文档库 最新最全的文档下载
当前位置:文档库 › 交流励磁发电机双通道励磁系统反馈系数的选取原则

交流励磁发电机双通道励磁系统反馈系数的选取原则

交流励磁发电机双通道励磁系统反馈系数的选取原则
交流励磁发电机双通道励磁系统反馈系数的选取原则

柴油发电机系统设计

February 2007 Vol.1 No.1 式同步交流发电机。 柴油发电机的自动化功能的选择:遥控、遥信和遥测性能。 机组的使用环境条件:机房冷却、通风系统的设置。 2 柴油发电机组的系统设计 2.1 柴油发电机组常用功率和备用功率的区别 2.1.1 备用功率(图1) 市电断电时提供备用电源,市电供电可靠,80%负载运行,每年运行时间200h,某些制造厂商用于高峰期功率补偿几乎无过载能力。故在设计时,过载能力需考虑,更多的设备成本,较高的运行成本及加大的维护工作量。 2.1.2 常用功率(图2) 主要用于无市电供电场合,或市电不可靠但供电要求可靠性高的场所。可连续使用,70%负载运行,每12h允许1h10%过载,每年运行时间负载 > 100%不允许超过500h。 2.2 柴油发电机组容量计算方法 柴油发电机组与 UPS 组成的电源系统,对供电安全要求较高的数据中心正在被广泛采用,该系统不但要求柴油发电机组自动化程度高,更要求交流同步发电机必须适应 UPS 这一非线性负载的特性,使其在无市电的情况下保证 UPS 对负载可靠供电;柴油发电机组的容量大小,除要满足UPS计算负荷需要外,还必须进行电动机启动时的电压降校验,即启动任一电动机时,其端子容许电压降应在规定范围之内。2.2.1 按照UPS容量配置柴油发电机组 一般柴油机生产厂家要求,与UPS 配套柴油发电机组的容量一般为 UPS 容量的 2 ~ 2.5 倍。而UPS设计工作中负荷一般在 50% ~ 80% 额定容量,这种情况下,发电机组发出的功率可能为额定容量的30%左右。这样不但造成发电机组的容量不能充分利用,增加了设备的投资,而且使发电机组更容易产生故障,降低了发电机组的工作可靠性。综合各种因素,发电机组实际负载60%以上额定负载的情况下工作,对柴油机最为有利。 关于在实际工程设计中UPS与柴油发电机的功率配比问题在本章节中不再进行讨论,具体详见其他专篇。 2.2.2.按照常规综合负荷容量配置柴油发电机组现代综合建筑中,柴油发电机不仅作为UPS的备用电源,而且要求作为建筑内特别重要负荷及消防负荷的备用电源。在这种情况下,发电机容量不能只考虑UPS的容量,必须兼顾其它特别重要负荷及消防负荷的容量,在特别重要负荷(包括UPS)及消防负荷中,按照最大者确定柴油发电机的容量。 (1) 利用设备容量计算发电机容量: P=k?Kx?Pe/η 式中:p—自备发电机组的功率(kW); k—可靠系数,一般取1.1。 Kx—需要系数(一般取0.85-0.95); Pe—总负荷容量(kW); η—发电机并联运行不均匀系数一般取0.9,单台取1。 (2) 利用最大的单台电动机或成组电动机起动的需要,计算发电机容量: P=(Pe-Pm) /ηe + Pm?K?C?cosΦm(kW) 式中:Pm—起动容量最大的电动机或成组电动机的容量(kW) ; Pe-总负荷容量(kW) ; ηe-总负荷的计算效率,一般取0.85; cosΦm -电动机的起动功率因数,一般取0.4; K-电动机的起动倍数; C-全压起动C=1;Y-△起动C=0.67;自耦变压器起动50%抽头C=0.25;65%抽头C=0.42;80%抽头C=0.64。 (3) 按起动电动机时母线容许电压降计算发电机容量: 发电机母线上已接负荷的影响,发电机母线上的启动负荷应该等于已接负荷与电动机启动容量之和。 P=Pn?K?C?Xd″(1/△E-1)(kW) 式中:Pn-造成母线压降最大的电动机或成组起动电动机组的容量(kW) K—电动机的起动电流倍数; Xd″—发电机的暂态电抗,一般取0.25; 图1 备用功率图2 常用功率

同步发电机励磁自动控制系统练习参考答案

一、名词解释 1.励磁系统 答:与同步发电机励磁回路电压建立、调整及在必要时使其电压消失的有关设备和电路。 2.发电机外特性 答:同步发电机的无功电流与端电压的关系特性。 3.励磁方式 答:供给同步发电机励磁电源的方式。 4.无刷励磁系统 答:励磁系统的整流器为旋转工作状态,取消了转子滑环后,无滑动接触元件的励磁系统。 5.励磁调节方式 答:调节同步发电机励磁电流的方式。 6.自并励励磁方式 答:励磁电源直接取自于发电机端电压的励磁方式。 7.励磁调节器的静态工作特性 答:励磁调节器输出的励磁电流(电压)与发电机端电压之间的关系特性。 8.发电机调节特性 答:发电机在不同电压值时,发电机励磁电流IE与无功负荷的关系特性。 9.调差系数 答:表示无功负荷电流从零变至额定值时,发电机端电压的相对变化。 10.正调差特性 答:发电机外特性下倾,当无功电流增大时,发电机的端电压随之降低的外特性。11.负调差特性 答:发电机外特性上翘,当无功电流增大时,发电机的端电压随之升高的外特性。12.无差特性 答:发电机外特性呈水平.当无功电流增大时,发电机的端电压不随之变化的外特性。

