文档库

最新最全的文档下载
当前位置:文档库 > 【必考题】七年级数学下期末试卷(带答案)

【必考题】七年级数学下期末试卷(带答案)

【必考题】七年级数学下期末试卷(带答案)

一、选择题

1.下面不等式一定成立的是( )

A .2a a <

B .a a -<

C .若a b >,c d =,则ac bd >

D .若1a b >>,则22a b >

2.已知实数x ,y 满足254()0x y x y +-+-=,则实数x ,y 的值是( )

A .22x y =-??=-?

B .00x y =??=?

C .22x y =??=?

D .33x y =??=? 3.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2

B .3

C .4

D .5 4.已知

是关于x ,y 的二元一次方程x-ay=3的一个解,则a 的值为( ) A .1 B .-1 C .2 D .-2

5.已知关于x ,y 的二元一次方程组231ax by ax by +=??

-=?的解为11x y =??=-?,则a ﹣2b 的值是( )

A .﹣2

B .2

C .3

D .﹣3

6.如图,如果AB ∥CD ,那么下面说法错误的是( )

【必考题】七年级数学下期末试卷(带答案)

A .∠3=∠7

B .∠2=∠6

C .∠3+∠4+∠5+∠6=180°

D .∠4=∠8

7.在平面直角坐标系内,线段CD 是由线段AB 平移得到的,点A (-2,3)的对应点为C (2,5),则点B (-4,-1)的对应点D 的坐标为()

A .()8,3--

B .()4,2

C .()0,1

D .()1,8

8.如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )

【必考题】七年级数学下期末试卷(带答案)

A .16cm

B .18cm

C .20cm

D .21cm 9.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D 等于( )

【必考题】七年级数学下期末试卷(带答案)

A .2

B .3

C .23

D .32

10.在平面直角坐标系中,点B 在第四象限,它到x 轴和y 轴的距离分别是2、5,则点B 的坐标为( )

A .()5,2-

B .()2,5-

C .()5,2-

D .()2,5--

11.已知:ABC ?中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:

①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ?中,90O B ∠≥,④由AB AC =,得

90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( ) A .③④②① B .③④①② C .①②③④ D .④③①②

12.某中学计划租用若干辆汽车运送七年级学生外出进行社会实践活动,如果一辆车乘坐45人,那么有35名学生没有车坐;如果一辆车乘坐60人,那么有一辆车只坐了35人,并且还空出一辆车.设计划租用x 辆车,共有y 名学生.则根据题意列方程组为( )

A .453560(2)35x y x y -=??-=-?

B .453560(2)35x y x y =-??-+=?

C .453560(1)35x y x y +=??-+=?

D .453560(2)35x y y x =+??--=?

二、填空题

13.如图8中图①,两个等边△ABD ,△CBD 的边长均为1,将△ABD 沿AC 方向向 右平移到△A′B′D′的位置得到图②,则阴影部分的周长为_________.

【必考题】七年级数学下期末试卷(带答案)

14.3a ,小数部分是b 3a b -=______.

15.用适当的符号表示a 是非负数:_______________.

16.已知21x y =??=?

是方程组ax 5{1by bx ay +=+=的解,则a ﹣b 的值是___________

17.化简(2-1)0+(1

2

)-2-9+327

=________________________.

18.已知(m-2)x|m-1|+y=0是关于x,y的二元一次方程,则m=______.

19.在平面直角坐标系中,若x轴上的点P到y轴的距离为3,则点P的坐标是

________.

20.步步高超市在2018年初从科沃斯商城购进一批智能扫地机器人,进价为800元,出售时标价为1200元,后来由于该商品积压,超市准备打折销售,但要保证利润率不低于5%,则至多可打_____折.

三、解答题

21.已知△ABC在平面直角坐标系中的位置如图所示.将△ABC向右平移6个单位长度,再向下平移6个单位长度得到△A1B1C1.(图中每个小方格边长均为1个单位长度).

【必考题】七年级数学下期末试卷(带答案)

(1)在图中画出平移后的△A1B1C1;

(2)直接写出△A1B1C1各顶点的坐标

(3)求出△A1B1C1的面积

22.如图1,点A、B在直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,

∠EAC+∠ACE=90°.

(1)请判断1l与2l的位置关系并说明理由;

(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.

【必考题】七年级数学下期末试卷(带答案)

【必考题】七年级数学下期末试卷(带答案)

【必考题】七年级数学下期末试卷(带答案)

23.如图,已知AB∥CD.

