或连铸管坯,管坯质量对管材质量有直接的影响。热轧管有三个基本工序:①在穿孔机上将锭或坯穿成空心厚壁毛管;②在延伸机上将毛管轧薄,延伸成为接近成壁厚的荒管;③在精轧机上轧制成所要求的成品管。轧管机组系列以生产钢管的最大外径来表示(见轧机)。无缝钢管生产方法见表。 (1)自动轧管生产生产无缝钢管的方式之一。生产设备由穿孔机、自动轧管机、均整机、定径机和减径机等组成。其生产工艺流程见图。

(2)连续轧管生产生产设备由穿孔机、连续轧管机、张力减径机组成。圆坯穿成毛管后插入芯棒,通过7~9架轧辊轴线互呈90°配置的二辊式轧机连轧。轧后抽芯棒,经再加热后进行张力减径,可轧成长达165m的钢管。140mm连续轧管机组年产40~60万吨,为自动轧管机组的2~4倍。这种机组的特点是适于生产外径168mm以下钢管,设备投资大,装机容量大,芯棒长达30m,加工制造复杂。70年代后期出现的限动芯棒连续轧管机(MPM),轧制时外力强制芯棒以小于钢管速度运动,可改善金属流动条件,用短芯棒轧制长管和大口径钢管 (3)周期轧管生产以多边形和圆形钢锭或连铸坯作原料,加热后经水压穿孔成杯形毛坯,再经二辊斜轧延伸机轧成毛管,然后在带有变直径孔槽的周期轧管机上,轧辊转一圈轧出一段钢管。周期轧管机又称皮尔格尔(Pilger)轧管机。周期轧管生产是用钢锭作原料,宜于轧制大直径的厚壁钢管和变断面管。 (4)三辊轧管生产主要用于生产尺寸精度高的厚壁管。这种方法生产的管材,壁厚精度达到±5%,比用其他方法生产的管材精度高一倍左右。工艺流程见图4。60年代由于新型三辊斜轧机(称Transval轧机)的发明,这种方法得到迅速发展。新轧机特点是轧到尾部时迅速转动入口回转机架来改变辗轧角,从而防止尾部产生三角形,使生产品种的外径与壁厚之比,从12扩大到35,不仅可生产薄壁管,还提高了生产能力 (5)顶管生产传统的方法是方坯经水压穿孔和斜轧延伸成杯形毛管,由推杆将长芯棒插入毛管杯底,顺序通过一系列孔槽逐渐减小的辊式模架,顶轧成管。这种生产方法设备投资少,可用连铸坯,能生产直径达1070mm、壁厚到200mm的特大特厚的管,但生产效率低,壁厚比较厚,管长比效短。出现CPE法的新工艺

CrMo钢管焊接工艺

15CrMo钢管焊接工艺 焊接工艺 方案Ⅰ:焊接预热,采用ER80S-B2L焊丝,TiG焊打底。E8018-B2焊条,焊条电弧焊盖面,焊后进行局部热处理。 方案Ⅱ:采用ER80S-B2L焊丝,TiG焊打底。E309Mo-16焊条,焊条填充电弧焊盖面,焊后不进行热处理。 焊丝和焊条的化学成分及力学性能见表1。 表1 焊接材料的化学成分和力学性能 型号 C Mn Si Cr Ni Mo S P δb/Mpa δ,% ; ER80S-B2L ≤ . < ≤≤≤500 25 ; E8018-B2 ≤≤ 550 19 ; E309Mo-16≤~~~~≤≤ 550 25 ; 焊前准备 试件采用15CrMo钢管,规格为φ325×25,坡口型式及尺寸见图1。

焊前用角向磨光机将坡口内外及坡口边缘50mm范围内打磨至露出金属光泽,然后用丙酮清洗干净。 试件为水平固定位置,对口间隙为4mm,采用手工钨极氩弧焊沿园周均匀点焊六处,每处点固长度应不小于20mm。焊条按表2的规范进行烘烤。 焊条烘烤规范 焊条型号烘烤温度保温时间 E8018-B2 300 ℃ 2h E309Mo-16 150 ℃ 工艺参数 按方案Ⅰ焊前需进行预热,根据Tto-Bessyo等人提出的计算预热温度公式: To=350√[C](℃)式中,To——预热温度,℃。 [C]=[C]x [C]p [C]p=[C]x [C]x=C (Mn Cr)/9 Ni/18 7Mo/90 式中, [C]x——成分碳当量; [C]p——尺寸碳当量; S——试件厚度(本文中S=25mm); [C]x=C (Mn Cr)/9 7/90Mo= [C]p= 则To=138℃