13.强励 答:电力系统短路故障母线电压降低时,为提高电力系统的稳定性,迅速将发电机励磁增加到最大值。 二、单项选择题 1.对单独运行的同步发电机,励磁调节的作用是( A ) A.保持机端电压恒定; B.调节发电机发出的无功功率; C.保持机端电压恒定和调节发电机发出的无功功率; D.调节发电机发出的有功电流。 2.对与系统并联运行的同步发电机,励磁调节的作用是( B ) A.保持机端电压恒定; B.调节发电机发出的无功功率; C.调节机端电压和发电机发出的无功功率; D.调节发电机发出的有功电流。 3.当同步发电机与无穷大系统并列运行时,若保持发电机输出的有功 PG = EGUG sinδ为常数,则调节励磁电流时,有( B )等于常数。 X d A.U G sinδ; B.E Gsinδ; C.1 X d ?sinδ; D.sinδ。 4.同步发电机励磁自动调节的作用不包括( C )。 A.电力系统正常运行时,维持发电机或系统的某点电压水平; B.合理分配机组间的无功负荷; C.合理分配机组间的有功负荷; D.提高系统的动态稳定。 5.并列运行的发电机装上自动励磁调节器后,能稳定分配机组间的( A )。A.无功负荷;

柴油发电机组励磁系统的智能控制方法研究

柴油发电机组励磁系统的智能控制方法研究 摘要:在电力系统中,主要的电源是柴油发电机组。柴油发电机组一般情况下 由柴油发动机、同步发电机和控制系统三部分组成。因为运行环境复杂,柴油发 电机组的输出功率会有很大波动。由于励磁控制系统可以平滑调节发电机机端的 电压波动,因此稳定可靠的励磁控制系统起着十分重要的作用。 关键词:柴油发电机组;励磁控制系统;模糊PID控制;遗传算法 1智能控制的特点及功能 1.1智能控制在PID控制系统的应用概述 鉴于常规PID控制系统的缺陷,为了能够增强控制系统调节动态数据、消除 静态误差值的能力,越来越多的研究者将智能控制引入到常规PID控制系统之中。不同于常规PID控制系统的简单结构,智能控制下的PID控制系统,在具有常规PID控制系统的功能基础之上,又融入了计算机、人工智能、信息技术等多学科,赋予了PID控制系统更为强大的功能,尤其是增强了PID控制系统在动态信息技 术方面的处理能力,有效的消除了静态误差值。智能控制下的PID控制系统运算 能力大大增强,针对复杂环境下的运算能力大幅度增加。从系统结构上来说,智 能控制下的PID控制系统由以下几种结构组成:二元结构、三元结构、四元结构。其中二元结构是指人工智能与自动控制技术相结合;三元结构是指人工智能、自 动控制技术、运筹学相结合;四元结构是指人工智能、自动控制技术、运筹学、 系统论相结合的一种智能控制技术。 1.2智能控制下的PID控制系统特点 从目前的智能控制下的PID控制系统结构来看,智能控制使常规PID控制技 术呈现出新的发展特点:(1)高效率。区别于常规PID控制系统,智能控制下的PID控制系统在运筹学、计算机等学科的加持下,能够大幅度的提高PID控制系 统的运算效率,提高对不同数据的处理能力,尤其是复杂环境下、复杂参数的有 效处理,从而大大减缓了PID控制系统在多线程任务中的运行压力,保障了各控 制系统的稳定运行,因而具有高效率的特点。(2)实时性。工业自动化控制强 调实时性,实时性是精准作业的保障,一切控制命令的传达均要在第一时间,才 能够使PID控制系统的各模块准确执行。智能控制下的PID控制系统在信息技术 的辅助下,通过遍布PID控制系统的传感器和通信线路,能够及时的将PID控制 中心的指令,传递给各功能模块,并在运筹学的辅助下,计算各功能板块的运行 状态,从而保障了智能化控制系统的精准作业。(3)智能化。在人工智能技术 的辅助下,智能控制下的PID控制系统能够具备智能化的特点,人工智能具有一 定的学习、记忆能力,能够把常规的作业状态记住,并随着学习的增多,在无需 人员操控的情况下,根据人工智能的计算结果,便可以对PID控制系统进行自动 调节,从而保障了PID控制系统的连续稳定运行。 1.3智能控制下PID控制系统的功能 在智能控制技术应用到PID控制系统后,使PID控制系统具备了更为强大的 功能:(1)学习功能。智能控制技术能够使PID控制系统具备学习的功能,根据预设的运行程序,PID控制系统能够自动执行一些任务,并随着执行任务的增多,PID控制系统自动记忆一些新内容,并在大数据、运筹学技术的辅助下,使PID 控制系统能够学习到新的作业方式,并对现有的作业方式进行精简,从而不断的 提高PID控制系统的运行能力和控制能力。(2)自适应功能。根据预设在PID控制系统中的程序,智能控制下的PID控制系统具备了自适应功能,在从传感器感

柴油发电机组控制系统工作原理

柴油发电机组控系统工作原理 LIXISE 作者: 作者:LIXISE 柴油发电机组控制系统工作原理和算法是相当的复杂,每个电路的设计都有其特定的算法来予以实现。柴油发电机组的控制器系统犹如发电机组的心脏,智能控制系统的使用大大提高了柴油发电机组的运行,保障了柴油发电机组的稳定工作,那么控制系统是通过何种原理和算法来实现呢?柴油发电机组的控制部分,数字式励磁控制器较传统的模拟电路励磁控制器具有精度高,反应快,控制算法适应性强,对于不同特性的电机只要通过调整程序参数就能适应,甚至可以实现更高端的自适应智能控制算法等优点。 一、数字励磁控制器软件实现与算法研究 主要是对数字式励磁控制器的软件和所采用的控制算法进行论述。首先对数字励磁控制器的主程序进行设计,然后对电量参数采集算法和智能励磁控制算法进行研究,并在CPU上进行实现。为了实现精确的数字励磁控制,需要得到实时、精确的电量数据,而要获得实时、精确的电量数据,则需要采用交

流采样方法,并推导出交流采样下各个电量的计算公式,最终编写计算出电量数据的算法程序。交流采样是按一定的规律对被测信号的瞬时值进行采样,再按照一定的数学算法求出被测电量参数的测量方法。下面给出交流电压,交流电流,有功功率,无功功率,功率因素的各种算法中的离散公式。 二、数字式励磁控制器总体设计方案 工作电源:由于微处理器的工作电源要求,我们需要一个5V的稳定直流电源,信号调理电路的运算电路的供电需要一组±12V的直流电源,另外,开关量输出需要驱动继电器,所以需要一个+24V的直流电源,为此我们需要设计一个电源转化模块得到系统正常工作所需的三组DC电源。 三、交流采样锁相环电路 要进行交流采样,通常需要进行同步采样,目前交流采样方式主要有硬件同步采样、软件同步采样和异步采样三种。硬件同步由硬件同步电路向CPU提出中断实现同步。硬件同步电路有多种形式,常见的如锁相环同步电路等。硬件同步采样法是由专门的硬件电路产生同步于被测信号的采样脉冲。它能克服软件同步采样法存在截断误差等缺点,测量精度高。利用锁相频率跟踪原理实

