文档库 最新最全的文档下载
当前位置:文档库 › 微分方程自测题

微分方程自测题

微分方程自测题
微分方程自测题

阶段自测题(七) 微分方程

挂牌班______ 自然班_______ 姓名_________ 学号__________ 序号____

一、 选择题

1. 下列各组特解中,( )可组成方程:034=+'+''y y y 的通解。

A .x e -与x e -2;

B 。x e -与x e 3-;

C 。x e 3-与x e 34-。

2、方程x e x y y y 3)1(96+=+'-''的特解*y 应设为( )。

A .x e b ax 3)(+;

B 。x e b ax x 3)(+;

C 。x e b ax x 32)(+。

3、微分方程x x y y sin 12++=+''的特解形式可设为( )。

A. )cos sin (2*x B x A x c bx ax y ++++=

B. )cos sin (2*x B x A c bx ax x y ++++=

C. x A c bx ax y sin 2*+++=

D.

x A c bx ax y cos 2*+++=。

二、 计算题

1. 求下列一阶微分方程的通解:

()1 ()()221120x y dx xydy +++=

()2 21

dy

dx x y =-

()3

0d 3)d (233=-+y xy x y x

(4)4)21(3

131y x y y -=+'

(5)

()2dy x y dx

=+

2. 求下列常系数微分方程的通解: (1)x xe y y y -=+'+''323

(2)x

=

+''

+

y x cos

e

y

3. 求下列微分方程满足初始条件的特解:

(1).0|,1|,

01113='==+''==x x y y y y

(2).7

33|,76|,

910002='==+'-''==x x x y y e y y y

三、 应用题

某种飞机在机场降落时,为了减小滑行距离,在触地的瞬间,飞机尾部张开减速伞,以增大阻力,使飞机迅速减速并停下来.

现有一质量为kg 9000

的飞机,着陆时的水平速度为h km /700,经测试,减速伞打开后,飞机所受的总阻力与飞机的速度成正比(比例系数为6100.6?=k ).问从着陆点算起,飞机滑行的最长距离是多少?

常微分方程练习题及答案复习题)

常微分方程练习试卷 一、 填空题。 1. 方程23 2 10d x x dt +=是 阶 (线性、非线性)微分方程. 2. 方程 ()x dy f xy y dx =经变换_______,可以化为变量分离方程 . 3. 微分方程 3230d y y x dx --=满足条件(0)1,(0)2y y '==的解有 个. 4. 设常系数方程 x y y y e αβγ'''++=的一个特解*2()x x x y x e e xe =++,则此方程的系数α= ,β= ,γ= . 5. 朗斯基行列式 ()0W t ≡是函数组12(),(),,()n x t x t x t 在a x b ≤≤上线性相关的 条件. 6. 方程 22(2320)0xydx x y dy ++-=的只与y 有关的积分因子为 . 7. 已知 ()X A t X '=的基解矩阵为()t Φ的,则()A t = . 8. 方程组 20'05??=???? x x 的基解矩阵为 . 9.可用变换 将伯努利方程 化为线性方程. 10 .是满足方程 251y y y y ''''''+++= 和初始条件 的唯一解. 11.方程 的待定特解可取 的形式: 12. 三阶常系数齐线性方程 20y y y '''''-+=的特征根是 二、 计算题 1.求平面上过原点的曲线方程, 该曲线上任一点处的切线与切点和点(1,0)的连线相互垂直. 2.求解方程13 dy x y dx x y +-=-+. 3. 求解方程 222()0d x dx x dt dt += 。 4.用比较系数法解方程. . 5.求方程 sin y y x '=+的通解. 6.验证微分方程 22(cos sin )(1)0x x xy dx y x dy -+-=是恰当方程,并求出它的通解.

常微分方程期中考试题

常微分方程期中测试试卷(1) 一、填空 1 微分方程 ) (2 2= + - +x y dx dy dx dy n 的阶数是____________ 2 若 ) , (y x M和) , (y x N在矩形区域R内是) , (y x的连续函数,且有连续的一阶偏导数,则 方程 ) , ( ) , (= +dy y x N dx y x M有只与y有关的积分因子的充要条件是 _________________________ 3 _________________________________________ 称为齐次方程. 4 如果 ) , (y x f___________________________________________ ,则 ) , (y x f dx dy = 存在唯 一的解 ) (x y? =,定义于区间h x x≤ - 0上,连续且满足初始条件 ) ( x y? = ,其中 = h_______________________ . 5 对于任意的 ) , ( 1 y x,) , ( 2 y x R ∈ (R为某一矩形区域),若存在常数)0 (> N N使 ______________________ ,则称 ) , (y x f在R上关于y满足利普希兹条件. 6 方程 2 2y x dx dy + = 定义在矩形区域R:2 2 ,2 2≤ ≤ - ≤ ≤ -y x上 ,则经过点)0,0(的解 的存在区间是 ___________________ 7 若 ) ,..... 2,1 )( (n i t x i = 是齐次线性方程的n个解,)(t w为其伏朗斯基行列式,则)(t w满足 一阶线性方程 ___________________________________ 8若 ) ,..... 2,1 )( (n i t x i = 为齐次线性方程的一个基本解组, )(t x为非齐次线性方程的 一个特解,则非齐次线性方程的所有解可表为 _________________________ 9若 ) (x ?为毕卡逼近序列{})(x n?的极限,则有≤ -) ( ) (x x n ? ? __________________ 10 _________________________________________ 称为黎卡提方程,若它有一个特解 ) (x y,则经过变换___________________ ,可化为伯努利方程. 二求下列方程的解 1 3 y x y dx dy + = 2求方程 2 y x dx dy + = 经过 )0,0(的第三次近似解 3讨论方程 2 y dx dy = , 1 )1(= y的解的存在区间 4 求方程 1 ) (2 2= - +y dx dy 的奇解