(1)发现问题:若∠ABF=

1

2

∠ABE,∠

【必考题】七年级数学下期末试卷(带答案)

CDF=

1

2

∠CDE,则∠F与∠E的等量关系

为.

(2)探究问题:若∠ABF=

1

3

∠ABE,∠CDF

【必考题】七年级数学下期末试卷(带答案)

1

3

∠CDE.猜想:∠F与∠E的等量关系,并证明你的结论.

(3)归纳问题:若∠ABF=

1

n

∠ABE,∠CDF=

1

n

∠CDE.直接写出∠F与∠E的等量关系.

24.如图,已知在ABC

?中,FG EB

P,23

∠∠

=,说明180

EDB DBC

∠+∠=?的理由.

解:∵FG EB

P(已知),

∴_________=_____________(____________________).

∵23

∠∠

=(已知),

∴_________=_____________(____________________).

∴DE BC

∥(___________________).

∴180

EDB DBC

∠+∠=?(_________________________).

25.解不等式组:

5(1)21

11

1(3)

32

x x

x x

+>-

?

?

?

-≥-

??

,并把它的解集在数轴上表示出来.

【必考题】七年级数学下期末试卷(带答案)

【参考答案】***试卷处理标记,请不要删除

一、选择题

1.D

解析:D

【解析】

【分析】

根据不等式两边加(或减)同一个数(或式子),不等号的方向不变,不等式两边乘(或除以)同一个正数,不等号的方向不变,不等式两边乘(或除以)同一个负数,不等号的方向改变,可得答案.

【详解】

A. 当0a ≤时,

2

a a ≥,故A 不一定成立,故本选项错误; B. 当0a ≤时,a a -≥,故B 不一定成立,故本选项错误; C. 若a

b >,当0

c

d =≤时,则ac bd ≤,故C 不一定成立,故本选项错误;

D. 若1a b >>,则必有22a b >,正确;

故选D .

【点睛】

主要考查了不等式的基本性质.“0”是很特殊的数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.

2.C

解析:C

【解析】

【分析】

根据绝对值和平方的非负性,得到二元一次方程粗,求解即可得到答案.

【详解】

解:∵实数x ,y 满足2

54()0x y x y +-+-=, ∴40x y +-=且2()0x y -=,

即400x y x y +-=??-=?

解得:

2

2 x

y

=

?

?

=

?

故选C.

【点睛】

本题只要考查了绝对值和平方的非负性,知道一个数的绝对值不可能为负数和平方后所得的数非负数是解题的关键.

3.D

解析:D

【解析】

∵方程2x+a﹣9=0的解是x=2,∴2×2+a﹣9=0,

解得a=5.故选D.

4.B

解析:B

【解析】

【分析】

把代入x-ay=3,解一元一次方程求出a值即可.

【详解】

∵是关于x,y的二元一次方程x-ay=3的一个解,

∴1-2a=3

解得:a=-1

故选B.

【点睛】

本题考查二元一次方程的解,使方程左右两边相等的未知数的值,叫做方程的解;一组数是方程的解,那么它一定满足这个方程.

5.B

解析:B

【解析】

【详解】

1

1

x

y

=

?

?

=-

?

代入方程组

23

1

ax by

ax by

+=

?

?

-=

?

得:

23

1

a b

a b

-=

?

?

+=

?

解得:

4

3

1

3 a

b

?

=

??

?

?=-

??

所以a?2b=4

3

?2×(

1

3

-)=2.

故选B.

6.D

解析:D

【解析】

【分析】

【详解】

根据两直线平行,内错角相等得到∠3=∠7,∠2=∠6;

根据两直线平行,同旁内角互补得到∠3+∠4+∠5+∠6=180°.

而∠4与∠8是AD和BC被BD所截形成得内错角,则∠4=∠8错误,

故选D.

7.C

解析:C

【解析】

【分析】

根据点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,以此规律可得D的对应点的坐标.

【详解】

点A(-2,3)的对应点为C(2,5),可知横坐标由-2变为2,向右移动了4个单位,3变为5,表示向上移动了2个单位,

于是B(-4,-1)的对应点D的横坐标为-4+4=0,点D的纵坐标为-1+2=1,

故D(0,1).

故选C.

【点睛】

此题考查了坐标与图形的变化----平移,根据A(-2,3)变为C(2,5)的规律,将点的变化转化为坐标的变化是解题的关键.

