文档库 最新最全的文档下载
当前位置:文档库 › 浅谈硅片缺陷的控制

浅谈硅片缺陷的控制

浅谈硅片缺陷的控制
浅谈硅片缺陷的控制

浅谈硅片缺陷的控制

【摘要】太阳能是一种清洁、高效和永不衰竭的新能源,光伏发电具有安全可靠、无噪声、无污染、制约少、故障率低、维护简便等优点,近年发展势头迅猛。硅片作为太阳能电池的核心元件,其质量直接影响到太阳能电池的整体性能。本文介绍了硅片缺陷控制的技术措施。

【关键词】硅片;缺陷控制

引语

在光伏产业中,硅片的质量在很大程度上影响到成品太阳能电池的短路电流、和断路电压等参数,决定了太阳能电池的发电效率和使用寿命。在现有技术允许的范围内,最大限度地减少硅片中的缺陷,提高硅片的纯度和质量,是提升太阳能电池性能的必然途径。目前硅片的缺陷包括点缺陷和晶体原生凹坑缺陷以及金属杂质缺陷等。本文就这些硅片缺陷的控制阐述了一些观点。

1、硅片中点缺陷控制

硅中的点缺陷包括本征点缺陷和非本征点缺陷。其中,硅的本征点缺陷是指空位和自间隙原子;而硅中的杂质原子则是非本征点缺陷。所谓空位和自间隙原子,均是由于硅原子的热运动产生的。硅中的原子在热运动的作用下,脱离了晶格格点,游离在晶格间隙中间,就形成了自间隙原子;而因硅原子脱离而留下的空的格点,即是空位。很明显,硅的本征点缺陷的浓度主要受温度的影响。而硅的非本征点缺陷,也就是杂质原子缺陷是指杂质原子占据了硅晶体中的晶格位置。硅片的电学性能乃至成品率都在很大程度上受到金属杂质的影响。点缺陷的凝聚会生成更多更严重的缺陷。

对于SOI硅片中的点缺陷控制方法主要是注氧隔离(SIMOX)技术。即通过向高能状态下的硅片中注入高剂量的氧离子。然后将硅片进行退火处理以在硅片中形成连续的埋层,而埋层之上则形成单晶体硅层。该技术是利用氧离子与硅原子的化学反应产生的应力,向外发射硅片中的自间隙原子,并使得自间隙原子扩散到硅层表面,形成表面的原子。这种方法可以显著得降低硅片中自间隙原子和空位的浓度。

2、硅片中晶体原生凹坑缺陷的控制

硅片在清洗液中清洗后,可以发现有小的凹坑。这种来自于硅晶体内部的缺陷,即所谓晶体原生凹坑缺陷(COP)。太阳能电池板的性能与COP缺陷有着密切的关系。

目前的研究表面,COP缺陷是空位点缺陷聚集而成的,主要决定于拉晶速率V和固液交界的温度梯度G有关。当V/G等于某个临界值时,硅片中只会产

太阳能EL检测仪是如何实现电池片缺陷检测的

太阳能EL检测仪是如何实现电池片缺陷检测的? EL检测仪,又称场致发光测试,是跟据硅材料的电致发光原理对组件进行缺陷检测及生产工艺监控的专用测试设备。利用红外测试方式对电池片组件进行测试,达到EL成像模式,从而可以查看是否有电池片组件内部有电池片破裂、隐裂、黑心片、烧结断栅严重、虚焊、脱焊等情况再进入下道工序,因为通电发的光与PN结中离子浓度有很大的关系,也因此可以根据EL的电脑反映出来的图像来判断硅片内部的是否异常。从而保证太阳能电池组件的质量。 然而硅片是太阳能电池片的载体,硅片质量的好坏直接决定了太阳能电池片转换效率的高低以及电池组件发电效率。太阳能电池片的是否有缺陷需要通过EL缺陷检测仪来判断,这样一道检测和分选的工序可以大大减少市面上不良太阳能电池片的流通和销售,从而较小层面的降低组件功率受损。因此对太阳能电池硅片质量检测在生产和实验中显得尤为重要。 我们日常所能用得到的太阳能电池硅片有单晶硅片和多晶硅片,硅片在生产过程中由于制作条件的随机性,生产出来的电池性能不尽相同或多或少地存在一些缺陷。多晶硅片常见的缺陷有边缘不纯、位错缺陷,单晶硅片常见的缺陷有漩涡缺陷。硅片缺陷的存在会极大地降低电池片的发电效率,减少电池组件的使用寿命,甚至影响光伏发电系统的稳定性。为了有效的将性能一致或相近的电池组合在一起,所以应根据其性能参数进行分类;电池测试即通过测试电池的输出参数(电流和电压)的大小对其进行分类。以提高电池的利用率,从而生产出质量合格的电池组件。 日常实验和应用中,我们较常用的电池硅片缺陷检测就是采用EL缺陷检测仪。EL缺陷检测仪通过1-1.5倍Isc的电流后硅片会发出1000-1100nm的红外光对太阳能电池硅片进行缺陷检测,那么太阳能电池硅片会有哪几种缺陷情况存在呢?跟着小编一起往下看: 缺陷种类一:黑心片 通过EL照片反映出的黑心片主要形成原因是该区域没有1150红外光发出,故导致红外相片中反映出黑心片的效果图。这种黑心片的形成是由于其中心部位的电阻率偏高。和它硅衬底少数载流子浓度有关。 缺陷种类二:黑团片 在生产过程中,由于硅片厂家一再在强调缩短晶体定向凝固时间,熔体潜热释放与热场温度梯度失配,晶体生长速率加快,过大的热应力导致硅片内部位错缺陷。 缺陷种类三:短路黑片(非短路黑片) 组件单串焊接过程中造成的短路;组件层压前,混入了低效电池片造成的后果形成的短路黑片;而边缘发亮的黑片我们称之为非短路黑片,它主要是由于硅片使用上错用N型片,造成PN结反,短路的电池片不能对外提供功率,输出功率和IV测试曲线也随之降低。造成整个组件功率和填充因子受影响。 缺陷种类四:断栅片