钢管生产流程图

钢管生产流程图 圆钢复验定切定心检验穿孔加热剥皮酸洗检验润滑烘干冷拔/冷轧切头尾矫直固熔热处理(退火) 去油 成品检验包装发运

钢管作为钢铁产品的重要组成部分,因其制造工艺及所用管坯形状不同而分为无缝钢管(圆坯)和焊接钢管(板,带坯)两大类。 (1)无缝钢管 因其制造工艺不同,又分为热轧(挤压)无缝钢管和冷拔(轧)无缝钢管两种。冷拔(轧)管又分为圆形管和异形管两种。 a.工艺流程概述 热轧(挤压无缝钢管):圆管坯→加热→穿孔→三辊斜轧、连轧或挤压→脱管→定径(或减径)→冷却→坯管→矫直→水压试验(或探伤)→标记→入库。 冷拔(轧)无缝钢管:圆圆管坯→加热→穿孔→打头→退火→酸洗→涂油(镀铜)→多道次冷拔(冷轧)→坯管→热处理→矫直→水压试验(探伤)→标记→入库。 b.无缝钢管,因其用途不同而分为如下若干品种: GB/T8162-1999(结构用无缝钢管)。主要用于一般结构和机械结构。其代表材质(牌号):碳素钢20、45号钢;合金钢Q345、20Cr、40Cr、20CrMo、30-35CrMo、42CrMo等。 GB/T8163-1999(输送流体用无缝钢管)。主要用于工程及大型设备上输送流体管道。代表材质(牌号)为20、Q345等。 GB3087-1999(低中压锅炉用无缝钢管)。主要用于工业锅炉及生活锅炉输送低中压流体的管道。代表材质为10、20号钢。 GB5310-1995(高压锅炉用无缝钢管)。主要用于电站及核电站锅炉上耐高温、高压的输送流体集箱及管道。代表材质为20G、12Cr1MoVG、15CrMoG等。

按生产方法不同可分为热轧管、冷轧管、冷拔管、挤压管等。 1.1、热轧无缝管一般在自动轧管机组上生产。实心管坯经检查并清除表面缺陷,截成所需长度,在管坯穿孔端端面上定心,然后送往加热炉加热,在穿孔机上穿孔。在穿孔同时不断旋转和前进,在轧辊和顶头的作用下,管坯内部逐渐形成空腔,称毛管。再送至自动轧管机上继续轧制。最后经均整机均整壁厚,经定径机定径,达到规格要求。利用连续式轧管机组生产热轧无缝钢管是较先进的方法。 1.2、若欲获得尺寸更小和质量更好的无缝管,必须采用冷轧、冷拔或者两者联合的方法。冷轧通常在二辊式轧机上进行,钢管在变断面圆孔槽和不动的锥形顶头所组成的环形孔型中轧制。冷拔通常在0.5~100T的单链式或双链式冷拔机上进行。 1.3、挤压法即将加热好的管坯放在密闭的挤压圆筒内,穿孔棒与挤压杆一起运动,使挤压件从较小的模孔中挤出。此法可生产直径较小的钢管。

钢管焊接施工工艺

焊接钢管施工工艺 2010/9/14 13:48:28 焊接钢管施工工艺的流程:5.1 焊缝间隙的控制将带钢送入焊管机组,经多道轧辊滚压,带钢逐渐卷起,形成有开口间隙的圆形管坯,调整挤压辊的压下量,使焊缝间隙控制在1~3mm,并使焊口两端齐平。如间隙过大,则造成邻近效应减少,涡流热量不足,焊缝晶间接合不良而产生未熔合或开裂。如间隙过小则造成邻近效应增大,焊接热量过大,造成焊缝烧损;或者焊缝经挤压、滚压后形成深坑,影响焊缝表面质量。 5.2 焊接温度控制焊接温度主要受高频涡流热功率的影响,根据公式(2)可知,高频涡流热功率主要受电流频率的影响,涡流热功率与电流激励频率的平方成正比;而电流激励频率又受激励电压、电流和电容、电感的影响。激励频率公式为: f=1/[2π(CL)1/2]...(1) 式中:f-激励频率(Hz);C-激励回路中的电容(F),电容=电量/电压;L-激励回路中的电感,电感=磁通量/电流上式可知,激励频率与激励回路中的电容、电感平方根成反比、或者与电压、电流的平方根成正比,只要改变回路中的电容、电感或电压、电流即可改变激励频率的大小,从而达到控制焊接温度的目的。对于低碳钢,焊接温度控制在1250~1460℃,可满足管壁厚3~5mm焊透要求。另外,焊接温度亦可通过调节焊接速度来实现。当输入热量不足时,被加热的焊缝边缘达不到焊接温度,金属组织仍然保持固态,形成未熔合或未焊透;当输入热时不足时,被加热的焊缝边缘超过焊接温度,产生过烧或熔滴,使焊缝形成熔洞。 5.3 挤压力的控制管坯的两个边缘加热到焊接温度后,在挤压辊的挤压下,形成共同的金属晶粒互相渗透、结晶,最终形成牢固的焊缝。若挤压力过小,形成共同晶体的数量就小,焊缝金属强度下降,受力后会产生开裂;如果挤压力过大,将会使熔融状态的金属被挤出焊缝,不但降低了焊缝强度,而且会产生大量的内外毛刺,甚至造成焊接搭缝等缺陷。 5.4 高频感应圈位置的调控高频感应圈应尽量接近挤压辊位置。若感应圈距挤压辊较远时,有效加热时间较长,热影响区较宽,焊缝强度下降;反之,焊缝边缘加热不足,挤压后成型不良。 5.5 阻抗器是一个或一组焊管专用磁棒,阻抗器的截面积通常应不小于钢管内径截面积的70%,其作用是使感应圈、管坯焊缝边缘与磁棒形成一个电磁感应回路,产生邻近效应,涡流热量集中在管坯焊缝边缘附近,使管坯边缘加热到焊接温度。阻抗器用一根钢丝拖动在管坯内,其中心位置应相对固定在接近挤压辊中心位置。开机时,由于管坯快速运动,阻抗器受管坯内壁的磨擦而损耗较大,需要经常更换。 5.6 焊缝经焊接和挤压后会产生焊疤,需要清除。清除方法是在机架上固定刀具,靠焊管的快速运动,将焊疤刮平。焊管内部的毛刺一般不清除。 5.7 工艺举例现以焊制φ32×2mm 直缝焊管为例,简述其工艺参数:带钢规格:2×98mm 带宽按中径展开加少量成型余量钢材材质:Q235A 输入励磁电压:150V 励磁电流:1.5A 频率:50Hz 输出直流电压:11.5kV 直流电流:4A 频率:120000Hz 焊接速度:50米/分钟参数调节:根据焊接线能量的变化及时调节输出电压和焊接速度。参数固定后一般不用调整。 这样的焊接钢管施工的工艺焊接时产生的线能量小,对母材热影响区影响程度也小。多丝焊接后道焊丝对前道焊丝可起到消除焊接时产生应力的作用,从而对钢管的机械性能有所改善。

