文档库 最新最全的文档下载
当前位置:文档库 › 活性污泥法AAO计算

活性污泥法AAO计算

活性污泥法AAO计算
活性污泥法AAO计算

利用COD指标进行活性污泥法系统的设计

利用COD指标进行活性污泥法系统的设计 朱明权 (Schueffl & Forsthuber Consulting) 摘要阐述了利用COD指标进行活性污泥法系统设计的主要思想和过程,并建立一套用于硝化和反硝化的活性污泥法COD设计方法。大量实际运行结果表明,利用该法对系统剩余污泥量和耗氧量以及活性污泥的组成计算所得的结果要较传统的BOD 5 方法更为精确。 关键词COD 活性污泥法设计剩余污泥量需氧量硝化 反硝化 活性污泥法是目前废水生物处理的最主要方法,长期以来活性污泥 法均根据污水处理厂的进、出水BOD 5指标进行设计。由于BOD 5 指标测定 精度低、费时耗力、其值也仅仅反映部分较易降解的有机物含量,故利 用BOD 5 指标不能对整个处理系统建立物料平衡。随着污水处理厂处理要求的不断提高,活性污泥法系统的设计污泥龄将逐渐提高,故难降解和部分颗粒性有机物的水解程度也将有所提高,污水处理厂中实际所降解 的有机物含量明显高于进水BOD 5 所反映的含量。与之相比,COD指标测定简单、精度高且具可比性,能反映污水中所含的全部有机物,故利用COD指标可以进行物料衡算。 虽然COD指标不能说明污水中有机物的生物可降解性,但对污水厂出水或将水样和活性污泥经混合后进行较长时间曝气所得过滤液的COD 以及对活性污泥增殖情况进行分析,可以基本反馈入流污水COD中可降解和难降解物质的含量比例,这就为利用COD指标进行污水厂的设计和运行提供了可能。据此,国际水质协会(IAWQ)所建立的活性污泥1号和2号动态模型也均采用COD指标为基础。随着现代分析技术的飞速发展,快速COD测定方法以及在线COD测定仪(on-line)不断应用,对进水COD 各个组分的分析技术及其在活性污泥法系统中动力学转化机理的认识不断提高,尤其是活性污泥法过程动态模拟方法不断普及,可以认为利用COD指标进行活性污泥法系统的设计将呈不断上升的趋势。 1 活性污泥法的COD设计方法 1.1进水水质组成及其转化过程 在利用COD指标进行活性污泥法系统设计前,应首先对进水水质进行分析。主要包括测定水样经混合后的总COD浓度、水样经过滤后(滤纸孔隙直径为0.45 μm)滤液的COD浓度(即水样的溶解性COD浓度)、SS 和VSS、进水氮和磷浓度等。 一般城市污水的水质组成及其在活性污泥法系统中的转化过程如图1所示。 根据图1,进水总COD和各个组分之间的关系可用下式表示:

活性污泥法污水处理

水污染控制工程课程设计城镇污水处理厂设计 指导教师刘军坛 学号 130909221 姓名秦琪宁

目录 摘要 (3) 第一章引言 (4) 1.1设计依据的数据参数 (4) 1.2设计原则 (5) 1.3设计依据 (5) 第二章污水处理工艺流程的比较及选择 (6) 2.1 选择活性污泥法的原因 (6) 第三章工艺流程的设计计算 (7) 3.1设计流量的计算 (7) 3.2格栅 (9) 3.3提升泵房 (9) 3.4沉砂池 (10) 3.5初次沉淀池和二次沉淀池 (11) 3.6曝气池 (15) 第四章平面布置和高程计算 (25) 4.1污水处理厂的平面布置 (25) 4.2污水处理厂的高程布置 (26) 第五章成本估算 (27) 5.1建设投资 (27) 5.2直接投资费用 (28) 5.3运行成本核算 (29) 结论 (29) 参考文献: (30) 致谢 (30)

摘要 本设计采用传统活性污泥法处理城市生活污水,设计规模是200000m3/d。该生活污水氨氮磷含量均符合出水水质,不需脱氮除磷,只考虑除掉污水中的SS、BOD、COD。传统活性污泥法是经验最多,历史最悠久的一种生活污水处理方法。污泥处理工艺为污泥浓缩脱水工艺。污水处理流程为:污水从泵房到沉砂池,经过初沉池,曝气池,二沉池,接触消毒池最后出水;污泥的流程为:从二沉池排出的剩余污泥首先进入浓缩池,进行污泥浓缩,然后进入贮泥池,经过浓缩的污泥再送至带式压滤机,进一步脱水后,运至垃圾填埋场。本设计的优势是:设计流程简单明了,无脱氮除磷的设计,节省了成本,该方法是早期开始使用的一种比较成熟的运行方式,处理效果好,运行稳定,BOD 去除率可达90%以上,适用于对处理效果和稳定程度要求较高的污水,城市污水多采用这种运行方式。 关键词:城市污水传统活性污泥法污泥浓缩

活性污泥系统的工艺计算与设计

活性污泥系统的工艺计算与设计 一、设计应掌握的基础资料与工艺流程的选定 活性污泥系统由曝气池、二次沉淀池及污泥回流设备等组成。其工艺计算与设计主要包括5方面内容,即 ①工艺流程的选择; ②曝气池的计算与设计; ②曝气系统的计算与设计; ④二次沉淀池的计算与设计; ⑤陌泥回流系统的计算与设计。 进行活性污泥处理系统的工艺计算和设计时,首先应比较充分地掌握与废水、污泥有关的原始资料并确定设计的基础数据。主要是下列各项: ①废水的水量、水质及变化规律; ②对处理后出水的水质要求; ③对处理中所产生污泥的处理要求; ④污泥负荷率与BOD5去除率: ⑤混合液浓度与污泥回流比。 对生活污水和城市废水以及性质与其相类似的工业废水,人们已经总结出一套较为成熟和完整的设计数据可直接应用。而对于一些性质与生活污水相差较大的工业废水或城市废水,则需要通过试验来确定有关的设计数据, 选定废水和污泥处理工艺流程的主要依据就是的前述的①、②、③各项内容和据此所确定的废水和污泥的处理程度。 在选定时,还要综合考虑当地的地理位置、地区条件、气候条件以及施工水平等因素,综合分析本工艺在技术上的可行性和先进性及经济上的可能性和合理性等。特别是对工程量大、建设费用高的工程,需要进行多种工艺流程比较之后才能确定,以期使工程系统达到优化。 二、曝气池的计算与设计 曝气他的计算与设计主要包括:①曝气池(区)容积的计算;②需氧量和供气量的计算; ③池体设计等几项。 1.曝气池(区)容积的计算 (1)计算方法与计算公式 计算曝气区容积,常用的是有机负荷计算法。也称BOD5负荷计算法。负荷有两种表示方法,即污泥负荷和容积负荷。曝气池(区)容积计算公式列于表3—17—19中。