太阳能电池硅片缺陷检测

硅片缺陷自动检测仪 中科院上海光机所研制成功“硅片缺陷自动检测仪”样机(图1),灵敏度优于180纳米(图2),检测速度30片/小时(8英寸硅片),拥有6项专利(3项发明),具有自主知识产权。该类型设备市场非常大,目前我国完全依赖进口,单台价格达千万元人民币以上。该样机研制成功,对于改变我国IC专用检测设备长期依赖进口局面、研制和开发国产化设备取得重要进展。该技术还可用于检测卫星用太阳能电池帆板碎片(图3)以及光学元件表面疵病。 An Automated Wafer Defects Detection System An automated wafer defects detection system has been developed in Shanghai Institute of Optics and Fine Mechanics, CAS. The photograph of this detector is shown in figure 1. The apparatus can detect defects of size of 180nm on wafer surface, with velocity of 30 pieces per hour for 8 inch wafer. The oscilloscope signal is shown in figure 2. This type of detecting apparatus will have large demand in China in future. It entirely depends on importing now and its unit price outvalues ten millions yuan. Therefore, the successful development of this detecting apparatus (having 6 Chinese patents) is very important to change the situation of depending on importing and manufacture home-made products. This detecting technology can also be used to detect flaws on surfaces of solar cell array and large-caliber optical elements. The oscilloscope signal of detecting solar cell array is shown in figure 3.

红外热像仪检测太阳能电池综合缺陷

红外热像仪检测太阳能电池综合缺陷 仪器设备:NEC H2640 一、背景应用 石油、天然气、煤炭等矿产资源随着社会经济的发展变得越来越稀缺。与此同时产生的 粉尘、CO2、SO2 对环境、大气造成严重的破坏。因而寻找新的洁净能源改善现有能源架构就非常重要和紧迫了。 图1 调查研究表明,地球上每年蕴含的太阳能、地热能、风能、潮汐能、水能分别如下图所示。人类都已经开始开发应用。 图2 从蕴能的角度看,太阳能无异是最丰富,最易开发利用的资源。太阳能热水器已经广泛 的应用到地球回归线以内的广大地区,而太阳能发电也正蓬勃的发展起来,有利于解决地球能源不足和温室效应的问题。但是太阳能发电也存在转换效率低,生产成本高,生产工艺复杂等诸多因素困扰。今天我们就是要针对太阳能电池片和组件综合缺陷检测给出红外检测方案。 二、太阳能电池系统生产及检测 太阳能电池生产过程如下图所示,在组装环节,我们使用电池片PV Cell 焊接、层压成 为组件Modules。

图3 在出厂前需要进行电池组件缺陷进行测试,现在主要使用的方法有1、电池板电性能测 试;2、EL 隐裂可视化检测;3、层压后红外检测。我们主要介绍红外检测电池板综合缺陷。当太阳能电池板通反向电流时,电池板会发热,电池板缺陷部分阻抗比较大,所以发热量也大,我们就是通过红外热像仪观察电池板的热区和冷区来。通常情况下正常区域面积较大,过热区域是太阳能电池板的缺陷所在,过冷区域是太阳能电池板的短路区域。因而过热和过冷都是有问题的。 三、案例应用 下面以太阳能电池组件综合缺陷红外热成像检测为例进行说明,检测在暗房内进行,以避免太阳光的干扰。首先选择有电性能缺陷的单片电池片做实验,单片电池片表面为硅材料,没有层压玻璃薄膜。使用恒流电流源对电池片接通反向1A 电流,电池片逐渐升温,其中缺陷部位升温较快,当电池片的整体温度达到40℃时,缺陷部位的温度已经达到60℃左右。如图4 所示,电池片右上方区域存在过热区域。 图4 在对几组电池片完成实验后我们将恒流电流源反向接通到太阳能电池组件上,电流大小 9A。从红外热像仪观察,组件升温缓慢,但是仍然出现了热区和冷区,出现缺陷的位置与客户划定的缺陷区域吻合。下图5 是组件的检测。电池组件存在过热和过冷区域,该电池存在缺陷并有部分短路。

单晶硅中可能出现的各种缺陷分析

单晶硅中可能出现的各种缺陷分析 缺陷,是对于晶体的周期性对称的破坏,使得实际的晶体偏离了理想晶体的晶体结构。在各种缺陷之中,有着多种分类方式,如果按照缺陷的维度,可以分为以下几种缺陷: 点缺陷:在晶体学中,点缺陷是指在三维尺度上都很小的,不超过几个原子直径的缺陷。其在三维尺寸均很小,只在某些位置发生,只影响邻近几个原子,有被称为零维缺陷。 线缺陷:线缺陷指二维尺度很小而们可以通过电镜等来对其进行观测。 面缺陷:面缺陷经常发生在两个不同相的界面上,或者同一晶体内部不同晶畴之间。界面两边都是周期排列点阵结构,而在界面处则出现了格点的错位。我们可以用光学显微镜观察面缺陷。 体缺陷:所谓体缺陷,是指在晶体中较大的尺寸范围内的晶格排列的不规则,比如包裹体、气泡、空洞等。 一、点缺陷 点缺陷包括空位、间隙原子和微缺陷等。 1、空位、间隙原子 点缺陷包括热点缺陷(本征点缺陷)和杂质点缺陷(非本征点缺陷)。 1.1热点缺陷 其中热点缺陷有两种基本形式:弗仑克尔缺陷和肖特基缺陷。单晶中空位和间隙原子在热平衡时的浓度与温度有关。温度愈高,平衡浓度愈大。高温生长