8.C

解析:C

【解析】

试题分析:已知,△ABE向右平移2cm得到△DCF,根据平移的性质得到EF=AD=2cm,AE=DF,又因△ABE的周长为16cm,所以AB+BC+AC=16cm,则四边形ABFD的周长

=AB+BC+CF+DF+AD=16cm+2cm+2cm=20cm.故答案选C.

考点:平移的性质.

9.A

解析:A

【解析】

分析:由S△ABC=9、S△A′EF=4且AD为BC边的中线知S△A′DE=1

2

S△A′EF=2,

S△ABD=1

2

S△ABC=

9

2

,根据△DA′E∽△DAB知2A DE

ABD

S

A D

AD S

'

'

=V

V

(),据此求解可得.

详解:如图,

【必考题】七年级数学下期末试卷(带答案)

∵S △ABC =9、S △A′EF =4,且AD 为BC 边的中线,

∴S △A′DE =12S △A′EF =2,S △ABD =12S △ABC =92

, ∵将△ABC 沿BC 边上的中线AD 平移得到△A'B'C',

∴A′E ∥AB ,

∴△DA′E ∽△DAB , 则2A DE ABD S A D AD S ''=V V (),即22912

A D A D '='+(), 解得A′D=2或A′D=-

25

(舍), 故选A .

点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点. 10.A

解析:A

【解析】

【分析】

先根据点B 所在的象限确定横纵坐标的符号,然后根据点B 与坐标轴的距离得出点B 的坐标.

【详解】

∵点B 在第四象限内,∴点B 的横坐标为正数,纵坐标为负数

∵点B 到x 轴和y 轴的距离分别是2、5

∴横坐标为5,纵坐标为-2

故选:A

【点睛】

本题考查平面直角坐标系中点的特点,在不同象限内,坐标点横纵坐标的正负是不同的: 第一象限内,则横坐标为正,纵坐标为正;

第二象限内,则横坐标为负,纵坐标为正;

第三象限内,则横坐标为负,纵坐标为负;

第四象限内,则横坐标为正,纵坐标为负.

11.B

解析:B

【解析】

【分析】

根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.

【详解】

题目中“已知:△ABC中,AB=AC,求证:∠B<90°”,用反证法证明这个命题过程中的四个推理步骤:

应该为:(1)假设∠B≥90°,

(2)那么,由AB=AC,得∠B=∠C≥90°,即∠B+∠C≥180°,

(3)所以∠A+∠B+∠C>180°,这与三角形内角和定理相矛盾,

(4)因此假设不成立.∴∠B<90°,

原题正确顺序为:③④①②,

故选B.

【点睛】

本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.

12.B

解析:B

【解析】

根据题意,易得B.

二、填空题

13.2【解析】【分析】根据两个等边△ABD△CBD的边长均为1将△ABD沿AC方向向右平移到△ABD的位置得出线段之间的相等关系进而得出OM+MN+NR+GR+E G+OE=A′D′+CD=1+1=2即可

解析:2

【解析】

【分析】

根据两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A’B’D’的位置,得出线段之间的相等关系,进而得出OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2,即可得出答案.

【详解】

解:∵两个等边△ABD,△CBD的边长均为1,将△ABD沿AC方向向右平移到△A′B′D′的位置,

【必考题】七年级数学下期末试卷(带答案)

∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,

∴OM+MN+NR+GR+EG+OE=A′D′+CD=1+1=2;

故答案为2.

14.【解析】【详解】若的整数部分为a小数部分为b∴a=1b=∴a-b==1故答案为1

解析:【解析】

【详解】

【必考题】七年级数学下期末试卷(带答案)

a,小数部分为b,

【必考题】七年级数学下期末试卷(带答案)

∴a=1,b1,

【必考题】七年级数学下期末试卷(带答案)

【必考题】七年级数学下期末试卷(带答案)

【必考题】七年级数学下期末试卷(带答案)

-b1)=1.

故答案为1.

15.a≥0【解析】【分析】非负数即大于等于0据此列不等式【详解】由题意得a ≥0故答案为:a≥0

解析:a≥0

【解析】

【分析】

非负数即大于等于0,据此列不等式.

【详解】

由题意得a≥0.

故答案为:a≥0.

16.4;【解析】试题解析:把代入方程组得:①×2-②得:3a=9即a=3把a=3代入②得:b=-1则a-b=3+1=4

解析:4;

【解析】

试题解析:把

2

1

x

y

=

?

