文档库 最新最全的文档下载
当前位置:文档库 › ASME中国制造-A 6

ASME中国制造-A 6

ASME中国制造-A 6
ASME中国制造-A 6

Designation:A6/A6M–05a

Standard Speci?cation for

General Requirements for Rolled Structural Steel Bars, Plates,Shapes,and Sheet Piling1

This standard is issued under the?xed designation A6/A6M;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.

This standard has been approved for use by agencies of the Department of Defense.

1.Scope*

1.1This general requirements speci?cation2covers a group of common requirements that,unless otherwise speci?ed in the applicable product speci?cation,apply to rolled structural steel bars,plates,shapes,and sheet piling covered by each of the following product speci?cations issued by ASTM:

ASTM

Designation3Title of Speci?cation

A36/A36M Carbon Structural Steel

A131/A131M Structural Steel for Ships

A242/A242M High-Strength Low-Alloy Structural Steel

A283/A283M Low and Intermediate Tensile Strength Carbon Steel Plates A328/A328M Steel Sheet Piling

A514/A514M High-Yield Strength,Quenched and Tempered Alloy Steel

Plate Suitable for Welding

A529/A529M High-Strength Carbon-Manganese Steel of Structural Qual-

ity

A572/A572M High-Strength Low-Alloy Columbium-Vanadium Steel

A573/A573M Structural Carbon Steel Plates of Improved Toughness

A588/A588M High-Strength Low-Alloy Structural Steel with50ksi(345

MPa)Minimum Yield Point to4in.[100mm]Thick

A633/A633M Normalized High-Strength Low-Alloy Structural Steel Plates A656/A656M Hot-Rolled Structural Steel,High-Strength Low-Alloy Plate

with Improved Formability

A678/A678M Quenched-and-Tempered Carbon and High-Strength Low-

Alloy Structural Steel Plates

A690/A690M High-Strength Low-Alloy Steel H-Piles and Sheet Piling for

Use in Marine Environments

A709/A709M Carbon and High-Strength Low-Alloy Structural Steel

Shapes,Plates,and Bars and Quenched-and-Tempered

Alloy Structural Steel Plates for Bridges

A710/A710M Age-Hardening Low-Carbon Nickel-Copper-Chromium-Mo-

lybdenum-Columbium Alloy Structural Steel Plates

A769/A769M Carbon and High-Strength Electric Resistance Welded Steel

Structural Shapes

A786/A786M Rolled Steel Floor Plates

A808/A808M High-Strength Low-Alloy Carbon,Manganese,Columbium,

Vanadium Steel of Structural Quality with Improved Notch

Toughness

A827/A827M Plates,Carbon Steel,for Forging and Similar Applications A829/A829M Plates,Alloy Steel,Structural Quality

A830/A830M Plates,Carbon Steel,Structural Quality,Furnished to

Chemical Composition Requirements

A852/A852M Quenched and Tempered Low-Alloy Structural Steel Plate

with70ksi[485Mpa]Minimum Yield Strength to4in.

[100mm]Thick

A857/A857M Steel Sheet Piling,Cold Formed,Light Gage

A871/A871M High-Strength Low Alloy Structural Steel Plate with Atmo-

spheric Corrosion Resistance

A913/A913M Speci?cation for High-Strength Low-Alloy Steel Shapes of

Structural Quality,Produced by Quenching and Self-

Tempering Process(QST)

A945/A945M Speci?cation for High-Strength Low-Alloy Structural Steel

Plate with Low Carbon and Restricted Sulfur for Improved

Weldability,Formability,and Toughness

A950/A950M Speci?cation for Fusion Bonded Epoxy-Coated Structural

Steel H-Piles and Sheet Piling

A992/A992M Speci?cation for Steel for Structural Shapes for Use in

Building Framing

A1026Speci?cation for Alloy Steel Structural Shapes for Use in

Building Framing

A1043/A1043M Speci?cation for Structural Steel with Low Yield to Tensile

Ratio for Use in Buildings

1.2Annex A1lists permitted variations in dimensions and mass(Note1)in SI units.The values listed are not exact conversions of the values in Tables1to31inclusive but are, instead,rounded or rationalized values.Conformance to Annex A1is mandatory when the“M”speci?cation designation is used.

N OTE1—The term“weight”is used when inch-pound units are the standard;however,under SI,the preferred term is“mass.”

1.3Annex A2lists the dimensions of some shape pro?les.

1.4Appendix X1provides information on coil as a source of structural products.

1.5Appendix X2provides information on the variability of tensile properties in plates and structural shapes.

1.6Appendix X3provides information on weldability. 1.7Appendix X4provides information on cold bending of plates,including suggested minimum inside radii for cold bending.

1.8This general requirements speci?cation also covers a group of supplementary requirements that are applicable to several of the above product speci?cations as indicated therein. Such requirements are provided for use where additional

1This speci?cation is under the jurisdiction of ASTM Committee A01on Steel,

Stainless Steel,and Related Alloys and is the direct responsibility of Subcommittee

A01.02on Structural Steel for Bridges,Buildings,Rolling Stock,and Ships.

Current edition approved Sept.1,2005.Published September2005.Originally

approved https://www.wendangku.net/doc/db10988954.html,st previous edition approved in2004as A6/A6M–05.

2For ASME Boiler and Pressure Vessel Code applications,see related Speci?-

cation SA-6/SA-6M in Section II of that Code.

*A Summary of Changes section appears at the end of this standard. Copyright?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.

testing or additional restrictions are required by the purchaser, and apply only where speci?ed individually in the purchase order.

1.9In case of any con?ict in requirements,the requirements of the applicable product speci?cation prevail over those of this general requirements speci?cation.

1.10Additional requirements that are speci?ed in the pur-chase order and accepted by the supplier are permitted, provided that such requirements do not negate any of the requirements of this general requirements speci?cation or the applicable product speci?cation.

1.11For purposes of determining conformance with this general requirements speci?cation and the applicable product speci?cation,values are to be rounded to the nearest unit in the right-hand place of?gures used in expressing the limiting values in accordance with the rounding method of Practice E29.

1.12The values stated in either inch-pound units or SI units are to be regarded separately as standard.Within the text,the SI units are shown in brackets.The values stated in each system are not exact equivalents;therefore,each system is to be used independently of the other,without combining values in any way.

1.13This general requirements speci?cation and the appli-cable product speci?cation are expressed in both inch-pound units and SI units;however,unless the order speci?es the applicable“M”speci?cation designation(SI units),the struc-tural product is furnished to inch-pound units.

1.14The text of this general requirements speci?cation contains notes and/or footnotes that provide explanatory ma-terial.Such notes and footnotes,excluding those in tables and ?gures,do not contain any mandatory requirements.

2.Referenced Documents

2.1ASTM Standards:3

A370Test Methods and De?nitions for Mechanical Testing of Steel Products

A673/A673M Speci?cation for Sampling Procedure for Impact Testing of Structural Steel

A700Practices for Packaging,Marking,and Loading Methods for Steel Products for Domestic Shipment

A751Test Methods,Practices,and Terminology for Chemical Analysis of Steel Products

A829Speci?cation for Plates,Alloy Steel,Structural Qual-ity

A941Terminology Relating to Steel,Stainless Steel,Re-lated Alloys,and Ferroalloys

E29Practice for Using Signi?cant Digits in Test Data to Determine Conformance with Speci?cations

E112Test Methods for Determining Average Grain Size E208Test Method for Conducting Drop-Weight Test to Determine Nil-Ductility Transition Temperature of Ferritic Steels

2.2American Welding Society Standards:

A5.1Mild Steel Covered Arc-Welding Electrodes4

A5.5Low-Alloy Steel Covered Arc-Welding Electrodes4 https://www.wendangku.net/doc/db10988954.html,itary Standards:

MIL-STD-129Marking for Shipment and Storage5

MIL-STD-163Steel Mill Products Preparation for Ship-ment and Storage5

2.4U.S.Federal Standard:

Fed.Std.No.123Marking for Shipments(Civil Agencies)5 2.5AIAG Standard:

B-1Bar Code Symbology Standard6

3.Terminology

3.1De?nitions of Terms Speci?c to This Standard:

3.1.1Plates(other than?oor plates)—Flat,hot-rolled steel, ordered to thickness or weight[mass]and typically width and length,commonly classi?ed as follows:

3.1.1.1When Ordered to Thickness:

(1)Over8in.[200mm]in width and0.230in.[6mm]or over in thickness.

(2)Over48in.[1200mm]in width and0.180in.[4.5mm] or over in thickness.

3.1.1.2When Ordered to Weight[Mass]:

(1)Over8in.[200mm]in width and9.392lb/ft2[47.10 kg/m2]or heavier.

(2)Over48in.[1200mm]in width and7.350lb/ft2[35.32 kg/m2]or heavier.

3.1.1.3Discussion—Steel products are available in various thickness,width,and length combinations depending upon equipment and processing capabilities of various manufactur-ers and processors.Historic limitations of a product based upon dimensions(thickness,width,and length)do not take into account current production and processing capabilities.To qualify any product to a particular product speci?cation re-quires all appropriate and necessary tests be performed and that the results meet the limits prescribed in that product speci?-cation.If the necessary tests required by a product speci?cation cannot be conducted,the product cannot be quali?ed to that speci?cation.This general requirement standard contains per-mitted variations for the commonly available sizes.Permitted variations for other sizes are subject to agreement between the customer and the manufacturer or processor,whichever is applicable.

3.1.1.4Slabs,sheet bars,and skelp,though frequently falling in the foregoing size ranges,are not classed as plates.

3.1.1.5Coils are excluded from quali?cation to the appli-cable product speci?cation until they are decoiled,leveled or straightened,formed(if applicable),cut to length,and,if required,properly tested by the processor in accordance with ASTM speci?cation requirements(see Sections9,10,11,12, 13,14,15,18,and19and the applicable product speci?cation).

3For referenced ASTM standards,visit the ASTM website,https://www.wendangku.net/doc/db10988954.html,,or contact ASTM Customer Service at service@https://www.wendangku.net/doc/db10988954.html,.For Annual Book of ASTM Standards volume information,refer to the standard’s Document Summary page on the ASTM website.

4Available from the American Welding Society,https://www.wendangku.net/doc/db10988954.html,Jeune Rd.,Miami, FL33135.

5Available from the procuring activity or as directed by the contracting office or from the Standardization Documents Order Desk,Bldg.4Section D,700Robbins Ave.,Philadelphia,PA19111-5094Attn:NPODS.

6Available from the Automotive Industry Action Group,26200Lahser Road, Suite200,South?eld,MI

48034.--` , , ` ` ` , , , , ` ` ` ` -` -` , , ` , , ` , ` , , ` ---

3.1.2Shapes(Flanged Sections):

3.1.2.1structural-size shapes—rolled?anged sections hav-ing at least one dimension of the cross section3in.[75mm]or greater.

3.1.2.2bar-size shapes—rolled?anged sections having a maximum dimension of the cross section less than3in.[75 mm].

3.1.2.3“W”shapes—doubly-symmetric,wide-?ange shapes with inside?ange surfaces that are substantially paral-lel.

3.1.2.4“HP”shapes—are wide-?ange shapes generally used as bearing piles whose?anges and webs are of the same nominal thickness and whose depth and width are essentially the same.

3.1.2.5“S”shapes—doubly-symmetric beam shapes with inside?ange surfaces that have a slope of approximately162?3 %.

3.1.2.6“M”shapes—doubly-symmetric shapes that cannot be classi?ed as“W,”“S,”or“HP”shapes.

3.1.2.7“C”shapes—channels with inside?ange surfaces that have a slope of approximately162?3%.

3.1.2.8“MC”shapes—channels that cannot be classi?ed as “C”shapes.

3.1.2.9“L”shapes—shapes having equal-leg and unequal-leg angles.

3.1.3sheet piling—rolled steel sections that are capable of being interlocked,forming a continuous wall when individual pieces are driven side by side.

3.1.4bars—rounds,squares,and hexagons,of all sizes;?ats 13?64in.(0.203in.)and over[over5mm]in speci?ed thickness, not over6in.[150mm]in speci?ed width;and?ats0.230in. and over[over6mm]in speci?ed thickness,over6to8in. [150to200mm]inclusive,in speci?ed width.

3.1.5exclusive—when used in relation to ranges,as for ranges of thickness in the tables of permissible variations in dimensions,is intended to exclude only the greater value of the range.Thus,a range from60to72in.[1500to1800mm] exclusive includes60in.[1500mm],but does not include72 in.[1800mm].

3.1.6rimmed steel—steel containing sufficient oxygen to give a continuous evolution of carbon monoxide during sol-di?cation,resulting in a case or rim of metal virtually free of voids.

3.1.7semi-killed steel—incompletely deoxidized steel con-taining sufficient oxygen to form enough carbon monoxide during solidi?cation to offset solidi?cation shrinkage.

3.1.8capped steel—rimmed steel in which the rimming action is limited by an early capping operation.Capping is carried out mechanically by using a heavy metal cap on a bottle-top mold or chemically by an addition of aluminum or ferrosilicon to the top of the molten steel in an open-top mold.

3.1.9killed steel—steel deoxidized,either by addition of strong deoxidizing agents or by vacuum treatment,to reduce the oxygen content to such a level that no reaction occurs between carbon and oxygen during solidi?cation.

3.1.10mill edge—the normal edge produced by rolling between horizontal?nishing rolls.A mill edge does not conform to any de?nite https://www.wendangku.net/doc/db10988954.html,l edge plates have two mill edges and two trimmed edges.

3.1.11universal mill edge—the normal edge produced by rolling between horizontal and vertical?nishing rolls.Univer-sal mill plates,sometimes designated UM Plates,have two universal mill edges and two trimmed edges.

3.1.12sheared edge—the normal edge produced by shear-ing.Sheared edge plates are trimmed on all edges.

3.1.13gas cut edge—the edge produced by gas?ame cutting.

3.1.14special cut edge—usually the edge produced by gas ?ame cutting involving special practices such as pre-heating or post-heating,or both,in order to minimize stresses,avoid thermal cracking and reduce the hardness of the gas cut edge. In special instances,special cut edge is used to designate an edge produced by machining.

3.1.15sketch—when used to describe a form of plate, denotes a plate other than rectangular,circular,or semi-circular.Sketch plates may be furnished to a radius or with four or more straight sides.

3.1.16normalizing—a heat treating process in which a steel plate is reheated to a uniform temperature above the upper critical temperature and then cooled in air to below the transformation range.

3.1.17plate-as-rolled—when used in relation to the loca-tion and number of tests,the term refers to the unit plate rolled from a slab or directly from an ingot.It does not refer to the condition of the plate.

3.1.18?ne grain practice—a steelmaking practice that is intended to produce a killed steel that is capable of meeting the requirements for?ne austenitic grain size.

3.1.18.1Discussion—It normally involves the addition of one or more austenitic grain re?ning elements in amounts that have been established by the steel producer as being sufficient. Austenitic grain re?ning elements include,but are not limited to,aluminum,columbium,titanium,and vanadium.

3.1.19structural product—a hot-rolled steel plate,shape, sheet piling,or bar.

3.1.20coil—hot-rolled steel in coiled form that is intended to be processed into a?nished structural product.

3.1.21manufacturer—the organization that directly con-trols the conversion of steel ingots,slabs,blooms,or billets,by hot-rolling,into an as-rolled structural product or into coil;and for structural products produced from as-rolled structural products,the organization that directly controls,or is respon-sible for,the operations involved in?nishing the structural product.

3.1.21.1Discussion—Such?nishing operations include lev-eling or straightening,hot forming or cold forming(if appli-cable),welding(if applicable),cutting to length,testing, inspection,conditioning,heat treatment(if applicable),pack-aging,marking,loading for shipment,and certi?cation.

3.1.22processor—the organization that directly controls,or is responsible for,the operations involved in the processing of coil into a?nished structural product.Such processing opera-tions include decoiling,leveling or straightening,hot-forming or cold-forming(if applicable),welding(if applicable),

cutting --`,,```,,,,````-`-`,,`,,`,`,,`---

to length,testing,inspection,conditioning,heat treatment(if applicable),packaging,marking,loading for shipment,and certi?cation.

3.1.22.1Discussion—The processing operations need not be done by the organization that did the hot rolling of the coil. If only one organization is involved in the hot rolling and processing operations,that organization is termed the manu-facturer for the hot rolling operation and the processor for the processing operations.If more than one organization is in-volved in the hot rolling and processing operations,the organization that did the hot rolling is termed the manufacturer and an organization that does one or more processing opera-tions is termed a processor.

3.2Refer to Terminology A941for additional de?nitions of terms used in this standard.