常微分方程试题库

常微分方程试题库 二、计算题(每题6分) 1. 解方程:0cot tan =-xdy ydx ; 2. 解方程:x y x y e 2d d =+; 3. 解方程:; 4. 解方程: t e x dt dx 23=+; 5. 解方程:0)2(=+---dy xe y dx e y y ; 6. 解方程:0)ln (3=++dy x y dx x y ; 7. 解方程:0)2()32(3222=+++dy y x x dx y x xy ; 8. 解方程:0485=-'+''-'''x x x x ; 9. 解方程:02)3()5()7(=+-x x x ; 10. 解方程:02=-''+'''x x x ; 11. 解方程:1,0='-'='+'y x y x ; 12. 解方程: y y dx dy ln =; 13. 解方程:y x e dx dy -=; 14. 解方程:02)1(22=+'-xy y x ; 15. 解方程:x y dx dy cos 2=; 16. 解方程:dy yx x dx xy y )()(2222+=+; 17. 解方程:x xy dx dy 42=+; 18. 解方程:23=+ρθ ρ d d ; 19. 解方程:22x y xe dx dy +=; 20. 解方程:422x y y x =-'; 选题说明:每份试卷选2道题为宜。

二、计算题参考答案与评分标准:(每题6分) 1. 解方程:0cot tan =-xdy ydx 解: ,2,1,0,2 ,±±=+==k k x k y π ππ是原方程的常数解, (2分) 当2 ,π ππ+ ≠≠k x k y 时,原方程可化为: 0cos sin sin cos =-dx x x dy y y , (2分) 积分得原方程的通解为: C x y =cos sin . (2分) 2. 解方程: x y x y e 2d d =+ 解:由一阶线性方程的通解公式 ? ? +? =-),)(()()(dx e x f C e y dx x p dx x p (2分) x x x x dx x dx e Ce dx e C e dx e e C e 3 1 )() (23222+=+=?+?=---?? 分) (分) (22 3. 解方程: 解:由一阶线性方程的通解公式 ??+?=-))(()()(dx e x f C e y dx x p dx x p (2分) =??+?-)sec (tan tan dx xe C e xdx xdx (2分) ?+=)sec (cos 2xdx C x x x C sin cos +=. (2分) 4. 解方程: t e x dt dx 23=+ 解:由一阶线性方程的通解公式 ??+? =-))(()()(dt e t f C e x dt t p dt t p (2分) =??+?-)(323dt e e C e dt t dt (2分) ?+=-)(53dt e C e t t

高等数学微分方程练习题

(一)微分方程的基本概念 微分方程:含未知函数的导数或微分的方程,称为微分方程、 微分方程的阶:微分方程所含未知函数的最高阶导数或微分的阶数称为微分方程的阶数、 1、不就是一阶微分方程. A、正确 B、不正确 2、不就是一阶微分方程. A、正确 B、不正确 一阶线性微分方程:未知函数及其导数都就是一次的微分方程d ()() d y P x y Q x x +=称为一阶 线性微分方程、 微分方程的解:如果一个函数代入微分方程后,方程两边恒等,则称此函数为微分方程的解、通解:如果微分方程的解中所含独立任意常数C的个数等于微分方程的阶数,则此解称为微分方程的通解、 特解:在通解中根据附加条件确定任意常数C的值而得到的解,称为特解、 1、就是微分方程的解. A、正确 B、不正确 2、就是微分方程的解. A、正确 B、不正确 3、就是微分方程的通解. A、正确 B、不正确 4、微分方程的通解就是( ). A、 B、 C、 D、

(二)变量可分离的微分方程:()()dy f x g y dx = 一阶变量可分离的微分方程的解法就是: (1)分离变量:1221()()()()g y f x dy dx g y f x =;(2)两边积分:1221()()()()g y f x dy dx g y f x =?? 左边对y 积分,右边对x 积分,即可得微分方程通解、 1、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 2、微分方程的通解就是( ). A 、 B 、 C 、 D 、 3、微分方程的通解就是( ). A 、 B 、 C 、 D 、 4、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 5、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 6、微分方程的通解( ). A 、 B 、 C 、 D 、 7、微分方程 的通解就是( ). A 、 B 、 C 、 D 、 8、 x y dy e dx -=就是可分离变量的微分方程. A 、正确 B 、不正确