?

=

?

代入方程组得:

25

{

21

a b

b a

+

+

=①

=②

①×2-②得:3a=9,即a=3,

把a=3代入②得:b=-1,

则a-b=3+1=4,

17.-1【解析】分析:直接利用负指数幂的性质以及零指数幂的性质算术平方根的性质分别化简得出答案详解:原式=1+4-3-3=-1故答案为:-1点睛:此题主要考查了实数运算正确化简各数是解题关键

解析:-1

【解析】

分析:直接利用负指数幂的性质以及零指数幂的性质、算术平方根的性质分别化简得出答案.

详解:原式=1+4-3-3

=-1.

故答案为:-1.

点睛:此题主要考查了实数运算,正确化简各数是解题关键.

18.0【解析】【分析】根据二元一次方程的定义可以得到x 的次数等于1且系数不等于0由此可以得到m 的值【详解】根据二元一次方程的定义得|m-1|=1且m-2≠0解得m=0故答案为0【点睛】考查了二元一次方程

解析:0

【解析】

【分析】

根据二元一次方程的定义,可以得到x 的次数等于1,且系数不等于0,由此可以得到m 的值.

【详解】

根据二元一次方程的定义,得

|m-1|=1且m-2≠0,

解得m=0,

故答案为0.

【点睛】

考查了二元一次方程的定义.二元一次方程必须符合以下三个条件: (1)方程中只含有2个未知数; (2)含未知数项的最高次数为一次;(3)方程是整式方程.

19.(±30)【解析】解:若x 轴上的点P 到y 轴的距离为3则∴x=±3故P 的坐标为(±30)故答案为:(±30)

解析:(±3,0)

【解析】

解:若x 轴上的点P 到y 轴的距离为3,则3x =,∴x =±

3.故P 的坐标为(±3,0).故答案为:(±3,0).

20.【解析】【分析】本题可设打x 折根据保持利润率不低于5可列出不等式:解出x 的值即可得出打的折数【详解】设可打x 折则有解得即最多打7折故答案为7【点睛】考查一元一次不等式的应用读懂题目找出题目中的不等关

解析:【解析】

【分析】

本题可设打x 折,根据保持利润率不低于5%,可列出不等式:

12008008005%10

x ,?

-≥? 解出x 的值即可得出打的折数. 【详解】 设可打x 折,则有12008008005%10

x ,?

-≥? 解得7.x ≥

即最多打7折.

故答案为7.

【点睛】

考查一元一次不等式的应用,读懂题目,找出题目中的不等关系,列出不等式是解题的关键.

三、解答题

21.(1)详见解析;(2)A1(4,?2), B1(1,?4), C1(2,?1);(3)7 2

【解析】

【分析】

(1)直接利用平移的性质得出A,B,C平移后对应点位置;

(2)利用(1)中图形得出各对应点坐标;

(3)利用△A1B1C1所在矩形面积减去周围三角形面积即可得出答案.【详解】

(1)如图所示:△A1B1C1,即为所求;

【必考题】七年级数学下期末试卷(带答案)

(2)如图所示:A1(4,?2), B1(1,?4), C1(2,?1);

(3) △A1B1C1的面积为:3×3?1

2

×1×3?

1

2

×1×2?

1

2

×2×3=3.5

【点睛】

此题考查作图-平移变换,解题关键在于掌握作图法则

22.(1)1l∥2l;(2)①当Q在C点左侧时,∠BAC=∠CQP +∠CPQ,②当Q在C点右侧时,∠CPQ+∠CQP+∠BAC=180°.

【解析】

【分析】

(1)先根据CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠1,∠ACD=2∠2,再由∠1+∠2=90°可知∠BAC+∠ACD=180,故可得出结论;

(2)分两种情况讨论:①当Q在C点左侧时;②当Q在C点右侧时.

【详解】

解:(1)1l∥2l.理由如下:

∵AE平分∠BAC,CE平分∠ACD(已知),

∴∠BAC=2∠1,∠ACD=2∠2(角平分线的定义);

又∵∠1+∠2=90°(已知),

∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°(等量代换)

【必考题】七年级数学下期末试卷(带答案)

∴1l∥2l(同旁内角互补,两直线平行)

(2)①当Q在C点左侧时,过点P作PE∥1l.