活性污泥法污泥产量计算

活性污泥工艺的设计计算方法活性污泥工艺是城市污水处理的主要工艺,它的设计计算有三种方法:污泥负荷法、泥龄法和数学模型法。三种方法在操作上难易程度不同,计算结果的精确度不同,直接关系到设计水平、基建投资和处理可靠性。正因为如此,国内外专家都在进行大量细致的研究,力求找出一种精确度更高而又便于操作的计算方法。 1污泥负荷法 这是目前国内外最流行的设计方法,几十年来,运用该法设计了成千上万座污水处理厂,充分说明它的正确性和适用性。但另一方面,这种方法也存在一些问题,甚至是比较严重的缺陷,影响了设计的精确性和可操作性。 污泥负荷法的计算式为[1] V=24LjQ/1000FwNw=24LjQ/1000Fr(1) 污泥负荷法是一种经验计算法,它的最基本参数Fw(曝气池污泥负荷)和Fr(曝气池容积负荷)是根据曝气的类别按照以往的经验设定,由于水质千差万别和处理要求不同,这两个基本参数的设定只能给出一个较大的范围,例如我国的规范对普通曝气推荐的数值为Fw=0.2~0.4 kgBOD/(kgMLSS·d) Fr=0.4~0.9 kgBOD/(m3池容·d) 可以看出,最大值比最小值大一倍以上,幅度很宽,如果其他条件不变,选用最小值算出的曝气池容积比选用最大值时的容积大一倍或一倍以上,基建投资也就相差很多,在这个范围内取值完全凭经验,对于经验较少的设计人来说很难操作,这是污泥负荷法的一个主要缺陷。

污泥负荷法的另一个问题是单位容易混淆,譬如我国设计规范中Fw的单位是kgBOD/ (kgMLSS·d),但设计手册中则是kgBOD/(kgMLVSS·d),这两种单位相差很大。MLSS是包括无机悬浮物在内的污泥浓度,MLVSS则只是有机悬浮固体的浓度,对于生活污水,一般MLVSS=0.7MLSS,如果单位用错,算出的曝气池容积将差30%。这种混淆并非不可能,例如我国设计手册中推荐的普通曝气的Fw为0.2~0.4kgBOD/(kgMLVSS·d)[2],其数值和设计规范完全一样,但单位却不同了。设计中经常遇到不知究竟用哪个单位好的问题,特别是设计经验不足时更是无所适从,加上近年来污水脱氮提上了日程,当污水要求硝化、反硝化时,Fw、Fr取多少合适呢? 污泥负荷法最根本的问题是没有考虑到污水水质的差异。对于生活污水来说,SS和B OD浓度大致有数,MLSS与MLVSS的比值也大致差不多,但结合各地的实际情况来看,城市污水一般包含50%甚至更多的工业废水,因而污水水质差别很大,有的SS、BOD值高达300~400 mg/L,有的则低到不足100 mg/L,有的污水SS/BOD值高达2以上,有的SS值比BOD值还低。污泥负荷是以MLSS为基础的,其中有多大比例的有机物反映不出来,对于相同规模、相同工艺、相同进水BOD浓度的两个厂,按污泥负荷法计算曝气池容积是相同的,但当SS/BOD值差异很大时,MLVSS也相差很大,实际的生物环境就大不相同,处理效果也就明显不同了。 综上所述,污泥负荷法有待改进。因此,国际水质污染与控制协会(IAWQ)组织各国专家,于1986年首次推出活性污泥一号模型(简称ASM1)[3],1995年又推出了活性污泥二号模型(简称ASM2)[4、5]。 2数学模型法 数学模型法在理论上是比较完美的,但在具体应用上则存在不少问题,这主要是由于污水和污水处理的复杂性和多样性,即使是简化了的数学模式,应用起来也相当困难,从而阻碍了它的推广和应用。到目前为止,数学模型法在国外尚未成为普遍采用的设计方法,而在我国还没有实际应用于工程,仍停留在研究阶段。

活性污泥法课程设计(DOC)

课程设计 题目城镇污水处理厂工艺设计 (活性污泥法) 学院环境与生物工程学院 专业环境工程 班级环境工程一班 学生姓名张琼 指导教师谭雪梅 2012 年12 月7 日

目录 目录 (1) 第一章设计任务 (4) 1.1 设计任务及要求 (4) 1.1.1 设计任务 (4) 1.1.2 设计要求 (4) 第二章总体设计 (5) 2.1 处理构筑物选择 (5) 2.2 污水处理厂选址 (5) 2.3 核心工艺比较 (6) 2.3.1 氧化沟工艺 (6) 2.3.2 A/O法 (6) 2.3.3 SBR法 (7) 2.3.4 曝气生物滤池(BAF) (7) 2.3.5 MBR工艺 (7) 2.4 设计流量 (9) 2.5 污水、污泥处理工艺流程图 (9) 第三章格栅 (9) 3.1 设计草图 (10) 3.2 设计参数 (10) 3.3 设计计算 (10) 3.3.1 中格栅的设计计算 (10) 3.3.2 细格栅的设计计算 (12) 第四章沉砂池 (14) 4.1 设计草图 (15) 4.2 设计参数 (15) 4.3 设计计算 (15) 第五章初级沉淀池 (17) 5.1 设计草图 (17) 5.2 设计计算 (17)