不锈钢管道焊接工艺

不锈钢管道焊接工艺 Document number:BGCG-0857-BTDO-0089-2022

摘要:本文介绍了不锈钢管道TIG+MAG焊接工艺,与全氩焊和氩电联焊相比,TIG+MAG焊的生产效率大大提高,焊接质量有所提高。该项技术已在电厂管道焊接中得到应用。 1 案例分析 0Cr18Ni9不锈钢φ530mm×11mm 大管水平固定全位置对接接头主要用于电厂润滑油管道中,焊接难度较高, 对焊接接头质量要求较高,内表面要求成形良好,凸起适中,焊后要求PT、RT检验。以往均采用TIG 焊或手工电弧焊,前者效率低、成本高,后者质量难以保证且效率低。为既保证质量又提高效率,采用TIG内、外填丝法焊底层,MAG焊填充及盖面层,使质量、效率都得到保证。 0Cr18Ni9不锈钢热膨胀率、导电率均与碳钢及低合金钢差别较大,且熔池流动性差,成形较差,特别在全位置焊接时更突出。在MAG焊过程中, 焊丝伸出长度必须小于10mm,焊枪摆动幅度、频率、速度及边缘停留时间配合适当,动作协调一致,随时调整焊枪角度,使焊缝表面边缘熔合整齐, 成形美观,以保证填充及盖面层质量。 2 焊接方法及焊前准备 焊接方法 材质为0Cr18Ni9,管件规格为φ530mm×11 mm,采用手工钨极氩弧焊打底,混合气体(CO2+Ar)保护焊填充及盖面焊,立向上的水平固定全位置焊接。 焊前准备

2.2.1 清理油、锈等污物,将坡口面及周围10mm内修磨出金属光泽。 2.2.2 检查水、电、气路是否畅通,设备及附件应状态良好。 2.2.3 按尺寸进行装配,定位焊采用肋板固定(2点、7点、11点为定位块固定),也可采用坡口内点固,但必须注意定位焊质量。 2.2.4 管内充氩气保护。 3 TIG焊工艺 焊接参数 采用φ2.5 mm的Wce-20钨极,钨极伸出长度4~6mm,不预热,喷嘴直径12mm,其它参数见表1。 操作方法 3.2.1 管子对接水平固定焊缝是全位置焊接。因此焊接难度较大,为防止仰焊内部焊缝内凹,打底层采用仰焊部位(六点两侧各60°)内填丝,立、平焊部位外填丝法进行施焊。 3.2.2 引弧前应先在管内充氩气将管内空气置换干净后再进行焊接,焊接过程中焊丝不能与钨极接触或直接深入电弧的弧柱区,否则造成焊缝夹钨和破坏电弧稳定,焊丝端部不得抽离保护区,以避免氧化,影响质量。 3.2.3 由过6点5mm处起焊,无论什么位置的焊接,钨极都要垂直于管子的轴心,这样能更好地控制熔池的大小,而且可使喷嘴均匀地保护熔池不被氧化。

管道焊接工艺

管道焊接工艺 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

上海佳豪船舶工程设计有限公司董-- 摘要: 本文介绍了管道全位置下向焊操作工艺及技术要点,采用本工艺进行施工焊接可提高生产效率,降低焊接成本,焊接质量可*,接头机械性能满足要求,焊缝成形美观,具有较广阔的应用前景。 关键词:管道;下向焊;焊接工艺 Vertical down position welding process and its foreground Abstract: This article introduced the welding operation procedure and main technol ogy of vertical down position weld of pipe. Using this welding process can improve t he welding efficiency and reduce the cost. The welding joint can be qualified in mec hanical property and reduce the cost. The welding joint can be qualified in mechanic al property and figuration. So it have a wide appliance foreground. 1 前言 管道下向焊是从管道上顶部引弧,自上而下进行全位置焊接的操作技术,该方法焊接速度快,焊缝成形美观,焊接质量好,可以节省焊接材料,降低工人的劳动强度,是普通手工电弧焊所不能比拟的,现已较广泛应用于大口径长输管道的焊接,在电力建设中的全位置中低压大径薄壁管的焊接中具有一定的推广价值。 2 焊接材料选用 下向焊通常要选择适当的焊接电流、焊条角度和焊接速度,通过压住电弧直拖向下或稍作摆动来完成焊接。普通焊条易出现下淌铁水和淌渣问题,而采用管道下向焊专用焊条,严格执行焊接规范,则可解决这些问题。 通常下向焊焊条可分为两类:一类为纤维素型,如美国林肯公司的E7010-G、日本日铁公司生产的E6010和E7010-G及国产的天津金桥牌E6010等,该类焊条工艺性能好,气孔敏感性小,低温韧性高,一般应用于输油、输水管道;另一类是低氢型焊条,如德国蒂林公司生产的E8018 -G等,该类焊条焊后焊缝金属韧性好,抗裂性好,广泛应用于输气碳钢管道焊接填充及盖面焊中。 纤维素型焊条焊渣量少,电弧吹力大、挺度足,防止了焊渣及铁水向下淌,而且电弧的穿透力大,特别适用于厚壁容器及钢管的打底层焊接,可以免去铲根等操作,从而提高工作效率,改善劳动条件,但由于其焊缝中氢含量较高,所以对于高压管道的焊接国内目前一般采用纤维素焊条打底加低氢型焊条填充及盖面的焊接工艺。 3 焊前准备 3.1 母材及规格 水平钢管对接母材牌号:20 规格:¢ 133*10 mm 3.2 焊材 纤维素型:AWS E7010 ¢作根部填充层焊接; 低氢型: E8018-G ¢盖层焊接 焊材的烘干 下向焊焊条使用前应按说明书要求进行烘干。一般纤维素型焊条烘干温度为70~80 ,保温, 低氢型焊条烘干温度为350 ~400 ,保温1~2h。 3.4 焊接设备 选用直流焊机,如林肯INVERTIC-I-300 逆变焊机等。 3.5 坡口型式及对口尺寸