《常微分方程》期末模拟试题

《常微分方程》模拟练习题及参考答案 一、填空题(每个空格4分,共80分) 1、n 阶线性齐次微分方程基本解组中解的个数恰好是 n 个。 2、一阶微分方程 2=dy x dx 的通解为 2=+y x C (C 为任意常数) ,方程与通过点(2,3)的特解为 2 1=-y x ,与直线y=2x+3相切的解是 2 4=+y x ,满足条件3 3ydx =?的解为 22=-y x 。 3、李普希兹条件是保证一阶微分方程初值问题解惟一的 必要 条件。 4、对方程 2()dy x y dx =+作变换 =+u x y ,可将其化为变量可分离方程,其通解为 tan()=+-y x C x 。 5、方程过点共有 无数 个解。 6、方程 ''2 1=-y x 的通解为 42 12122=-++x x y C x C ,满足初始条件13|2,|5====x x y y 的特解为 4219 12264 =-++x x y x 。 7、方程 无 奇解。 8、微分方程2260--=d y dy y dx dx 可化为一阶线性微分方程组 6?=??? ?=+??dy z dx dz z y dx 。 9、方程 的奇解是 y=0 。 10、35323+=d y dy x dx dx 是 3 阶常微分方程。 11、方程 22dy x y dx =+满足解得存在唯一性定理条件的区域是 xoy 平面 。 12、微分方程22450d y dy y dx dx --=通解为 512-=+x x y C e C e ,该方程可化为一阶线性微分方程组 45?=??? ?=+??dy z dx dz z y dx 。 2 1d d y x y -=)1,2 (πx x y x y +-=d d y x y =d d

微分方程习题及答案

微分方程习题及答案

微分方程习题 §1 基本概念 1. 验证下列各题所给出的隐函数是微分方程的解. (1)y x y y x C y xy x -='-=+-2)2(,22 (2)?'=''=+y 0 222 t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数) (一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.) (1)1) (22=++y C x ; (2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。 (1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。 (2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。 (3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。 §2可分离变量与齐次方程

1.求下列微分方程的通解 (1)2211y y x -='-; (2)0tan sec tan sec 22=?+?xdy y ydx x ; (3)23xy xy dx dy =-; (4)0)22()22(=++-++dy dx y y x x y x . 2.求下列微分方程的特解 (1)0 ,02=='=-x y x y e y ; (2)21 ,12==+'=x y y y y x 3. 求下列微分方程的通解 (1))1(ln +='x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解 (1)1 ,022=-==x y y x xy dx dy ; (2)1 ,02)3(022==+-=x y xydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程 (1)2)(y x y +='; (2))ln (ln y x y y y x +=+' (3)11 +-='y x y

二阶微分方程解法知识讲解

二阶微分方程解法

第六节 二阶常系数齐次线性微分方程 教学目的:使学生掌握二阶常系数齐次线性微分方程的解法,了解二阶常系数非齐 次线性微分方程的解法 教学重点:二阶常系数齐次线性微分方程的解法 教学过程: 一、二阶常系数齐次线性微分方程 二阶常系数齐次线性微分方程: 方程 y ''+py '+qy =0 称为二阶常系数齐次线性微分方程, 其中p 、q 均为常数. 如果y 1、y 2是二阶常系数齐次线性微分方程的两个线性无关解, 那么y =C 1y 1+C 2y 2就是它的通解. 我们看看, 能否适当选取r , 使y =e rx 满足二阶常系数齐次线性微分方程, 为此将y =e rx 代入方程 y ''+py '+qy =0 得 (r 2+pr +q )e rx =0. 由此可见, 只要r 满足代数方程r 2+pr +q =0, 函数y =e rx 就是微分方程的解. 特征方程: 方程r 2+pr +q =0叫做微分方程y ''+py '+qy =0的特征方程. 特征方程的两个根r 1、r 2可用公式 2 422,1q p p r -±+-= 求出. 特征方程的根与通解的关系: (1)特征方程有两个不相等的实根r 1、r 2时, 函数x r e y 11=、x r e y 22=是方程的两个线性无关的解. 这是因为,