第六章曝气池 (20) 6.1 污水处理程度的计算及曝气池的运行方式 (20) 6.1.1 污水处理程度的计算 (20) 6.1.2 曝气池的运行方式 (20) 6.2 曝气池的计算与各部位尺寸的确定 (21) 6.3 曝气系统的计算与设计 (23) 6.4 供气量计算 (24) 6.5 空气管系统计算 (26) 6.6 空压机的选定 (27) 第七章二次沉淀池 (27) 7.1 设计草图 (28) 7.2 设计参数 (28) 7.3 设计计算 (28) 第八章其他构筑物 (31) 8.1 集水井 (31) 8.2 污水提升泵房 (32) 8.3 接触池 (33) 8.4 液氯投配系统 (33) 8.5 计量堰 (34) 8.6 污泥回流泵房 (34) 8.7 污泥浓缩池 (35) 8.8 污泥脱水间 (35) 第九章构筑物高程布置计算及水力损失 (35) 9.1平面布置 (35) 9.2构筑物水头损失计算 (36) 9.2.1 污泥管道水头损失 (37) 9.2.2 污水管渠水力计算 (38) 9.3 污泥高程计算 (38) 第十章污水厂运行成本及其构成 (40) 10.1 污水处理厂的处理成本构成 (40) 10.2 运行成本分析 (40)

活性污泥法运算指标

2、活性污泥法运算指标 活性污泥法处理污水的关键是要有充足的供氧(曝气)及性能良好的活性污泥,活性污泥的性能应具有良好的聚凝结构和分解有机物能力,以及在()时与水迅速分离,活性污泥性能可用下面几项指标来表示: (1)污泥沉降比(SV ) 污泥沉降比是指一定量的曝气池混合液,静置沉淀30min 后,沉淀物与原混合物与原混合液的体积比(以百分数表示)即 污泥沉淀比(%)=混合液体积 静置沉淀后污泥体积混合液经min 30 由于,污泥经沉淀30min 后,沉淀污泥可接近最大密度,因此以30min 为依据,沉淀比的大小与污泥凝聚与沉降性有关。若凝聚性差时,上清液混浊,污泥难以下沉。在通常情况下曝气池混合液宜保持沉淀比在20%--50%范围内。(一般表曝SV 高,射流曝气SV 低些)。 (2)污泥浓度(MLSS ) 污泥浓度是为IL 曝气池混合液所含悬浮固体(MLSS )的重量,单位为g/L 或mg/L 。MLSS 值得大小,间接地反映出曝气池混合液中所含微生物的重量。保证适宜MLSS 的对处理效率有十分重要的影响。通常MLSS 控制在2-4g/L 为宜。 (3)污泥容积指数(SVI ) 是指曝气池混合液经30min 静置沉淀后,1g 干污泥所占沉淀污泥容积毫升数,其单位为mg/L ,其计算公式 g 1000污泥浓度(污泥沉降比()?=SVI SVI 值能反映活性污泥凝聚性和沉降性。若 SVI 值过高,证明污泥颗粒松散,不是沉淀,将发生污泥膨胀或已经发生了污泥膨胀。如 SVI 值过低,证明污泥颗粒紧密、细小和吸附性也差。在正常情况下, SVI 值一般在50-100之间为宜。 SVI<100 沉淀性能好 SVI=100 沉淀性能一般 SVI>100 沉淀性能差 由于工业污水中成分各异,SVI 正常值也略有不同,若污水溶解性有机物含量大时,正常的SVI 值可能偏高。若污水中无机物含量大时,正常的SVI 值可能偏低。 3、活性污泥中的微生物及其变化规律 活性污泥是由细菌、真菌、原生动物和后生动物等不同种属的微生物组成的。在净化废水时,它们与废水中的有机营养物形成了极为复杂的食物链。最初担当净化任务的是异养型细菌和腐蚀性真菌。如在高糖、低pH 值、低磷以及某些特殊的有机物多时,会促使真菌的生长繁殖。大部分细菌形成菌胶团。原生动物吞食活的细菌,是细菌的一次捕食者。活性污泥中最常见的原生动物有鞭毛虫类、肉足虫类、纤毛虫类和吸管虫类。但这些原生动物并非同时出现,而是随条件及水质的变化而变化。一般在曝气的初期,肉足虫和鞭毛虫占优势;接着是自由游动性的纤毛虫(如豆形虫草履虫)占优势;随着活性污泥的逐渐成熟,固着型的纤毛虫(如纤维虫、盖纤虫、等枝虫、钟虫等)又相继占优势,特别是钟虫出现且数量较多时,则说明污泥成熟,所以原生动物的演替变化,可以用来评估活性污泥的质量及废水处理的情况。后生动物是细菌的二次捕食者。活性污泥中的后生动物像轮虫、线虫等,只能在氧气很充足的条件下才出现,所以后生动物的出现是水质处理相当好的标志。

活性污泥法曝气量有关计算(仅供参考)