4.Ordering Information

4.1Information items to be considered,if appropriate,for inclusion in purchase orders are as follows:

4.1.1ASTM product speci?cation designation(see1.1)and year-date,

4.1.2Name of structural product(plate,shape,bar,or sheet piling),

4.1.3Shape designation,or size and thickness or diameter, 4.1.4Grade,class,and type designation,if applicable,

4.1.5Condition(see Section6),if other than as-rolled, 4.1.6Quantity(weight[mass]or number of pieces),

4.1.7Length,

4.1.8Exclusion of either structural product produced from coil or structural product produced from an as-rolled structural product(see

5.3and Appendix X1),if applicable,

4.1.9Heat treatment requirements(see6.2and6.3),if any, 4.1.10Testing for?ne austenitic grain size(see8.3.2), 4.1.11Mechanical property test report requirements(see Section14),if any,

4.1.12Special packaging,marking,and loading for ship-ment requirements(see Section19),if any,

4.1.13Supplementary requirements,if any,including any additional requirements called for in the supplementary re-quirements,

4.1.14End use,if there are any end-use-speci?c require-ments(see18.1,11.3.4,Table22or Table A1.22,and Table24 or Table A1.24)

4.1.15Special requirements(see1.10),if any,and

4.1.16Repair welding requirements(see9.5),if any.

5.Materials and Manufacture

5.1The steel shall be made in an open-hearth,basic-oxygen, or electric-arc furnace,possibly followed by additionl re?ning in a ladle metallurgy furnace(LMF),or secondary melting by vacuum-arc remelting(V AR)or electroslag remelting(ESR).

5.2The steel shall be strand cast or cast in stationary molds.

5.2.1Strand Cast:

5.2.1.1When heats of the same nominal chemical compo-sition are consecutively strand cast at one time,the heat number assigned to the cast product need not be changed until all of the steel in the cast product is from the following heat.

5.2.1.2When two consecutively strand cast heats have different nominal chemical composition ranges,the manufac-turer shall remove the transition material by an established procedure that positively separates the grades.

5.3Structural products shall be produced from an as-rolled structural product or from coil.

5.4Where part of a heat is rolled into an as-rolled structural product and the balance of the heat is rolled into coil,each part shall be tested separately.

5.5Structural products produced from coil shall not contain splice welds,unless previously approved by the purchaser.

6.Heat Treatment

6.1Where th structural product is required to be heat treated,such heat treatment shall be performed by the manu-facturer,the processor,or the fabricator,unless otherwise speci?ed in the applicable product speci?cation.

N OTE2—When no heat treatment is required,the manufacturer or processor has the option of heat treating the structural product by normalizing,stress relieving,or normalizing then stress relieving to meet the applicable product speci?cation.

6.2Where the heat treatment is to be performed by other than the manufacturer,the order shall so state.

6.2.1Where the heat treatment is to be performed by other than the manufacturer,the structural products shall be accepted on the basis of tests made on test specimens taken from full thickness test coupons heat treated in accordance with the requirements speci?ed in the applicable product speci?cation or in the purchase order.If the heat-treatment temperatures are not speci?ed,the manufacturer or processor shall heat treat the test coupons under conditions he considers appropriate,pro-vided that the purchaser is informed of the procedure followed in heat treating the test coupons.

6.3Where the heat treatment is to be performed by the manufacturer or the processor,the structural product shall be heat treated as speci?ed in the applicable product speci?cation, or as speci?ed in the purchase order,provided that the heat treatment speci?ed by the purchaser is not in con?ict with the requirements of the applicable product speci?cation.

6.4Where normalizing is to be performed by the fabricator, the structural product shall be either normalized or heated uniformly for hot forming,provided that the temperature to which the structural product is heated for hot forming does not signi?cantly exceed the normalizing temperature.

6.5The use of cooling rates that are faster than those obtained by cooling in air to improve the toughness shall be subject to approval by the purchaser,and structural products so treated shall be tempered subsequently in the range from1100 to1300°F[595to705°C].

7.Chemical Analysis

7.1Heat Analysis:

7.1.1Sampling for chemical analysis and methods of analy-sis shall be in accordance with Test Methods,Practices,and Terminolgy A751.

7.1.2For each heat,the heat analysis shall include determi-nation of the content of carbon,manganese,phosphorus,sulfur, silicon,nickel,chromium,molybdenum,copper,vanadium, columbium;any other element that is speci?ed or restricted by the applicable product speci?cation for the applicable

grade,

class,and type;and any austenitic grain re?ning element whose content is to be used in place of austenitic grain size testing of the heat(see8.3.2).

7.1.3Except as allowed by7.1.4for primary heats,heat analyses shall conform to the heat analysis requirements of the applicable product speci?cation for the applicable grade,class, and type.

7.1.4Where vacuum-arc remelting or electroslag remelting is used,a remelted heat is de?ned as all ingots remelted from a single primary heat.If the heat analysis of the primary heat conforms to the heat analysis requirements of the applicable product speci?cation for the applicable grade,class,and type, the heat analysis for the remelted heat shall be determined from one test sample taken from one remelted ingot,or the product of one remelted ingot,from the primary heat.If the heat analysis of the primary heat does not conform to the heat analysis requirements of the applicable product speci?cation for the applicable grade,type,and class,the heat analysis for the remelted heat shall be determined from one test sample taken from each remelted ingot,or the product of each remelted ingot,from the primary heat.

7.2Product Analysis—For each heat,the purchaser shall have the option of analyzing representative samples taken from the?nished structural product.Sampling for chemical analysis and methods of analysis shall be in accordance with Test Methods,Practices,and Terminology A751.The product analyses so determined shall conform to the heat analysis requirements of the applicable product speci?cation for the applicable grade,class,and type,subject to the permitted variations in product analysis given in Table A.If a range is speci?ed,the determinations of any element in a heat shall not vary both above and below the speci?ed range.Rimmed or capped steel is characterized by a lack of homogeneity in its composition,especially for the elements carbon,phosphorus, and sulfur.Therefore,the limitations for these elements shall not be applicable unless misapplication is clearly indicated.

7.3Referee Analysis—For referee purposes,Test Methods, Practices,and Terminology A751shall be used.

7.4Grade Substitution—Alloy steel grades that meet the chemical requirements of Table1of Speci?cation A829shall not be substituted for carbon steel grades.

8.Metallurgical Structure

8.1Where austenitic grain size testing is required,such testing shall be in accordance with Test Methods E112and at least70%of the grains in the area examined shall meet the speci?ed grain size requirement.

8.2Coarse Austenitic Grain Size—Where coarse austenitic grain size is speci?ed,one austenitic grain size test per heat shall be made and the austenitic grain size number so deter-mined shall be in the range of1to5,inclusive.

8.3Fine Austenitic Grain Size:

8.3.1Where?ne austenitic grain size is speci?ed,except as allowed in8.3.2,one austenitic grain size test per heat shall be made and the austenitic grain size number so determined shall be5or higher.

N OTE3—Such austenitic grain size numbers may be achieved with lower contents of austenitic grain re?ning elemenst than8.3.2requires for austenitic grain size testing to be waived.

8.3.2Unless testing for?ne austenitic grain size is speci?ed in the purchase order,an austenitic grain size test need not be made for any heat that has,by heat analysis,one or more of the following:

8.3.2.1A total aluminum content of0.020%or more. 8.3.2.2An acid soluble aluminum content of0.015%or more.

8.3.2.3A content for an austenitic grain re?ning element that exceeds the minimum value agreed to by the purchaser as being sufficient for austenitic grain size testing to be waived,or 8.3.2.4Contents for the combination of two or more auste-nitic grain re?ning elements that exceed the applicable mini-mum values agreed to by the purchaser as being sufficient for austenitic grain size testing to be waived.

9.Quality

9.1General—Structural products shall be free of injurious defects and shall have a workmanlike?nish.

N OTE4—Unless otherwise speci?ed,structural products are normally furnished in the as-rolled condition and are subjected to visual inspection by the manufacturer or processor.Non-injurious surface or internal imperfections,or both,may be present in the structural product as delivered and the structural product may require conditioning by the purchaser to improve its appearance or in preparation for welding,coating, or other further operations.

More restrictive requirements may be speci?ed by invoking supplemen-tary requirements or by agreement between the purchaser and the supplier. Structural products that exhibit injurious defects during subsequent fabrication are deemed not to comply with the applicable product speci?cation.(See17.2.)Fabricators should be aware that cracks may initiate upon bending a sheared or burned edge during the fabrication process;this is not considered to be a fault of the steel but is rather a function of the induced cold-work or the heat-affected zone.

The conditioning requirements in9.2,9.3,and9.4limit the condition-ing allowed to be performed by the manufacturer or processor.Condition-ing of imperfections beyond the limits of9.2,9.3,and9.4may be performed by parties other than the manufacturer or processor at the discretion of the

purchaser. --`,,```,,,,````-`-`,,`,,`,`,,`---

TABLE A Permitted Variations in Product Analysis

N OTE1—Where“...”appears in this table,there is no requirement.

Element

Upper Limit,or

Maximum Speci?ed

Value,%

Permitted Varia-

tions,%

Under

Minimum

Limit

Over

Maximum

Limit

Carbon to0.15incl0.020.03

over0.15to0.40incl0.030.04

over0.40to0.75incl0.040.05

over0.750.040.06 Manganese A to0.60incl0.050.06

over0.60to0.90incl0.060.08

over0.90to1.20incl0.080.10

over1.20to1.35incl0.090.11

over1.35to1.65incl0.090.12

over1.65to1.95incl0.110.14

over1.950.120.16

Phosphorus to0.04incl

over0.04to0.15incl ...

...

0.010

B

Sulfur to0.06incl

over0.06...

B

0.010

B

Silicon to0.30incl

over0.30to0.40incl

over0.40to2.20incl 0.02

0.05

0.06

0.03

0.05

0.06

Nickel to1.00incl0.030.03

over1.00to2.00incl0.050.05

over2.00to3.75incl0.070.07

over3.75to5.30incl0.080.08

over5.300.100.10

Chromium to0.90incl

over0.90to2.00incl

over2.00to4.00incl 0.04

0.06

0.10

0.04

0.06

0.10

Molybdenum to0.20incl

over0.20to0.40incl

over0.40to1.15incl 0.01

0.03

0.04

0.01

0.03

0.04

Copper0.20minimum only

to1.00incl

over1.00to2.00incl 0.02

0.03

0.05

...

0.03

0.05

Titanium to0.15incl0.01C0.01

Vanadium to0.10incl0.01C0.01

over0.10to0.25incl0.020.02

over0.250.020.03

minimum only speci?ed0.01...

Boron any B B Columbium to0.10incl0.01C0.01 Zirconium to0.15incl0.030.03

Nitrogen to0.030incl0.0050.005

A Permitted variations in manganese content for bars and bar size shapes shall be:to0.90incl60.03;over0.90to2.20incl60.06.

B Product analysis not applicable.

C0.005,if the minimum of the range is0.01%.

Index to Tables of Permitted Variations

Dimension

Table

Inch-Pound

Units

SI Units

Camber

Plates,Carbon Steel;Sheared and Gas-Cut12A1.12 Plates,Carbon Steel;Universal Mill11A1.11 Plates,Other than Carbon Steel;Sheared,11A1.11 Gas-Cut and Universal Mill

Shapes,Rolled;S,M,C,MC,and L21A1.21 Shapes,Rolled;W and HP24A1.24 Shapes,Split;L and T25A1.25 Cross Section of Shapes and Bars

Flats26A1.26 Hexagons28A1.28 Rounds and Squares27A1.27 Shapes,Rolled;L,Bulb Angles,and Z17A1.17 Shapes,Rolled;W,HP,S,M,C,and MC16A1.16 Shapes,Rolled;T18A1.18 Shapes,Split;L and T25A1.25 Diameter

Plates,Sheared6A1.6 Plates,Other than Alloy Steel,Gas-Cut7A1.7 Plates,Alloy Steel,Gas-Cut10A1.10 Rounds27A1.27 End Out-of-Square

Shapes,Other than W20A1.20 Shapes,W22A1.22 Shapes,Milled,Other than W23A1.23 Flatness

Plates,Carbon Steel13A1.13 Plates,Other than Carbon Steel14A1.14 Plates,Restrictive—Carbon Steel S27.1S27.2 Plates,Restrictive—Other than Carbon Steel S27.3S27.4 Length

Bars30A1.30 Bars,Recut31A1.31 Plates,Sheared and Universal Mill3A1.3 Plates,Other than Alloy Steel,Gas-Cut9A1.9 Plates,Alloy Steel,Gas-Cut8A1.8 Plates,Mill Edge4A1.4 Shapes,Rolled;Other than W19A1.19 Shapes,Rolled;W and HP22A1.22 Shapes,Split;L and T25A1.25 Shapes,Milled23A1.23 Straightness

Bars

Shapes,Other than W

29

21

A1.29

A1.21 Sweep

Shapes,W and HP24A1.24 Thickness

Flats

Plates,Ordered to Thickness

26

1

A1.26

A1.1 Waviness

Plates15A1.15 Weight[Mass]

Plates,Ordered to Weight[Mass]2A1.2 Width

Flats26A1.26 Plates,Sheared3A1.3 Plates,Universal Mill5A1.5 Plates,Other than Alloy Steel,Gas-Cut9A1.9 Plates,Alloy Steel,Gas-Cut8A1.8 Plates,Mill Edge4

A1.4 --`,,```,,,,````-`-`,,`,,`,`,,`---

9.2Plate Conditioning :

9.2.1The grinding of plates by the manufacturer or proces-sor to remove imperfections on the top or bottom surface shall be subject to the limitations that the area ground is well faired without abrupt changes in contour and the grinding does not reduce the thickness of the plate by (1)more than 7%under the nominal thickness for plates ordered to weight per square foot or mass per square metre,but in no case more than 1?8in.[3mm];or (2)below the permissible minimum thickness for plates ordered to thickness in inches or millimetres.

9.2.2The deposition of weld metal (see 9.5)following the removal of imperfections on the top or bottom surface of plates by chipping,grinding,or arc-air gouging shall be subject to the following limiting conditions:

9.2.2.1The chipped,ground,or gouged area shall not exceed 2%of the area of the surface being conditioned.9.2.2.2After removal of any imperfections preparatory to welding,the thickness of the plate at any location shall not be reduced by more than 30%of the nominal thickness of the plate.(Speci?cation A 131/A 131M restricts the reduction in thickness to 20%maximum.)

9.2.3The deposition of weld metal (see 9.5)following the removal of injurious imperfections on the edges of plates by grinding,chipping,or arc-air gouging by the manufacturer or processor shall be subject to the limitation that,prior to welding,the depth of the depression,measured from the plate edge inward,is not more than the thickness of the plate or 1in.[25mm],whichever is the lesser.

9.3Structural Size Shapes,Bar Size Shapes,and Sheet Piling Conditioning :

9.3.1The grinding,or chipping and grinding,of structural size shapes,bar size shapes,and sheet piling by the manufac-turer or processor to remove imperfections shall be subject to the limitations that the area ground is well faired without abrupt changes in contour and the depression does not extend below the rolled surface by more than (1)1?32in.[1mm],for material less than 3?8in.[10mm]in thickness;(2)1?16in.[2mm],for material 3?8to 2in.[10to 50mm]inclusive in thickness;or (3)1?8in.[3mm],for material over 2in.[50mm]in thickness.

9.3.2The deposition of weld metal (see 9.5)following removal of imperfections that are greater in depth than the limits listed in 9.3.1shall be subject to the following limiting conditions:

9.3.2.1The total area of the chipped or ground surface of any piece prior to welding shall not exceed 2%of the total surface area of that piece.

9.3.2.2The reduction of thickness of the material resulting from removal of imperfections prior to welding shall not exceed 30%of the nominal thickness at the location of the imperfection,nor shall the depth of depression prior to welding exceed 11?4in.[32mm]in any case except as noted in 9.3.2.3.9.3.2.3The deposition of weld metal (see 9.5)following grinding,chipping,or arc-air gouging of the toes of angles,beams,channels,and zees and the stems and toes of tees shall be subject to the limitation that,prior to welding,the depth of the depression,measured from the toe inward,is not more than

the thickness of the material at the base of the depression or 1?2in.[12.5mm],whichever is the lesser.

9.3.2.4The deposition of weld metal (see 9.5)and grinding to correct or build up the interlock of any sheet piling section at any location shall be subject to the limitation that the total surface area of the weld not exceed 2%of the total surface area of the piece.

9.4Bar Conditioning :

9.4.1The conditioning of bars by the manufacturer or processor to remove imperfections by grinding,chipping,or some other means shall be subject to the limitations that the conditioned area is well faired and the affected sectional area is not reduced by more than the applicable permitted variations (see Section 12).

9.4.2The deposition of weld metal (see 9.5)following chipping or grinding to remove imperfections that are greater in depth than the limits listed in 9.4.1shall be subject to the following conditions:

9.4.2.1The total area of the chipped or ground surface of any piece,prior to welding,shall not exceed 2%of the total surface area of the piece.

9.4.2.2The reduction of sectional dimension of a round,square,or hexagon bar,or the reduction in thickness of a ?at bar,resulting from removal of an imperfection,prior to welding,shall not exceed 5%of the nominal dimension or thickness at the location of the imperfection.