的硅单晶,在冷却过程中过饱和的间隙原子和空位要消失,其消失的途径是:空位和间隙原子相遇使复合消失;扩散到晶体表面消失;或扩散到位错区消失并引起位错攀移。间隙原子和空位目前尚无法观察。 1.2杂质点缺陷 A、替位杂质点缺陷,如硅晶体中的磷、硼、碳等杂质原子 B、间隙杂质点缺陷,如硅晶体中的氧等 1.3点缺陷之间相互作用 一个空位和一个间隙原子结合使空位和间隙原子同时湮灭(复合),两个空位形成双空位或空位团,间隙原子聚成团,热点缺陷和杂质点缺陷相互作用形成复杂的点缺陷复合体等。 2、微缺陷 2.1产生原因 如果晶体生长过程中冷却速度较快,饱和热点缺陷聚集或者他们与杂质的络合物凝聚而成间隙型位错环、位错环团及层错等。Cz硅单晶中的微缺陷,多数是各种形态的氧化物沉淀,它们是氧和碳等杂质,在晶体冷却过程中,通过均质成核和异质成核机理形成。 2.2微缺陷观察方法 1)择优化学腐蚀: 择优化学腐蚀后在横断面上呈均匀分布或组成各种形态的宏观漩涡花纹(漩涡缺陷)。宏观上,为一系列同心环或螺旋状的腐蚀图形,在显微镜下微缺陷的微观腐蚀形态为浅底腐蚀坑或腐蚀小丘(蝶形蚀坑)。在硅单晶的纵剖面上,微缺陷通常呈层状分布。 2)热氧化处理: 由于CZ硅单晶中的微缺陷,其应力场太小,往往需热氧化处理,使微缺陷缀饰长大或转化为氧化层错或小位错环后,才可用择优腐蚀方法显示。 3)扫描电子显微技术,X射线形貌技术,红外显微技术等方法。 2.3微缺陷结构

表面缺陷无损检测方法的比较

表面缺陷无损检测方法的比较方法 项目 磁粉检测(MT) 漏磁检测(MLF) 渗透检测(PT) 涡流检测(ET) 方法原理 磁力作用 磁力作用 毛细渗透作用 电磁感应作用 能检出的缺陷 表面和近表面缺陷 表面和近表面缺陷 表面开口缺陷 表面及表层缺陷 缺陷部位的显示形式 漏磁场吸附磁粉形成磁痕 漏磁场大小分布 渗透液的渗出

检测线圈输出电压和相位发生变化 显示信息的器材 磁粉 计算机显示屏 渗透液、显像剂 记录仪、示波器或电压表 适用的材料 铁磁性材料 铁磁性材料 非多孔性材料 导电材料 主要检测对象 铸钢件、锻钢件、压延件、管材、棒材、型材、焊接件、机加工件在役使用的上述工件检测铸钢件、锻钢件、压延件、管材、棒材、型材、焊接件、机加工件在役使用的上述工件检测任何非多孔性材料、工件及在役使用过的上述工件检测 管材、线材和工件检测;材料状态检验和分选;镀层、涂层厚度测量 主要检测缺陷 裂纹、发纹、白点、折叠、夹渣物、冷隔 裂纹、发纹、白点、折叠、夹渣物、冷隔 裂纹、白点、疏松、针孔、夹渣物

裂纹、材质变化、厚度变化缺陷显示 直观 直观 直观 不直观 缺陷性质判断 能大致确定 能大致确定 能基本确定 难以判断 灵敏度 高 高 高 较低 检测速度 较快 快 慢

很快 污染 较轻 无污染 较重 无污染 相对优点 可检测出铁磁性材料表面和近表面(开口和不开口)的缺陷。 能直接的观察出缺陷的位置、形状、大小和严重程度。 具有较高的检测灵敏度,可检测微米级宽度的缺陷。 单个工件的检测速度快、工艺简单,成本低、污染轻。 综合使用各种磁化方法,几乎不受工件大小和几何形状的影响。 检测缺陷重复性好。 可检测受腐蚀的在役情况。 a) 易于实现自动化 b) 较高的检测可靠性 c) 可以实现缺陷的初步量化 d) 在管道的检查中,在厚度高达30mm的壁厚范围內,可同时检测內外壁缺陷 e) 高效、无污染,可以获得很高的检测效率. 可检测出任何非松孔性材料表面开口性缺陷。 能直接的观察出缺陷的位置、形状、大小和严重程度。 具有较高的灵敏度。 着色检测时不用设备,可以不用水电,特别适用于现场检验。 检测不受工件几何形状和缺陷方向的影响。 对针孔和疏松缺陷的检测灵敏度较高。 非接触法检测,适用于对管件、棒材和丝材进行自动化检测,速度快。 可用检测材料导电率代替硬度检测。了解材料的热处理状态和进行材料分选。污染很小。 相对局限性

(工艺技术)太阳能电池与硅片划片切割工艺的研究

太阳能电池与硅片划片切割工艺的研究 一半导体其主要特性 导电能力介于导体和绝缘体之间的物体,则叫做半导体,如锗、硅、砷化镓、硫化镉等,其电阻率为10-5~107Ω·m 半导体性能上具有如下两个显著的特点。 (1)电阻率的变化受杂质含量的影响极大,例如,纯硅中磷杂质的浓度在1026~1019m-3范围内变化时,它的电阻率就会从10-5Ω·m变到104Ω·m;室温下在纯硅中掺人百万分之一的硼,硅的电阻率就会从2.14X103Ω·m减小到0.004Ω·m左右。如果所含杂质的类型不同,导电类型也不同。 (2)电阻率受光和热等外界条件的影响很大,温度升高或光照时,均可使半导体材料的电阻率迅速下降。例如,锗的温度从200℃升高到300℃,其电阻率降低一半左右。一些特殊的半导体,在电场和磁场的作用下,其电阻率也会发生变化。 半导体材料的种类很多,按其化学成分,可分为元素半导体和化合物半导体;按其是否含有杂质,可分为本征半导体和杂质半导体。杂质半导体按其导电类形,又分为n型半导体和p型半导体。 二、半导体硅的晶体结构 自然界物质存在的形态有气态物质、液态物质和固态物质。固态物质可根据它们的质点(原子、离子和分子)排列规则的不同,分为晶体和非晶体两大类。具有确定的熔点的固态物质称为晶体,如硅、砷化镓、冰及一般金属等;没有确定的熔点、加热时在某一温度范围内就逐渐软化的固态物质称为非晶体,如玻璃、松香等。 所有晶体都是由原子、分子、离子或这些粒子集团在空间按一定规则排列而成的。这种对称的、有规则的排列,叫晶体的点阵或晶体格子,简称为晶格。最小的晶格,称为晶胞。晶胞的各向长度,称为品格常数。将晶格周期地重复排列起来,就构成为整个晶体。晶体又分为单晶体和多晶体。整块材料从头到尾都按同一规则作周期性排列的晶体,称为单晶体。整个晶体由多个同样成分、同样晶体结构的小晶体(即晶粒)组成的晶体,称为多晶体。在多晶体中,每个小晶体中的原子排列顺序的位向是不同的。非晶体没有上述特征,组成它们的质点的排列是无规则的,而是“短程有序、长程无序’’的排列. 三、太阳能电池工作原理与特性 太阳能电池的分类和结构,太阳能电池的工作原理和特性。 (一)、太阳能电池的分类 太阳能电池多为半导体材料制造,发展至今,已经种类繁多,形式各样。 可用各种方法对太阳能电池进行分类,如按照结构的不同分类,按照材料的不同分类,按照用途的不同分类,按照工作方式的不同分类,等等。下面对按照结构和材料进行的分类加以介绍。 (1) 按照结构的不同可分为如下各类 1.同质结太阳能电池 由同一种半导体材料所形成的p—n结或梯度结称为同质结。用同质结构成的电池称为同质结太阳能电池,如硅太阳能电池。 四太阳能电池的结构 因生产制造太阳能电池的基体材料和所采用的工艺方法的不同,太阳能电池 的结构也就多种多样。这里以常规硅太阳能电池为例简述太阳能电池的结构。图 3—16是一个p型硅材料制成的//p型结构常规太阳能电池的示意图。①p层为 基体,厚度为o.2~0.5mm。基体材料称为基区层,简称基区。②p层上面是n