最新发电机励磁系统

发电机励磁系统

发电机励磁系统 一、简介: 励磁系统是同步发电机的重要组成部分,它是供给同步发电机励磁电源的一套系统,励磁系统是一种直流电源装置。励磁系统一般由两部分组成:(如图一所示)一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称作励磁功率输出部分(或称励磁功率单元)。另一部分用于在正常运行或发生故障时调节励磁电流,以满足安全运行的需要,通常称作励磁控制部分(或称励磁控制单元或励磁调节器)。 励磁功率单元向同步发电机转子提供直流电流,即励磁电流,以建立直流磁场。励磁功率单元有足够的可靠性并具有一定的调节容量。在电力系统运行中,发电机依靠电流的变化进行系统电压和本身无功功率的控制因此,励磁功率单元应具备足够的调节容量以适应电力系统中各种运行工况的要求。而且它有足够的励磁顶值电压和电压上升速度具有较大的强励能力和快速的响应能力。 励磁调节器根据输入信号和给定的调节准则控制励磁功率单元的输出,是整个励磁系统中较为重要的组成部分。励磁调节器的主要任务是检测和综合系统运行状态的信息,以产生相应的控制信号,经放大后控制励磁功率单元以得到所要求的发电机励磁电流。系统正常运行时,励磁调节器就能反映发电机电压高低以维持发电机电压在给定水平。应能迅速反应系统故障,具备强行励磁等控制功能以提高暂态稳定和改善系统运行条件。

在电力系统的运行中,同步发电机的励磁控制系统起着重要的作用,它不仅控制发电机的端电压,而且还控制发电机无功功率、功率因数和电流等参数。 图一 二、励磁系统必须满足以下要求: 1、正常运行时,能按负荷电流和电压的变化调节(自动或手动)励磁电流,以维持电压在稳定值水平,并能稳定地分配机组间的无功负荷。 2、整流装置提供的励磁容量应有一定的裕度,应有足够的功率输出,在电力系统发生故障,电压降低时,能迅速地将发电机地励磁电流加大至最大值(即顶值),以实现发动机安全、稳定运行。 3、调节器应设有相互独立的手动和自动调节通道; 4、励磁系统应装设过电压和过电流保护及转子回路过电压保护装置。 三、励磁系统方式: 励磁方式,就是指励磁电源的不同类型。 一般分为三种:直流励磁机方式、交流励磁机方式、静止励磁方式。 静止励磁系统。由机端励磁变压器供给整流器电源,经三相全控整流桥控制发电机的励磁电流。

柴油发电机无刷励磁的结构特点工作方式工作原理

柴油发电机无刷励磁的结构特点工作方式工作原理

————————————————————————————————作者:————————————————————————————————日期:

柴油发电机无刷励磁的结构特点、工作方式、工作原理 无刷励磁的结构特点、工作方式、工作原理。发电机励磁电流的调节过程△由副励磁机——可控硅——A VR 调节器——作为主励磁机定子励磁电流——来调节主励旋转电枢的输出电流——送至旋转整流盘——转子绕组 △静止的永励副励磁机的电枢送出400Hz的电源,通过励磁电压调节器中的三相全控桥式可控硅整流器形成可调的直流电源到交流励磁机的磁场绕组。 通过控制全控桥整流器的导通角来调节交流励磁机的磁场电流,从而达到调节发电机励磁电流的目的。 当DA VR故障时,由厂用电经工频手动励磁调节装置整流后提供。发电机励磁。 工作原理 发电机的励磁电流由交流励磁机经旋转整流盘整流后提供,交流励磁机的励磁电流则由永磁机经调节装置中的可控硅全控桥整流后提供,励磁电流的大小由自励磁调节装置进行自动或手动调节,以满足发电机运行工况的要求。 2.3 无刷励磁系统特点2. 3.1 励磁机与发电机同轴,电源独立,不受电力系统干扰 2.3.2 没有滑环和电刷,根除了碳粉污染,噪音低,维护简单 2.3.3 具备高起始、响应持久、能有效地提高电力系统稳定性 2.3.4 选扎整流盘设计合理、电流和电压余量大,运行可靠 2.3.5 采用双重数字AVR、功能齐全、故障追忆功能强 无刷励磁系统原理框图 整流盘及电路 整流盘采用双盘结构,一个正极盘,另一个负极盘。 整流盘与转轴间绝缘可靠、固定合理,能承受各种短路力矩的冲击而不产生位移。 电路接线是:励磁机电枢八个Y支路中心点通过短路环连接在一起形成公共中心点,八个“Y”支路的出线则分别接一个全波整流桥,它们在直流侧正极性和负极性分别在一起,而后送发电机转子,可称为多支路直流侧并联接线方式,着接线方式可确保各“Y”支路旋转整流管之间均良好。 每个“Y”支路每整流臂有二个整流管,一个电容器和一个保护电容器的小熔断器,它们组装为一体,称为整流组件。另外还有二个主熔断器,主熔断器的端面带有机械熔断器指示器,在电机运转时,当熔丝熔断后,这种指示器弹出,用同步频闪仪能观察到二极管和主熔断器的参数。 主熔断器:电流670A 电压850V 二极管:R6LO—40型平板式元件电流400A 反向峰压2000V 见图(二) 2.4 数字式励磁电压调节器(DA VR)DA VR采用进口三菱公司的用于无刷励磁系统的全双通道数字式励磁电压调节装置MEC5230、DA VR按发电机机端和电网的工况自动地调整发电机的励磁,一旦发电机或励磁系统出现异常,可借助于多种限制功能单元,及时对异常工况限制或发出切机信号,使机组脱离电网并灭磁! 2.4.1 DA VR主要性能:(a) 自动调节范围(恒电压模式) 发电机空载工况:10%~110%额定电压 发电机负载工况:95%~105%额定电压 (b) 手动调节范围(恒磁场电流模式) 发电机空载工况:10%~110%额定电压 发电机负载工况:允许达到110%发电机额定磁场电压(在额定负载和额定电压运行时) (c) 调压精度:<±1% (d) 采样固期:20ms 2.4.2 DA VR工作原理:DA VR控制方式:DA VR提供二种控制方式:发电机恒机端电压控制和恒励磁机磁场电流控制。 (a) 发电机恒机端电压控制:这种方式与常规A VR自动工作方式一样,通过控制发电机的磁场电流使发电机的端电压与电压整定器(90k)的整定值相同,发电机端电压保持恒定值。