9.4.2.3For the edges of ?at bars,the depth of the condi-tioning depression prior to welding shall be measured from the edge inward and shall be limited to a maximum depth equal to the thickness of the ?at bar or 1?2in.[12.5mm],whichever is less.

9.5Repair by Welding :

9.5.1General Requirements :

9.5.1.1Repair by welding shall be in accordance with a welding procedure speci?cation (WPS)using shielded metal arc welding (SMAW),gas metal arc welding (GMAW),?ux cored arc welding (FCAW),or submerged arc welding (SAW)processes.Shielding gases used shall be of welding quality.9.5.1.2Electrodes and electrode-?ux combinations shall be in accordance with the requirements of AWS Speci?cation A5.1,A5.5,A5.17,A5.18,A5.20,A5.23,A5.28,or A5.29,whichever is applicable.For SMAW,low hydrogen electrodes shall be used.

9.5.1.3Electrodes and electrode-?ux combinations shall be selected so that the tensile strength of the deposited weld metal (after any required heat treatment)is consistent with the tensile strength speci?ed for the base metal being repaired.

9.5.1.4Welding electrodes and ?ux materials shall be dry and protected from moisture during storage and use.

9.5.1.5Prior to repair welding,the surface to be welded shall be inspected to verify that the imperfections intended to be removed have been removed completely.Surfaces to be welded and surfaces adjacent to the weld shall be dry and free of scale,slag,rust,moisture,grease,and other foreign material that would prevent proper welding.

9.5.1.6Welders and welding operators shall be quali?ed in accordance with the requirements of ANSI/AWS D1.1or ASME Section IX,except that any complete joint

penetration

A 6/A 6M –05a

--`,,```,,,,````-`-`,,`,,`,`,,`---

groove weld quali?cation also quali?es the welder or welding operator to do repair welding.

9.5.1.7Repair welding of structural products shall be in accordance with a welding procedure speci?cation(WPS)that is in accordance with the requirements of ANSI/AWS D1.1or ASME Section IX,with the following exceptions or clari?ca-tions:

(a)The WPS shall be quali?ed by testing a complete joint penetration groove weld or a surface groove weld.

(b)The geometry of the surface groove weld need not be described in other than a general way.

(c)An ANSI/AWS D1.1prequali?ed complete joint pen-etration groove weld WPS is acceptable.

(d)Any material not listed in the prequali?ed base metal-?ller metal combinations of ANSI/AWS D1.1also is consid-ered to be prequali?ed if its chemical composition and me-chanical properties are comparable to those for one of the prequali?ed base metals listed in ANSI/AWS D1.1.

(e)Any material not listed in ASME Section IX also is considered to be a material with an S-number in ASME Section IX if its chemical composition and its mechanical properties are comparable to those for one of the materials listed in ASME Section IX with an S-number.

9.5.1.8When so speci?ed in the purchase order,the WPS shall include quali?cation by Charpy V-notch testing,with the test locations,test conditions,and the acceptance criteria meeting the requirements speci?ed for repair welding in the purchase order.

9.5.1.9When so speci?ed in the purchase order,the welding procedure speci?cation(WPS)shall be subject to approval by the purchaser prior to repair welding.

9.5.2Structural Products with a Speci?ed Minimum Tensile Strength of100ksi[690MPa]or Higher—Repair welding of structural products with a speci?ed minimum tensile strength of100ksi[690MPa]or higher shall be subject to the following additional requirements:

9.5.2.1When so speci?ed in the purchase order,prior approval for repair by welding shall be obtained from the purchaser.

9.5.2.2The surface to be welded shall be inspected using a magnetic particle method or a liquid penetrant method to verify that the imperfections intended to be removed have been completely removed.When magnetic particle inspection is employed,the surface shall be inspected both parallel and perpendicular to the length of the area to be repaired.

9.5.2.3When weld repairs are to be post-weld heat-treated, special care shall be exercised in the selection of electrodes to avoid those compositions that embrittle as a result of such heat treatment.

9.5.2.4Repairs on structural products that are subsequently heat-treated at the mill shall be inspected after heat treatment; repairs on structural products that are not subsequently heat-treated at the mill shall be inspected no sooner than48h after welding.Such inspection shall use a magnetic particle method or a liquid penetrant method;where magnetic particle inspec-tion is involved,such inspection shall be both parallel to and perpendicular to the length of the repair.

9.5.2.5The location of the weld repairs shall be marked on the?nished piece.

9.5.3Repair Quality—The welds and adjacent heat-affected zone shall be sound and free of cracks,the weld metal being thoroughly fused to all surfaces and edges without undercutting or overlap.Any visible cracks,porosity,lack of fusion,or undercut in any layer shall be removed prior to deposition of the succeeding layer.Weld metal shall project at least1?16in.(2 mm)above the rolled surface after welding,and the projecting metal shall be removed by chipping or grinding,or both,to make it?ush with the rolled surface,and to produce a workmanlike?nish.

9.5.4Inspection of Repair—The manufacturer or processor shall maintain an inspection program to inspect the work to see that:

9.5.4.1Imperfections have been completely removed.

9.5.4.2The limitations speci?ed above have not been ex-ceeded.

9.5.4.3Established welding procedures have been followed, and

9.5.4.4Any weld deposit is of acceptable quality as de?ned above.

10.Test Methods

10.1All tests shall be conducted in accordance with Test Methods and De?nitions A370.

10.2Yield strength shall be determined either by the0.2% offset method or by the0.5%extension under load method, unless otherwise stated in the material speci?cation.

10.3Rounding Procedures—For purposes of determining conformance with the speci?cation,a calculated value shall be rounded to the nearest1ksi[5MPa]tensile and yield strength, and to the nearest unit in the right-hand place of?gures used in expressing the limiting value for other values in accordance with the rounding method given in Practice E29.

10.4For full-section test specimens of angles,the cross-sectional area used for calculating the yield and tensile strengths shall be a theoretical area calculated on the basis of the weight of the test specimen(see12.1).

11.Tension Tests

11.1Condition—Test specimens for non-heat-treated struc-tural products shall be taken from test coupons that are representative of the structural products in their delivered condition.Test specimens for heat-treated structural products shall be taken from test coupons that are representative of the structural products in their delivered condition,or from sepa-rate pieces of full thickness or full section from the same heat similarly heat treated.

11.1.1Where the plate is heat treated with a cooling rate faster than still-air cooling from the austenitizing temperature, one of the following shall apply in addition to other require-ments speci?ed herein:

11.1.1.1The gage length of the tension test specimen shall be taken at least1T from any as-heat treated edge where T is the thickness of the plate and shall be at least1?2in.[12.5mm] from?ame cut or heat-affected-zone

surfaces.--` , , ` ` ` , , , , ` ` ` ` -` -` , , ` , , ` , ` , , ` ---

11.1.1.2A steel thermal buffer pad,1T by1T by at least3T, shall be joined to the plate edge by a partial penetration weld completely sealing the buffered edge prior to heat treatment.

11.1.1.3Thermal insulation or other thermal barriers shall be used during the heat treatment adjacent to the plate edge where specimens are to be removed.It shall be demonstrated that the cooling rate of the tension test specimen is no faster than,and not substantially slower than,that attained by the method described in11.1.1.2.

11.1.1.4When test coupons cut from the plate but heat treated separately are used,the coupon dimensions shall be not less than3T by3T by T and each tension specimen cut from it shall meet the requirements of11.1.1.1.

11.1.1.5The heat treatment of test specimens separately in the device shall be subject to the limitations that(1)cooling rate data for the plate are available;(2)cooling rate control devices for the test specimens are available;and,(3)the method has received prior approval by the purchaser.

11.2Orientation—For plates wider than24in.[600mm], test specimens shall be taken such that the longitudinal axis of the test specimen is transverse to the?nal direction of rolling of the plate.Test specimens for all other structural products shall be taken such that the longitudinal axis of the test specimen is parallel to the?nal direction of rolling.

11.3Location:

11.3.1Plates—Test specimens shall be taken from a corner of the plate.

11.3.2W and HP Shapes with Flanges6in.[150mm]or Wider—Test specimens shall be selected from a point in the ?ange2?3of the way from the?ange centerline to the?ange toe.

11.3.3Shapes Other Than Those in11.3.2—Test specimens shall be selected from the webs of beams,channels,and zees; from the stems of rolled tees;and from the legs of angles and bulb angles,except where full-section test specimens for angles are used and the elongation acceptance criteria are increased accordingly.(See11.6.2)

11.3.4Bars:

11.3.4.1Test specimens for bars to be used for pins and rollers shall be taken so that the axis is:midway between the center and the surface for pins and rollers less than3in.[75 mm]in diameter;1in.[25mm]from the surface for pins and rollers3in.[75mm]and over in diameter;or as speci?ed in Annex A1of Test Methods and De?nitions A370if the applicable foregoing requirement is not practicable.

11.3.4.2Test specimens for bars other than those to be used for pins and rollers shall be taken as speci?ed in Annex A1of Test Methods and De?nitions A370.

11.4Test Frequency:

11.4.1Structural Products Produced from an As-Rolled Structural Product—The minimum number of pieces or plates-as-rolled to be tested for each heat and strength gradation, where applicable,shall be as follows,except that it shall be permissible for any individual test to represent multiple strength gradations:

11.4.1.1As given in Table B,or

11.4.1.2One taken from the minimum thickness in the heat and one taken from the maximum thickness in the heat,where thickness means the speci?ed thickness,diameter,or compa-rable dimension,whichever is appropriate for the applicable structural product rolled.

11.4.2Structural Products Produced from Coil and Fur-nished without Heat Treatment or with Stress Relieving Only: 11.4.2.1Except as allowed by11.4.4,the minimum number of coils to be tested for each heat and strength gradation,where applicable,shall be as given in Table C,except that it shall be permissible for any individual coil to represent multiple strength gradations.

11.4.2.2Except as required by11.4.2.3,two tension test specimens shall be taken from each coil tested,with the?rst being taken immediately prior to the?rst structural product to be quali?ed,and the second being taken from the approximate center lap.

11.4.2.3If,during decoiling,the amount of material de-coiled is less than that required to reach the approximate center lap,the second test for the quali?cation of the decoiled portion of such a coil shall be taken from a location adjacent to the end of the innermost portion decoiled.For quali?cation of succes-sive portions from such a coil,an additional test shall be taken adjacent to the innermost portion decoiled,until a test is obtained from the approximate center lap.

11.4.3Structural Products Produced from Coil and Fur-nished Heat Treated by other than Stress Relieving—The minimum number of pieces to be tested for each heat and strength gradation,where applicable,shall be as follows, except that it shall be permissible for any individual test to represent multiple strength gradations:

11.4.3.1As given in Table B,or

11.4.3.2One taken from the minimum thickness in the heat and one taken from the maximum thickness in the heat,where thickness means the speci?ed thickness,diameter,or compa-rable dimension,whichever is appropriate for the applicable structural product rolled.

11.4.4Structural Products Produced from Coil and Quali-?ed Using Test Specimens Heat Treated by Other than Stress Relieving—The minimum number of pieces to be tested for each heat and strength gradation,where applicable,shall be as follows,except that it shall be permissible for any individual test to represent multiple strength gradations:

11.4.4.1As given in Table B,or

11.4.4.2One taken from the minimum thickness in the heat, where thickness means the speci?ed thickness,diameter,or comparable dimension,whichever is appropriate for the appli-cable structural product rolled.

11.5Preparation:

11.5.1Plates:

11.5.1.1Tension test specimens for plates3?4in.[20mm] and under in thickness shall be the full thickness of the plates. The test specimens shall conform to the requirements shown in Fig.3of Test Methods and De?nitions A370for either the 11?2-in.[40-mm]wide test specimen or the1?2-in.[12.5-mm] wide test specimen.

11.5.1.2For plates up to4in.[100mm],inclusive,in thickness,the use of11?2-in.[40-mm]wide test specimens,full thickness of the plate and conforming to the

requirements --`,,```,,,,````-`-`,,`,,`,`,,`---

shown in Fig.3of Test Methods and De?nitions A370,shall be subject to the limitation that adequate testing machine capacity is available.

11.5.1.3For plates over3?4in.[20mm]in thickness,except as permitted in11.5.1.2,tension test specimens shall conform to the requirements shown in Fig.4of Test Methods and De?nitions A370for the0.500-in.[12.5-mm]diameter test specimen.The axis of such test specimens shall be located midway between the center of thickness and the top or bottom surface of the plate.

11.5.2Shapes:

11.5.2.1Except where angles are tested in full section, tension test specimens for shapes3?4in.[20mm]and under in thickness shall be the full thickness of the shape.Such test specimen shall conform to the requirements shown in Fig.3of Test Methods and De?nitions A370for either the11?2-in. [40-mm]wide test specimen or the1?2-in.[12.5-mm]wide test specimen.

11.5.2.2For shapes up to5in.[125mm],inclusive,in thickness,the use of11?2-in.[40-mm]wide test specimens,full thickness of the shape and conforming to the requirements shown in Fig.3of Test Methods and De?nitions A370,shall be subject to the limitation that adequate testing machine capacity is available.

TABLE B Minimum Number of Tension Tests Required

Thickness A Range Rolled for the Heat Thickness A Difference

Between Pieces or

Plates-as-rolled in the

Thickness A Range

Minimum Number of Tension

Tests Required

Under3?8in.[10mm]1?16in.[2mm]or

less Two B tests per heat,taken from different pieces or plates-as-rolled having any thickness A in the thickness A range

More than1?16in. [2mm]Two B tests per heat,one taken from the minimum thickness A in the thickness A range and one taken from the maximum thickness A in the thickness A range

3?8to2in.[10to50mm],incl Less than3?8in.

[10mm]Two B tests per heat,taken from different pieces or plates-as-rolled having any thickness A in the thickness A range

3?8in.[10mm] or more Two B tests per heat,one taken from the minimum thickness A in the thickness A range and one taken from the maximum thickness A in the thickness A range

Over2in.[50mm]Less than1in.

[25mm]Two B tests per heat,taken from different pieces or plates-as-rolled having any thickness A in the thickness A range

1in.[25mm] or more Two B tests per heat,one taken from the minimum thickness A in the thickness A range and one taken from the maximum thickness A in the thickness A range

A Thickness means the speci?ed thickness,diameter,or comparable dimension,whichever is appropriate for the speci?c structural product rolled.

B One test,if only one piece or plate-as-rolled is to be quali?ed.

TABLE C Minimum Number of Coils Required to be Tension Tested

N OTE—See11.4.2.2and11.4.2.3for the number of tests to be taken per coil.

Thickness A Difference Between Coils in the Heat Minimum Number of Coils Required to Be Tension Tested Less than1?16in.[2mm]Two B coils per heat,at any thickness A in the heat

1?16in.[2mm]or more Two B coils per heat,one at the minimum thickness A

in the heat and one at the maximum thickness A in

the heat

A Thickness means the speci?ed thickness,diameter,or comparable dimension,whichever is appropriate for the speci?c structural product rolled.

B One coil,if the product of only one coil is to be quali?ed.

11.5.2.3For shapes over3?4in.[20mm]in thickness,except as permitted in11.5.2.2,tension test specimens shall conform to the requirements shown in Fig.4of Test Methods and De?nitions A370for the0.500–in.[12.5–mm]diameter test specimens.The axis of such test specimens shall be located midway between the center of thickness and the top or bottom surface of the shape.

11.5.3Bars:

11.5.3.1Except as otherwise provided below,test speci-mens for bars shall be in accordance with Annex A1of Test Methods and De?nitions A370.

11.5.3.2Except as provided in11.5.3.5,test specimens for bars3?4in.[20mm]and under in thickness may conform to the requirements shown in Fig.3of Test Methods and De?nitions A370for either the11?2-in.[40-mm]wide test specimen or the 1?2-in.[12.5-mm]wide

specimen. --`,,```,,,,````-`-`,,`,,`,`,,`---

11.5.3.3Except as provided in11.5.3.4and11.5.3.5,test specimens for bars over3?4in.[20mm]in thickness or diameter shall conform either to the requirements for the11?2-in. [40-mm]or1?2-in.[12.5-mm]wide test specimen shown in Fig. 3of Test Methods and De?nitions A370,or to the require-ments for the0.500–in.[12.5–mm]diameter test specimen shown in Fig.4of Test Methods and De?nitions A370. 11.5.3.4For bars other than those to be used for pins and rollers,the manufacturer or processor shall have the option of using test specimens that are machined to a thickness or diameter of at least3?4in.[20mm]for a length of at least9in. [230mm].

11.5.3.5Test specimens for bars to be used for pins and rollers shall conform to the requirements shown in Fig.4of Test Methods and De?nitions A370for the0.500–in.

[12.5–mm]diameter test specimen.