#什么是太阳能电池量子效率,如何测试

什么是太阳能电池量子效率,如何测试 请教大家,什么是太阳能电池量子效率啊?Quantum efficiency of a solar cell, QE 太阳能电池量子效率和太阳能电池光谱响应,太阳能电池IPCE有什么区别啊?spectral response, IPCE, Incident Photon to Charge Carrier Efficiency 太阳能电池这些特性如何测试啊? 什么是太阳能电池量子效率?如何测试啊?Quantum efficiency of a solar cell, QE 太阳能电池的量子效率是指太阳能电池的电荷载流子数目和照射在太阳能电池表面一定能量的光子数目的比率。因此,太阳能电池的量子效率和太阳能电池对照射在太阳能电池表面的各个波长的光的响应有关。太阳能电池的量子效率和光的波长或者能量有关。如果对于一定的波长,太阳能电池完全吸收了所有的光子,并且我们搜集到由此产生的少数载流子(例如,电子在P型材料上),那么太阳能电池在此波长的量子效率为1。对于能量低于能带隙的光子,太阳能电池的量子效率为0。理想中的太阳能电池的量子效率是一个正方形,也就是说,对于测试的各个波长的太阳能电池量子效率是一个常数。但是,绝大多数太阳能电池的量子效率会由于再结合效应而降低,这里的电荷载流子不能流到外部电路中。影响吸收能力的同样的太阳能电池结构,也会影响太阳能电池的量子效率。比如,太阳能电池前表面的变化会影响表面附近产生的载流子。并且,由于短波长的光是在非常接近太阳能电池表面的地方被吸收的,在前表面的相当多的再结合将会影响太阳能电池在该波长附近的太阳能电池量子效率。类似的,长波长的光是被太阳能电池的主体吸收的,并且低扩散深度会影响太阳能电池主体对长波长光的吸收能力,从而降低太阳能电池在该波长附近的太阳能电池量子效率。用稍微专业点的术语来说的话,综合器件的厚度和入射光子规范的数目来说,太阳能电池的量子效率可以被看作是太阳能电池对单一波长的光的吸收能力。 太阳能电池量子效率,有时也被叫做IPCE,也就是太阳能电池光电转换效率(Incident-Photon-to-electron Conversion Efficiency)。 太阳能电池(光伏材料)光谱响应测试、量子效率QE(Quantum Efficiency)测试、光电转换效率IPCE (Monochromatic Incident Photon-to-Electron Conversion Efficiency) 测试等。广义来说,就是测量光伏材料在不同波长光照条件下的光生电流、光导等。 测试原理 用强度可调的偏置光照射太阳能电池,模拟其不同的工作状态,同时测量太阳能电池在不同波长的单色光照射下产生的短路电流,从而得到太阳能电池的绝对光谱响应和量子效率。

硅单晶中晶体缺陷的腐蚀显示

硅单晶中晶体缺陷的腐蚀显示 实验安排:4人/组 时间:两小时 地点:北方工业大学第三教学楼2403房间 实验所用主要设备:金相显微镜 一、实验目的 硅单晶中的各种缺陷对器件的性能有很大的影响,它会造成扩散结面不平整,使晶体管中出现管道,引起p-n 结的反向漏电增大等。各种缺陷的产生和数量的多少与晶体制备工艺和器件工艺有关。晶体缺陷的实验观察方法有许多种,如透射电子显微镜、X光貌相技术、红外显微镜及金相腐蚀显示等方法。对表面缺陷也可以用扫描电子显微镜来观察。由于金相腐蚀显示技术设备简单,操作易掌握,又较直观,是观察研究晶体缺陷的最常用的方法之一。金相腐蚀显示可以揭示缺陷的数量和分布情况,找出缺陷形成、增殖和晶体制备工艺及器件工艺的关系,为改进工艺,减少缺陷、提高器件合格率和改善器件性能提供线索。 二、原理 硅单晶属金刚石结构,在实际的硅单晶中不可能整块晶体中原子完全按金刚石结构整齐排列,总又某些局部区域点阵排列的规律性被破坏,则该区域就称为晶体缺陷。硅单晶中的缺陷主要有点缺陷、线缺陷和面缺陷等三类。晶体缺陷可以在晶体生长过程中产生,也可以在热处理、晶体加工和受放射性辐射时产生。 在硅单晶中缺陷区不仅是高应力区,而且极易富集一些杂质,这样缺陷区就比晶格完整区化学活拨性强,对化学腐蚀剂的作用灵敏,因此容易被腐蚀而形成蚀坑,在有高度对称性的低指数面上蚀坑形状通常呈现相应的对称性,如位错在(111)、(100)、(110)面上分别呈三角形、方形和菱形蚀坑。 用作腐蚀显示的腐蚀剂按不同作用大体可分为两类,一类蚀非择优腐蚀剂,它主要用于晶体表面的化学抛光,目的在于达到清洁处理,去除机械损伤层和获得一个光亮的表面;另一类是择优腐蚀剂,用来揭示缺陷。一般腐蚀速度越快择择优性越差,而对择优腐蚀剂则要求缺陷蚀坑的出现率高、特征性强、再现性好和腐蚀时间短。 通常用的非择优腐蚀剂的配方为: HF(40-42%):HNO3(65%)=1:2.5 它们的化学反应过程为: Si+4HNO3+6HF=H2SiF6+4NO2+4H2O 通常用的择优腐蚀剂主要有以下二种: (1)希尔腐蚀液(铬酸腐蚀液) 先用CrO3与去离子水配成标准液: 标准液=50g CrO3+100g H2O 然后配成下列几种腐蚀液: A. 标准液:HF(40-42%)=2:1(慢速液) B. 标准液:HF(40-42%)=3:2(中速液) C. 标准液:HF(40-42%)=1:1(快速液) D. 标准液:HF(40-42%)=1:2(快速液) 一般常用的为配方C液,它们的化学反应过程为: Si+CrO3+8HF=H2SiF6+CrF2+3H2O (2)达希腐蚀液