几种常见的励磁系统介绍

发电机的心脏——励磁系统 发电机励磁系统概述励磁系统是同步发电机的重要组成部分,它是供给同步发电机励磁电源的一套系统。励磁系统一般由两部分组成:(如图一所示)一部分用于向发电机的磁场绕组提供直流电流,以建立直流磁场,通常称作励磁功率输出部分(或称励磁功率单元)。另一部分用于在正常运行或发生故障时调节励磁电流,以满足安全运行的需要,通常称作励磁控制部分(或称励磁控制单元或励磁调节器)。在电力系统的运行中,同步发电机的励磁控制系统起着重要的作用,它不仅控制发电机的端电压,而且还控制发电机无功功率、功率因数和电流等参数。在电力系统正常运行的情况下,维持发电机或系统的电压水平;合理分配发电机间的无功负荷;提高电力系统的静态稳定性和动态稳定性,所以对励磁系统必须满足以下要求: 图一 1、常运行时,能按负荷电流和电压的变化调节(自 动或手动)励磁电流,以维持电压在稳定值水平,并能稳定地分配机组间的无功负荷。 2、应有足够的功率输出,在电力系统发生故障,电压降低时,能迅速地将发电机地励磁电流加大至最大值(即顶值),以实现发动机安全、稳定运行。 3、励磁装置本身应无失灵区,以利于提高系统静态稳定,并且动作应迅速,工作要可靠,调节过程要稳定。我热电分厂现共有三期工程,5台同步发电机采用了3种励磁方式: 1、图二为一期两台QFG-6-2型发电机的励磁系统方框图。 图二

2、图三为二期两台QF2-12-2型发电机的励磁系统方框图。 图三 3、图四为三期一台QF2-12-2型发电机的励磁系统方框图 图四 一、三种发电机励磁系统的组成 一期是交流励磁机旋转整流器的励磁系统,即无刷励磁系统。如图二所示,它的副励磁机是永磁发电机,其磁极是旋转的,电枢是静止的,而交流励磁机正好相反,其电枢、硅整流元件、发电机的励磁绕组都在同一轴上旋转,不需任何滑环与电刷等接触元件,这就实现了无刷励磁。二期是自励直流励磁机励磁系统。如图三所示,发电机转子绕组由专用的直流励磁机DE供电,调整励磁机磁场电阻Rc可改变励磁机励磁电流中的IRC从而达到调整发电机转子电流的目的。三期采用的是静止励磁系统。这类励磁系统不用励磁机,由机端励磁变压器供给整流器电源,经三相全控整流桥控制发电机的励磁电流。 二、励磁电流的产生及输出

同步电动机励磁系统常见故障分析

同步电动机励磁系统常见故障分析 作者:陆业志 本文结合KGLF11型励磁装置,对其在运行中的常见故障进行分析。 1 常见故障分析 (1)开机时调节6W,励磁电流电压无输出。 原因分析:励磁电流电压无输出,肯定是晶闸管无触发脉冲信号,而六组脉冲电路同时无触发脉冲很可能是移相插件接触不良,或者同步电源变压器4T损坏,造成没有移相给定电压加到六组脉冲电路的1V1基极回路上,从而六组脉冲电路无脉冲输出导致晶闸管不导通。 (2)励磁电压高而励磁电流偏低。 原因分析:这是个别触发脉冲消失或是个别晶闸管损坏的缘故。个别触发脉冲消失可能是脉冲插件接触不良。另外图1中三极管1V1、单极晶体管2VU及小晶闸管9VT损坏,或者是电容2C严重漏电或开路。如果主回路中晶闸管1VT~6VT中有某一个开路或是触发极失灵,同样会导致输出励磁电流偏低的现象。 (3)合励磁电路主开关时,励磁电流即有输出。 原因分析:这是由于图1所示脉冲电路中的三极管1V1集电极-发射极之间漏电,即使移相电路还未送来正确的控制电压,也会导致1C充电到2VU导通的程度。2VU即输出触发使小晶闸管9VT导通,2C经9VT放电而发出脉冲令1VT、3VT、6VT之一触发导通,使转子励磁电路中流过直流电流。 (4)同步电动机起动时,励磁不能自行投入。 原因分析:励磁不能自行投入。肯定是自动投励通道电路中断或工作不正常,因此可能是投励插件与插座间接触不良,或是图2所示投励电路中的三极管3V1、单结晶体管4VU工作不正常,电容5C漏电、电位器W′损坏。另外是移相插件同样有接触不良现象,或者是图3所示移相电路的小晶闸管10VT损坏等等。 (5)运行过程中励磁电流电压上下波动。 原因分析:引起励磁电流电压输出不稳的原因很多,主要有1)脉冲插件可能存在接触不良,造成个别触发脉冲时有时无。2)图1所示脉冲电路的电位器4W松动,使三极管1V1电流负反馈发生变化,造成放大器工作点不稳定,从而影响晶闸管主回路输出的稳定性。另外,如果电容2C漏电或单结晶体管2VU及三极管1V1性能不良,也会引起触发脉冲相位移动。3)图3所示移相电路的电位器6W松动或接触不良,将会使移相控制电压Ed间歇性消失,引起励磁电流电压输出大幅度波动。另外,如果稳压管7VS、8VS损坏,都会使Ey随电网电压波动而波动,使Ed输出波动,造成晶闸管主回路直流输出不稳。 (6)励磁装置输出电压调不到零位。

