文档库 最新最全的文档下载
当前位置:文档库 › 金属元素在水溶液中的反应类型

金属元素在水溶液中的反应类型

金属元素在水溶液中的反应类型
金属元素在水溶液中的反应类型

11.4 金属元素在水溶液中的反应类型

无机反应基本上可分为两大类:酸碱反应和氧化还原反应。广义的酸碱反应为不发生电子转移的反应,如沉淀反应,水解反应,配位反应,缩合反应。另一类氧化还原反应则为电子发生转移的反应,现将各类反应及其反应规律进行概要的总结。

11.4.1 金属离子的沉淀反应

金属离子与许多阴离子能生成难溶物沉淀,除单纯的沉淀反应(如Ag++Cl-→AgCl↓),它的生成与溶解由Ksp决定外,许多难溶物的生成与溶解都与pH有关。如氢氧化物沉淀,弱酸盐沉淀。也与溶液中配位剂,氧化剂的存在有关。

11.4.1.1 金属离子与碱反应

金属离子在溶液中强烈水化形成水合离子,作为弱酸,如加入OH-离子,它们便失去H+离子,生成氢氧化物。

最后得到不带电荷的四水合二氢氧化物(H2O分子以很弱的偶极相连)它们通常是沉淀(简化为M(OH)2)。有些氢氧化物沉淀可进一步溶于过量碱中,变为带负电荷的配离子。

有些氢氧化物能溶于氨水,如

按周期表中金属阳离子与氢氧化钠溶液或氨水反应生成氢氧化物可分成下面几组;(图11—7)

A组:H、IA族、Ba的氢氧化物可溶。

B组:Ca、Sr形成白色较难溶的氢氧化物,生成的沉淀较少,且较慢。

C组:Mg,Sc,Ti,V,Bi形成白色不溶氢氧化物(除V(OH)3绿色外),Mg(OH)2,Sc(OH)3,Ti(OH)4,Bi(OH)3

D组:Cr、Mn、Fe、Co形成不溶氢氧化物,低氧化态在空气中转化为高氧化态,Cr(OH)2(黄一棕)变为绿色Cr(OH)3(见F组);Mn(OH)2(粉色)变为棕色MnO(OH)2Fe(OH)2(浅绿)变为暗棕色Fe2O3·nH2O;Co(OH)2(红色)变为棕色Co2O3·nH2O

E组:形成不溶氢氧化物,溶于过量NH3·H2O中形成配合物,除Zn,

F组:白色不溶氢氧化物(除Cr(OH)3灰绿色),溶于过量氢氧化物成无色溶液,除Zn外,本组不溶于NH3·H2O。

图11-7 氢氧化溶解度和周期表

由上可知,除碱金属及钡的氢氧化物为可溶外,其余均难溶。Be,Zn,Al,Ga,Cr,Ge,Sn,Pb,Sb,Cu的氢氧化物有两性,它们的酸性较明显,易溶于稀的强碱,而Cu(OH)2的酸性较弱,只能在很强的浓碱里才显著溶解,即它们

溶于碱的pH值不同,例如酸性较强的Al(OH)3在pH10.6时已开始溶解,而酸性微弱的Cu(OH)2只能在浓度为6mol·L-1的碱里才显著溶解,大多数如上所示有明显两性的氢氧化物也只在pH值超过13时才溶解,这一性质可用于离子分离,应当注意的是:组成两性氢氧化物的金属元素为两性元素,因此,它们在水溶液中存在的形式除阳离子(Mn+)外,还有含氧阴离子(羟基酸根或含氧酸根阴离子)。由于两性氢氧化物都是弱酸,所以作为它们对应的盐(羟基酸盐)都是易水解的。

11.4.1.2 金属离子与硫化氢反应

碱、碱土金属硫化物是可溶的,溶液中强烈水解。Al3+、Cr3+、Fe3+的硫化物在水中完全水解形成氢氧化物沉淀。其余金属硫化物都难溶,绝大多数有颜色。由于它们的溶解度不同(Ksp不同),故各种金属阳离子与H2S作用,生成硫化物的反应完全程度不同。

表11—3 M2+和H2S(K1=9.1×10-8,K2=1.1×10-12)的反应K值

由上表数据可知,生成CuS、CdS、HgS的反应极为完全,而生成ZnS的反应不完全,生成MnS、FeS的反应较难发生。ZnS、MnS、FeS它们溶于稀酸,需在微碱性介质中才能反应完全,而CuS、CdS、HgS不溶于稀酸,反应完全,它们溶于氧化性酸。利用沉淀硫化物pH的不同,可以分离去除重金属杂质离子。

其它难溶弱酸盐也可用弱酸的解离常数和溶度积常数的关系式K=K1K2(H2A)/Ksp(MA),(式中H2A为弱酸,MA为弱酸盐)来判断沉淀的生成和溶解。

11.4.1.3 金属离子与碳酸盐反应

金属离子和Na2CO3反应或生成正盐沉淀,或生成碱式盐沉淀,或生成氢氧化物沉淀。究竟生成什么?按理可根据它们的溶度积来判断,但由于碱式盐的溶度积,目前很难找到,我们可以根据氢氧化物和溶度积值作大致判断。设取

0.20mol·L-1Na2CO3和等体积0.20Mol·L-1MCl2溶液混合,混合后(产生沉淀前)Na2CO3、MCl2的浓度均降为0.10mol·L-1。0.10mol·L-1Na2CO3溶液中

[CO32-]≈0.10mol·L-1,[OH-]=4.5×10-3mol·L-1(水解计算从略),此时溶液中

[M2+][OH-]2=2.0×10-6

[M2+][CO32-]=10-2

若MCO3的Ksp<<10-2,而M(OH)2的Ksp>10-6,则生成MCO3。周期表中ⅠA、ⅡA(除Li、Be、Mg)族金属离子在溶液中不水解,大多数氢氧化物易溶,溶解度较小的氢氧化物的Ksp>10-6,因此生成碳酸盐沉淀,如CaCO3等。若MCO3的Ksp<<10-2,M(OH)2的Ksp>10-6,则生成碱式碳酸盐沉淀。除ⅠA、ⅡA的Ca 、Sr、Ba外,大多数金属元素Be、Mg、Mn、Fe、Co、Ni、Cu、Zn、Hg、Tl、Pb、Bi等,它们的阳离子有水解性,氢氧化物均难溶,Ksp《10-6,故都生成碱式碳酸盐沉淀,如 Mg(OH)2CO3,Cu(OH)2CO3。若欲在溶液中制正盐,例如PbCO3,MnCO3,则可用酸式盐作沉淀剂,用NaHCO3代替 Na2CO3。

Pb(NO3)2+NaHCO3→PbCO3↓+HNO3+NaNO3

Mn(NO3)2+NaHCO3→MnCO3↓+HNO3+NaNO3

因为PbCO3的溶解度(3.9 × 10-7g/100gH2O)比Pb(OH)2的溶解度(5. 5 ×10-5g/100gH2O)小,故可用 NaHCO3控制溶液 pH值,使析出PbCO3正盐,MnCO3与PbCO3相同。但应指出不是所有的这类金属离子的碳酸盐都可用NaHCO3作沉淀剂制得。这种情况也适用于Mn+和Na3PO4反应,由于Na3PO4溶液中[OH-]较大,所以也容易生成碱式磷酸盐,因此欲制备正磷盐时,常用Na2HPO4作沉淀剂。如:

此外,若M(OH)n的Ksp非常小,则生成氢氧化物沉淀,如Al(OH)3、Cr (OH)3、Fe(OH)3等。

11.4.2 金属离子的水解反应

11.4.2.1 金属阳离子的水解趋势

水合金属离子吸引水中的OH-,形成羟基离子释放出H+,使溶液呈酸性程称为水解。

M(H2O)63++H2O→M(H2O)5OH2++H3O+

各种金属离子水解能力是不同的,影响离子水解因素是多方面的:其一,是离子的电荷和半径,阳离子具有高电荷和较小的离子半径时,它们对配位水分子有较强的极化作用,因此易发生水解。例如Al3+极易水解。其二,是离子的电子构型。例如 Ca2+、Sr2+、Ba2+等盐一般不水解,但电荷相同的Zn2+、Cd2+、Hg2+等离子在水中却会水解,这种差异主要是由于电子构型不同所引起的。后者为18e