管道焊接施工工艺标准

管道焊接施工工艺标准 1.适用范围 本工艺标准适用于工厂管道预制加工和野外现场管道安装工程的焊接施工作业指导。 2.引用标准 2.1《特种设备焊接工艺评定》JB4708-2008 2.2《工业金属管道工程施工及验收规范》GB50235-97 2.3《现场设备、工业管道焊接工程施工及验收规范》GB50236-98 2.4《电力建设施工及技术验收规范》(火力发电厂管道篇)DL5031-1994 2.5《电力建设施工及技术验收规范》(火力发电厂焊接篇)DL5007-1992 2.6《化工金属管道工程施工及验收规范》HG20225-95 2.7《石油化工剧毒、可燃介质管道施工及验收规范》SH3501-2001 2.8《西气东输管道工程焊接施工及验收规范》1(2010年6月4日) 2.9《石油天然气站内工艺管道焊接工程施工及验收规范》SY0402-2000 2.10《石油和天然气管道穿越工程施工及验收规范》SY/T4079-1995 2.11《钢质管道焊接及验收》SY/T 4103-2005 2.12《输油输气管道线路工程施工技术规范》Q/CVNP 59-2001 2.13《工业设备及管道绝热工程施工及验收规范》GBJ126-89 2.14《给水排水管道工程施工及验收规范》GB50268-2008 2.15《钢制压力容器焊接工艺评定》JB4708-2000 2.16《焊接工艺评定规程》(电力行业)DL/T868-2004 2.17《火力发电厂锅炉压力容器焊接工艺评定规程》(电力行业)SD340-1989

2.18《核电厂相关焊接工艺标准》(ASME ,RCC-M) 2.19《核电厂常规岛焊接工艺评定规程》(核电)DL/T868-2004 2.20《锅炉焊接工艺评定》JB4420-1989 2.21《蒸汽锅炉安全技术监察规程》附录I(锅炉安装施工焊接工艺评定)(1999版) 2.22《石油天然气金属管道焊接工艺评定》SY/T0452-2002 2.23《工业金属管道工程质量检查评定标准》GB50184-93 2.24《锅炉压力容器焊接考试管理规则》(国家质监总疫局2002版) 2.25《承压设备无损检测》JB4730-2005.1,2,3,4,5各分册 3.术语. 3.1焊接电弧焊:指用手工操作电焊条的一种电弧焊焊接方法。管道焊接常用上向焊和下向焊两种。 3.2自动焊:指用焊接机械操作焊丝的一种电弧焊焊接方法。管道焊接常用热丝熔化极氩弧焊、涂层焊丝氩弧焊、药芯焊丝富氩二氧化碳焊混、(半)自动下向焊、二氧化碳(半)自动焊、埋弧自动焊等焊六种。 3.3钨极氩弧焊:指用手工操作焊丝的一种惰性气体保护焊焊接方法。 4.施工准备 由现场施工项目经理组织,项目部管理人员参与,按准备工作计划,有序做好人力、物资、技术(含施工图深化设计)等准备工作,将施工准备工作贯穿于施工全过程(阶段施工准备、专业施工准备、工序施工准备)。 4.1技术准备 4.1.1熟悉技术图纸、讨论并进行技术交底。

无缝钢管的工艺流程

无缝钢管的工艺流程 一般的无缝钢管的生产工艺可以分为冷拔与热轧两种,冷轧无缝钢管的生产流程一般要比热轧要复杂,管坯首先要进行三辊连轧,挤压后要进行定径测试,如果表面没有响应裂纹后圆管要经过割机进行切割,切割成长度约一米的坯料。然后进入退火流程,退火要用酸性液体进行酸洗,酸洗时要注意表面是否有大量的起泡产生,如果有大量的起泡产生说明钢管的质量达不到相应的标准。外观上冷轧无缝钢管要短于热轧无缝钢管,冷轧无缝钢管的壁厚一般比热轧无缝钢管要小,但是表面看起来比厚壁无缝钢管更加明亮,表面没有太多的粗糙,口径也没有太多的毛刺。热轧无缝钢管的交货状态一般是热轧状态经过热处理后进行交货。热轧无缝钢管在经过质检后要经过工作人员的严格的手工挑选,在质检后要进行表面涂油,然后紧接着是多次的冷拔实验,热轧处理后要进行穿孔的实验,如果穿孔扩径过大就要进行矫直矫正。在矫直后再由传送装置传送到探伤机进行探伤实验,最后贴上标签、进行规格编排后放置到仓库当中。 热轧 圆管坯→加热→穿孔→三辊斜轧、连轧或挤压→脱管→定径(或减径)→冷却→矫直→水压试验(或探伤)→标记→入库无缝钢管是用钢锭或实心管坯经穿孔制成毛管,然后经热轧、冷轧或冷拨制成。无缝钢管的规格用外径*壁厚毫米数表示。无缝钢管分热轧和冷轧(拨)