氧的传递与转移 一、双膜理论与氧总转移系数 (1)气、液两相接触的界面两侧存在着处于层流状态的气膜和液膜,在其外侧则分别为处于紊流状态的气相主体和液相主体。气体分子以分子扩散方式从气相主体通过气膜和液膜而进入液相主体。(2)气、液两相主体的物质浓度基本上是均匀的,不存在浓度差,也不存在传质阻力,气体向液相主体的传递,阻力仅存在于气、液两层膜中。(3)在气膜中存在氧的分压梯度,在液膜中存在氧的浓度梯度,它们是氧转移的推动力。(4)氧难溶于水,氧转移决定性的阻力集中在液膜上,因此,氧分子通过液膜是氧转移过程的控制步骤。 V A X D K f L a L =()C C K dt dC s La -= KLa 小,则氧转移过程中阻力大;KLa 大,则氧转移过程中阻力小。1/KLa 的单位为h ,表示曝气池中溶解氧浓度从C 提高到Cs 所需要的时间。KLa ——氧总转移系数是评价空气扩散装置的重要参数。 二、提高氧转移效率的方法: (1)提高KLa 值。要加强液相主体的紊流程度,降低液膜厚度,加速气、液面的更新,增大气、液接触面积等(气泡细小)。 什么是液膜呢?你一定知道肥皂泡沫吧,它就是最常见的液膜,它的分子一端亲水,一端亲油,在水中遇到油,亲油的一端向油,亲水的一端向外,就成为包围着油的泡沫。这种液膜不稳定,一吹就破。 (2)提高Cs 值。可提高气相中的氧分压,如采用纯氧曝气或高压下曝气如深井曝气等。 三、影响氧转移的因素 (1)污水性质 污水中存在着溶解性有机物,特别是表面活性物质,如短链脂肪酸和乙醇,是一种两亲分子,极性端亲水羧基COOH -或羟基-OH -插入液相,而非极性端疏水的碳基链则伸入气相中。由于两亲分子聚集在气液界面上,阻碍氧分子的扩散转移,增加了氧转移过程的阻力→KLa ↓,引入一个小于1的因子α来修正表面活性物质对KLa 的影响 α=KLa ’(污水)/KLa(清水) KLa ’(污水)=α*KLa(清水) (2)污水中含有盐类,因此,氧在水中的饱和度也受水质的影响。引入小于1的系数β因子来修正。 β=Cs ’(污水)/Cs(清水) Cs ’(污水)=β*Cs(清水) (3)水温 水温降低有利于氧的转移。30-35℃的盛夏情况不利。 KLa (T)=KLa (20)*1.024(T-20) (3)氧分压 Cs 值受氧分压或气压的影响。气压降低 ,Cs 降低,反之则提高。在当地气压不是一个标准大气压时,C 值应乘以如下修正系数: ρ=所在地区实际压力(Pa)/101325(Pa) 主要影响因素:气相中氧分压梯度、液相中氧浓度梯度、气液之间的接触面积(气泡大小)和接触时间、水温、污水性质、水流的紊流程度。

活性污泥法课程设计(DOC)知识分享

活性污泥法课程设计 (D O C)

学号:2010122140 课程设计 题目城镇污水处理厂工艺设计 (活性污泥法) 学院环境与生物工程学院 专业环境工程 班级环境工程一班 学生姓名张琼 指导教师谭雪梅 2012 年12 月7 日

目录 目录 0 第一章设计任务 (3) 1.1 设计任务及要求 (3) 1.1.1 设计任务 (3) 1.1.2 设计要求 (3) 第二章总体设计 (4) 2.1 处理构筑物选择 (4) 2.2 污水处理厂选址 (4) 2.3 核心工艺比较 (5) 2.3.1 氧化沟工艺 (5) 2.3.2 A/O法 (5) 2.3.3 SBR法 (6) 2.3.4 曝气生物滤池(BAF) (6) 2.3.5 MBR工艺 (6) 2.4 设计流量 (8) 2.5 污水、污泥处理工艺流程图 (8) 第三章格栅 (9) 3.1 设计草图 (9) 3.2 设计参数 (9) 3.3 设计计算 (9) 3.3.1 中格栅的设计计算 (9) 3.3.2 细格栅的设计计算 (11) 第四章沉砂池 (14) 4.1 设计草图 (14) 4.2 设计参数 (14) 4.3 设计计算 (15) 第五章初级沉淀池 (16) 5.1 设计草图 (17) 5.2 设计计算 (17)

第六章曝气池 (19) 6.1 污水处理程度的计算及曝气池的运行方式 (20) 6.1.1 污水处理程度的计算 (20) 6.1.2 曝气池的运行方式 (20) 6.2 曝气池的计算与各部位尺寸的确定 (20) 6.3 曝气系统的计算与设计 (23) 6.4 供气量计算 (24) 6.5 空气管系统计算 (27) 6.6 空压机的选定 (27) 第七章二次沉淀池 (28) 7.1 设计草图 (28) 7.2 设计参数 (29) 7.3 设计计算 (29) 第八章其他构筑物 (32) 8.1 集水井 (32) 8.2 污水提升泵房 (32) 8.3 接触池 (33) 8.4 液氯投配系统 (34) 8.5 计量堰 (34) 8.6 污泥回流泵房 (35) 8.7 污泥浓缩池 (36) 8.8 污泥脱水间 (36) 第九章构筑物高程布置计算及水力损失 (36) 9.1平面布置 (36) 9.2构筑物水头损失计算 (37) 9.2.1 污泥管道水头损失 (38) 9.2.2 污水管渠水力计算 (38) 9.3 污泥高程计算 (39) 第十章污水厂运行成本及其构成 (40) 10.1 污水处理厂的处理成本构成 (40) 10.2 运行成本分析 (41)

活性污泥法污泥产量计算

活性污泥工艺的设计计算方法探讨 摘要对活性污泥工艺的三种设计计算方法:污泥负荷法、泥龄法、数学模型法的优缺点进行了评述,建议现阶段推广采用泥龄法进行设计计算,并对泥龄法基本参数的选用提出了意见。 关键词活性污泥工艺泥龄法污泥负荷法数学模型法设计计算 活性污泥工艺是城市污水处理的主要工艺,它的设计计算有三种方法:污泥负荷法、泥龄法和数学模型法。三种方法在操作上难易程度不同,计算结果的精确度不同,直接关系到设计水平、基建投资和处理可靠性。正因为如此,国内外专家都在进行大量细致的研究,力求找出一种精确度更高而又便于操作的计算方法。 1污泥负荷法 这是目前国内外最流行的设计方法,几十年来,运用该法设计了成千上万座污水处理厂,充分说明它的正确性和适用性。但另一方面,这种方法也存在一些问题,甚至是比较严重的缺陷,影响了设计的精确性和可操作性。 污泥负荷法的计算式为[1] V=24LjQ/1000FwNw=24LjQ/1000Fr(1) 污泥负荷法是一种经验计算法,它的最基本参数Fw(曝气池污泥负荷)和Fr(曝气池容积负荷)是根据曝气的类别按照以往的经验设定,由于水质千差万别和处理要求不同,这两个基本参数的设定只能给出一个较大的范围,例如我国的规范对普通曝气推荐的数值为Fw=0.2~0.4 kgBOD/(kgMLSS·d) Fr=0.4~0.9 kgBOD/(m3池容·d)