柴油发电机组电气及控制系统

柴油发电机组电气及控制系统 电气气控制系统是柴油发电机组的重要组成部分。本章将介绍柴油发电机组(电气系统的)直流电启动、继电保护、自动化机组中常用传感器、柴油发电机组的电子管理系统、同步发电机的励磁系统以及自动电压调节装置的原理与应用等。 电启动各部件的作用与结构 一、直流电动启动 电动机启动系统由操作人员通过踏板和杠杆操纵启动开关,使发动机的齿轮啮入飞轮齿圈或者操作人员揿下启动按钮,电磁开关通电吸合,控制启动机和齿轮啮入飞轮齿圈还动柴油机启动。 (一)启动电动机的离合机构 启动动机轴上的啮合齿轮在启动,才与发动机曲轴上的飞轮齿圈相啮合,而当发动机开始运行后,启动电动机应立即与曲轴分离。否则当发动机转速升高,使启动电动机大大超速旋转,产生很大的离心力,造成破坏,甚至使启动电动机电枢飞散。因此,启动电动机必须装离合机构。启动时保证启动电动机的动力能传递给曲轴,启动后能切断电动机与发动机曲轴的联系。 常用的离合机构有以下几种。 1、弹簧离合机构 这种机构套装在启动机电枢轴上,驱动齿轮的右端活套在花键套筒的左端外圆上,两个扇形块装入齿轮右端相应缺口中并伸入花键套筒左端的环槽内,这样齿轮和花键套筒可一起作轴向移动,两者可相对滑转。离合弹簧在自由状态下的内径小于齿轮和套筒相应外圆的直径,安装时紧套在外圆面上。启动时,启

动机带动花键套筒旋转,有使离合弹簧收缩的趋势,由于离合弹簧被紧箍在相应外圆面上,于是,启动机转矩靠弹簧与外圆面的摩擦传给驱动齿轮,从而带动飞轮齿圈转动。当柴油机启动后,齿轮有比套筒转速快的趋势,弹簧胀开,离合齿轮在套筒上滑动,从而使齿轮与飞轮齿圈脱开。 该离合机构较简单,所配用的ST614型启动机,其电压为直流24V,功率为5.3KW,操作方便,因而得到广泛应用。 2、摩擦片式离合机构 摩擦片式离合机构结构,内花键毂装在具有右旋外花键套上,主动片套在内花键毂的导槽中,而从动片与主动片相间排列。旋装在花键套上的螺母与摩擦片之间装有弹性垫圈、压环和调整垫片。驱动齿轮右端的鼓形部分有一个导槽,从动片齿形凸缘装入此导槽之中,最后装卡环,以防止启动机驱动齿轮与从动片松脱。离合机构装好后摩擦片之间无压紧力。 启动时,花键套按顺时针方向转动,靠内花键毂与花键套之间的右旋花键,使内花键壳在花键套上向左移动将驱动齿轮,带动飞轮齿圈转动,发动机启动后,驱动齿轮相对于花键套转速加愉,内花链壳在花键套上右移,于是摩擦片便松开,离合机构处于分离状态。 该离合机构摩擦力矩的调整,即调整垫片可改变内花键壳端部与弹性垫圈之间的间隙,以控制弹性垫圈的变形量,从而调整离合机构所能传递的最大摩擦力矩。 摩擦片式的离合机构由于可传动的转矩较大,因此,通常用于较大启动转矩的柴油机上。 (二)启动机电磁操纵机构

柴油发电机技术规范

稳态频率调整率: ≤±2%(固态电子调速器)电压波动率:≤±%(负载功率在25-100%内渐变时) 频率波动率:≤%(负载功率在0-25%内渐变时) c)柴油发电机组在空载状态,突加功率因数≤(滞后)、稳定容量为的三相对称负载或在已带80%Pe的稳定负载再突加上述负载时,发电机的母线电压秒后不低于85%Ue。发电机瞬态电压调整率u≤-15%~+20%,电压恢复到最后稳定电压的±3%以内所需时间不超过1秒,瞬态频率调整率≤5%(固态电子调速器),频率稳定时间≤3秒。突减额定容量为的负载时,柴油发电机组升速不超过额定转速的10%。 d)柴油发电机组在空载额定电压时,其正弦电压波形畸变率不大于3%,柴油发电机组在一定的三相对称负载下,在其中任一相加上25%的额定相功率的电阻性负载,应能正常工作。 发电机线电压的最大值(或最小值)与三相线电压平均值相差不超过三相线电压平均值的5%,柴油发电机组各部分温升不超过额定运行工况下的水平。 应答:满足要求。 4.4.4控制功能 柴油发电机组属于无人值守电站,控制系统具有下列功能: a)保安xx线电压自动连续监测。 b)自动程序起动,远方起动,就地手动起动。 c)柴油发电机与保安段正常电源(3台断路器)同期并网功能。 d)运行状态的柴油发电机组自动检测、监视、报警、保护。 e)厂用电源恢复后远方控制、就地手动、机房紧急手动停机。(详见逻辑附图)f)蓄电池自动充电,具有自动内外部切换功能及蓄电池电压监测。买方提供不小于W的380VAC供电电源。g)预润滑、润滑油预热,xx预热。

h)发电机空间加热器自动投入功能。 应答:满足要求。模拟试验功能 柴油发电机组在备用状态时,模拟保安段母线电压低至25%Ue或失压状态,能够按设定时间快速自起动运行试验,试验中不切换负荷,柴油发电机应具有按预先设定的带负荷百分比自动分担负荷的功能。但在试验过程中保安段实际电压降低至25%时能够快速切换带负荷。 应答:满足要求。 柴油发电机组的性能及结构要求 运行要求 柴油发电机组能在100小时内连续满容量运行。柴油发电机组能通过运行方式选择开关,选择柴油发电机组所处状态。运行方式选择开关有下列四个位置即“自动”、“试验”、“手动”、“零位”。柴油发电机组正常处于准起动状态即“自动”状态。自起动时间<10秒。 应答:满足要求。 起动要求 保证柴油发电机组自起动快速性和成功率,保证柴油发电机组正常处于热态,采取对柴油发电机组冷却水,润滑油的预热和预供手段。 柴油发电机组的起动方式为电起动。电起动方式的电源,采用全密封免维护阀控铅酸蓄电池(容量400AH),蓄电池的浮充装置具备在线小电源浮充和快速充电的两种自动充电功能。 蓄电池的容量满足连续起动15次的用电量要求。 应答:满足要求。 电气接线要求 一次接线