函数x r e y 11=、x r e y 22=是方程的解, 又x r r x r x r e e e y y )(21212 1-==不是常数. 因此方程的通解为 x r x r e C e C y 2121+=. (2)特征方程有两个相等的实根r 1=r 2时, 函数x r e y 11=、x r xe y 12=是二阶常系数齐次线性微分方程的两个线性无关的解. 这是因为, x r e y 11=是方程的解, 又 x r x r x r x r x r x r qxe e xr p e xr r xe q xe p xe 111111)1()2()()()(1211++++=+'+'' 0)()2(121111=++++=q pr r xe p r e x r x r , 所以x r xe y 12=也是方程的解, 且x e xe y y x r x r ==1112不是常数. 因此方程的通解为 x r x r xe C e C y 1121+=. (3)特征方程有一对共轭复根r 1, 2=α±i β时, 函数y =e (α+i β)x 、y =e (α-i β)x 是微分方程的两个线性无关的复数形式的解. 函数y =e αx cos βx 、y =e αx sin βx 是微分方程的两个线性无关的实数形式的解. 函数y 1=e (α+i β)x 和y 2=e (α-i β)x 都是方程的解, 而由欧拉公式, 得 y 1=e (α+i β)x =e αx (cos βx +i sin βx ), y 2=e (α-i β)x =e αx (cos βx -i sin βx ), y 1+y 2=2e αx cos βx , )(2 1cos 21y y x e x +=βα, y 1-y 2=2ie αx sin βx , )(21sin 21y y i x e x -=βα. 故e αx cos βx 、y 2=e αx sin βx 也是方程解. 可以验证, y 1=e αx cos βx 、y 2=e αx sin βx 是方程的线性无关解. 因此方程的通解为

微分方程练习题基础篇答案

常微分方程基础练习题答案 求下列方程的通解 1.dy xy dx = 分离变量 dy xdx y =,2 2x y Ce =,C 为任意常数 2.0xydx = 分离变量 dy y = ,y =C 任意常数 3.ln 0xy y y '-= 分离变量 1 ln dy dx y y x =,x y Ce = 224.()()0xy x dx x y y dy ++-= 分离变量 22 11ydy xdx y x =+-,22 (1)(1)y x C +-= 2 5.(25)dy x y dx =++ 令25u x y =++则2du dy dx dx =+,22du dx u =+ 1x C =+ 6.dy x y dx x y +=-,原方程变为11y dy x y dx x + =-,令y u x =,dy du u x dx dx =+,代入得22111u du dx u x -=+ 2arctan ln u u x C -=+ , y u x = 回代得通解 2arctan ln y y x C x x =++ 7.0xy y '-= 方程变形为0dy y dx x =+=,令y u x = dx x = arctan ln u x C =+, y u x = 回代得通解arctan ln y y x C x x =++ 8.ln dy y x y dx x =,方程变形为ln dy y y dx x x =,令y u x =,(ln 1)du dx u u x =-,1 Cx u e +=,1Cx y xe +=

9.24dy xy x dx +=,一阶线性公式法222(4)2xdx xdx x y e xe dx C Ce --??=+=+? 210.2dy y x dx x -=,一阶线性公式法112 3(2)dx dx x x y e x e dx C x Cx -??=+=+? 2211.(1)24x y xy x '++=,方程变形为2 222411x x y y x x '+=++一阶线性公式法3 2 14()13 y x C x =++ 212.(6) 20dy y x y dx -+=,方程变形为312dx x y dy y -=-一阶线性公式法2312y y Cy =+ 2 13.3y xy xy '-=,方程变形为2113dy x x y dx y -=伯努利方程,令12,dz dy z y y dx dx --==-代入方程得 3dz xz x dx +=-一阶线性公式法再将z 回代得23 2 113x Ce y -=- 411 14. (12)33 dy y x y dx +=-,方程变形为4 3 1111(12)33dy x y dx y +=-伯努利方程,令 34, 3dz dy z y y dx dx --==-代入方程得21dz z x dx -=-,一阶线性公式法再将z 回代得3121x Ce x y =-- 15.560y y y '''++=,特征方程为2560r r ++=,特征根为122,3r r =-=-,通解 2312x x y C e C e --=+ 16.162490y y y '''-+=,特征方程为2 162490r r -+=,特征根为1,23 4 r =,通解 34 12()x y C C x e =+

常微分方程期末考试练习题及答案

一,常微分方程的基本概念 常微分方程: 含一个自变量x,未知数y及若干阶导数的方程式。一般形式为:F(x,y,y,.....y(n))=0 (n≠0). 1. 常微分方程中包含未知函数最高阶导数的阶数称为该方程的阶。如:f(x)(3)+3f(x)+x=f(x)为3阶方程。 2.若f(x)使常微分方程两端恒等,则f(x)称为常微分方程的解。 3.含有独立的任意个常数(个数等于方程的阶数)的方程的解称为常微分方程的通解。如常系数三阶微分方程F(t,x(3))=0的通解的形式为:x(t)=c1x(t)+c2x(t)+c3x(t)。 4.满足初值条件的解称为它的特解(特解不唯一,亦可能不存在)。 5.常微分方程之线性及非线性:对于F(x,y,y,......y(n))=0而言,如果方程之左端是y,y,......y(n)的一次有理式,则次方程为n阶线性微分方程。(方程线性与否与自变量无关)。如:xy(2)-5y,+3xy=sinx 为2阶线性微分方程;y(2)+siny=0为非线性微分方程。 注:a.这里主要介绍几个主要的,常用的常微分方程的基本概念。余者如常微分方程之显隐式解,初值条件,初值问题等概念这里予以略去。另外,有兴趣的同学不妨看一下教材23页的雅可比矩阵。 b.教材28页第八题不妨做做。 二.可分离变量的方程 A.变量分离方程