∵1l∥2l(已证),

∴PE∥2l(同平行于一条直线的两直线互相平行),

∴∠1=∠2,(两直线平行,内错角相等),

∠BAC=∠EPC,(两直线平行,同位角相等),

【必考题】七年级数学下期末试卷(带答案)

又∵∠EPC=∠1+∠CPQ,

∴∠BAC=∠CQP +∠CPQ(等量代换)

②当Q在C点右侧时,过点P作PE∥1l.

∵1l∥2l(已证),

∴PE∥2l(同平行于一条直线的两直线互相平行),

∴∠1=∠2,∠BAC=∠APE,(两直线平行,内错角相等),

又∵∠EPC=∠1+∠CPQ,

【必考题】七年级数学下期末试卷(带答案)

∠APE+∠EPC=180°(平角定义)

∴∠CPQ+∠CQP+∠BAC=180°.

【点睛】

本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.

23.(1)∠BED=2∠BFD;(2)∠BED=3∠BFD,见解析;(3)∠BED=n∠BFD.【解析】

【分析】

(1)过点E,F分别作AB的平行线EG,FH,由平行线的传递性可得

AB∥EG∥FH∥CD,根据平行线的性质得到∠ABF=∠BFH,∠CDF=∠DFH,从而得出∠BFD=∠CDF+∠ABF,同理可得出∠BED=∠ABE+∠CDE,最后可得出∠BED=

2∠BFD;

(2)同(1)可知∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,再根据∠ABF=

1 3∠ABE,∠CDF=

1

3

∠CDE即可得到结论;

(3)同(1)(2)的方法即可得出∠F与∠E的等量关系.

【详解】

解:(1)过点E、F分别作AB的平行线EG,FH,由平行线的传递性可得AB∥EG∥FH∥CD,

【必考题】七年级数学下期末试卷(带答案)

∵AB∥FH,

∴∠ABF=∠BFH,

∵FH∥CD,

∴∠CDF=∠DFH,

∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;

同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE,

∵∠ABF=1

2

∠ABE,∠CDF=

1

2

∠CDE,

∴∠BFD=∠CDF+∠ABF=1

2

(∠ABE+∠CDE)=

1

2

∠BED,

∴∠BED=2∠BFD.

故答案为:∠BED=2∠BFD;

(2)∠BED=3∠BFD.证明如下:

同(1)可得,

∠BFD=∠CDF+∠ABF,∠BED=∠ABE+∠CDE,

∵∠ABF=1

3

∠ABE,∠CDF=

1

3

∠CDE,

∴∠BFD =∠CDF +∠ABF =

13(∠ABE +∠CDE )=13

∠BED , ∴∠BED =3∠BFD .

(3)同(1)(2)可得, ∠BFD =∠CDF +∠ABF ,∠BED =∠ABE +∠CDE ,

∵∠ABF =1n ∠ABE ,∠CDF =1n

∠CDE , ∴∠BFD =∠CDF +∠ABF =

1n (∠ABE +∠CDE )=1n ∠BED , ∴∠BED =n ∠BFD .

【点睛】

本题主要考查了平行线的性质和角平分线、n 等分线的运用,解决问题的关键是作辅助线构造内错角,依据平行线的性质进行推导计算,解题时注意类比思想和整体思想的运用.

24.1∠;2∠;两直线平行,同位角相等;1∠;3∠;等量代换;内错角相等,两直线平行;两直线平行,同旁内角互补

【解析】

【分析】

先根据FG ∥EB 得出12∠=∠,进而推导出13∠=∠,证明DE ∥BC ,从而得出同旁内角互补.

【详解】

解:∵FG ∥EB (已知),

∴12∠=∠(两直线平行,同位角相等).

∵23∠∠=(已知),

∴13∠=∠(等量代换).

∴DE ∥BC (内错角相等,两直线平行).

∴180EDB DBC ∠+∠=?(两直线平行,同旁内角互补).

【点睛】

本题考查平行线的性质和证明,需要注意仅当两直线平行时才有:同位角相等、内错角相等、同旁内角互补.

25.﹣2<x ≤3,表示在数轴上见解析.

【解析】

【分析】

分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,然后把不等式的解集表示在数轴上即可.

【详解】

5(1)21111(3)32x x x x ①②+>-???-≥-??

, 解①得:x >﹣2,

解②得:x≤3,

故不等式组的解集是:﹣2<x≤3,

表示在数轴上如下:

【必考题】七年级数学下期末试卷(带答案)

【点睛】

本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.