电子构型。它们有较高的有效核电荷和较小的离子半径,因而极化作用较强,易使配位水分解。其三,是与阳离子的配位数有关。例如Zn2+、Cd2+、Hg2+,它们的电子构型电荷相同,Hg2+半径较大,然而Hg2+离子水溶液的酸性却很强,大于Zn2+、Cd2+(pKa3.7)。这是因为Hg2+有形成配位数为2的化合物的强烈倾向,一般配位数小的中心离子的电子吸引性强,因此Hg2+水合离子易解离出H+,金属离子的水解常数见表 11— 4。

由上表可知,各种金属离子发生水解的pH值是不同的,有些高氧化态的水合离子在 pH很小的酸性溶液里就水解。如Fe3+、Al3+、Bi3+、Sn2+等。在试剂生产中广泛利用这种性质去除试剂中的杂质铁等。

11.4.2.2. 金属阳离子水解产物

金属阳离子水解的产物是很复杂的,一般有以下几类:

1.水解产物为碱式盐或羟基阳离子

SnCl2+H2O→Sn(OH)Cl↓+hCl

Sn(H2O)62++H2O→Sn(OH)(H2O)5++H3O+

Zn(H2O)42++H2O→Zn(OH)(H2O)3++H3O+

2.水解产物为金属氧基盐

Sb(Ⅲ)、 Bi(Ⅲ)盐极易水解,在酸性溶液中强烈水解

Bi(NO3)3+H2O→BiONO3↓+2HNO3

SbCl3+H2O→SbOCl↓+2HCl

表达11-1 金属离子的水解常数

* 单位为SI制的C2·m-1×1028

**单位为e2A-1本表取自Huheey, J, E, Inorg, Chem;p, 266,2-nd、ed, Harper &. Row(1978)

Sb、Bi氧基盐(酰基盐)可看成羟基盐脱水产物,它不溶于水

实际上在Bi(Ⅲ)盐溶液中不存在单个[Bi(H2O)n]3+,水解产物是很复杂的,中性溶液中主要是[Bi6O6]6+或它的水合物[Bi6(H2O)12]6+多聚形式存在,而不存在简单BiO+离子。

在高价金属离子 Ti(Ⅵ )盐水解时也形成钛氧基离子:

Ti(SO4)2+H2O→TiOSO4+H2SO4

(即z/r)大,极化力大的缘故。

3.水解产物本身发生缩合作用

水溶液中Al3+、Cr3+、Fe3+的水解行为极为相似,它们的各级水解产物同时发生各种类型的缩合反应,例如:

[Al(H

)6]3+[Al(H2O)5(OH)]2++H+ K=1.12×10-5

[Al(H2O)5(OH)]2+缩合趋势较大,广泛存在的羟桥连接的双聚体(多核配合物):

同样,在[Cr(H2O)6]3+的水溶液中也存在[Cr(H2O)5(OH)]2+和

[(H2O)5Cr—OH—Cr(H2O)5]5+。

在Fe(H2O)63+水溶液中,在较低浓度时主要以[Fe(H2O)5OH]2+存在

〔Fe(H2O)5OH〕2++H3O+

[Fe(H?O)?]3++H

K= 1 .84 ×10-3

同时还存在由〔Fe(H2O)5(OH)〕2+缩合而形成以氧桥连接的一氧双聚体:)〕2+〔(H2O)5Fe—0—Fe(H2O)5〕4++H2O

2〔Fe(H

当浓度稍大时尚有其它类型的含氧物种。

由此可见,金属阳离子的水解产物往往不是单一的,而是一个多种物种共存的复杂体系。因此它们水解的逆反应的动力学过程较慢,一般用加酸来抑止金属离子水解时,溶液往往不能立即变为清亮。

表达11-5 金属元素常见的配离子

说明:1表中标出的数字是形成配离子的配位数,应当指出,以上所得配离子都系指水溶液中金同离子与所列配位剂直接结合的产物。不考虑通过复杂途径得出的配合物。2.*——不稳定,一般不能在稀溶液中存在。△——不常见或难以制取或组成复杂。()——不是本课的重点离子。

11.4.3 金属元素的配位反应

金属离子是路易斯酸能与路易斯碱反应生成配合物。配合物的形成与金属离子的电子构型有关,一般s区金属离子除与少数螫合剂形成的配合物外,很少形成稳定的配合物。其它许多金属离子都能形成稳定的配合物,尤以d区ds区的金属离子的配位能力较强,形成众多的配合物,现将常见金属元素的配离子列于表11—5。(见上页)

11.4.4. 金属元素的氧化还原反应

许多金属元素有可变氧化态,故氧化还原反应是它们的重要特征。同一元素不同氧比态化合物,有的用作氧化剂,有的用作还原剂,有的既可作氧化剂,也可作还原剂。它们的标准电极电势值见表 11—2,一般认为(在酸性介质中)?为0.5~0.7V是氧化剂,还原剂的分界值,?>0.5~0.7V的电对,通常其氧化型被用作氧化剂,?<0.5~0.7V的电对,通常其还原型被用作还原剂。金属元素的氧化还原反应很多,除简单的氧化还原反应外,许多反应是与溶液pH值,沉淀剂,络合剂有关的复杂反应,现将反应及反应的一般规律总结如下:

11. 4. 4.1 金属单质金属离子+ne

-

M0→M n+:活泼金属与水、酸、碱、氧化剂反应

2Na+2H2O→2NaOH+H2

Zn+2HCl→ZnCl2+H2

2Al+2NaOH+2H2O→2Na〔Al(OH)4〕+3H2

ZN+Cu2+→Zn2++Cu

M n+→M0:金属离子的氧化性

2Hg2++Sn2+→2Hg+2Sn4+

11. 4.4.2 高氧化态离子+ne-低氧化态离子

1.简单金属离子的反应

2Fe3++2I-→2Fe2++I2

Sn2++2Ce4+→Sn4++2Ce3+

2.与pH有关的反应

高氧化态金属离子大多以含氧酸根,羟基酸根,氢氧化物,氧化物形式存在,它们的氧化还原反应,高低氧化态间的转化强烈受介质的影响。一般它们作为氧

化剂参与反应需要酸性介质。因为酸性介质中它们的氧化性增强(由可知),

另外,从动力学上看,在酸性介质中,含氧酸氧化反应速度加快。而在碱性介质

中低氧化态离子的还原性增强(由可知)。例如Cr(Ⅵ)与 Gr(Ⅲ)的转

化:

这种情况在其它金属元素中也存在:

由此,我们可以得出金属元素高低氧化态转化的一般规律:

这个规律同样也适用于熔融体系,例如,由铬铁矿制铬酸钠,由软锰矿制锰酸钾,由三氧化二铁制铁酸钾等。

4Fe(CrO2)2+7O2+8Na2CO3→2Fe2O3+8Na2CrO4+8CO2↑

2MnO2+O2+4KOH→2K2MnO4+2H2O

Fe2O3+3KNO3+4KOH→2K2FeO4+3KNO2+2H2O

11.4.4.3. 中间氧化态较低氧化态(包括单质)+较高氧化态

此类反应实际上是歧化与反歧化的反应,常见的有以下几种金属元素:

2Cu+(aq)Cu2+(aq)+Cu0K=1.4 × 106

2Mn3++2H 2O Mn2++MnO2+4H+ K~109

化的。

11.4.4.4 与配位、沉淀反应有关的氧化还原反应。

经常由于沉淀剂及配位剂的存在影响氧化还原反应的进行。这是由于影响了氧化剂或还原剂的电极电势,使原来不能进行的反应得以进行。如Au、Cu不能被空气中氧氧化,在配位剂存在下能被氧化:

4Au+8NaCN+2H2O+O2→4Na[Au(CN)2]+4NaOH

4Cu+O2+8NH3+2H2O→4〔Cu(NH3)2〕OH

又如溶度积极小的HgS(Ksp10 -50)溶于王水,也是形成配合物之故:

3HgS+2HNO3+12HCl→3H2[HgCl4]+3S+2NO+4H2O

也有的使某些反应逆向进行.如:

Fe(Ⅲ)和Ⅰ(—Ⅰ):

Fe3++2I-→Fe++I2

2Fe(OH)2+I2+2OH-→2Fe(OH)3+2I-

Co(Ⅲ)和Cl(—I):