可以看出,最大值比最小值大一倍以上,幅度很宽,如果其他条件不变,选用最小值算出的曝气池容积比选用最大值时的容积大一倍或一倍以上,基建投资也就相差很多,在这个范围内取值完全凭经验,对于经验较少的设计人来说很难操作,这是污泥负荷法的一个主要缺陷。 污泥负荷法的另一个问题是单位容易混淆,譬如我国设计规范中Fw的单位是kgBOD/ (kgMLSS·d),但设计手册中则是kgBOD/(kgMLVSS·d),这两种单位相差很大。MLSS是包括无机悬浮物在内的污泥浓度,MLVSS则只是有机悬浮固体的浓度,对于生活污水,一般MLVSS=0.7MLSS,如果单位用错,算出的曝气池容积将差30%。这种混淆并非不可能,例如我国设计手册中推荐的普通曝气的Fw为0.2~0.4kgBOD/(kgMLVSS·d)[2],其数值和设计规范完全一样,但单位却不同了。设计中经常遇到不知究竟用哪个单位好的问题,特别是设计经验不足时更是无所适从,加上近年来污水脱氮提上了日程,当污水要求硝化、反硝化时,Fw、Fr取多少合适呢? 污泥负荷法最根本的问题是没有考虑到污水水质的差异。对于生活污水来说,SS和B OD浓度大致有数,MLSS与MLVSS的比值也大致差不多,但结合各地的实际情况来看,城市污水一般包含50%甚至更多的工业废水,因而污水水质差别很大,有的SS、BOD值高达300~400 mg/L,有的则低到不足100 mg/L,有的污水SS/BOD值高达2以上,有的SS值比BOD值还低。污泥负荷是以MLSS为基础的,其中有多大比例的有机物反映不出来,对于相同规模、相同工艺、相同进水BOD浓度的两个厂,按污泥负荷法计算曝气池容积是相同的,但当SS/BOD值差异很大时,MLVSS也相差很大,实际的生物环境就大不相同,处理效果也就明显不同了。 综上所述,污泥负荷法有待改进。因此,国际水质污染与控制协会(IAWQ)组织各国专家,于1986年首次推出活性污泥一号模型(简称ASM1)[3],1995年又推出了活性污泥二号模型(简称ASM2)[4、5]。 2数学模型法

活性污泥工艺中剩余污泥量计算

关于活性污泥工艺中剩余污泥量计算的讨论 我国大部分城市(镇)污水处理厂采用的是传统活性污泥法或其变型工艺,其生物系统产生的剩余污泥量往往存在着设计值与实际值相差较为悬殊的现象,这在不设初沉池系统的活性污泥工艺,如A/O法、A2/O法、AB法、氧化沟、SBR中更为普遍。究其根源,或是污泥产率系数的设计取值与实际运行有差距,或是没有考虑进水中不可降解及惰性悬浮固体对剩余污泥量的影响。本文就上述两个问题进行讨论。 1剩余污泥量计算方法 在活性污泥工艺中,为维持生物系统的稳定,每天需不断有剩余污泥排出。它们主要由两部分构成,一是由降解有机物BOD所产生的污泥增殖,二是进水中不可降解及惰性悬浮固体的沉积。因此,剩余干污泥量可以用式(1)计算: ΔX=(Y1+Kdθc)Q(BODi-BODo)+fPQ(SSi-SSo)(1) 式中ΔX———系统每日产生的剩余污泥量,kgMLSS/d; Y———污泥增殖率,即微生物每代谢1kgBOD所合成的MLVSSkg数; Kd———污泥自身氧化率,d-1; θc———污泥龄(生物固体平均停留时间),d; Y1+Kdθc———污泥净产率系数,又称表观产率(Yobs); Q———污水流量,m3/d; BODi,BODo———进、出水中有机物BOD浓度,kgBOD/m3; fP———不可生物降解和惰性部分占SSi的百分数; SSi,SSo———进、出水中悬浮固体SS浓度,kgSS/m3。 德国排水技术协会(ATV)制订的城市污水设计规范中给出了剩余污泥量的计算表达式[1]。此式与式(1)本质相同,只是更加细致,考虑了活性污泥代谢过程中的惰性残余物(约占污泥代谢量的10%左右)及温度修正。综合污泥产率系数YBOD(以BOD计,包含不可降解及惰性SS沉积项)写作: YBOD=0 6×(1+SSiBODi)-(1-fb)×0 6×0 08×θc×FT1+0 08×θc×FT(2) FT=1 702(T-15)(3) 式中fb———微生物内源呼吸形成的不可降解部分,取值0 1; FT———温度修正系数。 比较(1),(2)两式,可知在ATV标准中动力学参数Y,Kd分别取值0.6和0.08d-1,进水中不可降解及惰性悬浮固体(fP部分)占总进水SS的60%。由于剩余污泥中挥发性部分所占比例与曝气池中MLVSS与MLSS的比值大体相当,因此剩余干污泥量也可以表示成下式: ΔX=YobsQ(BODi-BODo)f(4) 式中f=MLVSSMLSS;其他符号意义同前。 式(4)与式(1)是一致的,均需确定Yobs。 2Yobs的确定表观产率 Yobs=Y1+Kdθc具有明确的物理含义,我国《室外排水设计规范》(GBJ14-87)第6 .6.2条明确规定“在20℃,有机物以BOD计时,污泥产率系数Y其常数为0 .4~0.8。如处理系统无初次沉淀池,Y值必须通过试验确定。”同款还规定了Kd20℃的常数值0.04~0 .075d-1。从中可以看出,Y值变化幅度达100%,Kd的变化幅度达87 5%。对于不设初沉池的活性污泥系统,常常将已有类似污水处理厂的运行经验,作为设计上的参考。表1是几种典型活性污泥工艺Yobs(或Y,Kd)取值情况。 对于运行中的污水处理厂,可通过长期运行工况参数,如θc,F(污泥负荷,kgBOD/(kgMLVSS·d))求得Yobs实际值,或回归出适用于该厂的Y,Kd值。Yobs用θc,F表示为:Yobs=1θcF(5)据实际运行参数并利用式(5)计算得出的北京市方庄污水处理厂(传统活性污泥工艺)和酒仙桥污水处理厂(氧化沟工艺)的污泥净产率系数,见表