11.6Elongation Requirement Adjustments:

11.6.1Due to the specimen geometry effect encountered when using the rectangular tension test specimen for testing thin material,adjustments in elongation requirements must be provided for thicknesses under0.312in.[8mm].Accordingly, the following deductions from the base elongation require-ments shall apply:

Nominal Thickness Range,

in.[mm]

Elongation Deduction,%

0.299—0.311[7.60—7.89]0.5

0.286—0.298[7.30—7.59] 1.0

0.273—0.285[7.00—7.29] 1.5

0.259—0.272[6.60—6.99] 2.0

0.246—0.258[6.20—6.59] 2.5

0.233—0.245[5.90—6.19] 3.0

0.219—0.232[5.50—5.89] 3.5

0.206—0.218[5.20—5.49] 4.0

0.193—0.205[4.90—5.19] 4.5

0.180—0.192[4.60—4.89] 5.0

0.166—0.179[4.20—4.59] 5.5A

0.153—0.165[3.90—4.19] 6.0A

0.140—0.152[3.60—3.89] 6.5A

0.127—0.139[3.20—3.59]7.0A

<0.127[3.20]7.5A

_________________

A Elongation deductions for thicknesses less than0.180in.[4.60mm]apply to plates and structural shapes only.

11.6.2Due to the specimen geometry effect encountered when using full-section test specimens for angles,the elonga-tion requirements for structural-size angles shall be increased by six percentage points when full-section test specimens are used.

11.6.3Due to the inherently lower elongation that is obtain-able in thicker structural products,adjustments in elongation requirements shall be provided.For structural products over 3.5in.[90mm]in thickness,a deduction of0.5percentage point from the speci?ed percentage of elongation in2in.[50 mm]shall be made for each0.5–in.[12.5–mm]increment of thickness over3.5in.[90mm],up to a maximum deduction of 3.0percentage points.Accordingly,the following deductions from the base elongation requirements shall apply:

Nominal Thickness Range,

in.[mm]

Elongation Deduction,%

3.500—3.999[90.00—102.49]0.5

4.000—4.499[102.50—114.99] 1.0

4.500—4.999[11

5.00—127.49] 1.5

5.000—5.499[127.50—139.99] 2.0 5.500—5.999[140.00—152.49] 2.5

6.000and thicker[152.50and thicker] 3.0 11.6.4The tensile property requirements tables in many of the product speci?cations covered by this general requirements speci?cation specify elongation requirements in both8-in. [200–mm]and2-in.[50–mm]gage lengths.Unless otherwise provided in the applicable product speci?cation,both require-ments are not required to be applied simultaneously and the elongation need only be determined in the gage length appro-priate for the test specimen used.After selection of the appropriate gage length,the elongation requirement for the alternative gage length shall be deemed not applicable.

11.7Yield Strength Application:

11.7.1When test specimens do not exhibit a well-de?ned disproportionate yield point,yield strength shall be determined and substituted for yield point.

11.7.2The manufacturer or processor shall have the option of substituting yield strength for yield point if the test specimen exhibits a well-de?ned disproportionate yield point.

11.7.3Yield strength shall be determined either by the 0.2%offset method or by the0.5%extension-under-load method.

11.8Product Tension Tests—This speci?cation does not provide requirements for product tension testing subsequent to shipment(see15.1).Therefore,the requirements of11.1to 11.7inclusive and Section13apply only for tests conducted at the place of manufacture prior to shipment.

N OTE5—Compliance to Speci?cation A6/A6M and the applicable product speci?cation by a manufacturer or processor does not preclude the possibility that product tension test results might vary outside speci?ed ranges.The tensile properties will vary within the same heat or piece,be it as-rolled,control-rolled,or heat-treated.Tension testing according to the requirements of Speci?cation A6/A6M does not provide assurance that all products of a heat will be identical in tensile properties with the products tested.If the purchaser wishes to have more con?dence than that provided by Speci?cation A6/A6M testing procedures,additional testing or requirements,such as Supplementary Requirement S4,should be imposed.

11.8.1Appendix X2provides additional information on the variability of tensile properties in plates and structural shapes 12.Permitted Variations in Dimensions and Weight

[Mass]

12.1One cubic foot of rolled steel is assumed to weigh490 lb.One cubic metre of rolled steel is assumed to have a mass of7850kg.

12.2Plates—The permitted variations for dimensions and weight[mass]shall not exceed the applicable limits in Tables 1-15[Annex A1,Tables A1.1to A1.15],inclusive.

12.3Shapes:

12.3.1Annex A2lists the designations and dimensions,in both inch-pound and SI units,of shapes that are most com-monly available.Radii of?llets and toes of shape pro?les vary with individual manufacturers and therefore are not speci?ed.

12.3.2The permitted variations in dimensions shall not exceed the applicable limits in Tables16-25[Annex A1, Tables A1.16to A1.25],inclusive.Permitted variations for special shapes not listed in such tables shall be as agreed upon between the manufacturer and the

purchaser. --`,,```,,,,````-`-`,,`,,`,`,,`---

N OTE6—Permitted variations are given in Tables16to25[Annex A1, Tables A1.16to A1.25],inclusive,for some shapes that are not listed in Annex A2(that is,bulb angles,tees,zees).Addition of such sections to Annex A2will be considered by Subcommittee A01.02when and if a need for such listing is shown.

TABLE1Permitted Variations in Thickness for Rectangular,Carbon,High-Strength,Low-Alloy,and Alloy-Steel Plates,15in.and Under

in Thickness When Ordered to Thickness

N OTE1—Tables1-31,inclusive,contain permitted variations in dimensions and weight stated in inch-pound units.

N OTE2—Permitted variation under speci?ed thickness,0.01in.

N OTE3—Thickness to be measured at3?8to3?4in.from the longitudinal edge.

N OTE4—For thicknesses measured at any location other than that speci?ed in Note3,the permitted variations over speci?ed thickness shall be13?4 times the amounts in this table,rounded to the nearest0.01in.

N OTE5—Where“...”appears in this table,there is no requirement.

Speci?ed Thickness,

in.

Permitted Variations Over Speci?ed Thickness for Widths Given in Inches,in.

48and

under

Over48

to60,

excl

60to

72,excl

72to

84,excl

84to

96,excl

96to

108,

excl

108to

120,excl

120to

132,excl

132to

144,excl

144to

168,excl

168to

182,excl

182and

over

To1?4,excl0.030.030.030.030.030.030.030.030.04.........

1?4to5?16,excl0.030.030.030.030.030.030.030.040.04.........

5?16to3?8,excl0.030.030.030.030.030.030.030.040.040.05......

3?8to7?16,excl0.030.030.030.030.030.030.040.040.050.060.06...

7?16to1?2,excl0.030.030.030.030.030.030.040.040.050.060.06...

1?2to5?8,excl0.030.030.030.030.030.030.040.040.050.060.07...

5?8to3?4,excl0.030.030.030.030.030.040.040.040.050.060.070.07

3?4to1,excl0.030.030.030.030.040.040.050.050.060.070.080.09

1to2,excl0.060.060.060.060.060.070.080.100.100.110.130.16

2to3,excl0.090.090.090.100.100.110.120.130.140.150.15...

3to4,excl0.110.110.110.110.110.130.140.140.140.150.17...

4to6,excl0.150.150.150.150.150.150.150.150.150.200.20...

6to10,excl0.230.240.240.240.240.240.240.240.240.270.28...

10to12,excl0.290.290.330.330.330.330.330.330.330.330.35...

12to15,incl0.290.290.350.350.350.350.350.350.350.350.35... TABLE2Permitted Variations in Weight for Rectangular Sheared Plates and Universal Mill Plates613.0lb/ft2and Under When Ordered

to Weight

N OTE1—Permitted variations in overweight for lots of circular and sketch plates shall be11?4times the amounts in this table.

N OTE2—Permitted variations in overweight for single plates shall be11?3times the amounts in this table.

N OTE3—Permitted variations in overweight for single circular and sketch plates shall be12?3times the amounts in this table.

N OTE4—The adopted standard density of rolled steel is490lb/ft3.

N OTE5—Where“...”appears in this table,there is no requirement.

The term“lot”means all the plates of each tabular width and weight group represented in each shipment.

12.3.3Shapes Having One Dimension of the Cross Section 3in.[75mm]or Greater (Structural-Size Shapes)—The cross-sectional area or weight [mass]of each shape shall not vary more than 2.5%from the theoretical or speci?ed amounts.

TABLE 3Permitted Variations in Width and Length for Sheared Plates 11?2in.and Under in Thickness;Length Only of Universal Mill

Plates 21?2in.and Under in Thickness

Speci?ed Dimensions,in.

Permitted Variations Over Speci?ed Width and Length A for Thicknesses Given in Inches or Equivalent Weights Given in

Pounds per Square Foot,in.

Length

Width

To 3?8,excl

3?8

to 5?8,excl 5?8to 1,excl 1to 2,incl B To 15.3,excl 15.3to 25.5,excl 25.5to 40.8,excl 40.8to 81.7,incl Width

Length Width

Length

Width Length Width Length To 120,excl

To 60,excl 3?81?27?

16

5?81?23?45?8160to 84,excl 7?

16

5?81?211?16

5?8

7?8

3?4

184to 108,excl 1?23?45?8

7?83?41111?8108and over 5?8

7?8

3?4

1

7?8

11?8

11?8

11?4120to 240,excl

To 60,excl 3?83?41?27?85?813?411?860to 84,excl 1?23?4

5?87?8

3?417?8

11?484to 108,excl 9?

167?811?1615?1613?1611?8113?8108and over 5?8

13?4

11?87?8

11?411?8

13?8240to 360,excl To 60,excl 3?811?211?85?811?43?411?260to 84,excl 1?

215?811?83?411?47?8

11?284to 108,excl 9?

16111?1611?87?813?8111?2108and over 11?

16

11?87?8

11?41

13?811?4

13?4360to 480,excl To 60,excl 7?1611?81?211?45?813?83?415?860to 84,excl 1?211?45?813?83?411?27?8

15?884to 108,excl 9?

1611?43?413?87?811?2117?8108and over 3?

4

13?87?8

11?21

15?811?4

17?8480to 600,excl To 60,excl 7?

1611?41?211?25?815?83?417?860to 84,excl 1?213?85?811?23?415?87?8

17?884to 108,excl 5?8

13?83?411?27?815?8117?8108and over 3?4

11?27?8

15?81

13?411?4

17?8600to 720,excl

To 60,excl 1?213?45?817?83?417?87?8

21?460to 84,excl 5?813?43?417?87?817?8121?484to 108,excl 5?813?43?417?87?817?811?821?4108and over 7?8

13?41

211?8

21?411?4

21?2720and over To 60,excl 9?

1623?421?87?821?4123?460to 84,excl 3?427?821?8121?411?823?484to 108,excl 3?4

27?821?8121?411?423?4108and over

1

2

11?8

23?8

11?4

21?2

13?8

3

A Permitted variation under speci?ed width and length,1?4in.

B

Permitted variations in length apply also to Universal Mill plates up to 12in.in width for thicknesses over 2to 21?2in.,incl,except for alloy steel up to 2in.thick.

TABLE 4Permitted Variations in Width for Mill Edge Carbon and High-Strength,Low-Alloy Plates Produced on Strip Mills (Applies to Plates Produced from Coil and to Plates Produced from an

As-Rolled Structural Product)

Speci?ed Width,in.Permitted Variation Over

Speci?ed Width,in.A

To 14,excl 7?1614to 17,excl 1?

217to 19,excl 9?

16

19to 21,excl 5?821to 24,excl 11?16

24to 26,excl 13?1626to 28,excl 15?1628to 35,excl 11?835to 50,excl 11?450to 60,excl 11?260to 65,excl 15?865to 70,excl 13?470to 80,excl 17?880and over

2

A

No permitted variation under speci?ed width.

TABLE 5Permitted Variations in Rolled Width for Universal Mill

Plates 15in.and Under in Thickness

Speci?ed Width,in.Permitted Variations Over Speci?ed Width A for

Thicknesses Given in Inches or Equivalent Weights Given

in Pounds per Square Foot,in.

To 3?8,

excl 3?8to 5?8,excl 5?8to 1,excl 1to 2,incl

Over 2to 10,incl Over 10to 15,incl

To 15.3,

excl

15.3to 25.5,excl 25.5to 40.8,excl 40.8to 81.7,incl 81.7to 409.0,incl 409.0to

613.0,

incl

Over 8to 20,excl

1?81?83?161?43?81?220to 36,excl

3?161?45?163?87?169?1636and over 5?163?87?161?29?16

5?8A

Permitted variation under speci?ed width,1?8

in.

--`,,```,,,,````-`-`,,`,,`,`,,`---

12.4Sheet Piling—The weight[mass]of each steel sheet pile shall not vary more than2.5%from the theoretical or speci?ed weight[mass].The length of each steel sheet pile shall be not less than the speci?ed length,and not more than5 in.[125mm]over the speci?ed length..

12.5Hot-Rolled Bars—The permitted variations in dimen-sions shall not exceed the applicable limits in Tables26-31 [Annex A1,Tables A1.26to A1.31],inclusive.

13.Retests

13.1If any test specimen shows defective machining or develops?aws,the manufacturer or processor shall have the option of discarding it and substituting another test specimen.

13.2If the percentage of elongation of any tension test specimen is less than that speci?ed and any part of the fracture is more than3?4in.[20mm]from the center of the gage length of a2-in.[50-mm]specimen or is outside the middle half of the gage length of an8-in.[200-mm]specimen,as indicated by scribe scratches marked on the specimen before testing,a retest shall be allowed.

13.3Except as provided in13.3.1,if the results from an original tension specimen fails to meet the speci?ed require-ments,but are within2ksi[14MPa]of the required tensile strength,within1ksi[7MPa]of the required yield strength or yield point,or within2percentage points of the required elongation,a retest shall be permitted to replace the failing test.

A retest shall be performed for the failing original test,with the specimen being randomly selected from the heat.If the results of the retest meet the speci?ed requirements,the heat or lot shall be approved.

13.3.1For structural products that are tested as given in Table C,both tests from each coil tested to qualify a heat are

TABLE6Permitted Variations in Diameter for Sheared Circular Plates1in.and Under in Thickness

Speci?ed Diameters,in.Permitted Variations Over Speci?ed Diameter for Thicknesses Given in Inches,in.A

To3?8,

excl

3?8to5?8,

excl

5?8to1,

incl

To32,excl1?43?81?2

32to84,excl5?167?169?16

84to108,excl3?81?25?8

108to130,excl7?169?1611?16

130and over1?25?83?4

A No permitted variation under speci?ed diameter.

TABLE7Permitted Variations in Diameter for Gas-Cut Circular Plates(Not Applicable to Alloy Steel)

Speci?ed Diameter,

in.

Permitted Variation Over Speci?ed Diameter for

Thicknesses Given in Inches,in.A

to1,

excl

1to2,

excl

2to4,

excl

4to6,

excl

6to8,

excl

8to15,

incl

To32,excl3?83?81?21?25?83?4

32to84,excl3?81?21?25?83?47?8

84to108,excl1?29?165?83?47?81 108to130,excl1?29?1611?167?8111?8 130and over5?83?47?8111?811?4

A No permitted variation under speci?ed diameter.

TABLE8Permitted Variations in Width and Length for Rectangular Plates When Gas Cuttings is Speci?ed or Required (Applies to Alloy Steel Speci?cations Only).

N OTE1—These permitted variations shall be taken all under or divided over and under,if so speci?ed.

N OTE2—Plates with universal rolled edges will be gas cut to length only.

Speci?ed Thickness,in.Permitted Variation Over Speci?ed Width and Length,in.

To2,excl3?4

2to4,excl1

4to6,excl11?8

6to8,excl15?16

8to15,incl11?2

TABLE9Permitted Variations in Width and Length for Rectangular Plates When Gas Cutting is Speci?ed or Required

(Not Applicable to Alloy Steel)

N OTE1—These permitted variations may be taken all under or divided over and under,if so speci?ed.

N OTE2—Plates with universal rolled edges will be gas cut to length only.

Speci?ed Thickness,in.Permitted Variation Over Speci?ed Width and Length,in.

To2,excl1?2 2to4,excl5?8 4to6,excl3?4 6to8,excl7?8 8to15,incl1

TABLE10Permitted Variations in Diameter for Gas-Cut Circular Plates(Applies to Alloy Steel Speci?cations Only) Speci?ed

Diameter,in.

Permitted Variations Over Speci?ed Diameter for Speci?ed

Thicknesses Given in Inches,in.A

to1,excl

1to2,

excl

2to4,

excl

4to6,

excl

6to8,

excl

8to15,

incl To32,excl1?21?23?43?411

32to84,excl1?25?87?8111?811?4

84to108,excl5?83?4111?811?413?8 108to130,incl7?8111?811?413?811?2

A No permitted variation under speci?ed diameter.

TABLE11Permitted Camber A for Carbon Steel,High-Strength Low-Alloy Steel,and Alloy Steel Universal Mill Plates and High-Strength Low-Alloy Steel and Alloy Steel Sheared,Special-Cut,

or Gas-Cut Rectangular Plates

Speci?ed

Thickness,

in.