1.定义:形如 dx dy =f (x)φ(y)的方程,称为分离变量方程。这里f (x ),φ(x )分别是x ,y 的连续函数。 2.解法:分离变量法? ? +=c dx x f y dy )()(?. (*) 说明: a 由于(*)是建立在φ(y )≠0的基础上,故而可能漏解。需视情况补上φ(y )=0的特解。(有时候特解也可以和通解统一于一式中) b.不需考虑因自变量引起的分母为零的情况。 例1.0)4(2=-+dy x x ydx 解:由题意分离变量得:04 2=+-y dy x dx 即: 0)141(41=+--y dy dx x x 积分之,得:c y x x =+--ln )ln 4(ln 4 1 故原方程通解为:cx y x =-4)4( (c 为任意常数),特 解y=0包含在通解中(即两者统一于一式中)。 *例2.若连续函数f (x )满足 2 ln )2 ()(20 +=? dt t f x f x ,则f (x )是? 解:对给定的积分方程两边关于x 求导,得: )(2)('x f x f = (变上限求积分求导) 分离变量,解之得:x Ce x f 2)(= 由原方程知: f (0)=ln2, 代入上解析式得: C=ln2, B.可化为分离变量方程的类型。 解决数学题目有一个显而易见的思想:即把遇到的新问题,结合已知

(完整版)高等数学微分方程试题

第十二章 微分方程 §12-1 微分方程的基本概念 一、判断题 1.y=ce x 2(c 的任意常数)是y '=2x 的特解。 ( ) 2.y=(y '')3是二阶微分方程。 ( ) 3.微分方程的通解包含了所有特解。 ( ) 4.若微分方程的解中含有任意常数,则这个解称为通解。 ( ) 5.微分方程的通解中任意常数的个数等于微分方程的阶数。 ( ) 二、填空题 1. 微分方程.(7x-6y)dx+dy=0的阶数是 。 2. 函数y=3sinx-4cosx 微分方程的解。 3. 积分曲线y=(c 1+c 2x)e x 2中满足y x=0=0, y ' x=0=1的曲线是 。 三、选择题 1.下列方程中 是常微分方程 (A )、x 2+y 2=a 2 (B)、 y+0)(arctan =x e dx d (C)、22x a ??+22y a ??=0 (D ) 、y ''=x 2+y 2 2.下列方程中 是二阶微分方程 (A )(y '')+x 2y '+x 2=0 (B) (y ') 2+3x 2y=x 3 (C) y '''+3y ''+y=0 (D)y '-y 2=sinx 3.微分方程2 2dx y d +w 2 y=0的通解是 其中c.c 1.c 2均为任意常数 (A )y=ccoswx (B)y=c sinwx (C)y=c 1coswx+c 2sinwx (D)y=c coswx+c sinwx 4. C 是任意常数,则微分方程y '=3 23y 的一个特解是 (A )y-=(x+2)3 (B)y=x 3+1 (C) y=(x+c)3 (D)y=c(x+1)3 四、试求以下述函数为通解的微分方程。 1.2 2 C Cx y +=(其中C 为任意常数) 2.x x e C e C y 3221+=(其中21,C C 为任意常数) 五、质量为m 的物体自液面上方高为h 处由静止开始自由落下,已知物体在液体中受的阻力与运动的速度成正比。用微分方程表示物体,在液体中运动速度与时间的关系并写出初始条件。

微分方程单元自测题答案

微分方程单元自测题答案 一、填空题 1. 微分方程()043 ='-'+''y y y x y xy 是 二 阶微分方程; 2. x y y 2='的通解为 2y Cx = ; 3. 微分方程sin dy y x dx x x +=的通解为 cos x C y x -+= ; 4. 微分方程2x y e ''=的通解是 21214 x y e C x C =++ ; 5. 微分方程032=-'-''y y y 的通解为 312x x y C e C e -=+ ; 6. 以212x x y C e C e =+为通解的微分方程为 320y y y '''-+= ; 7. 已知212,x y x y e ==是某个二阶齐次线性微分方程的两个解,则该微分方程的通解为 212x y C x C e =+ ;满足初始条件(0)1,(0)3y y '==的特解为 2x y x e =+ ; 8. 微分方程方程2sin y y y x x '''+-=的特解形式上可设为 *()cos ()sin y ax b x cx d x =+++; 9. 已知2123,,x x y x e y x e y x =+=+=是某个二阶非齐次线性微分方程的三个解,则该微分方程的 通解为 212x x y C e C e x =++ ; 10. 与积分方程0(,)x x y f t y dt = ?等价的微分方程初值问题为 0(,),()0y f x y y x '== 。 二、计算题 1. 求微分方程2y xdy ydx y e dy -=的通解; 解:原方程化为y dx x ye dy y -=-,所以此方程通解为y dy y y dy y ye Cy dy e ye C e x -=???? ???-?=?-11 2. 设1y x =-是微分方程()y p x y x '+=的一个解,求此微分方程满足条件00x y ==的特解; 解:将1y x =-代入原方程,得1()(1)p x x x +-=,解出()1p x =。所以原方程为y y x '+=, (解法一:用解的结构求出通解,再带入初始条件)解其对应的齐次方程,得x y Ce -=。所以原方程的通解为1x y x Ce -=-+。 由0 0x y ==,得1C =。故所求特解为1x y x e -=-+。 (解法二:用通解公式求出通解,再带入初始条件)