柴油发电机及保安系统

柴油发电机及保安系统改造方案 0 引言 发电厂保安电源是指当出现全厂停电时,为了保证汽轮机组顺利停机,不至于损坏设备而设置的电源。某发电厂保安电源程序控制系统由PLC来实现,由于存在一些设计和设备上的缺陷,在机组试运期间,保安电源系统经常出现误动、拒动情况,为此,电厂技术人员积极查找原因并提出相应的改造措施。实施改造后,电厂柴油发电机组及保安系统未出现误动现象,提高整个保安电源系统的可靠性,保证了设备的安全运行。 1.电厂保安系统介绍 1.1测控单元 某电厂要求柴油发电机组设置的PLC程序控制系统除实现对柴油发电机组的监视控制功能外,还对保安电源系统的逻辑进行控制,并能与发电厂的电气控制系统(ECMS)进行通信。具体要求如下: 1.1.1控制对象包括: a.柴油发电机出口断路器(K0); b.保安MCC(汽机及锅炉)工作电源进线开关(1K1、1K2、2K1、2K2、3K1、3K2); c.保安MCC(汽机及锅炉)备用电源进线开关(1K3、2K3、3K3)。 对于上述各断路器,程序控制系统采集断路器的合闸及跳闸位置(DI),并能输出控制信号对断路器进行跳、合闸操作(DO)。 1.1.2监视对象包括: a.保安PC母线电压、保安MCC(汽机及锅炉)母线电压 b.保安MCC(汽机及锅炉)工作电源进线电压 c.保安PC电源馈线开关(K4、K5、K6、K7) 对于上述各监测点,程序控制系统采集了三相交流电压(交流采样),并能进行下述逻辑要求的电压正常(三相电压均大于80%额定电压)、电压消失(三相电压均小于30%额定电压)及同期检测功能。断路器采集其合闸及跳闸位置(DI)

保安系统接线图 1.2逻辑单元 我厂保安控制系统设置一个工作状态选择开关,包括“工作”、“试验”和“断开”三个位置,当选择开关在“工作”位置时,程控系统能实现“保安MCC电源备自投”、“柴油发电机自动启动”以及“厂用电恢复后电源切换”等功能;当选择开关在“试验”位置时,能进行柴油发电机的启动试验或柴油发电机带载试验;当选择开关在断开位置时,就地和远方均不能启动柴油发电机且不能进行保安电源断路器的切换控制。 1.2.1保安MCC电源备自投逻辑: 正常运行时,各保安MCC的二个工作电源断路器(1K1/1K2或2K1/2K2或3K1/3K2)中K1为合闸状态, K2为断开状态(备用电源断路器1K3、2K3、3K3断开),当选择开关在“工作”位置,控制系统检测到保安MCC母线电压消失,并满足规定时间(0-2秒可调)时,检测K2工作电源进线电压正常,则跳K1开关,检测该工作电源断路器及备用电源断路器均断开时,再合上K2开关,并发出报警信号。正常运行时,二路工作电源进线中K1为主开关,K2为K1的从开关,任何一路电压消失时,发出报警信号。 1.2.2柴油发电机启动逻辑: 当选择开关在“工作”位置,控制系统接收到外部的全厂停电信号(经延时0-10秒可调)或远方紧急启动信号时,首先启动柴油发电机,当达到额定转速并建立电压后,闭合发电机出口断路器K0,同时跳开各保安MCC工作电源断路器(1K1/1K2或2K1/2K2或3K1/3K2),当检测保安PC电压正常后,再分步骤投入各保安MCC备用电源断路器(1K3或2K3或3K3)。在投入保安MCC电源断路器时,先检测相应保安MCC的二个工作电源断路器均在断开位置后才允许投入备用电源断路器。 1.2.3厂用电恢复后切换逻辑: 当选择开关在“工作”位置,控制系统检测到工作电源进线电压正常,同时接受到运行人员的切换命令后,程序控制系统将各保安MCC由备用电源切换至工作电源供电,切换可选择并联切换或串联切换(在柴油机控制柜上通过转换开关或按钮设定)。当选择并联切换时,程序控制系统通过同期控制装置调整发电机频率和相位,采用同期合闸方式先合工作电源断路器(1K1/1K2或2K1/2K2或3K1/3K2),再跳开备用电源断路器(1K3或2K3或3K3);当选择串联切换时,程序控制系统则首先跳开保安MCC备用电源断路器(1K3或2K3或3K3),当检测备用电源断路器断开后,再闭合工作电源断路器(1K1/1K2或2K1/2K2或3K1/3K2)操作。确认所有保安MCC切换成功后,断开柴油发电机出口断路器K0后,再停柴油机。 1.2.4柴油发电机试验逻辑: 当选择开关在“试验”位置时,能进行柴油机空载载试验或带载试验。选择空载试验时,就地启动柴油机,不合出口断路器K0,试验完后就地手动停机。选择带载试验时,就地启动柴油机,控制系统检测发电机电压、频率正常且保安PC无电压后允许运行人员手动合出口断路器K0,检测保安PC电压正常后,允许运行人员选择汽机或锅炉保安MCC进行带载试验。当选择汽机保安MCC1进行带载试验时,程序控制系统检测保安PC馈线开关K4在合闸位置,保安PC电压与汽机保安MCC1母线电压电压正常,通过同期控制装置调整发电机电压频率和相位,当满足同期要求后合备用进线断路器1K3,检测1K3合闸后,允许就地控制给柴油发电机加载,试验完成后,先减载再依次手动断开1K3、K0、停柴油发电机,试验完成。 2.运行中存在的问题 但在实际运行中我们发现,对于我厂来说,这套保安系统还是存在着以下缺陷: 2.1由于对汽机PCA、PCB、锅炉PCA、PCB工作电源进线电压检测及对汽机保安MCC1、汽机保安MCC2、锅炉保安MCC母线电压检测均采用同一种电压检测模块,此电压检测模块当检测到三相电压的过压