活性污泥法处理生活污水实验实验方案

活性污泥法处理生活污水实验实验方 案

实验一:活性污泥的培养驯化 1. 实验目的: (1)了解SBR工艺原理。 (2)掌握活性污泥的培养、驯化(挂膜)过程; 2. 实验原理: 活性污泥是由具有活性的微生物、微生物自身氧化的残留物、吸附在活性污泥上的不能被微生物降解的有机物组成。其中微生物是活性污泥的主要组成部分。一个生化系统的运行,必须要有活性污泥及与之相适应的生物相。活性污泥的培养、驯化, 就是为活性污泥的微生物提供一定的生长繁殖条件, 即营养物质、溶解氧、适宜的温度和酸碱度等, 在这种情况下, 经过一段时间就会有活性污泥形成, 而且在数量上逐渐增长, 并最后达到处理废水所需的污泥浓度。 3.实验设备与材料 (1)SBR模型,普通活性污泥处理生活污水模型 (2)活性污泥(取自污水处理厂) (3)生活废水(人工模拟配制) (4)100mL量筒 4. 实验步骤 第1天,投加30%活性污泥及生活污水,SBR、普通活性污泥处理生活污水模型内循环运转。

第3天,换水,增加污泥及污水量至50%。 第5天,换水,增加污泥及污水量至70%。 第7天,换水,增加污泥及污水量至100%。 每天观察活性污泥生长状况。 5.实验观察与数据整理。 每天记录: SBR、普通活性污泥处理生活污水模型内的活性污泥生长状况(每天测量SV30,方法见实验二,观察污泥量)。 6.结果分析 对2种类型工艺的污泥驯化过程进行讨论分析。

实验二:活性污泥性质测定实验 1. 实验目的: (1)了解活性污泥的培养、驯化完成的污泥性状; (2)加深对SBR、普通活性污泥处理生活污水模型等工艺活性污泥性能的理解; (3)掌握常规污泥性质(SV30、MLSS、SVI)的测定方法。 2. 实验原理: 活性污泥是人工培养的生物絮凝体,它是由好氧微生物及其吸附的有机物组成的。活性污泥具有吸附和分解废水中的有机物(也有些可利用无机物质)的能力,显示出生物化学活性。在生物处理废水的设备运转管理中,除用显微镜观察外,下面几项污泥性质是经常要测定的。这些指标反映了污泥的活性,它们与剩余污泥排放量及处理效果等都有密切关系。 SV30一般是描述污泥的沉降性能。SVI值能较好地反映出活性污泥的松散程度(活性)和凝聚、沉淀性能,一般在100左右有为宜。MLSS描述污泥浓度,跟活性污泥生长状况和活性有关。 参考污水厂活性污泥培养驯化过程,是否驯化完成一般综合有机物去除率、活性污泥浓度、污泥沉降比河微型动物情况等进行判断。当有机物(COD)去除率达到85%以上(数据参考实验三),MLSS达到3000mg/L,SV30>30%, SVI在100左右。 3. 实验设备和试剂

传统活性污泥法工艺设计3

传统活性污泥法系统在工艺设计 已知:流量Q=7000m 3/h 即日污水排放量为:168000m 3/d k=1.17 进水水质为:BOD 5=180mg/L 设计要求:出水水质BOD 5≤30mg/L (1)负荷设计方法 ①工艺流程的选择 进水 曝气池 二沉池 出水 回流污泥 剩余污泥 a. 废水的处理程度 % 83180 30180=-= -= So Se So E b. 活性污泥法的运行方式 根据提供的条件,采用传统曝气法,即曝气池为廊道式,二次沉淀池为辐流式沉淀池,采用螺旋泵回流污泥。 ②曝气池及曝气系统的计算与设计 a. 曝气池的计算与设计 (a) 污泥负荷率的确定 本曝气池采用的污泥负荷率Ns 为0.3kg ·BOD 5/(kgMLSS ·d) (b) 污泥浓度的测定 根据Ns 值,SVI 值在80-150之间,取SVI=120,另取r=1.2,R=50%,则曝气池的污泥浓度(X)为 L mg SVI R Rr X /3333120 )5.01(10 2.15.0)1(10 6 6 =?+??= +?=

(c) 曝气池容积的确定 )(252033 .03333150168000) (3 0m XN S S Q V s e ≈??= -= (d) 曝气池主要尺寸的确定 曝气池面积:设两座曝气池(n=2),池深(H)取5m ,则每座曝气池的面积(1 F )为: ) (3.25205 2252032 1m H h V F =?= ?= 曝气池宽度:设池宽(B )为8m,B/H=8/5=1.6,在1-2间符合要求 曝气池长度:曝气池长度 5 .398/316/),(3168/3.2520/1==≈==B L m B F L (大于10), 符合要求 曝气池的平面形式:设曝气池为五廊道式,则每廊道长 ) (2.635/3165// m L L === 长宽比较核:9.78/2.63/1==B L ,在5-10之间,符合设计规范要求 取超高为0.5m ,则池总高度) (5.55.00.5/ m H =+=, 曝气时间:曝气时间( m t )为) (6.3168000 242520324h Q V t m ≈?= ?= b 、曝气系统的计算与设计 (a ) 日平均需氧量 f V b S S Q a Q e ?+-=/ 0' 2)( []1000 /75.033332520315.0)30180(168000 5.0???+-??= h kg d kg /8.918)/(2.2205==

污水处理厂CASS工艺设计计算及说明(精品))