无缝钢管两类。热轧无缝钢管分一般钢管,低、中压锅炉钢管,高压锅炉钢管、合金钢管、不锈钢管、石油裂化管、地质钢管和其它钢管等。冷轧(拨)无缝钢管除分一般钢管、低中压锅炉钢管、高压锅炉钢管、合金钢管、不锈钢管、石油裂化管、其它钢管外,还包括碳素薄壁钢管、合金薄壁钢管、不锈薄壁钢管、异型钢管。热轧无缝管外径一般大于32mm,壁厚 2.5-200mm,冷轧无缝钢管外径可以到6mm,壁厚可到0.25mm,薄壁管外径可到5mm壁厚小于0.25mm,冷轧比热轧尺寸精度高。 一般用无缝钢管是用10、20、30、35、45等优质碳结钢16Mn、5MnV等低合金结构钢或40Cr、30CrMnSi、45Mn2、40MnB等合结钢热轧或冷轧制成的。10、20等低碳钢制造的无缝管主要用于流体输送管道。45、40Cr等中碳钢制成的无缝管用来制造机械零件,如汽车、拖拉机的受力零件。一般用无缝钢管要保证强度和压扁试验。热轧钢管以热轧状态或热处理状态交货;冷轧以热以热处理状态交货。 热轧,顾名思义,轧件的温度高,因此变形抗力小,可以实现大的变形量。以钢板的轧制为例,一般连铸坯厚度在230mm左右,而经过粗轧和精轧,最终厚度为1~20mm。同时,由于钢板的宽厚比小,尺寸精度要求相对低,不容易出现板形问题,以控制凸度为主。对于组织有要求的,一般通过控轧控冷来实现,即控制精轧的开轧温度、终轧温度.圆管坯→加热→穿孔→打头→退火→酸洗→涂油(镀铜)→多道次冷拔(冷轧)→坯管→热处理→矫直→水压试验(探伤)→标记→入库

钢管分类大全、钢管生产工艺大全

钢管的分类 钢管按生产方法可分为两大类:无缝钢管和有缝钢管。 1. 无缝钢管按生产方法可分为:热轧无缝管、冷拔管、精密钢管、热扩管、冷旋压管和挤压管等。 无缝钢管用优质碳素钢或合金钢制成,有热轧、冷轧(拔)之分。 2.焊接钢管因其焊接工艺不同而分为炉焊管、电焊(电阻焊)管和自动电弧焊管,因其焊接形式的不同分为直缝焊管和螺旋焊管两种,因其端部形状又分为圆形焊管和异型(方、扁等)焊管。 焊接钢管是由卷成管形的钢板以对缝或螺旋缝焊接而成,在制造方法上,又分为低压流体输送用焊接钢管、螺旋缝电焊钢管、直接卷焊钢管、电焊管等。无缝钢管可用于各种行业的液体气压管道和气体管道等。焊接管道可用于输水管道、煤气管道、暖气管道、电器管道等。 按材质分类 钢管按制管材质(即钢种)可分为:碳素管和合金管、不锈钢管等。 碳素管又可分为普通碳素钢管和优质碳素结构管。 合金管又可分为:低合金管、合金结构管、高合金管、高强度管。轴承管、耐热耐酸不锈管、精密合金(如可伐合金)管以及高温合金管等。 按连接方式分类 钢管按管端联接方式可分为:光管(管端不带螺纹)和车丝管(管端带有螺纹)。 车丝管又分为:普通车丝管和管端加厚车丝管。 加厚车丝管还可分为:外加厚(带外螺纹)、内加厚(带内螺纹)和内外加厚(带内外螺纹)等地车丝管。 车丝管若按螺纹型式也可分为:普通圆柱或圆锥螺纹和特殊螺纹等地车丝管。 另外,根据用户需要,车丝管一般均配有管接头交货。 按镀涂特征分类 钢管按表面镀涂特征可分为:黑管(不镀涂)和镀涂层管。 镀层管有镀锌管、镀铝管、镀铬管、渗铝管以及其他合金层得钢管。 涂层管有外涂层管、内涂层管、内外涂层管。通常采用的涂料有塑料、环氧树脂、煤焦油环氧树脂以及各种玻璃型的防腐涂层料。镀锌管又分为KBG管,JDG管,螺纹管等 不锈钢管分类 按生产方式分类 不锈钢管按生产方式分为无缝管和焊管两大类,无缝钢管又可分为热轧管,冷轧管、冷拔管和挤压管等,冷拔、冷轧是钢管的二次加工;焊管分为直缝焊管和螺旋焊管等。 按断面形状分类 不锈钢管按横断面形状可分为圆管和异形管。异形管有矩形管、菱形管、椭圆管、六方管、八方管以及各种断面不对称管等。异形管广泛用于各种结构件、工具和机械零部件。与圆管相比,异形管一般都有较大的惯性矩和截面模数,有较大的抗弯、抗扭能力,可以大大减轻结构重量,节约钢材。 不锈钢管按纵断面形状可分为等断面管和变断面管。变断面管有锥形管、阶梯形管和周期断面管等。 按材质分类 不锈钢管按材质分为普通碳素钢管、优质碳素结构钢管、合金结构管、合金钢管、轴承钢管、不锈钢管以及为节省贵重金属和满足特殊要求的双金属复合管、镀层和涂层管等。按管端形状分类