金属零件表面缺陷的检测与识别技术综述

华东交通大学硕士学位论文开题报告格式模板 本模板供统招硕士和同等学历硕士使用 (2005年12月制订) 一、页面设置 ●纸张大小:A4,正文部分可双面印刷 ●页边距:上2.8cm、下2.5cm,左、右2.5cm,装订线:0cm ●页眉:1.6cm,页脚:1.5cm ●文档网格:无网格(设置文档网格后无法达到模板格式要求!) 二、字间距 无特别说明时均采用标准字间距。 三、小技巧 1、设置标题、段落格式时请学会使用格式刷; 2、一段文字中既有中文又有英文(含数字),中英文采用不同字体时,可先选中这段文字,设定中文字体后再设定英文字体; 3、采用插入分节符(下一页)的办法强行换页; 4、如果对自动编号的格式设置不十分熟悉,建议不要使用自动编号。 四、其他 1、本模板中的内容来自于不同的资料,上下文之间可能没有直接的联系,由此给您带来的不便,我们表示歉意; 2、报告中有图、表、公式时,其格式要求与“学位论文”相同,可参见“华东交通大学硕士学位论文格式模板”。

铁路货车滚动轴承表面缺陷的自动检测 与识别技术研究 学 号: 20020390010101 姓 名: XXX 导 师: XXX 教授 学 院: 机电工程学院 专 业: 机械制造及其自动化 研究方向: 故障诊断 年3月 华东交通大学研究生院制

一、课题的来源、目的和意义 ................................................ 1 二、货车滚动轴承表面缺陷的计算机自动识别的研究现状 (1) 1、常用的表面缺陷检测方法 ............................................. 1 2、滚动轴承表面缺陷自动识别的研究现状 ................................. 2 3、相关的研究 ......................................................... 2 三、本课题研究的主要内容和重点 ............................................ 2 四、技术方案 .............................................................. 3 五、实施方案所需的条件 .................................................... 3 六、存在的主要问题和技术关键 .............................................. 3 七、预期能达到的目标 ...................................................... 3 八、课题研究计划进度 ...................................................... 3 九、研究经费预算 .......................................................... 3 十、主要参考文献 .......................................................... 4 文献阅读报告:金属零件表面缺陷的检测与识别技术综述 (5) 1 金属零件表面缺陷检测的必要性 ........................................ 5 2 检测表面缺陷的常规方法 .............................................. 5 3 …… ................................................................ 5 …… 8 5

缺陷太阳电池EL图像及伏安特性分析

现代科学仪器 Modern Scientific Instruments 第5期2010年10月 N o.5 O c t. 2010105 缺陷太阳电池EL 图像及伏安特性分析 肖娇 徐林 曹建明 (上海交通大学物理系太阳能研究所 上海 200240) 摘 要 本文基于电致发光(Electroluminescence,EL)的理论,利用红外检测的方法,通过CCD 近红外相机实验检测出了晶体硅太阳电池中存在的隐性缺陷,如隐裂、断栅、电阻不均匀、花片等,并将可见光下电池图像与EL 图像进行对比。对存在缺陷的太阳电池进行了伏安特性测试,得出隐裂缺陷对太阳电池伏安特性、填充因子、效率等性能的影响,也证明电致发光技术检测太阳电池缺陷的准确性。关键词 太阳电池;电致发光;电池缺陷;伏安特性 中图分类号 O474 Electroluminescence Images and I-V Characteristic Analysis of Defective Crystalline  Silicon Solar Cells Xiao Jiao, Xu Lin, Cao Jianming (Solar Energy Institute, Physics Dept, Shanghai JiaoTong University, Shanghai, 200240, China) Abstract Based on Electroluminescence (EL) theory, the micro-cracks of crystalline silicon solar cells were detected by the near-infrared CCD camera, such as the cracks, off-grid, non-uniform resistance, ? ower slice. Then we compared the EL images with the images under visible light. I-V characteristic of the defective solar cells was tested, and we got that the defects would affect the I-V curve, ? ll factor, ef ? ciency of the solar cell, meanwhile EL technology is proved to be an accurate measurement to detect solar cells. Key words Solar cell; Electroluminescence;Solar cell defects; I-V characteristic 收稿日期:2010-06-23 作者简介:肖娇,女,上海交通大学硕士研究生,主要从事太阳能光伏检测设备的研发 目前工业化晶体硅太阳电池在制造过程中通常采用丝网印刷、高温烧结、互联、层压封装等生产工艺,其中丝网印刷的机械应力、焊接的热应力、高温烧结的热应力、层压封装的机械应力等不可避免会引入一些缺陷,包括隐裂、碎片、断栅、虚焊等,这类缺陷的存在极大地影响了太阳电池的光电转化效率和电池的寿命。据估计,每条组件生产线每年由于缺陷带来的直接经济损失约为60万美元,故有效的检测手段是非常必要的。本文运用基于电致发光(Electroluminescence ,EL)的检测方法,有效地检测出了太阳电池中可能存在的缺陷,是一种有效的检测电池、组件的方法。对检测出来的各类缺陷电池进行伏安特性曲线、填充因子、效率、串联电阻等各项性能测试,结果表明存在缺陷的电池漏电流较大,填充因子、效率减少较严重,性能测试结果和EL 检测方法得出的结论一致. 1 电致发光实验理论基础 在太阳电池中,少子的扩散长度远远大于势垒 宽度,因此电子和空穴通过势垒区时因复合而消失的几率很小,继续向扩散区扩散。在正向偏压下,p-n 结势垒区和扩散区注入了少数载流子。这些非平衡少数载流子不断与多数载流子复合而发光,这就是太阳电池电致发光的基本原理[1]。 发光成像有效地利用了太阳电池间带中激发电子载流子的辐射复合效应。在太阳能电池两端加入正向偏压, 其发出的光子可以被灵敏的CCD 相机获得,即得到太阳电池的辐射复合分布图像。但是电致发光强度非常低,而且波长在近红外区域,要求相机必须在900-1100nm 具有很高的灵敏度和非常小的噪声。图1为电致发光的光谱图[2]。 2 CCD 红外相机试验方法 实验样品为国产多晶硅太阳电池,采用由加拿大生产的INFILITY 近红外相机,ELECTROOPTIC 公司生产的红外相机镜头,其波谱响应范围为800nm ~1100nm。在试验过程中,利用直流稳压电源给多晶硅电池加正向偏压,控制正向偏压大小为