CO3++2Cl-→2CO2++Cl2

2〔CO(NH3)6〕2++Cl2→2[CO(NH3)6]3++2Cl-

综上所述,金属元素及其化合物的性质变化是有一定的内在规律性,我们应用比较归纳方法掌握它们的共性和特性。

各种化学元素在钢中的作用

本文出自一本很不好买的书,相当全面,偶然整理,希望对大家学习有帮助 —————————————————————— 有几位选手把我给气乐了,话说这段文章来自我爷爷的手抄本(不过现在老人家现在改复印了,挺时髦的),原书我没看到过所以不知道书名(我们有时候还是比较喜欢上世纪的老版书,比较严谨,实验室王老有本金相可是他老人家的宝贝,轻易不示人)。话说我码字是自娱自乐,目标受众也是学材料的同门,你们一帮连论文都没写过的大神忽然跳出来跟我这指责不尊重知识产权,真是好笑。想讨论问题,我欢迎,想骂人,出门左转菜市场。 —————————————————————— 为了改善和提高钢的某些性能和使之获得某些特殊性能而有意在冶炼过程中加入的元素称为合金元素。常用的合金元素有铬,镍,钼,钨,钒,钛,铌,锆,钴,硅,锰,铝,铜,硼,稀土等。磷,硫,氮等在某些情况下也起到合金的作用。 (1)铬(Cr) 铬能增加钢的淬透性并有二次硬化的作用,可提高碳钢的硬度和耐磨性而不使钢变脆。含量超过12%时,使钢有良好的高温抗氧化性和耐氧化性腐蚀的作用,还增加钢的热强性。铬为不锈钢耐酸钢及耐热钢的主要合金元素。 铬能提高碳素钢轧制状态的强度和硬度,降低伸长率和断面收缩率。当铬含量超过15%时,强度和硬度将下降,伸长率和断面收缩率则相应地有所提高。含铬钢的零件经研磨容易获得较高的表面加工质量。 铬在调质结构中的主要作用是提高淬透性,使钢经淬火回火后具有较好的综合力学性能,在渗碳钢中还可以形成含铬的碳化物,从而提高材料表面的耐磨性。 含铬的弹簧钢在热处理时不易脱碳。铬能提高工具钢的耐磨性、硬度和红硬性,有良好的回火稳定性。在电热合金中,铬能提高合金的抗氧化性、电阻和强度。 (2)镍(Ni) 镍在钢中强化铁素体并细化珠光体,总的效果是提高强度,对塑性的影响不显著。一般地讲,对不需调质处理而在轧钢、正火或退火状态使用的低碳钢,一定的含镍量能提高钢的强度而不显著降低其韧性。据统计,每增加1%的镍约可提高强度29.4Pa。随着镍含量的增加,钢的屈服程度比抗拉强度提高的快,因此含镍钢的比可较普通碳素钢高。镍在提高钢强度的同时,对钢的韧性、塑性以及其他工艺的性能的损害较其他合金元素的影响小。对于中碳钢,由于镍降低珠光体转变温度,使珠光体变细;又由于镍降低共析点的含碳量,因而和相同的碳含量的碳素钢比,其珠光体数量较多,使含镍的珠光体铁素体钢的强度较相同碳含量的碳素钢高。反之,若使钢的强度相同,含镍钢的碳含量可以适当降低,因而能使钢的韧性和塑性有所提。镍可以提高钢对疲劳的抗力和减小钢对缺口的敏感性。镍降低钢的低温脆性转变温度,这对低温用钢有极重要的意义。含镍3.5%的钢可在-100℃时使用,含镍9%的钢则可在-196℃时工作。镍不增加钢对蠕变的抗力,因此一般不作为热强钢的强化元素。 镍含量高的铁镍合金,其线胀系数随镍含量增减而显著变化,利用这一特性,可以设计和生产具有极低或一定线胀系数的精密合金、双金属材料等。

高中化学方程式总结

最新高中化学方程式汇编﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡无机化学反应方程式﹡﹡﹡﹡﹡﹡﹡﹡﹡﹡§1◆碱金属元素 4Na+O2===2Na2O 2Na2O+ O2Na2O2 4Na+2O22Na2O22Na+S===Na2S(爆炸) 2Na+2H2O===2NaOH+H2↑Na2O+H2O===2NaOH 2Na2O2+2H2O===4NaOH+O2↑ (此反应分两步:Na2O2+2H2O===2NaOH+H2O2;2H2O2===2H2O+O2.) Na2O+CO2===Na2CO32Na2O2+2CO2===2Na2CO3+O2 Na2CO3+HCl===NaHCO3+NaCl NaHCO3+HCl===NaCl+H2O+CO2↑ Na2CO3+2HCl===2NaCl+ H2O+ CO2↑ 2NaHCO3Na2CO3+ H2O+ CO2↑ 4Li+ O2 2 Li2O 2K+2H2O===2KOH+H2↑ NaHCO3 + NaOH== Na2CO3 + H2O Na2CO3+ H2O+ CO2 = 2NaHCO3 2NaOH+ CO2 (少量)== Na2CO3 + H2O NaOH+ CO2(多量)== NaHCO3 Na2CO3+ Ca(OH)2=Ca CO3↓+2 NaOH2NaOH+SO2(少量)===Na2SO3+H2O NaOH+SO2(足量)===NaHSO3NaOH+H2S(足量)===NaHS+H2O 2NaOH+H2S(少量)===Na2S+2H2O NaOH+HCl===NaCl+H2O CO2+Ca(OH)2(过量)===CaCO3↓+H2O 2CO2(过量)+Ca(OH)2===Ca(HCO3)2 Na2O+2HCl===2NaCl+H2O Na2O+SO3===Na2SO4 CaCO3CaO+CO2↑MgCO3MgO+CO2↑ 2Fe(OH)3Fe 2O3 + 3H2O Mg(OH)2Mg O+ H2O Cu(OH)2Cu O+ H2O 2Al(OH)3Al 2O3 + 3H2O CaCO3+H2O +CO2=Ca(HCO3)2 2NaOH + CuSO4 ==Cu(OH)2↓+ Na2SO4 3NaOH + FeCl3 ==== Fe(OH)3↓ + 3NaCl §2卤族元素 Cl2+Cu Cu Cl23Cl2+2Fe2FeCl3 Cl2+2 Na 2Na Cl Cl2 + H22HCl 3Cl2 +2 P 2PCl3 Cl2 + PCl3PCl5 Cl2+H2O==HCl+HClO Cl2+2NaOH===NaCl+NaClO+H2O 2Cl2+2Ca(OH)2===CaCl2+Ca(ClO)2+2H2O Cl2+2FeCl2===2FeCl3 Ca(ClO)2+H2O+ CO2(少量)== Ca CO3↓+2 HClO

高中化学金属元素及其化合物题

金属元素及其化合物 一、选择题 1.微量元素是指在人体内总含量不到万分之一,重量总和不到人体重量的千分之一的20 多种元素,这些元素对人体正常代谢和健康起着重要作用,下列各组元素全部属于微量元 素的是 ( ) A .Na ,K ,Cl ,S ,O B .F ,I ,Fe ,Zn ,Cu C .N ,H ,0,P ,C D .Ge ,Se ,Ca ,Mg ,C 2.下列灭火剂能用于扑灭金属钠着火的是 A .干冰灭火剂 B .黄沙 C .干粉灭火剂(含NaHC03) D .泡沫灭火剂 3.定向爆破建筑物时,应同时定向切断钢筋和炸碎水泥,除要用适宜的猛烈炸药外,还需 用 ( ) A .氧炔焰 B .铝热剂 C .液氧 D .电弧 4.制备卤磷酸钙荧光粉所用的高纯氯化钙中混有镁杂质,除去的方法是把氯化钙的水溶液 加热到90-95℃,在不断搅拌下加入适当的沉淀剂,使镁生成沉淀过滤除去。此沉淀剂 最好选用 ( ) A .氢氧化钙乳浆 B .碳酸钠溶液 C .碳酸氢钠溶液 D .氢氧化钠溶液 5.已知铍(Be)的原子序数为4。下列对铍及其化合物的叙述中,正确的是 A .铍的原子半径小于硼的原子半径 B .氯化铍分子中铍原子的最外层电子数是8 C .氢氧化铍的碱性比氢氧化钙弱 D .单质铍跟冷水反应产生氢气 6.重金属离子有毒性。实验室有甲、乙两种废液,均有一定毒性。甲废液经化验呈碱性, 主要有毒离子为Ba 2+,如将甲、乙两废液按一定比例混合,毒性明显降低。乙废液中可 能含有的离子是 ( ) A .Cu 2+和SO 42- B .Cu 2+和Cl - C .K +和SO 42- D .Ag +和NO 3- 7.我国古代制得的“药金”外观和金相似,常被误认为是金子。冶炼方法是:将炉甘石(ZnCO 3) 和赤铜矿(Cu 2O)与木炭按一定比例混合,加热至800℃左右,即炼出闪着似金子般光泽的 “药金”。有关叙述正确的是 ①“药金”是铜锌合金 ②冶炼过程中炉甘石直接被碳还原而有锌生成 ③用火焰灼烧可区 分黄金与“药金”④用王水可以区分黄金与“药金”⑤表面有黑色氧化物的“药金”,用稀硫酸 洗涤后可去掉黑色膜,但可能发出铜红色 A .①② B .①②③④ C .①③④⑤ D .①②③④⑤ 8.制印刷电路时常用氯化铁溶液作为“腐蚀液”,发生的反应2FeC13+Cu=2FeCl 2+CuCl 2向盛 有氯化铁溶液的烧杯中同时加入铁粉和铜粉,反应结束后,下列结果不可能出现的是 A .烧杯中有铜无铁 B .烧杯中有铁无铜 C .烧杯中铁、铜都有 D .烧杯中铁、铜都无 9.一定量的Cu 粉与浓硫酸共热产生二氧化硫气体的体积为2.24L(标准状况),则下列情况 不可能的是 ( ) A .加入铜的质量为6.4g B .加入浓硫酸中溶质0.2mol C .加入铜的质量大于6.4g D .加入浓硫酸中含溶质多于0.2mol lO .单质钛的机械强度高,抗蚀能力强,有“未来金属”之称。工业上常用硫酸分解钛铁矿 (FeTiO 3)的方法制取二氧化钛,再由二氧化钛制金属钛, 主要反应有: ( ) ①FeTi03+3H 2SO 4=Ti (SO 4)2+FeSO 4+3H 2O ②Ti (SO 4)2+3H 2O=H 2TiO 3↓+2H 2SO 4 ③H 2TiO 3 ???→TiO 2+H 2O ④TiO 2+2C+2Cl 2 ? ??→ TiCl 4↑+CO ↑