Speci?ed Weight,

lb/ft2

Speci?ed

Width,

in.

Permitted Camber,in.

To2,incl to81.7,incl all1?83(no.of feet of length/5) Over2to15,81.7to613.0,incl to30,incl3?163(no.of feet of

incl length/5)

Over2to15,81.7to613.0,incl over301?43(no.of feet of

incl length/5)

A Camber as it relates to plates is the horizontal edge curvature in the length, measured over the entire length of the plate in the?at position.

TABLE12Permitted Camber A for Sheared Plates and Gas-Cut Rectangular Plates,All Thicknesses(Applies to Carbon Steel

Only)

Permitted camber,in.=1?83(number of feet of length/5)

A Camber as it relates to plates is the horizontal edge curvature in the length, measured over the entire length of the plate in the?at

position.

--`,,```,,,,````-`-`,,`,,`,`,,`---

required to meet all mechanical property requirements.Should either test fail to do so,then that coil shall not be used to qualify the heat;however,the portion of that individual coil that is bracketed by acceptable tests(see11.4.2.3)is considered to be quali?ed.

13.4Quenched and tempered steel plates shall be subject to any additional retest requirements contained in the applicable product speci?cation.

TABLE13Permitted Variations From a Flat Surface for Standard Flatness Carbon Steel Plates

N OTE1—When the longer dimension is under36in.,the permitted variation from a?at surface shall not exceed1?4in.When the longer dimension is from36to72in.,incl,the permitted variation from a?at surface shall not exceed75%of the tabular amount for the speci?ed width,but in no case less than1?4in.

N OTE2—These permitted variations apply to plates that have a speci?ed minimum tensile strength of not more than60ksi or comparable chemical composition or hardness.The limits in this table are increased50%for plates that have a higher speci?ed minimum tensile strength or comparable chemical composition or hardness.

N OTE3—This table and these notes cover the permitted variations from a?at surface for circular and sketch plates,based upon the maximum dimensions of such plates.

N OTE4—Where“...”appears in this table,there is no requirement.

N OTE5—Plates must be in a horizontal position on a?at surface when?atness is measured.

Speci?ed Thickness,in.Speci?ed Weight,

lb/ft2

Permitted Variations from a Flat Surface for Speci?ed Widths Given in Inches,in.A,B

To36,

excl

36to48,

excl

48to

60,excl

60to

72,excl

72to

84,excl

84to

96,excl

96to

108,

excl

108to

120,

excl

120to

144,

excl

144to

168,

excl

168and

Over

To1?4,excl To10.2,excl9?163?415?1611?413?811?215?813?417?8......

1?4to3?8,excl10.2to15.3,excl1?25?83?415?1611?811?413?811?215?8......

3?8to1?2,excl15.3to20.4,excl1?29?165?85?83?47?8111?811?417?821?8

1?2to3?4,excl20.4to30.6,excl7?161?29?165?85?83?41111?811?22

3?4to1,excl30.6to40.8,excl7?161?29?165?85?85?83?47?8113?813?4

1to2,excl40.8to81.7,excl3?81?21?29?169?165?85?85?811?1611?811?2

2to4,excl81.7to163.4,excl5?163?87?161?21?21?21?29?165?87?811?8

4to6,excl163.4to245.1,excl3?87?161?21?29?169?165?83?47?87?81

6to8,excl245.1to326.8,excl7?161?21?25?811?163?47?87?8111

8to10,excl326.8to409.0,excl1?21?25?811?163?413?167?815?16111

10to12,excl409.0to490.1,excl1?25?83?413?167?815?1611111

12to15,excl490.1to613.0,incl5?83?413?167?815?1611111...

A Permitted Variation from a Flat Surface for Length—The longer dimension speci?ed is considered the length,and the permitted variation from a?at surface along the length shall not exceed the tabular amount for the speci?ed width for plates up to12ft in length,or in any12ft for longer plates.

B Permitted Variation from a Flat Surface for Width—The permitted variation from a?at surface across the width shall not exceed the tabular amount for the speci?ed width.

TABLE14Permitted Variations From a Flat Surface for Standard Flatness High-Strength Low-Alloy Steel and Alloy Steel Plates,Hot

Rolled or Thermally Treated

N OTE1—When the longer dimension is under36in.,the permitted variation from a?at surface shall not exceed3?8in.When the longer dimension is from36to72in.incl,the permitted variation from a?at surface shall not exceed75%of the tabular amount for the speci?ed width.

N OTE2—This table and these notes cover the permitted variations from a?at surface for circular and sketch plates,based upon the maximum dimensions of such plates.

N OTE3—Where“...”appears in this table,there is no requirement.

N OTE4—Plates must be in a horizontal position on a?at surface when?atness is measured.

A Permitted Variation from a Flat Surface for Length—The longer dimension speci?ed is considered the length,and the permitted variation from a?at surface along the length shall not exceed the tabular amount for the speci?ed width in plates up to12ft in length,or in any12ft for longer plates.

B Permitted Variation from a Flat Surface for Width—The permitted variation from a?at surface across the width shall not exceed the tabular amount for the speci?ed width.

13.5When the full-section option of 11.3.3is used and the elongation falls below the speci?ed requirement,the manufac-turer or processor shall have the option of making another test using a test specimen permitted in 11.5.2.

14.Test Reports

14.1Test reports for each heat supplied are required and they shall report the following:

14.1.1The applicable product speci?cation designation,including year-date and whichever of grade,class,and type are speci?ed in the purchase order,to which the structural product is furnished.

14.1.2The heat number,heat analysis (see 7.1),and nomi-nal sizes.

N OTE 7—If the amount of copper,chromium,nickel,molybdenum,or silicon is less than 0.02%,the heat analysis for that element may be reported as <0.02%.If the amount of columbium or vanadium is less than 0.008%,the heat analysis for that element may be reported as <0.008%.

14.1.3For structural products that are tested as given in Table B,two tension test results appropriate to qualify the

shipment (see 11.4),except that only one tension test result need be reported if the shipment consists of a single piece or plate-as-rolled.

14.1.3.1In reporting elongation values,both the percentage increase and the original gage length shall be stated.

14.1.4For structural products that are required to be heat treated,either by the applicable product speci?cation or by the purchase order,all heat treatments,including temperature ranges and times at temperature,unless the purchaser and the supplier have agreed to the supply of a heat treatment proce-dure in place of the actual temperatures and times.

14.1.4.1Subcritical heat treatment to soften thermally cut edges need not be reported,except for structural products having a speci?ed minimum tensile strength of 95ksi [655MPa]or higher,unless such subcritical heating is accomplished at temperatures at least 75°F [40°C]lower than the minimum tempering temperature.

14.1.5The results of any required austenitic grain size tests (see 8.2or 8.3,whichever is applicable).

TABLE 15Permitted Variations in Waviness for Standard

Flatness Plates

N OTE 1—Waviness denotes the maximum deviation of the surface of the plate from a plane parallel to the surface of the point of measurement and contiguous to the surface of the plate at each of the two adjacent wave peaks,when the plate is resting on a ?at horizontal surface,as measured in an increment of less than 12ft of length.The permitted variation in waviness is a function of the permitted variation from a ?at surface as obtained from Table 13or 14,whichever is applicable.

N OTE 2—Plates must be in a horizontal position on a ?at surface when waviness is measured.

Permitted Variation from a Flat Surface (from Table 13or 14),in.Permitted Variation in Waviness,in.,When

Number of Waves in 12ft is

12345675?165?161?43?161?81?81?161?163?8

3?8

5?16

3?16

3?16

1?8

1?16

1?16

7?167?165?161?43?161?81?81?161?21?23?85?163?163?161?81?169?169?167?165?161?43?161?81?85?85?81?23?81?43?161?81?811?1611?161?23?85?163?163?161?83?43?49?167?165?161?43?161?813?1613?165?87?165?161?43?161?87?87?811?161?23?81?43?161?815?1615?1611?161?23?85?161?43?16113?49?167?165?161?43?1611?811?87?85?81?23?81?43?1611?411?415?1611?161?23?85?161?413?813?811?163?49?167?165?161?411?211?211?87?85?81?23?81?415?815?811?415?1611?161?23?85?1613?413?415?1613?49?167?165?1617?817?817?1611?1613?169?167?165?162211?211?87?85?81?23?821?821?815?813?167?811?161?23?821?421?4111?1611?415?1611?169?163?823?823?8113?1615?1613?49?167?1621?221?217?817?1611?1613?169?167?1625?825?8211?211?813?165?87?1623?423?421?1619?1611?87?85?81?227?827?823?1615?813?1615?1611?161?23321?4111?1611?415?1611?169?1631?8

31?8

23?8

13?4

15?16

1

3?4

9?

16

14.1.6The results of any other test required by the appli-cable product speci?cation,the applicable supplementary re-quirements,and the purchase order.14.2The thickness of the structural product tested is not necessarily the same as an individual ordered thickness,given that it is the heat that is tested,rather than each ordered item.

TABLE 16Permitted Variations in Cross Section for W,HP ,S,M,C,and MC Shapes

N OTE 1—A is measured at center line of web for S,M,and W and HP shapes;at back of web for C and MC shapes.Measurement is overall for C shapes under 3in.B is measured parallel to ?ange.C is measured parallel to web.N OTE 2—Where “...”appears in this table,there is no

requirement.

Permitted Variations in Sectional Dimensions Given,in.

Shape

Section Nominal Sizes,in.

A ,Depth

B ,Flange Width

T +T 8A Flanges Out-of-Square B

E ,Web off Cen-ter C

C ,Maximum Depth at any Cross Section over Theo-retical Depth,in.

Permitted Variations Over or Under Theoreti-cal Web Thickness for Thicknesses Given in

Inches,in.

Over Theo-retical

Under Theo-retical

Over Theo-retical Under Theo-retical

3?16

and under Over 3?16W and HP Up to 12,incl Over 121?81?81?81?

81?41?4

3?16

3?161?45?163?163?16

1?4

1?4

............S and M

3to 7,incl

Over 7to 14,incl Over 14to 24,incl 3?

32

1?8

3?161?163?

32

1?81?85?323?161?85?323?161?321?321?323?163?163?16...........................C and MC

11?2and under

1?321?32

1?321?321?32......0.0100.015Over 11?2to 3,excl 1?161?161?161?161?32......0.0150.0203to 7,incl

3?321?161?81?81?32............Over 7to 14,incl 1?83?321?85?321?32............Over 14

3?16

1?8

1?8

3?16

1?32

...

...

...

...

A T +T 8applies when ?anges of channels are toed in or out.For channels 5?8in.and under in depth,the permitted out-of-square is 3?64in./in.of depth.B

Permitted variation is per inch of ?ange width for S,M,C,and MC shapes.C

Permitted variation of 5?16in.max for sections over 426

lb/ft.

--`,,```,,,,````-`-`,,`,,`,`,,`---

Tests from speci?ed thicknesses in accordance with 11.4and encompassing the thicknesses in a shipment shall be sufficient for qualifying the structural product in the shipment.Such test

thicknesses are not required to be within previously tested and shipped thicknesses from the same heat.

TABLE 17Permitted Variations in Cross Section for Angles (L Shapes),Bulb Angles,and Zees

N OTE 1—Where “...”appears in this table,there is no

requirement.

Permitted Variations in Sectional Dimensions Given,in.Section

Nominal Size,in.

A ,Depth

B ,Flange Width or Length of Leg

T ,Out-of-Square per Inch of B

Permitted Variations Over or Under Theoretical Thickness

for Thicknesses Given in Inches,in.

Over Theoretical Under Theoretical Over Theoretical Under Theoretical

3?16

and under Over 3?16to 3?8,incl Over 3?8Angles A

1and under ......1?321?323?128B

0.0080.010...(L Shapes)

Over 1to 2,incl ......3?643?643?128B

0.0100.0100.012Over 2to 3,excl ......1?161?163?128B 0.0120.0150.0153to 4,incl

......1?83?323?128B .........Over 4to 6,incl ......1?81?83?128B .........Over 6

......3?161?83?128B .........Bulb angles (Depth)3to 4,incl

Over 4to 6,incl Over 6

1?81?81?81?161?161?161?81?83?163?321?81?83?128B 3?128B 3?128B ...........................Zees 3to 4,incl

Over 4to 6,incl

1?81?81?161?161?81?8

3?321?8

3?128B 3?128B

......

......

......

A For unequal leg angles,longer leg determines classi?cation.

B 3

?128in./in.=11?2°.

TABLE 18Permitted Variations in Sectional Dimensions for Rolled Tees

N 1—*Back of square and center line of stem are to be parallel when measuring “out-of-square.”N OTE 2—Where “...”appears in this table,there is no

requirement.

Permitted Variations in Sectional Dimensions Givev,in.

Tees

Nominal Size,

A

A ,Depth

B B ,Width B T ,Out-of-Square per Inch of B E ,Web-off-Cen-ter Stem Out-of-Square C

Thickness of Flange Thickness of

Stem Over

Under Over Under Over Under Over Under 11?4

and under 3?643?643?643?64......1?320.0100.0100.0050.020Over 11?4to 2,incl 1?16

1?16

1?16

1?16

......1?16

0.0120.0120.0100.020Over 2to 3,excl 3?323?323?323?32......3?320.0150.0150.0150.0203to 5,incl

3?321?161?81?81?323?32...............Over 5to 7,incl

3?32

1?16

1?8

1?8

1?32

1?8

...

...

...

...

...

A The longer member of an unequal tee determines the size for permitted variations.B

Measurements for both depth and width are overall.C

Stem-out-of-square is the permitted variation from its true position of the center line of stem,measured at the

point.

--`,,```,,,,````-`-`,,`,,`,`,,`---

14.3For structural products produced from coil that are supplied in the as-rolled condition or have been heat treated by stress relieving only,the test report shall state “Produced from

Coil.”Both test results shall be reported for each qualifying coil,and the location within the coil for each test shall be stated.

TABLE 19Permitted Variations in Length for S,M,C,MC,L,T,Z,and Bulb Angle Shapes

N OTE 1—Where “...”appears in this table,there is no requirement.

Nominal Size,A in.Permitted Variations from Speci?ed Length for Lengths Given in Feet,in.

5to 10,excl 10to 20,excl 20to 30,incl Over 30to 40,incl Over 40to 50,incl Over 50to 65,incl Over 65ft

Over Under Over Under Over Under Over Under Over Under Over Under

Over Under Under 33and over

5?8100

1

11?20011?213?400221?40021?223?40021?223?4

00............

A

Greatest cross-sectional dimension.

TABLE 20Permitted Variations in End Out-Of-Square for S,M,C,

MC,L,T,Z,and Bulb Angle Shapes

Shapes Permitted Variation

S,M,C,and MC 1?64in.per inch of depth L A

3?128

in.per inch of leg length or 11?2°Bulb angles 3?128in.per inch of depth or 11?2°Rolled Tees A 1?64in.per inch of ?ange or stem

Zees

3?128in.per inch of sum of both ?ange lengths

A

Permitted variations in end out-of-square are determined on the longer members of the shape.

TABLE 21Permitted Variations in Straightness for S,M,C,MC,L,T,Z,and Bulb Angle

Shapes

Positions for Measuring Camber of Shapes

Variable Nominal Size,A

in.Permitted Variation,in.

Camber under 31?4

in.in any 5ft,or 1?43(number of feet of total length/5)3and over 1?83(number of feet of total length/5)

Sweep

all

Due to the extreme variations in ?exibility of these shapes,permitted variations for sweep are subject to negotiations between the manufacturer and the purchaser for the individual sections involved.

A

Greatest cross-sectional

dimension.

14.4For structural products produced from coil,both the manufacturer and the processor shall be identi?ed on the test report.

14.5When full-section test specimens have been used for the quali?cation of angles,that information shall be stated on the test report.

14.6A signature is not required on the test report;however,the document shall clearly identify the organization submitting the report.Notwithstanding the absence of a signature,the organization submitting the report is responsible for the content of the report.

14.7For structural products ?nished by other than the original manufacturer,the supplier of the structural product shall also provide the purchaser with a copy of the original manufacturer’s test report.

14.8A test report,cert?cate of inspection,or similar docu-ment printed from or used in electronic form from an electronic data interchange (EDI)transmission shall be regarded as having the same validity as a counterpart printed in the certi?er’s facility.The content of the EDI transmitted docu-ment shall meet the requirements of the applicable product speci?cation and shall conform to any existing EDI agreement

TABLE 22Permitted Variations in Length for W and HP Shapes

W and HP Shapes

Permitted Variations from Speci?ed Length for Lengths Given in Feet,in.A ,B

30and under Over 30Over Under Over Under Beams 24in.and under in nominal depth

3?83?83?8plus 1?16for each additional 5ft or fraction thereof 3?8Beams over 24in.in nominal depth and all columns

1?21?21?2plus 1?16for each additional 5ft or fraction thereof

1?2A

For HP and W shapes speci?ed in the order for use as bearing piles,the permitted variations in length are plus 5in.and minus 0in.These permitted variations in length

also apply to sheet piles.B

The permitted variations in end out-of-square for W and HP shapes shall be 1?64in.per inch of depth,or per inch of ?ange width if the ?ange width is larger than the depth.