金属材料外观缺陷的检验与处理

金属材料外观缺陷的检验与处理 金属材料外观缺陷的检验 钢材表面缺陷:结疤、裂缝、气泡、夹杂(非金属夹杂)、折叠、麻面、分层、拉裂、辊印、粘结等不得超出相应标准规定。 有色金属材料表面缺陷:裂缝、起皮、起泡、针孔、夹杂、起刺、压折、划伤、擦伤、斑点、凹坑、压灰、辊印等不得超出相应标准规定。 金属材料形状缺陷:弯曲、波浪弯、镰刀弯、瓢曲、扭转、外缘斜度(工字钢)、弯腰挠度(工字钢、槽钢)、椭圆、凹面(钢管)、剪切偏斜,锯齿形边(钢板)、剪切宽窄、塌肩(槽钢)、厚薄不均、厚边(钢板)、缺角(钢板)等不得超出相应标准规定。 金属材料外观缺陷的处理 金属材料的外观缺陷,在验收中除根据相应标准判别外,还应根据实际情况做好文字记录,必要时照像摄影留存,作为综合判断处理的依据。 金属材料的锈蚀 金属材料锈蚀的分类 分轻锈(浮锈)、中锈(迹锈)、重锈(层锈)、水渍、粉末锈、破锡(锌)锈 金属材料锈蚀的计算 板材锈蚀的计算:两面锈蚀在相对的同一部位,按较重的一面锈蚀面积计算,不在同一部位的,按两面锈蚀面积之和计算。 管材锈蚀的计算:内外壁锈蚀在相对的或同一长度的同一部位,按较重的一面锈蚀长度计算,不在同一部位的或不在同一长度内的,按两面锈蚀之和计算。 型材锈蚀的计算:按锈蚀长度计算,在已计算的长度内,各点、段处不重复加以计算。金属材料锈蚀等级的划分

金属材料锈蚀的处理 一般一、二级锈蚀要根据情况做贬值处理,三级锈蚀的材料拒收。贬值处理后入库的材料要及时做好除锈、防锈处理,以免锈蚀程度增加。 部分常用金属材料的外观质量检验 圆钢、方钢、条钢、槽钢、工字钢、角钢、扁钢的外观质量检验 圆钢、方钢、工字钢、角钢不应有扭转、弯折。条钢表面用肉眼检查,不应有裂缝、折迭、结疤和夹杂,两端不应有分层和6mm以上的毛刺。扁钢不应有显著的扭转,侧边不应有显著弧形凸起或凹入。 线材的外观质量检验 盘条表面不能有裂缝、折迭、结疤、分层及杂夹。钢筋表面不应有裂缝、结疤和折迭;钢筋表面可有凸块,但不应超过螺纹筋的高度,钢筋的螺纹筋与纵筋应相连接。 钢板、钢带的外观质量检验 钢板、钢带的表面不应有裂纹、结疤、折叠、气泡和夹渣;不应有分层;表面可有深度和高度小于或等于厚度公差之半的折印、麻点、划伤、小拉痕,以及氧化铁皮脱落所造成的表面粗糙等局部缺陷;表面的局部缺陷,可用修磨方法清除,但清除深度小于或等于钢板、钢带厚度公差之半。 无缝钢管的外观质量检验 钢管的外表面不应有裂缝、折迭、轧折、离层、发纹和结疤等缺陷,缺陷清除深度不能超过公称壁厚的负偏差,清除处的实际壁厚大于或等于壁厚的最小值。 焊接钢管的外观质量检验 钢管内外表面应光滑,不应有折迭、裂缝、分层、搭焊等缺陷,表面可有不超过壁厚负偏差的划道、刮伤、焊缝错位、烧伤和结疤等缺陷存在,允许焊缝处壁厚增厚和内缝焊筋存在。 镀锌钢管的外观质量检验 镀锌钢管的内外表面应有完整的镀锌层,不应有未镀上锌的黑斑和气泡存在,局部可有微小的粗糙和不明显的锌瘤存在。 套管、油管的外观质量检验 套管、油管的管体内外表面及接箍外表面不应有折迭、发纹、离层、裂缝、轧折和结疤等缺陷;套管、油管及其接箍外表面应有一层透明光滑、致密、防锈的涂层;管体、接箍不能有碰伤变形、管体弯曲;从靠近接箍的管体表面查漆印、钢印,识别钢级、查壁厚;成捆油管拆捆后不应有明显弯曲。 钻杆的外观质量检验 杆体表面外观检验与套管、油管要求相同;所有加厚钻杆的管体表面加厚过渡段结构应平整,不应有直台肩、折皱、表面凹凸尖角。 钻铤的外观质量检验 钻铤管体内外表面不应有裂纹、分层和结疤等缺陷,若有缺陷应修磨消除。修磨处与钻铤表面呈圆弧过渡。钻铤表面的任何部位不能焊补。