碱金属元素性质总结讲解-共13页

元素周期律碱金属元素性质总结 I.元素周期律 1.周期表位置IA族(第1纵列),在2、3、4、5、6、7周期上均有分布。元素分别为锂(Li)-3,钠(Na)-11,钾(K)-19,铷(Rb)-37,铯(Cs)-55,钫(Fr)-87。 2.碱金属的氢氧化物都是易溶于水, 苛性最强的碱, 所以把它们被称为为碱金属。 3.碱金属的单质活泼,在自然状态下只以盐类存在,钾、钠是海洋中的常量元素,其余的则属于轻稀有金属元素,在地壳中的含量十分稀少。钫在地壳中极稀少,一般通过核反应制取。 4.保存方法:锂密封于石蜡油中,钠。钾密封于煤油中,其余密封保存,隔绝空气。 II.物理性质 II.1物理性质通性(相似性) 1.碱金属单质皆为具金属光泽的银白色金属(铯略带金黄色),但暴露在空气中会因氧气的氧化作用生成氧化物膜使光泽度下降,呈现灰色。常温下均为固态。 2.碱金属熔沸点均比较低。摩氏硬度小于2,质软。.导电、导热性、延展性都极佳。 3.碱金属单质的密度小于2g/cm3,是典型轻金属,锂、钠、钾能浮在水上。 4.碱金属单质的晶体结构均为体心立方堆积,堆积密度小。 II-2.物理性质递变性 随着周期的递增,卤族元素单质的物理递变性有: 1.金属光泽逐渐增强。 2.熔沸点逐渐降低。 3.密度逐渐增大。钾的密度具有反常减小的现象。 II.3.物理性质特性 1.铯略带有金色光泽,钫根据测定可能为红色,且具有放射性。 2.液态钠可以做核反应堆的传热介质。 3.锂密度比没有小,能浮在煤油中。 4.钾的密度具有反常现象。 钾的密度反常变化的原因:根据公式:ρ=A r/V原子,可知相对原子质量的增大使密度增加,而电子层的增加又使原子体积增大使得密度减小。即单质的密度由相对原子质量和原子体积两个因素决定。对钾来说,核对最外层引力较小,体积增大的效应大于相对原子质量增加产生的影响,结果钾的密度反而比钠小。 II.5焰色反应 1.碱金属离子及其挥发性化合物在无色火焰中燃烧时会显现出独特的颜色,这可以用来鉴定

钢铁中的元素及作用

各种元素在钢铁中的作用 钢铁是铁与C(碳)、Si(硅)、Mn(锰)、P(磷)、S(硫)以及少量的其他元素所组成的合金。其中除Fe(铁)外,C的含量对钢铁的机械性能起着主要作用,故统称为铁碳合金。它是工程技术中最重要、用量最大的金属材料。 各种元素在钢铁中有什么作用 碳(Carbon) 存在于所有的钢材,是最重要的硬化元素。有助于增加钢材的强度,我们通常希望刀具级别的钢材拥有0.6%以上的碳,也成为高碳钢。 铬(Chromium) 增加耐磨损性,硬度,最重要的是耐腐蚀性,拥有13%以上的认为是不锈钢。尽管这么叫,如果保养不当,所有钢材都会生锈 锰(Manganese) 重要的元素,有助于生成纹理结构,增加坚固性,和强度、及耐磨损性。在热处理和卷压过程中使钢材内部脱氧,出现在大多数的刀剪用钢材中,除了A-2,L-6和CPM 420V。 钼(Molybdenum) 碳化作用剂,防止钢材变脆,在高温时保持钢材的强度,出现在很多钢材中,空气硬化钢(例如A-2,ATS-34)总是包含1%或者更多的钼,这样它们才能在空气中变硬。 镍(Nickle) 保持强度、抗腐蚀性、和韧性。出现在L-6\AUS-6和AUS-8中。 硅(Silicon) 有助于增强强度。和锰一样,硅在钢的生产过程中用于保持钢材的强度。 钨(Tungsten) 增强抗磨损性。将钨和适当比例的铬或锰混合用于制造高速钢。在高速钢M-2中就含有大量的钨。 钒(Vanadium) 增强抗磨损能力和延展性。一种钒的碳化物用于制造条纹钢。在许多种钢材中都含有钒,其中M-2,Vascowear,CPM T440V和420V A含有大量的钒。而BG-42与ATS-34最大的不同就是前者含有钒 按钢的用途分类 一、结构钢 (1)建筑及工程用结构钢简称建造用钢,它是指用于建筑、桥梁、船舶、锅炉或其他工程上制作金属结构件的钢。 (2)机械制造用结构钢--是指用于制造机械设备上结构零件的钢。这类钢基本上都是优质钢或高级优质钢,主要有优质碳素结构钢、合金结构钢、易切结构钢、弹簧钢、滚动轴承钢等 根据含碳量和用途的不同﹐这类钢大致又分为三类﹕ 1. 小于0.25%C为低碳钢﹐其中尤以含碳低于0.10%的08F﹐08Al等﹐由于具有很好的深冲性和焊接性而被广泛地用作深冲件如汽车﹑制罐……等﹐20G则是制造普通锅炉的主要材料﹐此外﹐低碳钢也广泛地作为渗碳钢﹐用于机械制造业﹐ 2. 0.25~0.60%C为中碳钢﹐多在调质状态下使用﹐制作机械制造工业的零件。调质多少22~34HRC,能得到综合机械性能,也便于切削. 3. 大于0.6%C为高碳钢﹐多用于制造弹簧﹑齿轮﹑轧辊等﹐根据含锰量的不同﹐又可

(完整版)碱金属元素知识点整理

第五讲碱金属元素 1.复习重点 碱金属元素的原子结构及物理性质比较,碱金属的化学性质,焰色反应实验的操作步骤; 原子的核外电子排布碱金属元素相似性递变性 2.难点聚焦 (1)碱金属元素单质的化学性质: O、1)相似性:碱金属元素在结构上的相似性,决定了锂、钠、钾、铷、铯在性质上的相似性,碱金属都是强还原剂,性质活泼。具体表现在都能与 2 Cl、水、稀酸溶液反应,生成含R+(R为碱金属)的离子化合物;他们的氧化物对应水化物均是强碱; 2 O 2)递变性:随着原子序数的增加,电子层数递增,原子半径渐大,失电子渐易,还原性渐强,又决定了他们在性质上的递变性。具体表现为:①与 2 H O反应越来越剧烈,③随着核电荷数的增强,其最高价氧化物对应的水化物的碱性增强:反应越来越剧烈,产物越来越复杂,②与 2 CsOH RbOH KOH NaOH LiOH >>>>; (2)实验是如何保存锂、钠、钾:均是活泼的金属,极易氧化变质甚至引起燃烧,它们又都能与水、水溶液、醇溶液等发生反应产生氢气,是易燃易