TABLE 23Permitted Variations in Length and End Out-of-Square,Milled Shapes

Permitted Variations in Length and End Out-of-Square,in.A

Nominal Depth,in.

Length,ft B

Milled Both Ends C

Milled One-End C

Length

End Out-of-Square

Length

End Out-of-Square (for Milled End)

Over

Under

Over

Under

6to 36

6to 70

1?32

1?32

1?32

1?4

1?

4

1?32

A Length is measured along center line of web.Measurements are made with the steel and tape at the same temperature.B

The permitted variations in length and end out-of-square are additive.C

End out-of-square is measured by (a )squaring from the center line of the web and (b )squaring from the center line of the ?ange.The measured variation from true squareness in either plane shall not exceed the total tabular amount.

TABLE 24Permitted Variations in Straightness for W and HP

Shapes

Positions for Measuring Camber and Sweep of W and HP Shapes

Permitted Variation in Straightness,in.

Camber and sweep

1?8

3(number of feet of total length/10)A

When certain sections B with a ?ange width approximately equal to depth are speci?ed in the order for use as columns:Lengths of 45ft and under 1?83(number of feet of total length/10)but not over 3?8Lengths over 45ft

3?8+[1?83([number of feet of total length ?45]/10)]

A Sections with a ?ange width less than 6in.,permitted variation for sweep,in.=1?83(number of feet of total length/5).B

Applies only to:

8-in.deep sections 31lb/ft and heavier,10-in.deep sections 49lb/ft and heavier,

12-in.deep sections 65lb/ft and heavier,and 14-in.deep sections 90lb/ft and heavier.

For other sections speci?ed in the order for use as columns,the permitted variation is subject to negotiation with the

manufacturer.

--`,,```,,,,````-`-`,,`,,`,`,,`---

中国制造业的现状分析

中国制造业的现状 1、总体看来,目前中国制造业发展异常迅速,产业基础越做越大,但总体科技含量不高,军工我不知道,就民用而言。凑合在中低端。 2、生产设备方面。机器的制造称为制造的制造,目前虽然很多设备可以国产了,但比其品质,稳定性,扩展性上看和国外相比,还有差距。像我现在搞的精密模具,要用的加工中心就是纯进口。 3、从业人员,奋斗在制造业第一线的人文化素质不高,缺少技术工人。 4、自主产品有限,很多厂就是外国世界工厂上的一点,依赖性强。 据我在工厂接触的几个外国技术人员来看,世界上制造业发展的趋势应该是标准化数字制造,即生产实现数字化控制,人只要把需要设计出东西输入电脑后,即可实现全自动生产。但这样的生产建立的前提是精加工。 所以很多外国企业把初级加工转嫁给第三世界国家,自己做精加工,然后出自主产品,赚取高额利润。

中国装备制造如何走出国门 推动国际产能与装备制造的合作,让更多中国企业在全球基础设施建设中发挥作用,可以为全球经济质量提升作出中国应有的贡献,也能够为中国化解过剩产能提供一个重要出口,为中国经济转型、提质增效创造有利条件。 国务院公布关于推进国际产能和装备制造合作的指导意见,提出包括加快铁路“走出去”步伐、大力开发和实施境外电力项目、加快自主品牌汽车走向国际市场等主要任务。这份文件对于推进我国国际产能和装备制造合作,实现我国经济提质增效升级,具有十分重要的指导作用。 改革开放以来,我国的装备制造业处于快速发展之中,产业规模、技术水平和国际竞争力大幅提升。与此同时,在遭遇全球金融危机侵袭后的最近几年来,全球产业结构出现加速调整趋势,基础设施建设出现一轮新的高潮,特别是在发展中国家,在大力推进工业化、城镇化过程中,对于基础设施建设尤为重视。国际市场出现的这种变化,为我国装备制造业走出国门,在全球市场上占据制高点提供了有利的契机。 在评估国际产能与装备制造合作的前景时,一个不可忽视的重要因素是,我国提出的“一带一路”发展战略和组建亚投行的倡议,受到了相关国家的广泛认同。国家领导人频频出访亚洲、非洲、拉丁美洲等发展中国家集中的地区,不仅使我国对外开放提高到了一个新台阶,也为中国与相关国家创造了产能与装备制造合作的良机。目前,无论是“一带一路”相关国家还是亚非拉地区,基础设施建设都较为薄弱,中国企业如果能够在这方面的合作中占领先机,对于这些地区的经济基础提升将起到重大推动作用,使“一带一路”和其他一些合作构想出现突破性进展。因此,开展国际产能和装备制造合作,对于我国具备广阔的市场前景。

素材积累之中国制造

高三作文素材积累之中国制造(十五) 中国“高铁”异军突起 近年来,“高铁”凭借安全、快速的优势让越来越多的国家对此显示出浓厚的兴趣,甚至在世界范围内兴起一股高铁热潮。2015年米兰世博会10月31日闭幕,米兰高铁线路成为这一届博览会的焦点。运营里程1.7万公里、运营动车组1800列、年运送旅客人次9.1亿,3项数据均居全球第一,这是中国高铁交给世界的答卷,也是中国为中意两国的合作提供了丰富且宝贵的机会,也让来自全球的客人再次将目光聚焦到中国高铁上。 中国高铁起步虽晚,但发展迅速。10年前中国开始建设第一条高铁线路,如今中国境内开通运行的高铁线路总里程已经超过一万公里,居世界首位。且还拥有几宗最:运营里程世界第一(截止7月达到1.7万公里,今年年底将到达1.9万公里);运行实验时速世界第一(486.1公里);建成世界上第一条地处高寒地区的哈达高铁;建成单线最长的京广高铁(2298公里);建成一次性建成里程最长的兰心高铁(1776公里);建成世界线路最长(620公里)且技术标准最高的京泸高铁;2014年中国就有8亿多人次选择高铁出行,多么惊人的运量!如此几宗“最”刷新着大家的认知,更迭着以往的记录,足以诠释中国高铁成绩斐然,举世瞩目。 中国高铁代表的“中国速度”积极向海外扩展:从东南亚(柬埔寨、越南、泰国),到中东(沙特),到非洲(尼日利亚),再到美洲(巴西、阿根廷和墨西哥),以及俄罗斯和美国,中国目标市场扩展到了全世界。今年6月,中国同俄罗斯达成协议,中国企业将为俄罗斯修建一条从莫斯科到喀山的长达770公里的高铁线路,这成为中国高铁进军国际市场市场的一个重要突破。今年10月,中国又击败日本,拿下印尼雅万高铁的修建合同,中国高铁在国际市场中的地位进一步稳固。与此同时,中国也预备参与墨西哥、英国和美国的高铁项目。 中国高铁也接连在俄罗斯、新加坡等国家获得订单或有项目在积极推进,高铁出海速度不断加快。“中国高铁是现在已经逐渐成为中国制造新名片。”业内人士表示,中国制造业在转型,高铁产品正成为现在中国制造新的代表。 中国高铁异军突起,成为中华名族“闪亮的铭牌”,随着“一带一路”战略的提出和实施,以高铁为代表的中国轨道交通行业正面临着“走出去”的历史机遇期,高铁出海空间巨大,加速“走出去”势在必行。 中国高铁10年的发展,离不开一代又一代铁路人的期盼与实干,是他们用一双双勤劳的双手架起了一条条通天的铁路,是他们用一张张晒的黝黑的面庞筑起了一道道安全的防线。为中国高铁点赞,为中国铁路 国新推荐: 创新,开始便永不停止,直到成功;五年,衡量不了知识的长度,却足够以毅力和恒心来打破国外的科技“垄断”,让“磁悬浮”技术被中国企业所掌握。南京磁谷,从事磁悬浮技术及相关产品的研究、开发、应用、推广及其产业化。在绿色环保、可持续的新能源的开发道路上开创了自己 独特的篇章,默默奋斗,在磁悬浮离心式风机领域,拥有全部自主知识产权。科技扛鼎未来,南京磁谷,必定以“创”为先,助力中国梦想先行。 作为制造业大国,由“中国制造”向“中国创造”转型是中国制造业的发展方向,对于起步较晚的中国制造业企业而言,要走出一条依靠自主研发的“中国创造”之路,任重而道远。在磁悬浮离心式风机领域,南京磁鼓科技有限公司的发展可谓完美地诠释了“中国创造”。 格兰仕:以创新闪耀全球

风靡海外的制造教案

风靡海外的制造教案 Revised by Liu Jing on January 12, 2021

《风靡海外的中国制造》 【教材分析】 《风靡海外的中国制造》是冀人版六年级上册第三单元《密切联系的世界》中的一个学习内容,主要介绍我国许多产品,特别是工业制品、高科技产品大量出口的现状,说明近年来我国经济的迅速崛起,表明了中国经济在世界发展中占有举足轻重的地位。 【教学目标】 知识目标:我能说出我国闻名于世界的品牌和工业产品,知道我国经济在世界中的地位和作用。。 能力目标:学会搜集资料的方法,学会提取有益的信息和资料。 情感目标:激发学生的民族自豪感和责任感,激发对祖国的热爱之情。 【教学重点】能说出我国闻名于世界的品牌和工业产品,知道我国经济在世界中的地位和作用。 【教学难点】体会我国在世界经济发展中的重要地位,感受世界的紧密联系。 【学情分析】 我校学生大部分生活在城市及周边,生活条件较好,接触到进出口商品的机会也较多,对中国的经济发展在直观上有一定了解。 从孩子的心理特点和认知程度上来看,孩子们难以从中国走向世界的各方面入手,去了解中国的发展,感受中国在国际贸易中的地位。 【设计思路】 根据课程标准的内容,我针对学生学习和生活的实际情况,从学生的年龄特点出发,创设学生乐于接受的学习情境,让课堂符合生活实际,灵活多样地选用教学组织形式,让学生在活动中获得经验,提高能力。 【第一课时】 活动一:“洋”名字的来历

1.师:你知道哪些带“洋”字的物品? 生:学生小组交流自己认识的物品名,小组汇报。 师:将“洋”字的物品名写在黑板上。 2.师:针对这些带“洋”字头的物品,你有什么疑问产生? 学生质疑。教师梳理归纳:(1)这些物品是什么(2)为什么都带“洋”字(3)现在我们用的是什么…… 洋炉、洋行、洋装、洋纸、洋片…… 3.为什么中国的许多老百姓称这些物品时都带“洋”字? 学生个体说 教师小结:说明了旧中国的工业几乎是一片空白,大多数东西都不能自己造,只能依赖外国进口的,所以带上了“洋’字。 【设计意图】通过交流带“洋”字的物品,让学生了解到旧中国的工业几乎是一片空白,许多东西都不能自己制造,只能依赖外国进口的。 活动二:找找家中的“中国造” 师:现在我们的生活又有了什么样的变化呢?课前我们同学们都就自己家里的家用电器等生活用品情况进行了调查。现在请同学们来谈谈他们是哪里制造的。 生:交流发言。 师:板书。 师:通过刚才同学们的发言,大家发现了什么。 生:大多数物品为我国制造。

制造对世界的影响

制造对世界的影响 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

关于中国制造的问题,实际上中国制造我们首先要确定一下它的含义,从目前来看,中国制造在世界上受到广泛的欢迎,主要是它有着物美价廉、非常实用的特性。但是,在它整个的制造过程当中,制造的这些主体,也就是贸易方式,有5 0%以上是加工贸易,加工贸易产品都是按照外国订货商的要求和国际标准生产。从出口主体来说,有58%以上的产品是由外资企业出口的。从国内外市场来说,在竞争环境当中,我们有国有企业、民营企业,还有外资企业,可以说这些企业共同打造了中国制造。 中国对世界的影响正逐渐成为一种现实,而不再象以往那样,仅仅停留于概念层次:中国对钢铁等原材料的需求,促使全球废金属价格达到历史新高,以致世界各地的盗贼纷纷去偷窃铁制窨井盖。各国政要纷纷将目光投向北京,诸多媒体先后进行有关中国的封面或专题报道,出版界也推出了大批以“中国世纪”、“中国公司”为名的着作;一些学者甚至根据东南亚、非洲、南美洲等地出现的“中国热”,提出中国的成功已经为世界提供了一条有别于“华盛顿模式”的发展道路,现其所缺的只是一套圆满的“主义”而已。这无疑是自鸦片战争后,中国被迫、但却真正融入全球化进程长达一个半多的世纪以来,中国与世界之关系取得的一个里程碑式的突破。 对此,一个看似普通,实际上却最具说服力的例子,是所谓的“中国制造”,在世界各地,包括美欧发达国家,深入千

家万户,并逐渐牢牢占据了各个生活场所,诸如厨房、客厅、卫生间、卧室,无所不至;以致于许多人会问:现在没了中国制造,我们的生活将会如何美国资深记者莎拉-邦乔妮的《没有“中国制造”的一年》一书就是尝试对这一问题做出回答。她的结论是:“经过一年没有‘中国‘的日子后,我可以告诉你:没有中国商品你也可以照样(在美国)生活下去,但是你的生活会越来越麻烦,而且家庭开支也会大大增加。以后十年我可能都没有勇气再尝试这种日子。” 长期担任商业新闻记者的邦乔妮一直撰写有关国际贸易的新闻稿件。“我曾看过美国商业部的(美中)贸易统计,数以十亿计的美元,我认为它与我无关,”但这一年的经历“让我重新思考中国和我之间的距离,在把中国推出我的生活之外后,我得到一个‘中国已经深深介入我们生活’的结论。” 需要指出的是,邦乔妮的一年痛苦体验虽然说明了“没有中国商品你也可以照样生活下去,但是你的生活会越来越麻烦”这个道理,但这并不意味着中国商品具有不可替代性。实际上,中国产品的优势是建立在廉价劳动力之上的,一旦失去这一优势,中国商品的竞争力将越来越不明显,最终有可能被印度制造或越南制造取代。事实是,目前的中国部分地区已经出现了老龄化和劳力不足的迹象。更为危险的则是,“中国制造”当前在全球范围正面临着一系列的信誉危机,有毒宠物食品、有毒牙膏、不安全玩具、不合格轮胎、有问题的水产

中国制造业发展现状

中国制造业发展现状分析 摘要:机械制造业是一个国家的基础行业,是国民经济发展的支柱产业,直接体现了一个国家的生产力水平,是区别发展中国家和发达国家的重要因素。本文通过一些权威数据分析中国制造业目前的发展现状,研究中国制造业落后的深层次原因,在此基础上提出我国制造业今后发展的策略和方向。 引言 制造业是指对制造资源(物料、能源、设备、工具、资金、技术、信息和人力等),按照市场要求,通过制造过程,转化为可供人们使用和利用的工业品与生活消费品的行业。作为我国国民经济的支柱产业,制造业是我国经济增长的主导部门和经济转型的基础;作为经济社会发展的重要依托,制造业是我国城镇就业的主要渠道和国际竞争力的集中体现。改革开放以后,中国制造业发展迅速,极大地带动中国的经济,中国经济总量已超越日本,成为世界第二大经济体。然而,我们必须看到制约中国制造业发展的瓶颈,找出问题所在,加以重视,中国的制造业才会有更大的发展空间,而不是继续着“大而不强”。 中国制造业的现状 1.中国对外贸易快速发展,在世界贸易总额中的地位不断上升 2001-2010国内生产总值平均增长速度为10.5%,由2000年的99214.6亿元增加到2010年的403260.0亿元,第一产业增长4.2%,第二产业为11.5%,第三产业为11.2%。2010年工业总产值为698591亿元。1990-2003年我国制造业出口年均增长达17.5% ,大大高于世界平均水平。 2.工业制成品在出口商品总额中的比重不断提高,中国正逐步成为世界生产基地 由1980年为49.7%,1990年为74.4%,1999年为89.8%,2000年以后接近90%,2003年已上升到92.1%。 单位(亿美元) 3.中国制造业在国际市场的竞争力不断上升 (1)2003年机电产品进、出口规模均首次突破2000亿美元大关,分别达到2249.9亿美元、2274.6亿美元,占总进口和总出口的比重分别达到54.5%和51.9%,其中出口比重较上年提高了3.7个百分点。2003年,中国高新技术产品的出口也突破了1000亿美元,达到1101.6亿美元,同比增长了62.7%。