最新常微分方程期末考试题大全(东北师大)

证明题: 设()x f 在[)+∞,0上连续,且()b x f x =+∞ →lim ,又0>a ,求证:对于方程 ()x f ay dx dy =+的一切解()x y ,均有()a b x y x =+∞→lim 。 证明 由一阶线性方程通解公式,方程的任一解可表示为 ()()?? ????+=?-x at ax dt e t f C e x y 0, 即 ()()ax x at e dt e t f C x y ?+= 。 由于b x f x =+∞ →)(lim ,则存在X ,当X x >时,M x f >)(。因而 ()dt e M dt e t f dt e t f x X at X at x at ??? +≥0 )( ())(0 aX ax X at e e a M dt e t f -+ = ? , 由0>a ,从而有()∞=?? ????+?+∞→x at x dt e t f C 0lim ,显然+∞=+∞ →ax x e lim 。 应用洛比达法则得 ()()ax x at x x e dt e t f C x y ?+=+∞ →+∞ →0 lim lim ()ax ax x ae e x f +∞→=lim ()a b a x f x ==+∞ →lim 。 证明题:线性齐次微分方程组x A x )(t ='最多有n 个线性无关的解,其中)(t A 是定义在区间b t a ≤≤上的n n ?的连续矩阵函数。 证 要证明方程组x A x )(t ='最多有n 个线性无关的解,首先要证明它有n 个线性无关的解,然后再证明任意1+n 个解都线性相关。

二阶线性微分方程的解法

二阶常系数线性微分方程 一、二阶常系数线形微分方程的概念 形如 )(x f qy y p y =+'+'' (1) 的方程称为二阶常系数线性微分方程.其中p 、q 均为实数,)(x f 为已知的连续函数. 如果0)(≡x f ,则方程式 (1)变成 0=+'+''qy y p y (2) 我们把方程(2)叫做二阶常系数齐次线性方程,把方程式(1)叫做二阶常 系数非齐次线性方程. 本节我们将讨论其解法. 二、二阶常系数齐次线性微分方程 1.解的叠加性 定理1 如果函数1y 与2y 是式(2)的两个解, 则2211y C y C y +=也是 式(2)的解,其中21,C C 是任意常数. 证明 因为1y 与2y 是方程(2)的解,所以有 0111 =+'+''qy y p y 0222 =+'+''qy y p y 将2211y C y C y +=代入方程(2)的左边,得 )()()(22112211221 1y C y C q y C y C p y C y C ++'+'+''+'' =0)()(2222111 1=+'+''++'+''qy y p y C qy y p y C 所以2211y C y C y +=是方程(2)的解. 定理1说明齐次线性方程的解具有叠加性. 叠加起来的解从形式看含有21,C C 两个任意常数,但它不一定是方程式(2)的通解. 2.线性相关、线性无关的概念

设,,,,21n y y y 为定义在区间I 内的n 个函数,若存在不全为零的常数 ,,,,21n k k k 使得当在该区间内有02211≡+++n n y k y k y k , 则称这n 个函数在区间I 内线性相关,否则称线性无关. 例如 x x 22sin ,cos ,1在实数范围内是线性相关的,因为 0sin cos 12 2≡--x x 又如2,,1x x 在任何区间(a,b)内是线性无关的,因为在该区间内要使 02321≡++x k x k k 必须0321===k k k . 对两个函数的情形,若=21y y 常数, 则1y ,2y 线性相关,若≠2 1y y 常数, 则1y ,2y 线性无关. 3.二阶常系数齐次微分方程的解法 定理 2 如果1y 与2y 是方程式(2)的两个线性无关的特解,则 212211,(C C y C y C y +=为任意常数)是方程式(2)的通解. 例如, 0=+''y y 是二阶齐次线性方程,x y x y cos ,sin 21==是它的 两个解,且≠=x y y tan 2 1常数,即1y ,2y 线性无关, 所以 x C x C y C y C y cos sin 212211+=+= ( 21,C C 是任意常数)是方程0=+''y y 的通解. 由于指数函数rx e y =(r 为常数)和它的各阶导数都只差一个常数因子, 根据指数函数的这个特点,我们用rx e y =来试着看能否选取适当的常数r , 使rx e y =满足方程(2).