爆物质,存放它们要保证不与空气、水分接触;又因为它们的密度小,所以锂只能保存在液体石蜡或封存在固体石蜡中,而将钠、钾保存在煤油中; (3)碱金属的制取:金属Li 和Na 主要是用电解熔融氯化物的方法制取;金属K 因为易溶于盐不易分离,且电解时有副反应发生,故一般采用热还原法用Na 从熔融KCl 中把K 置换出来(不是普通的置换,而是采用置换加抽取的方法,属于反应平衡);铷和铯一般也采用活泼金属还原法制取。 (4).焰色反应操作的注意事项有哪些? (1)所用火焰本身的颜色要浅,以免干扰观察. (2)蘸取待测物的金属丝本身在火焰上灼烧时应无颜色,同时熔点要高,不易被氧化.用铂丝效果最好,也可用铁丝、镍丝、钨丝等来代替铂丝.但不能用铜丝,因为它在灼烧时有绿色火焰产生. (3)金属丝在使用前要用稀盐酸将其表面的氧化物洗净,然后在火焰上灼烧至无色,以除去能起焰色反应的少量杂质. (4)观察钾的焰色时,要透过蓝色的钴玻璃片,因为钾中常混有钠的化合物杂质,蓝色钴玻璃可以滤去黄色火焰,以看清钾的紫色火焰. 3. 例题精讲 例1 已知相对原子质量:Li 6.9,Na 23,K 39,Rb 85。今有某碱金属M 及其氧化物2M O 组成的混合物10.8 g ,加足量水充分反应后,溶液经蒸发和干燥得固体16 g ,据此可确定碱金属M 是[ ] A 、Li B 、Na C 、K D 、Rb 解析 设M 的相对原子质量为A ,当设混合物全是碱金属或全是碱金属氧化物时有如下关系: 22222M H O MOH H +=+↑ 222M O H O MOH += 10.8 g →10.8×[(A +17)/A]g 10.8 g →10.8×[2(A +17)/(2A +16)]g 但实际上该混合物中碱金属及其氧化物都存在,则可建立不等式:[10.8(17)/]16[10.8(17)/(8)]A A A A ?+>>?++。 解得:35.3>A >10.7,从碱金属的相对原子质量可知该碱金属只能是钠。 答案 B 例2 为了测定某种碱金属的相对原子质量,有人设计了如图所示的实验装置。该装置(包括足量的水)的总质量为ag 。将质量为bg 的某碱金属单质放入水中,立即塞紧瓶塞,完全反应后再称量此装置的总质量为cg 。

各种元素在铝合金中的作用

各种元素在铝合金中的作用 1.合金元素影响 铜元素 铝铜合金富铝部分548时,铜在铝中的最大溶解度为 5.65%,温度降到302时,铜的溶解度为0.45%。铜是重要的合金元素,有一定的固溶强化效果,此外时效析出的CuAl2有着明显的时效强化效果。铝合金中铜含量通常在2.5% ~ 5%,铜含量在4%~6.8%时强化效果最好,所以大部分硬铝合金的含铜量处于这范围。 铝铜合金中可以含有较少的硅、镁、锰、铬、锌、铁等元素。 硅元素 Al—Si合金系富铝部分在共晶温度577时,硅在固溶体中的最大溶解度为1.65%。尽管溶解度随温度降低而减少,介这类合金一般是不能热处理强化的。铝硅合金具有极好的铸造性能和抗蚀性。 若镁和硅同时加入铝中形成铝镁硅系合金,强化相为MgSi。镁和硅的质量比为1.73:1。设计Al-Mg-Si系合金成分时,基体上按此

比例配置镁和硅的含量。有的Al-Mg-Si合金,为了提高强度,加入适量的铜,同时加入适量的铬以抵消铜对抗蚀性的不利影响。 Al-Mg2Si合金系合金平衡相图富铝部分Mg2Si 在铝中的最大溶解度为1.85%,且随温度的降低而减速小。 变形铝合金中,硅单独加入铝中只限于焊接材料,硅加入铝中亦有一定的强化作用。 镁元素 Al-Mg合金系平衡相图富铝部分尽管溶解度曲线表明,镁在铝中的溶解度随温度下降而大大地变小,但是在大部分工业用变形铝合金中,镁的含量均小于6%,而硅含量也低,这类合金是不能热处理强化的,但是可焊性良好,抗蚀性也好,并有中等强度。 镁对铝的强化是明显的,每增加1%镁,抗拉强度大约升高瞻远3 4MPa。如果加入1%以下的锰,可能补充强化作用。因此加锰后可降低镁含量,同时可降低热裂倾向,另外锰还可以使Mg5Al8化合物均匀沉淀,改善抗蚀性和焊接性能。 锰元素

各元素在高速钢中的作用

高速工具钢主要用于制造高效率的切削刀具。由于其具有红硬性高、耐磨性好、强度高等特性,也用于制造性能要求高的模具、轧辊、高温轴承和高温弹簧等。高速工具钢经热处理后的使用硬度可达HRC63以上,在600℃左右的工作温度下仍能保持高的硬度,而且其韧性、耐磨性和耐热性均较好。退火状态的高速工具钢的主要合金元素有多、钼、铬、钒,还有一些高速工具钢中加入了钴、铝等元素。这类钢属于高碳高合金莱氏体钢,其主要的组织特征之一是含有大量的碳化物。铸态高速工具钢中的碳化物是共晶碳化物,经热压力加工后破碎成颗粒状分布在钢中,称为一次碳化物;从奥氏体和马氏体基体中析出的碳化物称为二次碳化物。这些碳化物对高速工具钢的性能影响很大,特别是二次碳化物,其对钢的奥氏本晶粒度和二次硬化等性能有很大影响。碳化物的数量、类型与钢的化学成分有关,而碳化物的颗粒度和分布则与钢的变形量有关。钨、钼是高速工具钢的主要合金元素,对钢的二次硬化和其他性能起重要作用。铬对钢的淬透性、抗氧化性和耐磨性起重要作用,对二次硬化也有一定的作用。钒对钢的二次硬化和耐磨性起重要作用,但降低可磨削性能。 高速工个钢的淬火温度很高,接近熔点,其目的是使合金碳化物更多的溶入基体中,使钢具有更好的二次硬化能力。高速工具钢淬火后硬度升高,此为第一次硬化,但淬火温度越高,则回火后的强度和韧性越低。淬火后在350℃以下低温回火硬度下降在350℃以上温度回火硬度逐渐提高,至520~580℃范围内回火(化学成分不同,回火温度不同)出现第二次硬度高峰,并超过淬火硬度,此为二次硬化。这是高速工具钢的重要特性。 高速工个钢除了具有高的硬度、耐磨性、红硬性等使用性能外,还具有一定的热塑性、可磨削性等工艺性能。 多系高速工具钢主要合金元素是钨,不含钼或含少量钼。其主要特性是过热敏感性小,脱碳敏感性小、热处理和热加工温度范围较宽,但碳化物颗粒粗大,分布均匀性差,影响钢的韧性和塑性。 钨钼系高速工具钢的主要合金元素是钨和钼。其主要特性是碳化物的颗粒度和分布均优于钨系高速工具钢,脱碳敏感性和过热敏感性低于钼系高速工具钢,使用性能和工艺性能均较好。钼系高速工具钢的主要合金元素是钼,不含钨或含少量钨。其主要特性是碳化物颗粒细,分布均匀、韧性好,但脱碳敏感性和过热敏感性大、热加工和热处理范围窄。 含钻高速工具钢是在通用高速工具钢的基础上加入一定量的钴,可显著提高钢的硬度、耐磨性和韧性。 粉末高速工具钢是用粉末冶金方法产生的。首先用雾化法制取低氧高速工具钢预合金粉末,然后用冷、热静压机将粉末压实成全致密的钢坯,再经锻、轧成材。粉末高速工具钢的碳化物细小、分布均匀,韧性、可磨削性和尺寸稳定性等均很好,可生产用铸锭法个可能产生更高合金元素含量的超硬高速工具钢。粉末高速工具钢可分为3类,第一类是含钴高速工具钢,其特点是具有接近硬质合金的硬度,而且还具有良好的可锻性、可加工性、可磨性和强韧性。第二类是无钴高钨、钼、钒超硬高速工具钢。第三类是超级耐磨高速工具钢。其硬度不太高,但耐磨性极好,主要用于要求高耐磨并承受冲击负荷的工作条件。 Mn 1、在低含量范围内,对钢具有很大的强化作用,提高强度、硬度和耐磨性 2、降低钢的临界冷却速度,提高钢的淬透性 3、稍稍改善钢的低温韧性 4、在高含量范围内,作为主要的奥氏体化元素 Si 1、强化铁素体,提高钢的强度和硬度 2、降低钢的临界冷却速度,提高钢的淬透性 3、提高钢的氧化性腐蚀介质中的耐蚀性,提高钢的耐热性