管道焊接工艺

上海佳豪船舶工程设计有限公司董-- 摘要: 本文介绍了管道全位置下向焊操作工艺及技术要点,采用本工艺进行施工焊接可提高生产效率,降低焊接成本,焊接质量可*,接头机械性能满足要求,焊缝成形美观,具有较广阔的应用前景。 关键词:管道;下向焊;焊接工艺 Vertical down position welding process and its foreground Abstract:This article introduced the welding operation procedure and mai n technology of vertical down position weld of pipe. Using this welding pro cess can improve the welding efficiency and reduce the cost. The welding j oint can be qualified in mechanical property and reduce the cost. The weld ing joint can be qualified in mechanical property and figuration. So it have a wide appliance foreground. 1 前言 管道下向焊是从管道上顶部引弧,自上而下进行全位置焊接的操作技术,该方法焊接速度快,焊缝成形美观,焊接质量好,可以节省焊接材料,降低工人的劳动强度,是普通手工电弧焊所不能比拟的,现已较广泛应用于大口径长输管道的焊接,在电力建设中的全位置中低压大径薄壁管的焊接中具有一定的推广价值。 2 焊接材料选用 下向焊通常要选择适当的焊接电流、焊条角度和焊接速度,通过压住电弧直拖向下或稍作摆动来完成焊接。普通焊条易出现下淌铁水和淌渣问题,而采用管道下向焊专用焊条,严格执行焊接规范,则可解决这些问题。

焊接工艺规程

四、要求:详见《电网钢管结构焊工资格培训考核大纲》。 接头形式 *考试试板坡口加工均采用机械加工(考试试板和练习试板由一车间负责加工) *练习试板坡口加工,可采用火焰切割+砂轮打磨。图1和图2练习试板数量按5倍以上准备。

内部焊工考试试板 1、内部焊工考试,采用3个类型的试板。 评定:内部X光拍片+外观+焊缝尺寸评定:外观+焊缝尺寸评定:外观+焊缝尺寸材质试板宽/mm 试板长/mm 数量附图备注 Q345/10mm 75 150 1 图1 等离子下料、 外协加工 Q345/10mm 75 150 1 图2 等离子下料、 外协加工 Q345/6mm 50 170 1 图3 等离子下料Q345/14mm 80 200 2 图4 按图下料后, 只需加工30 块 Φ89x4钢管(Q235)或Φ114x4钢管长度=100 1 锯切,割好相 贯线 长度=200 1 锯切 图1 图2 图3 图4

超大法兰杆体装焊工艺 编制:日期: 批准:日期: 宁波鲍家变订单号N09061703-9,SSGZ1-33钢管杆(G段), 温州电力订单号N09082006-9,SSGZJ-18钢管杆(E段),下法兰超出锌缸宽度50~70mm,上述两杆体下法兰(如下图)两侧切边后与杆体的焊接,镀锌后再将两侧切边部分焊接。 具体要求如下: 1、下法兰按图纸要求完成下料和孔加工后,在按图纸要求进行两侧切边,切边时必须严格控制尺寸2730±2mm,且保证两侧平行。法兰切边坡口如图。 2、下法兰与杆体装配时,SSGZ1-33(G段)下法兰切边拼缝与横担基本平行;SSGZJ-18(E 段)下法兰切边拼缝与横担基本垂直。 3、下法兰拼缝区域的加强筋也镀锌后焊接。 4、拼缝区域的加强筋、法兰切边焊接区域做上标识,在送镀锌前涂上油漆,一起随杆体送热镀锌。 5、杆体、法兰切边、加强筋镀锌回厂检验合格后、将法兰焊接区域和加强筋焊接区域,法兰与加强焊接区域,进行严格的打磨清理后进行装配和焊接。 6、装配时,保证法兰切边与法兰装配齐平,焊接时应控制焊接变形,不允许存在错边和角变形。 7、焊接合格后,对焊接区域打磨清理,经检验合格后进行防腐处理。防腐处理要求:对焊接区域先涂环氧富锌底漆2道,干膜厚度80μm。待油漆干后,再喷锌处理,保证颜色基本一致 文件分发记录

钢管的生产工艺流程

钢管的生产工艺流程 1.无缝管工艺流程: 卫生级镜面管工艺流程: 管坯——检验——剥皮——检验——加热——穿孔——酸洗——修磨——润滑风干——焊头——冷拔——固溶处理——酸洗——酸洗钝化——检验——冷轧——去油——切头——风干——内抛光——外抛光——检验——标识——成品包装 工业管工艺流程 管坯——检验——剥皮——检验——加热——穿孔——酸洗——修蘑——润滑风干——焊头——冷拔——固溶处理——酸洗——酸洗钝化——检验 2.焊管工艺流程: 开卷——平整——端部剪切及焊接——活套——成形——焊接——内外焊珠去除——预校正——感应热处理——定径及校直——涡流检测——切断——水压检查——酸洗——最终检查——包装 钢管的生产工艺流程 无缝钢管生产工艺流程图