老外最震惊的9项中国制造,排名第一的竟然是……

老外最震惊的9项中国制造,排名第一的竟然是…… 一、中国的桥在世界桥梁业有着这样一句话:世界桥梁建设20世纪70年代以前看欧美,90年代看日本,21世纪看中国。目前世界建成跨度1000米以上的悬索桥有28座,中国就占11座;世界目前在建的主跨1000米以上悬索桥有13座,中国占9座;世界建成和在建跨度600米以上的斜拉桥有21座,中国占17座;世界已建跨度420米以上拱桥有12座,中国占9座;世界已建跨度250米以上预应力混凝土桥梁有20座,中国占12座。这些过硬的成绩背后是中国桥梁建设者们“敢为天下先”的创新精神和艰苦卓绝的奋斗历程。“中国桥梁”已经成了中国的一张亮丽名片和彰显综合国力的重要符号。 ▲图为湖北武汉鹦鹉洲长江大桥,是世界同类桥梁中跨度最大的三塔四跨悬索桥。为何说现代建桥看中国?衡量桥梁技术水平和建设能力的重要标志是桥梁的主跨长度。跨径越大,技术难度也就越大。从量上看,中国的大型桥梁建设已占据世界的一半以上。从质上看,继苏通大桥于2013年被评为“菲迪克百年工程项目杰出奖”后,杭州湾跨海大桥、泰州长江公路大桥、舟山大陆连岛工程西堠门大桥也先后于2014年、2015年获“菲迪克”年度奖项。二、中国卫星2015年12月29日凌晨,高分四号卫星成功发射,中国航天“十

二五”圆满收官。一百多颗在轨卫星熠熠生辉,将“中国”的名字书写在广袤的太空。“十二五”期间,最出名的中国卫星莫过于“嫦娥”系列。在中国流传千年的嫦娥奔月传说,被卫星变成了现实。 ▲2015年7月25日,搭载两颗新一代北斗导航卫星的“长征三号乙远征一号”运载火箭在西昌卫星发射中心点火发射。嫦娥姑娘们的身后,还有许多成果值得一说:自主研发的7500N变推力发动机首次在嫦娥三号任务成功应用,填补了国内空白;月表三维影像、地月与近月空间环境、月表形貌与地质构造、月表物质成分与可利用资源、地球等离子体层等研究中取得一批原创性成果。探索星辰大海的不止是嫦娥姑娘们,我国迄今为止最大的系列空间科学卫星计划——空间科学先导专项,也在“十二五”期间启动,并将目光瞄准了未知的宇宙。首批列入“十二五”规划的4颗空间科学卫星中,暗物质粒子探测卫星“悟空”是首发星,已于2015年12月17日顺利升空。空间科学先导专项卫星工程常务副总指挥、中科院国家空间科学中心主任吴季介绍,其余3颗分别是实践十号返回式科学实验卫星、量子科学实验卫星、硬X射线调制望远镜卫星,都将在2016年陆续升空。随着第16颗北斗导航卫星发射成功,北斗区域卫星导航系统正式建成。2012年12月,中国的北斗区域卫星导航系统正式向中国及周边地区的用户提供定位、导航、授时以及短报文

3 风靡世界的“中国制造”

3 风靡世界的“中国制造” 教学目标 情感态度价值观目标:感受我国对外贸易的快速增长,激发学生的民族自豪感和责任感,激发对祖国的热爱之情。 知识目标 了解新中国成立和改革开放以来我国在贸易领域取得的成就和面临的问题,感受祖国的进步与发展,以及国际地位的不断提高。 能力目标 探究随着科技的进步和工业的发展,我国对外贸易额快速增长及面临的突出问题。培养学生辩证地,全面地分析问题的能力。综合运用知识能力,以及运用所学的知识分析实际问题的能力。 教学重点 让学生了解随着科技的进步和工业的发展,我国对外贸易额快速增长,同时体会国际贸易对人们生活的影响。 教学难点 引导学生知道我国在贸易领域中取得的成就和问题,从开放、多元、国际化的社会发展趋势认识和关注中国的发展。 教学准备 学生准备: 收集带“洋”子物品的相关资料;利用多种渠道调查中国(包括本地)产品出口情况,在地图上找到所销往的国家或地区;彩笔;收集关于广交会和世博会的资料。 教师准备: 制作CAI、世界地图、红旗标签;每组发一张小型世界地图、白纸; 收集新中国成立以来,我国各个方面取得的辉煌成就;收集并制作近年中国的有关进口和出口商品一展表;广交会和世博会的资料。 课时安排 3课时 第一课时完成教材P14-P15页内容,话题为《从“洋”货到“中国制造”》第二课时完成教材P16页内容,话题为《从“中国制造”到“中国创造”》第三课时完成教材P17-P18,话题为《从广交会到世博会》 教学过程 第一课时 活动一、“洋”名字的来历 1.情境导入:《曾祖奶奶的“洋胰子”》 你还知道哪些带“洋”字的物品?学生交流找到的物品名,教师将写有物

跨国公司进入及其对中国制造业的影响(doc 6页)

跨国公司进入及其对中国制造业的影响(doc 6页)

跨国公司进入及其对中国制造业的影响 2002年,中国实际使用外商直接投资突破500亿美元,这是中国自改革开放以来首次超过美国,成为全球吸收外商直接投资的“第一大国”。据统计,2002年全国新批准设立外商投资企业34171家,同比增长30.72%;合同利用外资金额827.68亿美元,同比增长19.62%;实际使用外资金额527.43亿美元,同比增长12.51%。它结束了近几年来中国在利用外商直接投资上负增长和低增长的局面,预示了今后几年中国在利用外商直接投资方面新一轮高增长的开端。截至2002年12月底,全国累计批准设立外商投资企业424196个,合同利用外资金额8280.60亿美元,实际使用外资金额4479.66亿美元。根据调查,世界500强中已有400多家来华投资。目前,大型跨国公司来华投资开始成为中国利用外商直接投资的主流。 一、跨国公司进入中国制造业的若干重要特点 最近一个时期以来,随着跨国公司对中国产业转移步伐的加快,中国成为世界“生产制造中心”的呼声越来越高。其实,观察现代跨国公司和传统跨国公司的区别,跨国公司在中国制造业发展中的地位,已由“一个中心”成为“多个中心”。

1.生产制造中心 自20世纪90年代末期以来,中国生产成本低廉,许多外国厂商相继将生产据点移往中国。例如,2001年7月,松下电器公司停止在美国肯塔基州生产微波炉,将其生产基地集中到了上海。8月,东芝公司宣布停止在日本国内生产电视显像管,把包含数字电视在内的电视机生产线全部转移到中国,至此,日本主要彩电制造商松下电器、东芝、三洋电机、三菱电视4个公司都已将彩电生产的主要基地移至中国。此外,日本的其他家电产品如录像机、复印机、空调、CD、单放机、DVD等也主要由日本在中国的工厂生产。据统计,中国在世界出口额中的比例,1990年不足2%,2000年上升为4%,2002年进一步提高至6.5%。就轻工纺织产业看,以家电为例,2001年全国微波炉共计出口1252万台,占当年全国生产量的69%;2001年全国电饭锅共计出口822万台,占当年全国生产量的57%。目前,中国已经成为多数家电产品世界最大制造基地。再以鞋业为例,目前,全球鞋类年产量约100亿双,在中国,2001年广东省鞋类年产量近30亿双,约占世界产量的3/10;温州市鞋类年产量10多亿双,占世界产量的1/10。就中国而言,堪称世界最大的成品鞋生产基地。

中国制造业的现状与面临的挑战

制造业是国民经济的物质基础和工业化的产业主体,是社会进步与富民强国之本。任何一个大国(我不是说像新加坡这样的城市国家)为了自身的发展和安全,都将装备制造业的发展和升级作为国家战略来对待,高度发达的装备制造业是实现工业化的必备条件,也是一个国家综合竞争力的重要标志。制造业在中国现阶段至少有五个方面的作用:第一是我们国家经济高速增长的发动机;第二是推动国民经济和社会信息化的基础产业;第三是科技创新的重要载体;第四是劳动就业的主要部门;最后也是国家安全的一个基本保证。 中国制造业的发展现状。中国制造业在改革开放25年间得到了快速的增长,它的动力来自两个方面,一是强大的国内需求,就是国内的基本建设、基础设施建设的需求,人民生活提高的需求,还有就是国际产业的转移。中国制造业在GDP里面所占的比重一直都是比较高的,因为我们现在正处于工业化的中期,世界制造业的主要国家第一还是美国,第二是日本,中国在2003年超过了德国。可以看出尽管美国的服务业已经超过80%,但是它还是世界上制造业最强的国家。可见制造业特别是装备制造业始终是高于GDP的速度在增长,它已经成为我国最大的产业和国民经济重要的组成部分。我们国家制造业的构成分为三块,一共是17个行业,有5个行业是轻工业、纺织工业和日用品的制造,这大概占制造业的30.24%;第二块也是5个行业,主要是资源加工,包括石油化工、橡胶、非金属、金属冶炼,大概占33%,就是我们整个制造业产值增加值的三分之一;第三是机械、电子类制造业,这稍微多一点,比三分之一多一点大概是35%,所以三块组成大概是这样。轻工业比三分之一略少,资源加工业三分之一,还有机电加工产品比三分之一多。我们可以大致说一下资源加工业生产的产品全部是用在国内,包括像钢铁、有色金属、石油加工的产品,都是用于国内的。轻工业和机械、机电工业的产品大约是一半或者是少于一半是出口的,主要还是满足内需。 中国的工业增加值,因为第二产业还有建筑,讲工业占GDP的35.75%,工业增加值占全部工业,就是第二产业的78.69%,建筑业只有大概20%,工业上缴的税金占第二产业的90%,从业人员90.7%,这里面我想特别指出一点制造业出口占全国外贸出口的91.2%,接纳外商实际直接投资额约占全部外商投资额的70%。中国制造业的发展也是承接国际产业转移的一个结果。在市场竞争直接成本中,它们的比大约是美国30美元,欧洲24个美元,东欧是3个美元,日本是24个美元,在中国是2个美元,当然印度现在比我们还低一点,是1个美元,包括东南亚国家。以软件工程师来说,在硅谷一个成熟的软件工程师工资大概是20至30万美元,这里包括付税,不是全部给他工资;在爱尔兰是8至9万美元,在印度是4至5万美元,在中国是2至3万美元,所以无论是体力劳动者还是脑力劳动者在中国的成本都比较低。我举一个例子,像直升机,这是美国商用直升机最成熟的,在美国只生产顶部直升机的螺旋桨和尾部的螺旋桨,顶盖部分在西班牙生产,尾部也是在西班牙生产,中间的机身部分是在日本生产,起落架是在巴西生产,机头是在中国台湾生产,机尾是在中国的井冈山直升机厂生产,所以从头到尾都在中国生产,就是一个头一个尾。中国累计批准外商投资企业到2004年11月底是5万多家,合同金额超过1万亿美元,实际利用外资是5590亿美元。跨国公司的研发机构在中国发展也非常迅速,到2004年6月,在中国设立研发机构的跨国公司超过600家,累计投入研发金额是40亿美元,我们在这上面可以看到东芝、IBM、HP、英特尔、GE、诺基亚、松下、爱立信公司。跨国公司在中国的研发机构发展非常迅速,其中有计算机、电子、医疗、运输,还包括汽车。我曾经访问GE在浦东的研发机构,它用了900多个中国的博士和工程师,我说是否针对中国生产研发,它说是针对GE全世界,所以正在从面向中国转向全球。外国在华研发R&D投资分布主要还是集中在北京,接近60%,因为北京具有我们中国教育科研人才的优势,其次是在上海和深圳,在其他地区包括中国的成都、南京、武汉也都有一些研发的机构。 当然,讲到中国的制造业,我们必须看中国制造业和国际先进水平的差距。第一是劳动生产率比较低,我们现在一年不到4万美元,只有美国的4.38%,日本的4%,德国的5%多一点,我们人用得比较多。中国的制造业能源消耗大,污染比较严重,制造业的能耗占全国一次能耗的63%,单位产品的能耗高出国际水平20%至30%,全国CO2的排放量67.2%是锅炉排放;第二是产品以低端为主,附加价值不高。增加值率仅为26.23%,比美国、日本及德国分别低22%、22%和11%,出口主要是劳动密集型和技术含量低的产品。当然事情是两方面的,这既是一个缺点有的时候也是优点,因为中国需要解决就业问题,如果都搞自动化工厂每年新增就业就有问题。产

实用类文本中国制造阅读练习及答案

阅读下面的文字,完成下面小题。 材料一: 5 月 10 日,首个“中国品牌日”的到来引起广泛关注。国家层面设立“中国品牌日”,宣示着一个“质造”和“智造”时代的来临。这不只是仪式,更是一种使命。 品牌时代的来临,承载的是一个经济大国向经济强国转变的梦想和使命,需要别开生面的创新精神,也需要精雕细琢的工匠精神。从国际上看,一个国家经济崛起的过程也是质量升级、品牌壮大的过程,德国专注务实的工匠精神,美国高度严格的知识产权保护体制,韩国成立国家品牌委员会的推进机制,都给我们以启示。当C919 国产大型客机翱翔蓝天,当中国高铁“扬帆出海”,我们不只有品牌之梦,更有品牌之力和品牌之智。 (摘编自冯蕾《担起建设品牌强国使命》,《光明日报》2017 年 5 月 10 日) 材料二: 国潮消费人群特征国货消费者集中城市TOP10 (摘编自《90后最爱“追潮”,女性撑起半边天》,《南方日报》2019年11月1日) 材料三: 小仙炖、钟薛高、ito、北鼎……一批兼具好设计和高品质的国货品牌受到了年轻人的追捧,并正逐渐成长为“中国制造”的新门面,成为新消费的代表。比如刚诞生两年的雪糕品牌钟薛高,凭借标志性的瓦片造型和不断迭代的口味类别俘获了大批年轻人的芳心。

事实上,90后和00后务实消费的理念,也为服装制造、电子信息制造等传统产业的老牌国货带来了转型升级的机会。 2018年,国产运动品牌李宁首次亮相纽约时装周,以亮眼新潮的设计吸引了年轻消费者的关注。此后推出的球鞋系列“悟道”,以大胆的配色和解构设计,准确切中年轻消费群体的需求,迅速走红。 在产品优质的基础上,用设计感打动年轻消费者,回力、飞跃的帆布鞋,波司登的羽绒服,包括华为近期和眼镜潮牌GENTLEMONSTER跨界推出的智能眼镜,都延续这一套路成功转型,焕发新的活力。 (摘编自《毛文超乌镇演讲:新消费的机会将在细分领域迎来爆发》) 材料四: 中国造,正当“潮”。越来越多的消费者愿意为传统文化消费,新生代消费者为了彰显自我个性、打造个人属性标签,日渐乐于使用带有中国文化元素的产品。以故宫推出的彩妆口红为例,一经推出,仅用一晚的时间即预订超过一千支,而这源自于消费者对于产品背后的传统文化价值的认同。而晨光文具则与京剧“联姻”,将生旦净末丑的扮相绘于文具之上,瞬间火爆市场。因为文创的融入,晨光把看似几元钱的小买卖做成了年营收80余亿元的大生意。 与此同时,一批电商平台纷纷“造潮”,孵化出一个又一个国潮新品。据了解,近年来,京东、唯品会、拼多多、天猫等电商平台都开始了对国潮市场的开拓。天猫从2017年就开始了对国潮的策划和重视,2018年更是在国货跨界、文化营销、国潮出海等各个方向上做出了新的尝试。 (摘自《颜值与性价比兼具,国货当潮源于创新彰显自信》,《南方日报》2019年11 月1日) 4.下列对“国潮”相关内容的理解和分析,不正确的一项是() A.消费市场上国潮涌动,显示出中国品牌的影响力与日俱增,中国正在向经济强国迈进。

《风靡海外的中国制造》教学设计

《风靡海外的中国制造》教学设计 教学目标: (一)知识目标 通过了解我国经济、人才、科技等在国际交流中的作用,使学生体会我国在世界发展中的重要性;通过了解未来世界的发展趋势,激发学生为迎接挑战而努力学习的斗志。 (二)能力目标 通过老章在美国购物的模拟活动,培养学生的想像能力和与他人合作的意识;通过收集有关我国产品资料,培养学生获取信息、整理资料的能力。 (三)情感、态度与价值观目标 知道我国经济在世界中的地位和作用;了解我国闻名于世界的品牌和工业产品。 教学重难点: 1.知道随着科技的进步和工业的发展,我国对外贸易额快速增长。 2.体会国际贸易往来对人民生活的影响。 3.激发民族自豪感和责任感。 学习准备: 1.收集有关中国产品(工业品、农产品、科技产品等等)出口销售的文字图片资料。 2.收集家乡所在地生产的出口产品的有关资料。 3.了解你所接触到的外国人使用中国产品的情况。 教学过程:

1.导入:过去我们出口的大多是农产品,现在很多高科技产品也飘洋过海了!你知道有哪些产品吗? 2.交流:学生分组交流调查家中电器和各种车辆的品牌和产地,并交流调查的感受,使学生体会到家里的电器和各种车辆越来越多,这些都是中国制造的。 了解这些产品上的英文字母MADE IN CHINA的意思,以及为什么在中国的产品上印上这些英文字母。 (教师引导学生根据平时积累的生活经验,针对我国目前出口的高科技产品展开讨论。) 3.在学生充分讨论基础上,教师运用实例(参见“精品课件”),介绍我国在海外建立生产基地或产品销往世界各地的情况。 思考:越来越多中国制造的产品走向了世界,说明了什么? (教师引导学生思考并说出自己的体会。) 4.学习自编自演话剧(老章在美国给家人买礼物、加拿大教师马龙在加拿大一天的生活)。 提问:看到中国制造的产品越来越受到世界各国人民的喜欢,你心情如何? 5.再次通过图片或文字资料,向学生讲授我国与世界各国之间进行经济、信息、人才、科技的交流。 通过介绍,教师要引导学生体会到:中国在世界经济中有着举足轻重的地位。 6.小结。为了迎接未来世界的挑战,我们能做些什么?