表面缺陷检测

对于生产物件的检测,由于科学技术的限制,起初只能采用人工进行检测,这样的方式不仅消耗大量人力,而且浪费时间,效率低下。于是,基于机器视觉技术的表面缺陷检测技术应运而生,我们有必要关注关注,并了解相关注意事项。 当今社会,随着计算机技术,人工智能等科学技术的出现和发展,以及研究的深入,出现了基于机器视觉技术的表面缺陷检测技术。这种技术的出现,大大提高了生产作业的效率,避免了因作业条件、主观判断等影响检测结果的准确性,实现能更好更准确地进行表面缺陷检测,更加快速的识别产品表面瑕疵缺陷。 产品表面缺陷检测属于机器视觉技术的一种,就是利用计算机视觉模拟人类视觉的功能,从具体的实物进行图象的采集处理、计算、进行实际检测、控制和应用。产品的表面缺陷检测是机器视觉检测的一个重要部分,其检测的准确程度直接会影响产品的质量优劣。由于使用人工检测的方法早已不能满足生产和现代工艺生产制造的需求,而利用机器视觉检测很好地克服了这一点,表面缺陷检测系统的广泛应用促进了企业工厂产品高质量的生产与制造业智能自动化的发展。

在进行产品表面检测之前,有几个步骤需要注意。 首先,要利用图像采集系统对图像表面的纹理图像进行采集分析; 其次,对采集过来的图像进行一步步分割处理,使得产品表面缺陷能像能够按照其区域特征进行分类; 再者,在以上分类区域中进一步分析划痕的目标区域,使得范围更加的准确。 通过以上的三步处理之后,产品表面缺陷区域和特征能够进一步确认,这样表面缺陷检测的基本步骤就完成了。 利用机器视觉技术提高了用户生产效率,使得生产更加细致化,分工更加明确,同时,减少了公司的人工成本支出,节省了财力,实现机器智能一体化发展。 南京博克纳自动化系统有限公司总部位于美丽的中国古都南京,是国内专业研制无损检测仪器及设备的高科技企业。公司致力于涡流、漏磁和超声波仪器及各种非标设备的研制,已拥有自主研发的多项国家专利。产品被广泛应用于航天航空、军工、汽车、电力、铁路、冶金机械等行业。产品出口:美国、

第三节硅单晶

第三节硅单晶 一、直拉硅单晶 1961年1月,上海有色金属研究所第三研究室组建直拉硅单晶研制组,从制作设备开始,制成华东地区第一台直拉硅单晶炉。8月26日拉出1根重30克的硅单晶,受到复旦大学谢希德教授的称赞。11月又试制成掺磷、电阻率1~10欧姆·厘米的硅单晶。 [硅单晶] 1961年12月,上海金属加工厂在国产直筒式直拉硅单晶炉上试拉单晶,翌年2月拉制出重36克硅单晶,最初液态硅易结晶,成晶困难,在内层保温罩上加一层钼片,状况改观,电阻率均匀性也有提高。 1964年10月,为研制百万次电子计算机需要,上海市冶金工业局、市科学技术委员会联合向上海有色金属研究所下达研制生产电阻率为0.025~0.03欧姆·厘米的重掺硼硅单晶。该所第四研究室组成研制组,采用充氩工艺,完成了20个品种,供上海元件五厂制作11伏和37.5伏稳压管,经试用性能满足要求。翌年3月市冶金工业局邀请有关专家鉴定,确认工艺稳定,质量可靠,用多种方法掺杂均获得满意结果,并成功地验证了美国贝尔电话公司发表的电阻率曲线,填补了国内空白。国家科委以《重掺硼单晶的科学研究》为题,印成500本单行本内部发行。 随后该所又研制成硅外延衬底用电阻率为0.001~0.009欧姆·厘米重掺砷硅单晶和电阻率为0.003~0.009欧姆·厘米重掺锑硅单晶。经该所硅外延组和中国科学院上海冶金研究所长期使用,质量稳定可靠,是理想的硅外延衬底材料。市科委硅外延领导小组确认该成果填补了国内空白,要求除该所继续生产外,总结经验移交上海金属加工厂生产。1965年,该厂生产的硅单晶头部有滑移线、小角度晶界等缺陷,总工程师葛涛组织有关人员专题研究,总结经验教训,采取“引晶细长,放肩圆滑,直径均匀,尾呈圆锥”的16字经验。并延长停炉时间,缺陷得到改善,位错密度在5×103个/平方厘米以下。1971年该厂在DJL-70硅单晶炉增加投料量试验,改进加热系统,扩大石墨器件尺寸,产量上升。1974年拉制出直径100毫米重5公斤硅单晶。为适应器件厂提高硅单晶的利用率的要求,1978年7月又首次拉制出符合质量要求的等直径硅单晶。 1970年,上海冶炼厂用直拉法制备硅单晶。为提高质量,1973年起采用偏心拉晶工艺,径向电阻率不均匀性小于20%,充氩减压工艺,降低氩气消耗

金属表面喷涂检验规范(涂装规范细则)