五缝钢管生产工艺流程 现将无缝钢管生产工艺流程简单介绍如下: 1.热轧(挤压无缝钢管):圆管坯→加热→穿孔→三辊斜轧、连轧或挤压→脱管→定径(或减径) →冷却→矫直→水压试验(或探伤)→标记→入库轧制无缝管的原料是圆管坯,圆管胚要经过切割机的切割加工成长度约为1米的坯料,并经传送带送到熔炉内加热。钢坯被送入熔炉内加热,温度大约为1200摄氏度。燃料为氢气或乙炔。炉内温度控制是关键性的问题.圆管坯出炉后要经过压力穿孔机进行穿空。一般较常见的穿孔机是锥形辊穿孔机,这种穿孔机生产效率高,产品质量好,穿孔扩径量大,可穿多种钢种。穿孔后,圆管坯就先后被三辊斜轧、连轧或挤压。挤压后要脱管定径。定径机通过锥形钻头高速旋转入钢胚打孔,形成钢管。钢管内径由定径机钻头的外径长度来确定。钢管经定径后,进入冷却塔中,通过喷水冷却,钢管经冷却后,就要被矫直。钢管经矫直后由传送带送至金属探伤机(或水压实验)进行内部探伤。若钢管内部有裂纹,气泡等问题,将被探测出。钢管质检后还要通过严格的手工挑选。钢管质检后,用油漆喷上编号、规格、生产批号等。并由吊车吊入仓库中。 2.冷拔(轧)无缝钢管:圆管坯→加热→穿孔→打头→退火→酸洗→涂油(镀铜)→多道次冷 拔(冷轧)→坯管→热处理→矫直→水压试验(探伤)→标记→入库。冷拔(轧)无缝钢管的轧制方法较热轧(挤压无缝钢管)复杂。它们的生产工艺流程前三步基本相同。不同之处从第四个步骤开始,圆管坯经打空后,要打头,退火。退火后要用专门的酸性液体进行酸洗。酸洗后,涂油。然后紧接着是经过多道次冷拔(冷轧)再坯管,专门的热处理。热处理后,就要被矫直。钢管经矫直后由传送带送至金属探伤机(或水压实验)进行内部探伤。若钢管内部有裂纹,气泡等问题,将被探测出。钢管质检后还要通过严格的手工挑选。钢管质检后,用油漆钢管报价行情无缝钢管标准分类,厚壁管-厚壁钢管生产制造方法,按生产方法不同可分为热轧管、冷轧管、冷拔管、挤压管等,热轧无缝管一般在自动轧管机组上生产,实心管坯经检查并清除表面缺陷截成所需长度,在管坯穿孔端端面上定心然后送往加热炉加热在穿孔机上穿孔在穿孔同时不断旋转和前进,在轧辊和顶头的作用下,管坯内部逐渐形成空腔称毛管,再送至自动轧管机上继续轧制最后经均整机均整壁厚,经定径机定径,达到规格要求,利用连续式轧管机组生产热轧无缝钢管是较先进的方法,若欲获得尺寸更小和质量更好的无缝管,必须采用冷轧冷拔或者两者联合的方法冷轧通常在二辊式轧机上进行,钢管在变断面圆孔槽和不动的锥形顶头所组成的环形孔型中轧制,冷拔通常在单链式或双链式冷拔机上进行挤压法即将加热好的管坯放在密闭的挤压圆筒内穿孔棒与挤压杆一起运动,使挤压件从较小的模孔中挤出,此法可生产直径较小的钢管 热轧钢管的工艺流程大致分为这几个步骤:圆管坯→加热→穿孔→三辊斜轧、连轧或挤压→脱管→定径(或减径)→冷却→矫直→水压试验(或探伤)→标记→入库。热轧钢管是用钢锭或实心管坯经穿孔制成毛管,然后经热轧制成。热轧钢管的规格用外径*壁厚毫米数表示。热轧钢管外径一般大于32mm,壁厚2.5-75mm ERW直缝高频电阻焊管其典型生产工艺流程应为:板带原料→原料预处理→冷弯成型→焊接→焊缝热处理→焊缝(管体)探伤→精整→成品焊管。 冷拔与热轧钢管的工艺流程 冷拔(轧)无缝钢管:圆圆管坯→加热→穿孔→打头→退火→酸洗→涂油(镀铜)→多道次冷拔(冷轧)→坯管→热处置→矫直→水压实验(探伤)→标志→入库。 热轧(挤压无缝钢管):圆管坯→加热→穿孔→三辊斜轧、连轧或挤压→脱管→定径(或减径)→冷却→坯管→矫直→水压实验(或探伤)→标志→入库。

镀锌焊接钢管施工方案

镀锌焊接钢管施工组织设计 一、施工工艺 测量放线→沟槽开挖→管道焊接→探伤试验→焊口防腐→电火开花检测→管沟回镇→警示带敷设→管道吹扫、试压→竣工验收 二、管道组焊连接 1、管道组焊 (1)施工前,应对参加管道焊接的焊工按(GBJ236—82)焊工资格考试要求进行考试,考试合格后,须持上岗证方可施焊,然后制订详细的焊接工艺指导书,并对焊接工艺进行评定。 (2)组焊中,必须按焊接工艺规程及焊接工艺指导书中进行施焊,并执行(CJJ33—89)的规定。 (3)组焊过程中要做好焊工钢印号、焊口编号等详细的焊接施工记录,为编制竣工资料做好准备。 2、管道焊接完成后,应对焊口进行X射线探伤。检验的方法和质量分级标准应符合现行有关规定,拍片率为30%,争取合格率为100%。一级片为80%。 3、沟槽开挖 3.1沟槽开挖与管道组焊可同时进行,采取人工和机械两种开挖方式。开挖前须按图进行放线。 3.2沟槽开挖后,须经质检人员按标准检查合格,并做好管沟开挖记录方能下管。 4、管道防腐 本工程所用管材,由于出厂前已对除焊口外的管段按设计要求进行了防腐,现场防腐施工主要是对管道在装卸、运输、排管下沟时防腐曾损伤部位进行补伤及对