微分方程习题及答案

微分方程习题 §1 基本概念 1. 验证下列各题所给出的隐函数是微分方程的解. (1)y x y y x C y xy x -='-=+-2)2(,22 (2)?'=''=+y 0 222t -)(,1e y y y x dt 2..已知曲线族,求它相应的微分方程(其中21C , ,C C 均为常数) (一般方法:对曲线簇方程求导,然后消去常数,方程中常数个数决定求导次数.) (1)1)(22=++y C x ; (2)x C x C y 2cos 2sin 21+=. 3.写出下列条件确定的曲线所满足的微分方程。 (1)曲线在()y x , 处切线的斜率等于该点横坐标的平方。 (2)曲线在点P ()y x ,处的法线x 轴的交点为Q,,PQ 为y 轴平分。 (3)曲线上的点P ()y x ,处的切线与y 轴交点为Q , PQ 长度为2,且曲线过点(2,0)。 §2可分离变量与齐次方程 1.求下列微分方程的通解 (1)2211y y x -='-; (2)0tan sec tan sec 22=?+?xdy y ydx x ; (3) 23xy xy dx dy =-; (4)0)22()22 (=++-++dy dx y y x x y x . 2.求下列微分方程的特解 (1)0 ,02=='=-x y x y e y ; (2)2 1 ,12= =+'=x y y y y x

3. 求下列微分方程的通解 (1))1(ln +='x y y y x ; (2)03)(233=-+dy xy dx y x . 4. 求下列微分方程的特解 (1) 1 ,0 22=-==x y y x xy dx dy ; (2)1 ,02)3(0 22==+-=x y xydx dy x y . 5. 用适当的变换替换化简方程,并求解下列方程 (1)2)(y x y +='; (2))ln (ln y x y y y x +=+' (3)11 +-= 'y x y (4)0)1()1(22=++++dy y x xy x dx xy y 6. 求一曲线,使其任意一点的切线与过切点平行于y 轴的直线和x 轴所围城三角形面积等于常数2a . 7. 设质量为m 的物体自由下落,所受空气阻力与速度成正比,并设开始下落时)0(=t 速度为0,求物体速度v 与时间t 的函数关系. 8. 有一种医疗手段,是把示踪染色注射到胰脏里去,以检查其功能.正常胰脏每分钟吸收掉%40染色,现内科医生给某人注射了0.3g 染色,30分钟后剩下0.1g ,试求注射染色后t 分钟时正常胰脏中染色量)(t P 随时间t 变化的规律,此人胰脏是否正常? 9.有一容器内有100L 的盐水,其中含盐10kg ,现以每分钟3L 的速度注入清水,同时又以每分钟2L 的速度将冲淡的盐水排出,问一小时后,容器内尚有多少盐?

二阶常微分方程解

第七节 二阶常系数线性微分方程 在上节我们已经讨论了二阶线性微分方程解的结构,二阶线性微分方程的求解问题,关键在于如何求二阶齐次方程的通解和非齐次方程的一个特解。本节讨论二阶线性方程的一个特殊类型,即二阶常系数线 性微分方程及其求解方法。先讨论二阶常系数线性齐 §7.1 二阶常系数线性齐次方程及其求 22dx y d +p dx dy +qy = 0 (7.1) 其中p 、q 是常数,由上节定理二知,要求方程(7.1)的通解,只要求出其任意两个线性无关的特解y 1,y 2 我们先分析方程(7.1)可能具有什么形式的特解, 从方程的形式上来看,它的特点是22 dx y d ,dx dy ,y 各乘 以常数因子后相加等于零,如果能找到一个函数y ,

其22dx y d ,dx dy ,y 之间只相差一个常数因子,这样的函 数有可能是方程(7.1)的特解,在初等函数中,指数函数e rx y =e rx (其中r 为待定常数) 将y =e rx ,dx dy =re rx ,22dx y d =r 2e rx 代入方程 (7.1) 得 r 2e rx +pre rx +qe rx = 0 或 e rx (r 2+pr +q )= 因为e rx ≠ 0 r 2 +pr +q = 由此可见,若 r r 2+pr +q = 0 (7.2) 的根,那么e rx 就是方程(7.1)的特解,于是方程(7.1)的求解问题,就转化为求代数方程(7.2)的根问题。称(7.2)式为微分方程(7.1) 特征方程(7.2)是一个以r 为未知函数的一元二次代数方程。特征方程的两个根r 1,r 2,称为特征根,由代数知识,特征根r 1,r 2 有三种可能的情况,下面 (1)若特证方程(7.2)有两个不相等的实根r 1,r 2,此时e r 1x ,e r2x 是方程(7.1)

常微分方程试题库试卷库

常微分方程期终考试试卷(1) 一、 填空题(30%) 1、方程(,)(,)0M x y dx N x y dy +=有只含x 的积分因子的充要条件是( )。有只含y 的积分因子的充要条件是。 2、称为黎卡提方程,它有积分因子。 3、称为伯努利方程,它有积分因子。 4、若12(),(),,()n X t X t X t 为n 阶齐线性方程的n 个解,则它们线性无关的充要条件是。 5、形如的方程称为欧拉方程。 6、若()t φ和()t ψ都是' ()x A t x =的基解矩阵,则()t φ和()t ψ具有的关系是。 7、当方程的特征根为两个共轭虚根是,则当其实部为时,零解是稳定的,对应的奇点称为。 二、计算题(60%) 1、3 ()0ydx x y dy -+= 2、 sin cos2x x t t ''+=- 3、若 2114A ?? =?? -??试求方程组x Ax '=的解12(),(0)t η??ηη??==????并求