发电机励磁系统

发电机励磁系统 1、励磁系统的重要作用 励磁系统的主要作有:1)根据发电机负荷的变化相应的调节励磁电流,以维持机端电压为给定值;2)控制并列运行各发电机间无功功率分配;3)提高发电机并列运行的静态稳定性;4)提高发电机并列运行的暂态稳定性;5)在发电机内部出现故障时,进行灭磁,以减小故障损失程度;6)根据运行要求对发电机实行最大励磁限制及最小励磁限制。二、励磁系统的工作原理励磁装置是指同步发电机的励磁系统中除励磁电源以外的对励磁电流能起控制和调节作用的电气调控装置。励磁系统是电站设备中不可缺少的部分。励磁系统包括励磁电源和励磁装置,其中励磁电源的主体是励磁机或励磁变压器;励磁装置则根据不同的规格、型号和使用要求,分别由调节屏、控制屏、灭磁屏和整流屏几部分组合而成。励磁装置的使用,是当电力系统正常工作的情况下,维持同步发电机机端电压于一给定的水平上,同时,还具有强行增磁、减磁和灭磁功能。对于采用励磁变压器作为励磁电源的还具有整流功能。励磁装置可以单独提供,亦可作为发电设备配套供应。三、发电机励磁系统的组成励磁功率单元向同步发电机转子提供励磁电流;而励磁调节器则根据输入信号和给定的调节准则控制励磁功率单元的输出。励磁系统的自动励磁调节器对提高电力系统并联机组的稳定性具有相当大的作用。尤其是现代电力系统的发展导致机组稳定极限降低的趋势,也促使励磁技术不断发展。同步发电机的励磁系统主要由功率单元和调节器(装置)两大部分组成。其中励磁功率单元是指向同步发电机转子绕组提供直流励磁电流的励磁电源部分,而励磁调节器则是根据控制要求的输入信号和给定的调节准则控制励磁功率单元输出的装置。由励磁调节器、励磁功率单元和发电机本身一起组成的整个系统称为励磁系统控制系统。励磁系统是发电机的重要组成部份,它对电力系统及发电机本身的安全稳定运行有很大的影响。自动调节励磁的组成部件有机端电压互感器、机端电流互感器、励磁变压器;励磁装置需要提供以下电流,厂用AC380v、厂用DC220v控制电源.厂用DC220v合闸电源;需要提供以下空接点,自动开机.自动停机.并网(一常开,一常闭)增,减;需要提供以下模拟信号,发电机机端电压100V,发电机机端电流5A,母线电压100V,励磁装置输出以下继电器接点信号;励磁变过流,失磁,励磁装置异常等。励磁控制、保护及信号回路由灭磁开关,助磁电路、风机、灭磁开关偷跳、励磁变过流、调节器故障、发电机工况异常、电量变送器

柴油发电机工作原理

发电机 { 直流发电机、交流发电机 { 同步发电机、异步发电机(很少采用)交流发电机还可分为单相发电机与三相发电机。 由轴承及端盖将发电机的定子,转子连接组装起来,使转子能在定子中旋转,做切割磁力线的运动,从而产生感应电势,通过接线端子引出,接在回路中,便产生了电流。 直流发电机的工作原理 直流发电机的工作原理就是把电枢线圈中感应产生的交变电动势,靠换向器配合电刷的换向作用,使之从电刷端引出时变为直流电动势的原理。 电刷上不加直流电压,用原动机拖动电枢使之逆时针方向恒速转动,线圈两边就分别切割不同极性磁极下的磁力线,而在其中感应产生电动势,电动势方向按右手定则确定。这种电磁情况表示在图上。由于电枢连续地旋转,,因此,必须使载流导体在磁场中所受到线圈边ab和cd交替地切割N极和S极下的磁力线,虽然每个线圈边和整个线圈中的感应电动势的方向是交变的.线圈内的感应电动势是一种交变电动势,而在电刷A,B端的电动势却为直流电动势(说得确切一些,是一种方向不变的脉振电动势)。因为,电枢在转动过程中,无

论电枢转到什么位置,由于换向器配合电刷的换向作用,电刷A通过换向片所引出的电动势始终是切割N极磁力线的线圈边中的电动势,因此,电刷A始终有正极性。同样道理,电刷B始终有负极性,所以电刷端能引出方向不变的但大小变化的脉振电动势。如每极下的线圈数增多,可使脉振程度减小,就可获得直流电动势。这就是直流发电机的工作原理。同时也说明子直流发电机实质上是带有换向器的交流发电机。 铁芯具有吸引磁力线的作用(因为其磁阻很小),发电机电枢线圈是放在定子铁芯槽中的,磁场N-S的磁力线将被吸引,穿过定子铁芯后闭合。磁场的磁力线转动时,也就被电枢线圈切割了,自然就产生了电动势和电流。 异步电机一般定子通电,转子有感应电势,所以我们也称异步电机为感应电机。转子的转速与同步转速总是有一定的差异,这才叫异步电机的。 同步电机是定转子都要通电,而且转子的转速与同步转速一直是一样的,所以叫同步电机。

同步电机励磁系统

同步电机励磁系统 Excitation system for synchronous electricalmachines-Definitions GB/T 7409.11997 本标准是对GB 7409—87的修订。 GB 7409—87执行七年来,技术已有新的发展,其中有些内容IEC已制定了国际标准。为适应技术发展的要求和贯彻积极采用国际标准的精神,原标准需作修订。 为便于采用IEC标准和今后增补、修订标准的方便,经技术委员会研究,将GB 7409改编为系列标准:修订后的GB 7409.1等同采用IEC 34-16-1:1991;GB 7409.2等同采用IEC 34-16-2:1991,至于GB 7409.3,由于IEC目前还没有相应的标准,此部分是根据GB 7409执行七年的情况并参考了美国IEEE std 421.1—1986、421.A—1978、421.B—1979和原苏联ГОСТ21558—88等标准编写的。 本标准定义的同步旋转电机的励磁系统术语为一般通用的术语。同步电机励磁系统所有 各分标准在使用同步电机励磁系统技术名词和术语时均符合本标准之规定。其他未包括的术 语,应在同步电机励磁系统各分标准中作补充规定。 本标准由全国旋转电机标准化技术委员会汽轮发电机分技术委员会提出并归口。 本标准负责起草单位:哈尔滨大电机研究所。 主要起草人:忽树岳。 IEC