焊口的防腐。防腐前应对焊缝进行清污除锈,露出金属本色,按照防腐操作规程进行防腐。防腐完毕下沟前要对所有焊口及全部管道进行全方位电火花检测,下沟后回填前应再做一次电火花检测,按规范要求合格并经监理方认可后,方能回填。 5、管道下沟及回镇 5.1采用塔架下管和吊车下管两种方式,下管时,应做好防腐层的保护,使用尼龙丝专用吊装带进行吊装。管道高程及中心位置应符合图纸设计要求,管道应边敷设边回填,土方分层回填密实度符合施工规范及设计要求。土方回镇至管顶0.3m处时,应在管道正土方铺设警示带。 5.2沟槽的回填应先填实管底,再同时投填管道两侧,然后回填至管顶以上0.5m 处(未经检验的接口应留出)。如沟内有积水,必须全部排尽后,再行回填。沟槽未填部分在管道检验合格后及时回填。 5.3沟槽的支撑应在保证施工安全的情况下,按回填进度依次拆除,拆除挡板桩后,应以砂土填实缝隙。 5.4管道两侧及管顶以上0.5m内的回填土,不得含有碎石、砖块、垃圾等杂物。距管顶0.5米以上部分回填不得有大于要求的碎石等硬物。 5.5回填土应分层夯实,每层厚度0.15—0.2m,管道两侧及管顶以上0.5m内的填土必须人工夯实。 5.6回填土应分层检查密实度。沟槽各部位的密实底应符合下列要求: (1)胸腔填土(I)95% (2)管顶以上0.5m范围内(II)90% (3)管顶0.5m以上至地面(III) 6、管道的吹扫和试压

压力管道焊接工艺规程

压力管道焊接工艺规程 1 适用范围 本规程适用于工业管道或公用管道中材质为碳素钢、低合金钢、耐热钢、不锈钢和异种钢等压力管道的焊条电弧焊、钨极氩弧焊以及二氧化碳气体保护焊的焊接施工。 2 主要编制依据 2.1 GB50236-98《现场设备、工业管道焊接工程施工及验收规范》; 2.2 GB/T20801-2006《压力管道规范-工业管道》; 2.3 SH3501-2001《石油化工剧毒、可燃介质管道工程施工及验收规范》; 2.4 GB50235-97《工业金属管道工程施工及验收规范》; 2.5 CJJ28-89 《城市供热管网工程施工及验收规范》; 2.6 CJJ33-89 《城镇燃气输配工程施工及验收规范》; 2.7 GB/T5117-1995 《碳钢焊条》; 2.8 GB/T5118-1995 《低合金钢焊条》; 2.9 GB/T983-1995 《不锈钢焊条》; 2.10 YB/T4242-1984 《焊接用不锈钢丝》; 2.11 GB1300-77 《焊接用钢丝》; 2.12 其他现行有关标准、规范、技术文件。 3 施工准备 3.1 技术准备 3.1.1 压力管道焊接施工前,应依据设计文件及其引用的标准、规范,并依 据我公司焊接工艺评定报告编制出焊接工艺技术文件(焊接工艺卡或作业指

导书)。如果属本公司首次焊接的钢种,则首先要制定焊接工艺评定指导书,然后对该种材料进行工艺评定试验,合格后做出焊接工艺评定报告。 3.1.2 编制的焊接工艺技术文件(焊接工艺卡或作业指导书)必须针对工程 实际,详细写明管道的设计材质、选用的焊接方法、焊接材料、接头型式、具体的焊接施工工艺、焊缝的质量要求、检验要求及焊后热处理工艺(有要求时)等。 3.1.3 压力管道施焊前,根据焊接作业指导书应对焊工及相关人员进行技 术交底,并做好技术交底记录。 3.1.4 对于高温、高压、剧毒、易燃、易爆的压力管道,在焊接施工前应 画出焊口位置示意图,以便在焊接施工中进行质量监控。 3.2 对材料的要求 3.2.1 被焊管子(件)必须具有质量证明书,且其质量符合国家现行标准 (或部颁标准)的要求;进口材料应符合该国家标准或合同规定的技术条件。 3.2.2 焊接材料(焊条、焊丝、钨棒、氩气、二氧化碳气、氧气、乙炔气 等)的质量必须符合国家标准(或行业标准),且具有质量证明书。其中钨棒宜采用铈钨棒;氩气纯度不应低于99.95%;二氧化碳气纯度不低于99.5%; 含水量不超过0.005% 。 3.2.3 压力管道予制和安装现场应设置符合要求的焊材仓库和焊条烘干 室,并由专人进行焊条的烘干与焊材的发放,并做好烘干与发放记录。 3.3 焊接设备 3.3.1 焊接机具设备主要包括:交流焊机、直流焊机、氩弧焊机、高温烘 干箱、中温烘干箱、恒温箱、二氧化碳气体保护焊机、焊条保温筒、内磨机

相关文档