高一化学方程式总结大全

高一化学方程式 一、碱金属: 1. 新切的钠有银白色光泽,但很快发暗;方程式:4Na+O2=2Na2O;该产物不稳定。钠在空气中燃烧时,发出黄色的火焰;同时生成淡黄色的固体,方程式:2Na+O2点燃==== Na2O2。锂燃烧方程式:4Li+O2点燃==== 2Li2O;钾燃烧方程式:K+O2点燃==== KO2。 2. 钠与氧气在不点火时平稳反应,硫的化学性质不如氧气活泼,将钠粒与硫粉混合时爆炸,方程式:2Na+S=Na2S 3. 钠与水剧烈反应后滴有酚酞的水变成红色,方程式:2Na+2H2O=2NaOH+H2↑;钾与水反应更剧烈,甚至爆炸,为了安全,常在小烧杯上盖一块小玻璃片。 4. 过氧化钠粉末用脱脂棉包住,①滴几滴水,脱脂棉燃烧;方程式:2Na2O2+2H2O=4NaOH+O2↑;②用玻璃管吹气,脱脂棉也燃烧;有关的方程式:2Na2O2+2CO2=2Na2CO3+O2↑;这两个反应都是放热反应,使脱脂棉达到着火点。在过氧化钠与水或CO2反应生成O2的两个反应中,为生成1mol O2,需要的Na2O2的物质的量都为2mol,同时需要的H2O或CO2的物质的量都为2mol。 5. 纯碱的化学式是Na2CO3 ,它不带结晶水,又俗名苏打。碳酸钠晶体化学式是Na2CO3?10H2O,在空气中不稳定,容易失去结晶水,风化,最后的产物是粉末状,叫无水碳酸钠。钠、氧化钠、过氧化钠、氢氧化钠等在空气中露置的最后产物都是无水碳酸钠。 6. 碳酸钠和碳酸氢钠两种固体物质都可以与盐酸反应放出气体,有关离子方程式分别为:CO32-+2H+=H2O+CO2↑;HCO3-+H+=H2O+CO2↑;其中,以碳酸氢钠与盐酸的反应速度更快;如果碳酸钠和碳酸氢钠的质量相同,当它们完全反应时消耗的盐酸以碳酸钠为多。 7. 碳酸钠和碳酸氢钠的热稳定性较差的是碳酸氢钠,其加热时发生分解,方程式是:2NaHCO3=Na2CO3+H2O+CO2↑。在这个分解反应中,每42g NaHCO3发生分解就生成标准状况下CO2气体5.6L。在这个分解反应中,一种物质生成了三种物质, (1)高锰酸钾分解: 2KMnO4△==== K2MnO4+MnO2+O2↑ (2)碳酸铵或碳酸氢铵分解: (NH4)2CO3△==== 2NH3↑+H2O+CO2↑ 8. 除去碳酸钠固体中的少量NaHCO3的方法是加热;除去碳酸氢钠溶液中混有的少量Na2CO3溶液的方法是: 通入足量CO2气体:Na2CO3+CO2+H2O=2NaHCO3 。 9. 从NaOH溶液得到纯净的Na2CO3溶液的方法是把NaOH溶液分为二等份,一份通入足量CO2使之全部成为NaHCO3;然后把另份NaOH溶液加入到此溶液中,摇匀即可。两个方程式分别为:NaOH+CO2=NaHCO3; NaHCO3+NaOH=Na2CO3+H2O 10. 往稀的碳酸钠溶液中加入几滴稀盐酸,离子方程式为H++CO32-=HCO3-。 11. 碳酸钠和碳酸氢钠分别滴入澄清石灰水中,反应的离子方程式分别为: CO32-+Ca2+=CaCO3↓; HCO3-+Ca2++OH-=CaCO3↓+H2O 。 两溶液中只有Na2CO3 可以使CaCl2溶液出现白色沉淀,离子方程式为:CO32-+Ca2+=CaCO3↓。 二、卤素: 12. 氟气是浅黄绿色;氯气是黄绿色;液溴是深红棕色;固态碘是紫黑色。常用的有机萃取剂四氯化碳无色,密度比水大;苯也是无色液体,密度比水小。液溴常用水封存,液溴层是在最下层。 13. 闻未知气体气味,方法是: 用手在瓶口轻轻扇动,仅使极小量的气体飘入鼻孔。 14. 铜丝红热后伸进氯气瓶中:铜丝剧烈燃烧,发红发热,同时生成棕色烟;加少量水,溶液蓝绿色,方程式:Cu+Cl2点燃==== CuCl2。铁丝红热后也可以在氯气中剧烈燃烧,

各类金属元素的作用

几种常用合金元素在钢中的作用 碳(C)一种非金属元素,无臭无味的固体。无定形碳有焦炭,木炭等,晶体碳有金刚石和石墨。 钢中含碳量增加,屈服点和抗拉强度升高,但塑性和冲击性降低,当碳量0.23%超过时,钢的焊接性能变坏,因此用于焊接的低合金结构钢,含碳量一般不超过0.20%。碳量高还会降低钢的耐大气腐蚀能力,在露天料场的高碳钢就易锈蚀;此外,碳能增加钢的冷脆性和时效敏感性。典型的例子是低碳钢、高碳钢、高碳钢力学性能变化。 一、硅(Si)在钢中的作用: 1、提高钢中固溶体的强度和冷加工硬化程度使钢的韧性和塑性降低。 2、硅能显著地提高钢的弹性极限、屈服极限和屈强比,这是一般弹簧钢。 3、耐腐蚀性。硅的质量分数为15%一20%的高硅铸铁,是很好的耐酸材料。含有硅的钢在氧化气氛中加热时,表面也将形成一层SiO2薄膜,从而提高钢在高温时的抗氧化性。 4、磁钢中的主要合金元素(含量在0.40%范围内时,改善热裂倾向,含量高时,易形成柱状晶,增加热裂倾向)。 5、降低钢的临界冷却速度,提高钢的淬透性 缺点:使钢的焊接性能恶化。 二、锰(Mn)在钢中的作用: 1、在低含量范围内,对钢具有很大的强化作用,提高强度、硬度和耐磨性。 2、降低钢的临界冷却速度,提高钢的淬透性。 3、稍稍改善钢的低温韧性。 4、在高含量范围内,作为主要的奥氏体化元素。 5、锰对提高低碳和中碳珠光体钢的强度有显著的作用 6、锰对钢的高温瞬时强度有所提高。 锰钢的主要缺点是,①含锰较高时,有较明显的回火脆性现象;②锰有促进晶粒长大的作用,因此锰钢对过热较敏感t在热处理工艺上必须注意。这种缺点可用加入细化晶粒元素如钼、钒、钛等来克服;③当锰的质量分数超过1%时,会使钢的焊接性能变坏;④锰会使钢的耐锈蚀性能降低。 三、铬(Cr)在钢中的作用: 1、铬可提高钢的强度和硬度。 2、铬可提高钢的高温机械性能。 3、使钢具有良好的抗腐蚀性和抗氧化性。 4、降低钢的临界冷却速度,提高钢的淬透性。 5、阻止石墨化