1)IEC(国际电工委员会)是由所有国家的电工技术委员会(IEC国家委员会)组成的世界范围内的标准化组织。IEC的目的是促进电工和电子领域内所有有关标准化问题的国际间的合 作。为此目的和除其他活动之外,IEC出版国际标准。这些标准是委托各个技术委员会制定 的;对所讨论的主题感兴趣的任何一个国家委员会都可以参加起草工作,与IEC有联系的国际的,政府的和非政府的组织也可以参加起草工作。IEC和ISO(国际标准化组织)按两大组织之间共同确定的条件紧密合作。 2)IEC关于技术问题的正式决议或协议是由代表各国家委员会专门利益的技术委员会 所制定的,这些决议或协议都尽可能充分地表达了国际上所涉及的问题的一致意见。 3)这些决议或协议均以标准、技术报告或导则的形式出版且以推荐的形式供国际上使 用,并在此意义上为各国家委员会所承认。 4)为了促进国际上的统一,IEC各国家委员会应尽最大可能在各自的国家和地区标准中 明确地采用IEC国际标准,并应清楚地指明IEC标准与对应的本国或本地区标准之间的某 些分歧。 5)IEC对任何申明符合其某些标准的设备不提供表明它已被认可的标记过程,并且也不 对其负责。 IEC

柴油发电机组的控制系统工作原理

柴油发电机组的控制系统工作原理 LIXISE 作者:LIXISE 作者: 柴油发电机组的控制系统犹如发电机组的大脑,智能控制系统的使用大大提高了柴油发电机组的运行,保障了柴油发电机组的稳定工作,那么控制系统的如何来实现,发电机控制器系统工作原理又是什么?柴油发电机组的控制部分-数字式励磁控制器较传统的模拟电路励磁控制器具有精度高,反应快,控制算法适应性强,对于不同特性的电机只要通过调整程序参数就能适应,甚至可以实现更高端的自适应智能控制算法等优点。 柴油发电机组控制系统的工作原理和算法是相当的复杂,每个电路的设计都有其特定的算法来予以实现。 一、数字励磁控制器软件实现与算法研究

主要是对数字式励磁控制器的软件和所采用的控制算法进行论述。首先对数字励磁控制器的主程序进行设计,然后对电量参数采集算法和智能励磁控制算法进行研究,并在CPU上进行实现。为了实现精确的数字励磁控制,需要得到实时、精确的电量数据,而要获得实时、精确的电量数据,则需要采用交流采样方法,并推导出交流采样下各个电量的计算公式,最终编写计算出电量数据的算法程序。交流采样是按一定的规律对被测信号的瞬时值进行采样,再按照一定的数学算法求出被测电量参数的测量方法。下面给出交流电压,交流电流,有功功率,无功功率,功率因素的各种算法中的离散公式。 二、数字式励磁控制器总体设计方案 工作电源:由于微处理器的工作电源要求,我们需要一个5V的稳定直流电源,信号调理电路的运算电路的供电需要一组±12V的直流电源,另外,开关量输出需要驱动继电器,所以需要一个+24V的直流电源,为此我们需要设计一个电源转化模块得到系统正常工作所需的三组DC电源。

柴油发电机并机方案

柴油发电机组并机方案 东莞团诚自动化设备有限公司是一家与新加坡力可赛(LIXISE)的合资公司。新加坡力可赛在并机技术上处于国际先进水平,尤其是柴油发电机组自动并机技术非常成熟,其核心模块采用自主研发的LXC9510专用并机控制模块。力可赛人凭借积累的大量柴油发电机组成功并车并机方案和经验,能根据客户需求,设计出最经济最合理的发电机组并机方案。 一、LXC9510控制器并机系统功能: 1.系统组成: 发电机系统包括2台辛普森柴油发电机组,1个并机柜和1个并机汇流输出柜组成。 LXC9510发电机组并联控制器A RS485 通讯电缆分合闸控制 分合闸控制 ABB 空气断路器 柴油发电机组 B 柴油发电机组A 至用户负载 LXC9510发电机组并联控制器B (Diesel generators and machine program )

由“LXC9510控制器”构成的并机系统示意图 并机系统组成:由LXC9510控制器构成的并机控制屏、并机汇流输出柜及PLC负载分组控制系统(可选单元)、燃油自动补给系统(可选单元)组成,2台机组相应配一个并机输入柜。并机柜的一次线路、负载开关的品牌、型号规格及电柜的外型结构视具体工程而定。 2.并机系统的特点、功能和适用范围: 2.1并机系统的自动程度高,机组的投入运行、切出运行、同步合闸、卸载分闸、负载分配均 自动进行,令发电供电系统实现无人监管。 2.2并机系统工作状况稳定,操作人员容易掌握使用方法。 2.3全面的保护功能:逆功率保护、过流保护(由断路器和MICROPRO I完成)、发电机组故障分 闸保护、超载保护、电压故障保护、急停功能。 2.4基本功能: a)手动开机。 b)同步显示。 c)自动同步检测。 d)自动并机,可通过设定相关参数,机组根据负载的大小自动投入运行或切出。 e)自动平衡分配功率。 f)自动切出卸载功能:多台机组在并机运行时,如其中一台机组需切出运行,该机组会 自动将负载逐渐转移到其它机组,在负载接近为0时(大小可调),自动分闸。 g)负载分组控制(可选项):多台机组在并机运行时,如其中一台机组故障,PLC负载分 组控制系统会立刻卸掉所设定的次要负载,保证其它运行的机组有足够的功率为主要 负载供电。 h)燃油自动补给(可选项):对机组的燃油供给实现自动无人值守控制。 2.5可选功能: a)市电高低压故障检测功能。 b)市电故障自动启动发电机组功能。

相关文档