1.0目的 规定了金属零部件喷涂标准的朮语、技朮要求、试验方法、检验规则等, 其最终目的在于满足最终客户对视觉、触觉的要求 2.0范围 本文件适用于喷粉生产质量检验。 3.0定义 3.1 A级表面:能直接正视的外部表面和全部需丝印的表面; 3.2 B级表面:不明显的外部表面和开启门后能看见的内部表面; 3.3 C级表面:不易察看的内部和外部表面; 3.4起泡:涂层局部粘附不良引起涂膜浮起; 3.5针孔:涂层表面上可看见类似针刺成的微小孔; 3.6桔皮:喷涂涂料产生的凸凹,象桔皮一样的斑点; 3.7异物:空气中灰尘,喷涂机污物等杂物; 3.8凹痕:喷涂前基材上的伤痕使涂装后该处出现凹陷; 3.9浅划痕:涂层表面有伤痕,但看不见底层表面; 3.10深划痕:涂层表面有伤痕,且伤及底层表面; 3.11厚边:喷涂时在产品边缘或内折弯角处的涂料堆积现象,包括因局部保护不良而产生的毛边; 3.12流挂:喷涂时涂层流动产生的堆积; 3.13露底:局部无涂层或涂料覆盖不严等现象,常见于内折弯角处/孔的边缘截面,基材切口边缘截面 等部位; 3.14剥落:一道或多道涂层脱离上涂层,或涂层完全脱离基材的现象; 3.15缩孔:涂层干燥后滞留的若干大小不等,分布各异的图形小坑现象; 3.16开裂:涂层出现不连续的外观开裂变化,通常由于涂层老化而引起的; 3.17粉化:涂层表面由于一种或多种漆基的降解及颜料的分解而呈现出疏松附着细粉。 4.0输入 4.1 金属零(组)件的粉末喷涂技朮规范 4.2金属零(组)件的喷漆技术规范 5.0输出

喷涂检验日报表6.0工作程序

6.1主要检验工具 6.1.1 色差仪。 6.1.2涂层测厚仪。 6.1.3本公司标准样板。 6.1.4透明杂物判定表。 6.1.5 切刀及透明胶带(采用3M公司生产的Scotch 250# 胶带)。 6.1.6 100%工业酒精。 6.1.7白色棉质软布(或脱脂棉)和端面直径为6.3mm,长40mm的圆柱形木棒。 6.1.8冲击试验器和4倍放大镜。 6.2检视条件 6.2.1光度:200?300Lx(相当于40W日光灯750mm远)。 6.2.2如条件许可,检验者目视方向应与光源方向成450,如下图图1所示:(接下页) 6.2.3检验者沿目视方向与待检表之间的距离如下: A级表面:400mmB级表面:500mmC级表面:800mnr t 6.3试验方法及质量指标 6.3.1试验及试片要求 a.试片要求 材料:符合GB 9271 的铝板或马口铁板 尺寸:80 X 125X( 0.5 ~ 1.0)mm 表面粗糙度:Ra < 1 mm 表面预处理:铝为硫酸阳极氧化 马口铁板按GB 9271进行溶剂清洗 喷涂:喷涂用涂料应与DKBA0.400.0001中任一标准样板所对应的涂料产品相同;且 应在表面预处理后24小时内进行喷涂操作。试样必须两面全喷涂、且应保证 边缘质量。 b.试验项目及试样数量

太阳能电池重点答案(前4章)

第一章 1.法国物理学家Edmond Becquerel 于1839 年首先观察到光伏效应。 2.1883 年美国科学家Charles fritts 制造了历史上第一个太阳能光电池。 3.1954 年贝尔实验室的科学家研制出了第一块现代太阳能电池,转换效率达到6%,这是太阳能 电池发展史上一个重要里程碑。 4.2000 年德国首先颁布可再生能源法。 5.光子的能量?能量(eV)与波长(μm)的关系。(计算) 答:光子的能量:E(J) = hf = hc/λ 能量与波长的关系:E (eV ) = 1.24 / λ(μm)。光的能量与波长成反比。 6.太阳的能量主要来源于太阳内核发生核聚变反应(氢转换成氦),这些能量以电磁波的形式向四 方辐射:太阳表面温度高达6000 k。 7.太阳光照射在距离D 处的球面,入射到物体的光强为?(计算) 答:(式中,Isun为太阳的表面辐射功率强度) 8.大气效应主要在哪些方面影响着地球表面的太阳辐射? 答: 1)由大气吸收、散射和反射引起的太阳辐射能量的减少。 2)由于大气对某些波长的较为强烈地吸收和散射而导致光谱含量的变化。 3)当地大气层的变化引起入射光能量、光谱和方向的额外改变。 引起的太阳辐射能量的减少:导致光谱含量的变化。 (特殊的气体包括:臭氧(O3),二氧化碳(CO2)和水蒸气(H2O)都能强烈地吸收能量与其分子键能相近的光子。从而改变太阳的光谱含量,使得辐射光谱曲线深深地往下凹。 然而空气分子和尘埃,却是通过对光的吸收和散射成为辐射能量减少的主要因素) 9.什么叫光学大气质量?太阳在相对水平面成30?的高度,其相应的大气光学质量是多少? 答:光线通过大气层的路程,太阳在头顶正上方时,路程最短。我们把实际路程与此最短路程的比称之为大气光学质量。简称AM。大气光学质量表达式: (θ为太阳和头顶正上方成角度) 当太阳在头顶上方时,AM=1,称为大气光学质量1的辐射。 当太阳在相对水平面成30?时, 10.地球表面的标准光谱称为AM1.5,辐射能量密度为1000 W/m2;地球大气层外的标准光谱称为 AM0,辐射能量密度为1366 W/m2。 11.北半球,正午时分太阳高度角?式中各量表示什么? 答:北半球正午时分太阳高度角表达式: 式中ф为观测位置所处的纬度;δ为偏向角,大小取决于所在一年中的天数,北半球:春分日和秋分日偏向角为0°,夏至日偏向角为23.45°,冬至日偏向角为-23.45°。 在赤道地区(纬度为0?),春分日和秋分日:太阳处在头顶时高度角为90?;在北回归线处(大约在纬度23.5?),夏至日,太阳在头顶正上方,其高度为90?。 第二章 1.硅的晶体结构为金刚石结构。 2.求晶面的密勒指数? 答:选一格点为原点,并作出沿三轴线,在某族晶面中必有一个离原子最近的晶面,假设它在3个坐标轴上的截面距分别为h1',h2',h3',用(h1,h2,h3)来标志这个晶面系-密勒指数: 注意:若晶面系和某轴线平行,截面距将为∞。所对应的指数为0。

相关文档