合金元素在钢中的主要作用

简述几种常见合金元素在钢中的主要作用 为了改善和提高钢的某些性能和使之获得某些特殊性能而有意在冶炼 过程中加入的元素称为合金元素。常用的合金元素有铬,镍,钼,钨,钒,钛,铌,锆,钴,硅,锰,铝,铜,硼,稀土等。磷,硫,氮等在某些情况下也起到合金的作用。 (1)铬(Cr) 铬能增加钢的淬透性并有二次硬化的作用,可提高碳钢的硬度和耐磨性而不使钢变脆。含量超过12%时,使钢有良好的高温抗氧化性和耐氧化性腐蚀的作用,还增加钢的热强性。铬为不锈钢耐酸钢及耐热钢的主要合金元素。 铬能提高碳素钢轧制状态的强度和硬度,降低伸长率和断面收缩率。当铬含量超过15%时,强度和硬度将下降,伸长率和断面收缩率则相应地有所提高。含铬钢的零件经研磨容易获得较高的表面加工质量。 铬在调质结构中的主要作用是提高淬透性,使钢经淬火回火后具有较好的综合力学性能,在渗碳钢中还可以形成含铬的碳化物,从而提高材料表面的耐磨性。 含铬的弹簧钢在热处理时不易脱碳。铬能提高工具钢的耐磨性、硬度和红硬性,有良好的回火稳定性。在电热合金中,铬能提高合金的抗氧化性、电阻和强度。 (2)镍(Ni) 镍在钢中强化铁素体并细化珠光体,总的效果是提高强度,对塑性的影响不显著。一般地讲,对不需调质处理而在轧钢、正火或退火状态使用的低碳钢,一定的含镍量能提高钢的强度而不显著降低其韧性。据统计,每增加1%的镍约可提高强度。随着镍含量的增加,钢的屈服程度比抗拉强度提高的快,因此含镍钢的比可较普通碳素钢高。镍在提高钢强度的同时,对钢的韧性、塑性以及其他工艺的性能的损害较其他合金元素的影响小。对于中碳钢,由于镍降低珠光体转变温度,使珠光体变细;又由于镍降低共析点的含碳量,因而和相同的碳含量的碳素钢比,其珠光体数量较多,使含镍的珠光体铁素体钢的强度较相同碳含量的碳素钢高。反之,若使钢的强度相同,含镍钢的碳含量可以适当降低,因而能使钢的韧性和塑性有所提。镍可以提高钢对疲劳的抗力和减小钢对缺口的敏感性。镍降低钢的低温脆性转变温度,这对低温用钢有极重要的意义。含镍%的钢可在-100℃时使用,含镍9%的钢则可在 -196℃时工作。镍不增加钢对蠕变的抗力,因此一般不作为热强钢的强化元素。 镍含量高的铁镍合金,其线胀系数随镍含量增减而显著变化,利用这一特性,可以设计和生产具有极低或一定线胀系数的精密合金、双金属材料等。 此外,镍加入钢中不仅能耐酸,而且也能抗碱,对大气及盐都有抗蚀能力,镍是不锈耐酸钢中的重要元素之一。 (3)钼(Mo)

高中化学方程式及离子方程式总结

《高中化学方程式总结》目录 第一部分金属 一碱金属 钠………………………………1 钾 (2) 锂………………………………3 二常见金属 镁 (3) 铝 (3) 铁 (3) 三其他金属 锰 (4) 铜 (4) 钙 (5) 钡 (5) 铅 (5) 锌………………………………5 铍………………………………5 汞 (5) 第二部分卤族元素、氮族元素一卤族元素 氟 (5) 氯 (6) 溴 (6) 碘 (6) 二氮族元素 氮 (6) 磷 (7) 砷 (8) 第三部分碳族元素、氧族元素 一碳族元素 碳 (8) 硅 (8) 二氧族元素 氧 (8) 硫……………………………… 9 第四部分有机反应 一烃 甲烷 (10) 乙烯…………………………11 乙炔 (11) 苯 (11) 甲苯 (12) 二烃的衍生物 溴乙烷………………………1 2 乙醇 (12) 苯酚…………………………13 乙醛…………………………13 乙酸…………………………14 乙酸乙酯……………………15 三糖类、油脂、蛋白质 葡萄糖 (15) 蔗糖、麦芽糖 (15) 淀粉、纤维素 (15) 油脂 (16) 氨基酸 (16) 第五部分离子反应……………17 第六部分电极反应方程式 (20) 第七部分热反应方程式 (22) 第一部分金属 一、碱金属 1.钠 Na 4Na+O2=2Na2O 2Na+O2点燃 Na2O2 Cl2+2Na点燃2NaCl2Na+S=Na2S(爆炸) 2Na+2H2O=2NaOH+H2↑ 2Na+H2△ 2NaH 2Na+2NH3=2NaNH2+H24Na+TiCl4(熔融)=4NaCl+Ti Na2O Na2O+H2O=2NaOH 2Na2O+O2△ 2Na2O2 Na2O+SO3=Na2SO4 Na2O+CO2=Na2CO3 Na2O+2HCl=2NaCl+H2ONa2O2+2Na=2Na2O(此反应用于制备Na2O) 2Na2O2+2H2O=4NaOH+O2↑(此反应分两步Na2O2+2H2O=2NaOH+H2O2;2H2O2=2H2O+O2↑。H2O2的制备可利用类似的反应) 2Na2O2+2CO2=2Na2CO3+O2 Na2O2+H2SO4(冷、稀)=Na2SO4+H2O2 NaH NaH+H2O=NaOH+H2↑ NaOH 2NaOH+Si+H2O=Na2SiO3+2H2↑ 6NaOH+3S △ 2Na2S+Na2SO3+3H2O 2NaOH+2Al+2H2O=2NaAlO2+3H2↑ 2NaOH(过量)+CO2=Na2CO3+H2O NaOH+CO2(过量)=NaHCO3 2NaOH+SiO2=Na2SiO3+H2O(常温下强碱缓慢腐蚀玻璃)

合金元素在钢中的作用

第六章合金钢 合金钢的优点:高的强度和淬透性 第一节合金元素在钢中的作用 常用合金元素: 非碳化物形成元素——Co Ni Cu Si Al 碳化物形成元素——Zr Nb V Ti W Mo Cr Mn Fe 强中强弱 一、合金元素对钢中基本相的影响 1、形成合金铁素体 合金元素→溶入A →形成合金铁素体→固溶强化(Cr,Ni较好)2、形成合金碳化物 弱碳化物形成元素形成合金渗碳体(Fe,Mn)3C 中强碳化物形成元素形成合金碳化物(Cr23C6,Fe3W3C) 强碳化物形成元素形成特殊碳化物(VC,TiC) 熔点、硬度和稳定性: 特殊碳化物> 合金碳化物> 合金渗碳体> Fe3C 二、合金元素对Fe-FeC相图的影响 合金元素对A相区影响 扩大A相区元素(Mn)——E、S点左下移 缩小A相区元素(Cr)——E、S点左上移 奥氏体钢:1Cr18Ni9 铁素体钢:1Cr17 莱氏体钢:W18Cr4V

三、合金元素对热处理的影响 1、对加热的影响 多数元素减缓A形成,阻碍晶粒长大 2、对冷却的影响 多数元素溶入A后→过冷A稳定性↑→Vc↑→淬透性↑ →Ms点↓→残余A量↑提高淬透性的意义: ①增加淬硬层深度 ②减少工件变形、开裂倾向3、对回火的影响 ①回火稳定性→抗回火软化的能力 ②产生二次硬化(析出特殊碳化物,产生弥散强化;A残→M或B下) 第二节低合金钢 一、低合金高强度钢 碳素结构钢:Q195,Q215,Q235,Q255,Q275 低合金高强度钢:Q295,Q345,Q390,Q420,Q460 Q235+Me(<3%) →Q345 1、成分:0.1~0.2%C,合金元素2~3% 主加元素:Mn ——固溶强化 辅加元素:Ti,Cr,Nb ——弥散强化 使用状态:热轧或正火(F + P),不需最终热处理 2、性能:较高的σs ,良好的塑性韧性, 焊接性,抗蚀性,冷脆转变温度低