设计计算书 1.污水处理厂处理规模 1.1处理规模 污水厂的设计处理规模为城市生活污水平均日流量与工业废水的总和:近期1.0万m3/d,远期2.0万m3/d。 1.2污水处理厂处理规模 污水厂在设计构筑物时,部分构筑物需要用到最高日设计水量。最高日水量为生活污水最高日设计水量和工业废水的总和。 Q设= Q1+Q2 = 5000+5000 = 10000 m3/d 总变化系数:K Z=K h×K d=1.6×1=1.6 2.城市污水处理工艺流程 污水处理厂CASS工艺流程图 3.污水处理构筑物的设计 3.1泵房、格栅与沉砂池的计算 3.1.1 泵前中格栅 格栅是由一组平行的的金属栅条制成的框架,斜置在污水流经的渠道上,或泵站集水井的井口处,用以截阻大块的呈悬浮或漂浮状态的污物。在污水处理流程中,格栅是一种对后续处理构筑物或泵站机组具有保护作用的处理设备。 3.1.1.1 设计参数:

(1)栅前水深0.4m ,过栅流速0.6~1.0m/s ,取v=0.8m/s ,栅前流速0.4~0.9 m/s ; (2)栅条净间隙,粗格栅b= 10 ~ 40 mm, 取b=21mm ; (3)栅条宽度s=0.01m ; (4)格栅倾角45°~75°,取α=65° ,渐宽部分展开角α1=20°; (5)栅前槽宽B 1=0.82m ,此时栅槽内流速为0.55m/s ; (6)单位栅渣量:W 1 =0.05 m 3栅渣/103m 3污水; 3.1.1.2 格栅设计计算公式 (1)栅条的间隙数n ,个 max Q n bhv = 式中, max Q -最大设计流量,3/m s ; α-格栅倾角,(°); b -栅条间隙,m ; h -栅前水深,m ; v -过栅流速,m/s ; (2)栅槽宽度B ,m 取栅条宽度s=0.01m B=S (n -1)+bn (3)进水渠道渐宽部分的长度L 1,m 式中,B 1-进水渠宽,m ; α1-渐宽部分展开角度,(°); (4)栅槽与出水渠道连接处的渐窄部分长度L 2,m (5)通过格栅的水头损失h 1,m 式中:ε—ε=β(s/b )4/3; h 0 — 计算水头损失,m ; k — 系数,格栅受污物堵塞后,水头损失增加倍数,取k=3; 1 112tga B B L -= 1 25.0L L =αε sin 22 01g v k kh h ==

活性污泥法的工艺设计及原理

活性污泥法工艺的设计与运行管理 一、曝气池设计 在进行曝气池容积计算时,应在一定范围内合理地确定污泥负荷(Ns )和污泥浓 度(X )值,此外,还应同时考虑处理效率、污泥容积指数(SVI)和污泥龄等参数。 设计参数的来源主要有两个途径,一是经验数据,另一个是通过实验获得。以生 活污水为主体的城市污水,主要设计参数已比较成熟,可以直接取用于设计,但是对于工业废水,则应通过实验和现场实测以确定其各项设计参数。在工程实践中,由于受实验条件的限制,一般也可根据经验选取。 1.曝气池容积的设计计算 (1)污泥负荷的确定 (2)混合液污泥浓度的确定 2.需氧量和供气量的计算 ( 1 )需氧量 ( 2 )供气量 ①影响氧转移的因素 A.氧的饱和浓度 B.水温 C. 污水性质 a.污水中含有的各种杂质对氧的转移产生一定的影响,将适用于清水的KLa用于 污水时,需要用系数a进行修正。 污水的KLa = a清水的KLa 修正系数a值可通过实验确定。一般a值为0.8?0.85。 b.污水中的盐类也影响氧在水中的饱和度(Cs),污水Cs值用清水Cs值乘以3

值来修正,3值一般介于0.9?0.97之间。 c?大气压影响氧气的分压,因此影响氧的传递,进而影响Cs。气压增高,Cs值升高。对于大气压不是 1.013 xi05Pa的地区,Cs值应乘以压力修正系数p p =所在地区的实际气压/ (1.013 xi05Pa )。 d. 对于鼓风曝气池,空气压力还与池水深度有关。安装在池底的空气扩散装置出口处的氧分压最大,Cs 值也最大。但随着气泡的上升,气压逐渐降低,在水面时,气压为1.013 X105Pa (即1大气压),气泡上升过程中一部分氧已转移到液体中。鼓风曝气池内的Cs 值应是扩散装置出口和混合液表面两处溶解氧饱和浓度的平均值。 另外,氧的转移还和气泡的大小、液体的紊动程度、气泡与液体的接触时间有关。空气扩散装置的性能决定气泡直径的大小。气泡越小,接触面积越大,将提高KLa 值,有利于氧的转移;但另一方面不利于紊动,从而不利于氧的转移。气泡与液体的接触时间越长,越利于氧的转移。 氧从气泡中转移到液体中,逐渐使气泡周围液膜的含氧量饱和,因而,氧的转移效率又取决于液膜的更新速度。紊流和气泡的形成、上升、破裂,都有助于气泡液膜的更新和氧的转移。 从上述分析可见,氧的转移效率取决于气相中氧分压梯度、液相中氧的浓度梯度、气液之间的接触面积和接触时间、水温、污水的性质和水流的紊动程度等因素。 ②供气量的计算 1.空气扩散装置 空气扩散装置的类型较多,目前应用较多的是微孔曝气器。该类型曝气器氧利用率高,阻力损失小,混合效果好,不易堵塞,并且联接部位具有可靠、有效的密封性能。 微孔曝气器直径为215?260mm,服务面积为0.3?0.8m2/个。根据曝气池 池底面积和曝气器的服务面积,可以计算出所需曝气器的数量。