4、32( )480dy dy xy y dx dx -+= 5、 求方程2 dy x y dx =+经过(0,0)的第三次近 似解 6.求1,5 dx dy x y x y dt dt =--+=--的奇点,并判断奇点的类型与稳定 性. 三、证明题(10%) 1、n 阶齐线性方程一定存在n 个线性无关解。

常微分方程期终试卷(2) 一、填空题 30% 1、 形如的方程,称为变量分离方程,这里.)().(y x f ?分别为的连续函数。 2、 形如的方程,称为伯努利方程,这里x x Q x P 为)().(的连续函数,可化为线性方程。是常数。引入变量变换-------≠1.0 3、 如果存在常数 使得不等式 ,0 L 对于所有 称为利普希兹常数。都成立,(L R y x y x ∈),(),,21函数),(y x f 称为在 R 上关于y 满足利普希兹条件。 4、 形如的方程,称为欧拉方程,这里是常数。,,21a a 5、 设是 的基解矩阵,是)()(t Ax x t ?φ=')()(t f x t A x +='的某一解, 则它的任一解可表为)(t γ。 一、 计算题40% 1.求方程的通解。26xy x y dx dy -= 2.求程xy e x y dx dy =+的通解。 3.求方程t e x x x 25'6''=++的隐式解。

微分方程 级数练习及答案

一阶微分方程练习 1、求方程x xe y y x =+'的通解 2、求7 2(1)2(1)x y y x '+-=+的通解 3、解方程 3 d 3d y x y x x -= 4、求微分方程tan sec y y x x '-=满足初始条件()00y =的特解. 5、求微分方程2d d d y x y y x y e y -=的通解 二阶微分方程练习 1、求2 69279y y y x '''-+=-的特解。 2、求6128y y x '''-=-的特解。 3、求62y x ''=-的特解。 4、求62y x ''=-的特解。 5、求34cos 2sin y y x x '''+=+的特解。 6、写出下列微分方程的特解形式 (1)256e x y y y x '''-+= (2)27122e x y y y x -'''-+= (3)e x y y ''-= (4)2e x y y y x -'''++= 答案:一阶微分 1.解:将方程变形为x e x y y =+ '其中 x x P 1)(= ,x e x Q =)(,用公式法 1 1 ln ln ()() dx dx x x x x x x y e e e dx C e e e dx C - -??=+=+??=1 1()() x x x xe dx C xe e C x x += -+? 2.解:方程化为标准式: 2 5 )1(12+=+- 'x x y y ,用常数变异法, 先求对应齐次方程的通解。 d 20 d 1 y y x x -=+, d 2d 1 y x y x = + d 2d 1y x y x = +? ? C x y ln )1ln(2ln ++=, 2 ) 1(+=x C y 把C 换成()C x ,即令

常微分方程末考试试卷

常微分方程期末考试试卷 学院 ______ 班级 _______ 学号 _______ 姓名 _______ 成绩 _______ 一. 填空题 (30分) 1.)()(x Q y x P dx dy += 称为一阶线性方程,它有积分因子 ? -dx x P e )( ,其通解为 _________ 。 2.函数),(y x f 称为在矩形域R 上关于y 满足利普希兹条件,如果 _______ 。 3. 若)(x ?为毕卡逼近序列{})(x n ?的极限,则有)()(x x n ??-≤ ______ 。 4.方程22y x dx dy +=定义在矩形域22,22:≤≤-≤≤-y x R 上,则经过点(0,0)的解的存在区间是 _______ 。 5.函数组t t t e e e 2,,-的伏朗斯基行列式为 _______ 。 6.若),,2,1)((n i t x i K =为齐线性方程的一个基本解组,)(t x - 为非齐线性方 程的一个特解,则非齐线性方程的所有解可表为 ________ 。 7.若)(t Φ是x t A x )('=的基解矩阵,则向量函数)(t ?= _______是 )()('t f x t A x +=的满足初始条件0)(0=t ?的解;向量函数)(t ?= _____ 是)()('t f x t A x +=的满足初始条件η?=)(0t 的解。 8.若矩阵A 具有n 个线性无关的特征向量n v v v ,,,21Λ,它们对应的特征值分别为n λλλΛ,,21,那么矩阵)(t Φ= ______ 是常系数线性方程组 Ax x ='的一个基解矩阵。 9.满足 _______ 的点),(**y x ,称为驻定方程组。 二. 计算题 (60分) 10.求方程0)1(24322=-+dy y x dx y x 的通解。

相关文档
相关文档 最新文档