工业4.0对中国制造业的影响及如何应对

工业4.0对中国制造业的影响 摘要:工业化是信息化与工业化的深度融合,德国工业4.0战略给中国制造业的发展,提供了借鉴和启示。本文介绍了工业4.0的概念及主要内容,说明了工业4.0将对制造业带来的巨大变革和对中国制造业的影响。最后对中国制造业的转型升级提出了建议。 关键词:工业4.0;智能制造;变革;转型升级 1工业4.0概述 1.1工业4.0定义 工业1.0的定义为对机械制造设备简单应用,工业2.0为20世纪初的电气化,工业3.0就是现在正在进行的信息革命,工业生产自动化程度提高。相比前几次工业革命,工业4.0是在当前成功应用信息和通信技术、嵌入式技术及强大的互联网技术的基础上而提出的。工业 4.0就是综合运用信息物理系统(CYS,Cyber-Physical Systems)将资源、信息、物品和人进行互联,从而创造物联网和服务,进而将这种服务模式用于工业领域,促进制造业智能化、网络化发展。德国“工业4.0”战略旨在通过充分利用信息通讯技术和信息物理系统相结合的手段,推动制造业向智能化转型。 1.2工业4.0项目主要内容 “工业4. 0”项目的概念描述了由集中式控制向分散式增强型控制的基本模式转变,目标是建立一个高度灵活的个性化和数字化的产品与服务的生产模式。在这种模式中,传统的行业界限将消失,并会产生各种新的活动领域和合作形式。创造新价值的过程正在发生改变,产业链分工将被重组。 “工业4. 0”项目将从两个方向展开,一是“智能工厂”,重点研究智能化生产系统及过程,以及网络化分布式生产设施的实现;二是“智能生产”,主要涉及整个企业的生产物流管理、人机互动以及3D技术在工业生产过程中的应用等。该计划将特别注重吸引中小企业参与,力图使中小企业成为新一代智能化生产技求的使用者和受益者,同时也成为先进工业生产技术的创造者和供应者。 2工业4.0对制造业带来的变革 输出:个性化、本地生产和大规模定制。工业4.0将会给产品的生产过程带来更多的自由和灵活性,所以它能够以较低的边际成本,为一个独立的客户进行个性化定制。如果产品相关数据能够被上载,那么就可以进行本地化生产,3D

《中国制造》读后感

《中国制造》读后感 本文是关于读后感的,仅供参考,如果觉得很不错,欢迎点评和分享。 《中国制造》读后感(一) 一口气看“完”那厚厚的一本《中国制造》,我马上冲进浴室,洗了一个舒舒服服的澡。为何?书中那精彩绝伦的片断,让我惊心动魄,使我一会儿热汗直流,一会儿冷汗直冒,等到看完,我早已是全身湿透了。 动力十足,敢冲勇闯的高长河;步步为营,心系平阳的姜超林;朝气蓬勃,敢作敢为的田立业,还有文质彬彬的文春明,“贪”胆包天的耿子敬,锐气十足的李馨香,铁心办案的孙亚东,这一个个活生生的面孔不断地浮现在我面前,使我经受着一次又一次的灵魂拷问。 文章一开始,就以全国改革先锋的平阳市的“一把手”的人事调动为引子,把人带到了一个不可捉摸的漩涡之中。在文春明与高长河的拳击中,高长河胜出,但又牵出了平阳市轧钢厂的问题——这也是贯穿全书的一个十分敏感且重要的问题。围绕这一问题,一幕幕精彩的戏,又登台了。形形色色的干部,登台了。于是,我开始以我的标准对这些干部“品头论足了。 中国人是一个十分恋旧的民族。对于旧的东西,不论好与坏,总是格外珍惜、念念不忘。 对于平轧厂,这一个历史问题也可以这样理解——对旧的体制不忍彻底地抛弃,甚至还想方设法地维护它的面子,如文春明市长(不

过其最终能认识到自己的错误),明知道平轧厂是一个无底洞,还死不肯抓住机遇,盘活国有资产,而且不断给其贷款,给它输血,使这一问题愈积愈深,以致积重难返。12亿,多少人民的血汗?换来的只是一个刚开工就亏损的乱摊子。谁看了不心疼?谁看了不痛心。 最终,还是高长河,这个“高级甩子”,凭着超人的胆识,不顾眼前的利益得失,作出了与上海某厂兼并的决定。虽然,这从眼前看好像削弱了公有制的主体地位,但从长远看,它则能充分发挥国有资产的作用,搞活经济,从而使公有制的主体地位更巩固,虽然高长河还做了许多令人不快的事情,但这一件,我认为是最能体现出一个改革前沿的干部的魄力的,我们需要这样的干部。 田立业,所谓的“甩子”,“不管部”部长,不任职时,不时地写一些文章,针砭时弊,而一旦任职,则能以身作则,大公无私。对于那些为权势折腰的小人,他毫不留情,嚷出了:“党的权力既不批发,也不零售!”对于奸商,则是义正词严,毫不姑息,为了工人的生命不受侵犯,叫出:“只要是在中国这块土地上,就必须要遵守《中华人民共和国劳动法》。”对于自己的妹妹,也能较好地把握公私的关系,虽然自己是烈山县代书记,却不“顺便”安排一下自己的妹妹,还说:“你下了岗,我也要成待业干部了!”对于同志、革命群众,他不惜用自己的生命去换取别人的生命,把生的希望留给别人,把死的威胁留给自己,最后被无情的洪水夺走了生命,这样的干部,正是我们所需要的,他的死,不能不说是人民的损失。 还有在书一开头,就死缠着高长河解决腐败问题的孙亚东,真正

跨国公司进入及其对中国制造业的影响(一).

跨国公司进入及其对中国制造业的影响(一) 2002年,中国实际使用外商直接投资突破500亿美元,这是中国自改革开放以来首次超过美国,成为全球吸收外商直接投资的“第一大国”。据统计,2002年全国新批准设立外商投资企业34171家,同比增长30.72%;合同利用外资金额827.68亿美元,同比增长19.62%;实际使用外资金额527.43亿美元,同比增长12.51%。它结束了近几年来中国在利用外商直接投资上负增长和低增长的局面,预示了今后几年中国在利用外商直接投资方面新一轮高增长的开端。截至2002年12月底,全国累计批准设立外商投资企业424196个,合同利用外资金额8280.60亿美元,实际使用外资金额4479.66亿美元。根据调查,世界500强中已有400多家来华投资。目前,大型跨国公司来华投资开始成为中国利用外商直接投资的主流。 一、跨国公司进入中国制造业的若干重要特点 最近一个时期以来,随着跨国公司对中国产业转移步伐的加快,中国成为世界“生产制造中心”的呼声越来越高。其实,观察现代跨国公司和传统跨国公司的区别,跨国公司在中国制造业发展中的地位,已由“一个中心”成为“多个中心”。 1.生产制造中心 自20世纪90年代末期以来,中国生产成本低廉,许多外国厂商相继将生产据点移往中国。例如,2001年7月,松下电器公司停止在美国肯塔基州生产微波炉,将其生产基地集中到了上海。8月,东芝公司宣布停止在日本国内生产电视显像管,把包含数字电视在内的电视机生产线全部转移到中国,至此,日本主要彩电制造商松下电器、东芝、三洋电机、三菱电视4个公司都已将彩电生产的主要基地移至中国。此外,日本的其他家电产品如录像机、复印机、空调、CD、单放机、DVD等也主要由日本在中国的工厂生产。据统计,中国在世界出口额中的比例,1990年不足2%,2000年上升为4%,2002年进一步提高至6.5%。就轻工纺织产业看,以家电为例,2001年全国微波炉共计出口1252万台,占当年全国生产量的69%;2001年全国电饭锅共计出口822万台,占当年全国生产量的57%。目前,中国已经成为多数家电产品世界最大制造基地。再以鞋业为例,目前,全球鞋类年产量约100亿双,在中国,2001年广东省鞋类年产量近30亿双,约占世界产量的3/10;温州市鞋类年产量10多亿双,占世界产量的1/10。就中国而言,堪称世界最大的成品鞋生产基地。 一般而言,制造业有消费品制造业和资本品制造业、轻型制造业和重型制造业、一般制造业和装备制造业之分。如果说前一时期跨国公司向中国的国际产业转移主要集中于消费品制造业、轻型制造业或一般制造业的话,那么,自2002年起,资本品制造业、重型制造业或装备制造业将成为跨国公司新一轮向中国的国际产业转移的重点。受“广本汽车”示范引导,2002年,本田、丰田、尼桑都陆续将不少生产厂搬到广州,由此广州可能很快形成一个上千亿元产值的汽车产业。同时,一些跨国公司已开始把集成电路、计算机和通信等高科技产品的生产基地逐步转移中国。例如,菲利浦已投资15亿美元建立了芯片生产厂;由几家大公司联合投资62亿美元设立的芯片生产基地——中芯国际,首批芯片已于2002年底前后下线。此外,新惠普、东芝、夏普、三星等国外主

论我国制造业发展的基本现状

论我国制造业发展的基本现状 广义的制造业是指对制造资源(物料、能源、设备、工具、资金、技术、信息和人力等),按照市场要求,通过制造过程,转化为可供人们使用和利用的工业品与生活消费品的行业。制造业直接体现了一个国家的生产力水平,是区别发展中国家和发达国家的重要因素,制造业在世界发达国家的国民经济中占有重要份额。目前中国是世界第一出口大国,制造业产值也已经超越美国,成为世界第一制造大国。目前我国制造业共有30个行业,根据2005年的统计数据,在制造业30个产业中,通讯设备、计算机及其他电子设备制造业的产值排名第一,达到26994.38亿元,占制造业产值的12.4%。总体来看,传统产业仍是中国制造业的主体。首先必须肯定改革开放以来,中国的制造业已经已经取得了巨大的成就。中国的制造业连续高速增长已有十多年,然而在产值不断增长的同时,也反映出许多问题。下面结合所查找的资料谈谈个人对于我国制造业当前发展现状的看法。 首先,中国“世界第一”的地位是主要依靠的是廉价的劳动力优势。中国所出口的工业产品,大多都是科技含量不高,产品附加值低的劳动密集型产品。中国制造的商品虽然远销海外,但是产品缺乏科技附加值,大都是一些低端的产品,利润较低,通过廉价的劳动力降低生产过程中成本,以获取价格上的优势。因而产品的竞争力低,往往会因为相互压低价格形成恶性竞争。依靠廉价的劳动力赚取低廉的加工费的生产模式显然已经不能适应当今市场经济环境,中国的制造企业必须在发展中寻找新的出路,不断积累管理、技术等方面的经验,鼓励创新精神,不断增加在科研方面投入的人力、物力、财力,摸索出一套适应企业生存发展的新模式,以适应当今的国内背景和国际环境。 其次,我国制造业的生产能耗过大,资源利用分配不合理。自然资源是制造业生产活动的物质基础,具有有限可利用的特性,即资源具有不可再生性。不合理的资源利用会造成资源短缺和环境恶化。环境和生态保护是实现经济社会可持续发展的前提。传统的制造业高发展、高消耗、高污染的粗放型生产造成中国资源严重匮乏,生态急剧恶化。我国是一个工业的大国,同时也是一个能源消耗大国,相关数据显示,我国GDP只占全世界的5.5%,却消耗了全球石油资源的8%,原煤的40%、粗钢的32%等,能耗强度是日本的5倍,平均是发达国家的1.5倍,若不做出及时的调整将会对我国今后制造业的发展起到严重不利的影响。近几年来,党和国家已经意识到高能耗生产所带来的弊端,国家发改委在“十二五”规 “十三五”单位GDP将下降16.6%,划期间提出单位GDP能耗下降17.3%的要求, 使经济增长方式由粗放式逐渐转为为集约型,从而实现经济平稳快速的发展。再次,我国的装备制造业相对落后。装备制造业是为国民经济和国防建设提供生产技术装备的制造业,是制造业的核心组成部分,是国民经济发展特别是工业发展的基础。建立起强大的装备制造业,是提高中国综合国力,实现工业化的根本保证。由于中国的制造业相对发达国家起步较晚,基础薄弱。很多制造业工厂仍在沿用老式的传统机床等加工设备,这些显然已经不能满足现代制造业的加工要求。近来来,国家逐渐重视装备制造业的发展,加大在装备制造业方面的投入,2009年1月1日,中国开始实施的增值税转型就是对国内装备工业的一个很大鼓励,但由于它是一个普适性的政策,不论是高、中、低档的设备,都能够从中

中国制造业与假货泛滥

经济学家谢国忠:谈中国制造业与假货泛滥。 在中国市场上,坏的总能驱逐好的。劣币驱逐良币不可避免。企业将这归咎于中国消费者更偏爱低价,而不考虑质量。但是,真正应该指责的是中国经济的系统性缺陷所造成的可靠信息的缺失。在什么都不可信的情况下,消费者当然就会趋向于选择低价。 中国不能单纯依靠数量扩张来实现经济增长,因为生产劳动力能源土地和环境等各种因素已经遇到瓶颈。生产能力的提高是恢复经济发展的必要条件。因此,对微观经济做出正确决策至关重要。只有提高信息的可信度,中国才有可能从简单的价格竞争发展到以质取胜的均衡。没有法治,单纯依靠市场力量难见成效。以次充好 在中国,当用拉菲酒款待客人时,客人总会认为这酒肯定是假的。不幸的是,这种想法往往是对的。一些极为慷慨的朋友曾经用拉菲酒招待过我。但大多数都是假的。我相信他们都出价不菲。实际上,除非是用离谱的价格买到的,一般人都不敢用拉菲酒招待朋友。 当假货泛滥,消费者也就不再购买了。中国的富豪和权贵阶层不再炫耀喝了多少拉菲酒,因为担心看起来像傻子。消费拉菲的阶层也往下降了好几层。拉菲开始涌入贫穷的省份。大多数人不关心拉菲酒的问题。真正重要的是饭馆是否在饭菜里加了化学添加剂,猪和鸡是不是用大量激素催肥的,牛奶里面是否掺入了三聚氰胺,瓶装水里面装的是不是自来水甚或其他更劣质的水。基本上,中国消费者一出门消费就开始冒生命危险了。中国人努力工作只能挣到微薄的工资,每天还要警惕自己要买的东西。中国的生活质量与经济发展水平是脱节的。 很多企业将这种恶劣的形势归咎于消费者对低价的偏好。因此,为求生存,企业

就偷工减料以降低价格。如果一些化学药品能让白开水喝起来像鸡汤,那么为何不掺一点呢?这能降低价格。如果三聚氰胺能让劣质牛奶以次充好,那么为何不造假呢?这很便宜。 这种观点不无道理。但是,如果人们无法分辨好坏,那么当然就会偏爱低价。我的看法是人们不具备可信的信息,来区分看起来一样的产品。这最能反映出执法上的不足。 食品安全问题每天都在发生。很少有人受到严厉制裁。例如,中国奶制品市场发生三聚氰胺危机以后,以国际标准而论,问题企业应当全部破产,其高层管理人员应当坐牢。但是,ZF却在危机之后不久就让企业复活了。ZF并不站在消费者这一边。这是中国消费市场发展的最大障碍。 制度缺位 中国消费者正在动用一切手段确保产品的安全和质量。出国购物大行其道。但是,这无法满足日常消费。海关也禁止这么做。因此,少数有钱人退而求其次,选择高价商品。可悲的是,这种方法也不管用。 拉菲酒就是一个例子。假货多过真货。昂贵的饭店也没有好到哪里去。天价进口商品,比如家具和衣服,其实都是东莞制造。好卖相常常是因为使用了不安全的化学用品。价格本身并不能作为有效的信号。实际上,越昂贵往往越不安全,因为供应商会用化学制剂增强口味和卖相。 经济学理论认为,长期而言,企业和消费者的关系可以在不需要外力介入的情况下自行解决。随着时间推移,消费者会变得聪明,从而选择那些质量和价格更胜一筹的企业。这就是那些老字号拥有商誉的原因。但是为何这在中国没有发生呢?

相关文档
相关文档 最新文档