活性污泥计算题

1、普通活性污泥法处理系统废水量为11400m3/d,BOD5=180mg/L,曝气池容积V为3400m3,出水SS=20mg/L(出水所含的未沉淀的MLSS称为SS),曝气池内维持MLSS浓度为2500mg/L,剩余污泥排放量为155m3/d,其中含MLSS为8000mg/L。求:曝气时间、BOD5容积负荷、F/M、污泥龄。 2、某造纸厂采用活性污泥法处理废水。废水量24000m3/d,曝气池容积V为8000m3。经初次沉淀,BOD5=300mg/L,曝气池对BOD5的去除率为90%,曝气池混合液悬浮固体浓度为4000mg/L,其中挥发性悬浮固体占75%。(Y=0.76kgMLVSS/kgBOD5、Kd=0.016d-1、a=0.38kgO2/kgBOD5、b=0.092kgO2/kgMLVSS.d) 求:F/M、q、Nv、每日剩余污泥量、每日需氧量和污泥龄。 3、某城市日排放量30000m3,进入生物池的BOD5=169mg/L,二级处理要求处理水BOD5为25mg/L,拟采用活性污泥处理系统。(NS=0.3kgBOD5/kgMLSS.d,SVI=120ml/g,R=50%,r=1.2,f=0.75, Y=0.5kgMLVSS/kgBOD5、Kd=0.07d-1、a=0.5kgO2/kgBOD5,b=0.15kgO2/kgMLVSS.d) (1)计算确定曝气池体积; (2)计算剩余污泥量; (3)计算需氧量。 4、原始数据:Q=10000m3/d,BOD5=200mg/L,MLSS=3000mg/L,f=0.8,Y=0.5kgMLVSS/kgBOD5,K2=0.1L/mg.d,Kd=0.1d-1,SVI=96,处理出水为6mg/L。采用完全混合活性污泥系统,要求确定(反应动力学参数都以MLVSS出现) (1)所需曝气池体积; (2)计算运行时的污泥龄; (3)确定合适的回流比。 5、:某废水量为21600m3/d,经一次沉淀后废水BOD5为250mg/L,要求出水BOD5在20mg/L 以下,水温20℃,试设计完全混合活性污泥系统。设计时参考下列条件: ①曝气池混合液MLVSS/MLSS=0.8; ②回流污泥浓度X r=10000mgMLSS/L; ③曝气池污泥浓度X=3500mgMLVSS/L; ④θc=10d; Y=0.5kgMLVSS/kgBOD5、Kd=0.06d-1、a=0.47kgO2/kgBOD5,b=0.17kgO2/kgMLVSS.d)求(1)处理效率η;(2)曝气池体积V(用L-M公式);(3)剩余活性污泥量ΔX;(4)剩余活性污泥流量Qw;(5)回流比R;(6)曝气池的水力停留时间t;(7)需氧量) 6、一个城市污水处理厂,设计流量30000m3/d,一级处理出水BOD5=200mg/L,采用活性污泥法处理,处理出水BOD5≤20mg/L。采用微孔曝气盘作为曝气装置。曝气池容积V=10000m3,X v=2000mgMLVSS/L,E A=18%,曝气池内的溶解氧C L=2mg/L,水温T=25℃,曝气盘安装在水下4m处。 有关参数:a=0.5 kgO2/kgBOD5,b=0.1 kgO2/kgMLVSS.d,α=0.8,β=0.9,ρ=1, 求;(1)采用鼓风曝气时,所需要的供气量(m3/min) (2)采用机械曝气时的充氧量(kgO2/h)

关于活性污泥工艺中剩余污泥量计算的讨论

关于活性污泥工艺中剩余污泥量计算的讨论 本文出自: 水世界网作者: 水网一号点击率: 1971 1剩余污泥量计算方法 在活性污泥工艺中,为维持生物系统的稳定,每天需不断有剩余污泥排出。它们主要由两部分构成,一是由降解有机物BOD所产生的污泥增殖,二是进水中不可降解及惰性悬浮固体的沉积。因此,剩余干污泥量可以用式(1)计算: ΔX=(Y1+Kdθc)Q(BODi-BODo)+fPQ(SSi-SSo)(1) 式中ΔX———系统每日产生的剩余污泥量,kgMLSS/d; Y———污泥增殖率,即微生物每代谢1kgBOD所合成的MLVSSkg数; Kd———污泥自身氧化率,d-1; θc———污泥龄(生物固体平均停留时间),d; Y1+Kdθc———污泥净产率系数,又称表观产率(Yobs); Q———污水流量,m3/d; BODi,BODo———进、出水中有机物BOD浓度,kgBOD/m3; fP———不可生物降解和惰性部分占SSi的百分数; SSi,SSo———进、出水中悬浮固体SS浓度,kgSS/m3。 德国排水技术协会(ATV)制订的城市污水设计规范中给出了剩余污泥量的计算表达式[1]。此式与式(1)本质相同,只是更加细致,考虑了活性污泥代谢过程中的惰性残余物(约占污泥代谢量的10%左右)及温度修正。综合污泥产率系数YBOD(以BOD计,包含不可降解及惰性SS沉积项)写作: YBOD=0 6×(1+SSiBODi)-(1-fb)×0 6×0 08×θc×FT1+0 08×θc×FT(2) FT=1 702(T-15)(3) 式中fb———微生物内源呼吸形成的不可降解部分,取值0 1; FT———温度修正系数。 比较(1),(2)两式,可知在ATV标准中动力学参数Y,Kd分别取值0.6和0.08d-1,进水中不可降解及惰性悬浮固体(fP部分)占总进水SS的60%。由于剩余污泥中挥发性部分所占比例与曝气池中MLVSS与MLSS的比值大体相当,因此剩余干污泥量也可以表示成下式: ΔX=YobsQ(BODi-BODo)f(4) 式中f=MLVSSMLSS;其他符号意义同前。 式(4)与式(1)是一致的,均需确定Yobs。 2Yobs的确定表观产率 Yobs=Y1+Kdθc具有明确的物理含义,我国《室外排水设计规范》(GBJ14-87)第6 .6.2条明确规定“在20℃,有机物以BOD计时,污泥产率系数Y其常数为0 .4~0.8。如处理系统无初次沉淀池,Y值必须通过试验确定。”同款还规定了Kd20℃的常数值0.04~0 .075d-1。从中可以看出,Y值变化幅度达100%,Kd的变化幅度达87 5%。对于不设初沉池的活性污泥系统,常常将已有类似污水处理厂的运行经验,作为设计上的参考。表1是几种典型活性污泥工艺Yobs(或Y,Kd)取值情况。

相关文档