高中碱金属元素化学方程式汇编

高中碱金属元素化学方程式汇编 4Na+O2===2Na2O 2Na2O+ O2Na2O2 2Na+2O22Na2O22Na+S===Na2S(爆炸) 2Na+2H2O===2NaOH+H2↑Na2O+H2O===2NaOH 2Na2O2+2H2O===4NaOH+O2↑ (此反应分两步:Na2O2+2H2O===2NaOH+H2O2;2H2O2===2H2O+O2.) Na2O+CO2===Na2CO32Na2O2+2CO2===2Na2CO3+O2 Na2CO3+HCl===NaHCO3+NaCl NaHCO3+HCl===NaCl+H2O+CO2↑ Na2CO3+2HCl===2NaCl+ H2O+ CO2↑ 2NaHCO3Na2CO3+ H2O+ CO2↑ 4Li+ O2 2 Li2O 2K+2H2O===2KOH+H2↑ NaHCO3 + NaOH== Na2CO3 + H2O Na2CO3+ H2O+ CO2 = 2NaHCO3 2NaOH+ CO2 (少量)== Na2CO3 + H2O NaOH+ CO2(多量)== NaHCO3 Na2CO3+ Ca(OH)2=Ca CO3↓+2 NaOH 2NaOH+SO2(少量)===Na2SO3+H2O NaOH+SO2(足量)===NaHSO3NaOH+H2S(足量)===NaHS+H2O 2NaOH+H2S(少量)===Na2S+2H2O NaOH+HCl===NaCl+H2O CO2+Ca(OH)2(过量)===CaCO3↓+H2O 2CO2(过量)+Ca(OH)2===Ca(HCO3)2 Na2O+2HCl===2NaCl+H2O Na2O+SO3===Na2SO4 CaCO3CaO+CO2↑MgCO3MgO+CO2↑ 2Fe(OH)3Fe 2O3 + 3H2O Mg(OH)2Mg O+ H2O Cu(OH)2Cu O+ H2O 2Al(OH)3Al 2O3 + 3H2O CaCO3+H2O +CO2=Ca(HCO3)2 2NaOH + CuSO4 ==Cu(OH)2↓+ Na2SO4 3NaOH + FeCl3 ==== Fe(OH)3↓ + 3NaCl

各类金属元素在钢材结构中有什么作用

各类金属元素在钢材结构中有什么作用?各类钢材有哪些区别? 碳(C,carbon)是非金属元素,是炼钢不可缺少的成份,是炼钢时候与铁并存的元素,碳含量越高,硬度就越高,耐磨性能就越好,但韧性和抗腐蚀性能会随着碳含量的增加而降低。 铬(Cr,chromium)铬是不锈钢中的抗腐蚀组成成份,马氏体不锈钢铬含量不能低于12.5%,铬含量越高抗腐蚀性能就越好,铬的抗腐蚀机理是铬能与氧在钢的表面形成一层致密的氧化膜(即是钝化膜),这钝化膜是非常稳定的,可以隔绝钢材里其他元素与外界具有腐蚀能力的物质(具有氧化能力的物质,如酸,碱等)的接触从而阻断了腐蚀行为的发生和进行。同时铬能与碳形成高硬度的碳化物(HRC76),是不锈钢中的强化相。 钼(Mo, molybdenum)具有细化钢微观晶粒而达到细晶强化的作用,提高钢的强度,并且能提高钢的回火抗力使回火时减少马氏体的分解,保持硬度。同时能与碳形成高硬度的碳化物(HRC78),是钢中的强化相,同时钼能提高不锈钢在稀硫酸和稀盐酸中的抗腐蚀能力和提高钢材的淬透性(淬透性是以材料在热处理淬火时形成马氏体距离表层的深度来衡量的,深度越深则表示淬透性越好,材料的强度就越高)。 钒(V,vanadium)和钼的作用相似,具有细晶强化和提高回火抗力和提高材料的淬透性的作用,也能和碳形成碳化物,碳化钒的硬度非常高,可达到HRC84,是钢的强化相,提高钢的力学性能。 硫(S,sulfur)和磷(P,phosphor)都是钢中的有害成份,过高的磷和硫含量会导致钢的强度急剧下降,会导致钢材变脆。高级优质钢材(如不锈钢,高级优质碳素钢)必须对磷和硫的含量作严格的控制,如P含量质量分数≤0.035%和S含量质量分数≤0.030%。 复合钢、7Cr17Mo、8Cr13MoV特殊钼钒钢、3Cr13Mo、4Cr13 Mo不锈钢的区别: 作为马氏体型的3Cr13、4Cr13不锈钢材,主要特性是:含碳量高、淬透性好,一般油淬或空冷后即可得到马氏体组织,是不锈钢中机械性能最高切削性能最好的钢组。而近年来开发的7Cr17Mo(7铬17钼)、8Cr13MoV(8铬13钼钒)特殊钢,硬度、韧性比3Cr13材料机械综合性能更好,是目前国内做菜刀最好的不锈钢材,硬度可达58(HRC)以上,锋利耐用。

焰色反应原理

焰色反应原理 原理: 金属和它们的盐类,在灼烧时能产生不同的颜色。利用焰色反应,可以根据火焰的颜色鉴别碱金属元素的存在与否。这是因为当碱金属及其盐在火焰上灼烧时,原子中的电子吸收了能量,从能量较低的轨道跃迁到能量较高的轨道,但处于能量较高轨道上的电子是不稳定的,很快跃迁回能量较低的轨道,这时就将多余的能量以光的形式放出。而放出的光的波长在可见光范围内(波长为 400nm~760nm),因而能使火焰呈现颜色。由于碱金属的原子结构不同,电子跃迁时能量的变化就不相同,就发出不同波长的光,所以放出光的颜色也就不同。焰色反应不是化学变化,而是物理变化。 观察钾的焰色反应颜色时,要透过蓝色钴玻璃片,以滤去黄色的光,避免钾盐里混有钠盐杂质所造成的干扰。 焰色反应之一: 是某些金属或它们的挥发性化合物在无色火焰中灼烧时使火焰呈现特征 的颜色的反应。灼烧金属或它们的挥发性化合物时,原子核外的电子吸收一定的能量,从基态跃迁到具有较高能量的激发态,激发态的电子回到基态时,会以一定波长的光谱线的形式释放出多余的能量,从焰色反应的实验里所看到的特殊焰色,就是光谱谱线的颜色。每种元素的光谱都有一些特征谱线,发出特征的颜色而使火焰着色,根据焰色可以判断某种元素的存在。如焰色洋红色含有锶元素,焰色玉绿色含有铜元素,焰色黄色含有钠元素等。 焰色反应之二:

(1)定义:很多金属或它们的化合物在灼烧时都会使火焰呈现出特殊的颜色,这在化学上叫做焰色反应。 焰色反应用于检验某些微量金属或它们的化合物,也可用于节日燃放焰火。 (2)实验用品:铂丝、酒精灯(或煤气灯),浓盐酸、蓝色钴玻璃(检验钾时用)。 (3)操作过程: ①将铂丝蘸浓盐酸在无色火焰上灼烧至无色; ②蘸取试样在无色火焰上灼烧,观察火焰颜色(若检验钾要透过钴玻璃观察); ③将铂丝再蘸浓盐酸灼烧至无色。 (4)用途:碱金属(碱金属的盐均为可溶性盐)和其它一些金属及其相应离子所发生的焰色反应可用于分析物质的组成,进行有关物质的鉴别。如:钠或含有的化合物焰色反应为黄色;钾或含的化合物焰色反应为浅紫色(透过钴玻璃)。 实质:离子跃迁 例: 钠:黄色锂:紫红色铷:紫色钙:砖红色锶:洋红色 钡:黄绿色铜:绿色

高中碱金属化学方程式

碱金属 一、钠 (1)与非金属反应 4Na+O 22Na2O (钠与空气接触,缓慢氧化。) 2Na+O2Na2O2 黄色火焰(一般气体燃烧观察到火焰,固体燃烧观察到发光,但因为钠 的熔点低,所以钠燃烧时,有钠蒸气产生,而观察到火焰。) 2Na+Cl22NaCl 白烟 2Na+S Na2S (钠与硫极易反应,混合研磨即可发生反应,常发生爆炸。) (2)与水反应 2Na+2H 2O 2NaOH+H2 钠浮在水面上(密度小于水),发出“嘶嘶”的声音(产生气体),并熔 成一个闪亮的小球,小球向各个方向迅速游动,并逐渐缩小,最后完全 消失(熔点低),滴入酚酞,溶液由无色变红色(生成氢氧化钠碱性物 质)。

(3)与酸反应 2Na+2HCl 2NaCl+H 2 (因为钠和水、和酸反应的实质都是和氢离子反应,而酸电离出的氢离子 比水多许多,所以该反应就是钠和酸反应。在酸的浓溶液中,钠只和酸 反应;在酸的稀溶液中,钠与少量的酸反应之后,会与水反应。另外, 钠与酸的反应比与水反应更激烈,极易爆炸。) (4)与盐反应 2Na+CuSO 4+2H2O Na2SO4+Cu(OH)2+H2 [2Na+2H 2O 2NaOH+H2 2NaOH+CuSO 4Na2SO4+Cu(OH)2] (钠和硫酸铜反应的实质是和铜离子反应。原本铜离子得电子能力比氢离子 强,但由于金属阳离子在水中一般是以水合离子形式存在,即金属离子周 围有一定数目的水分子包围着,不能和钠直接接触。) 冶炼Na: 2NaCl(熔)2Na+Cl2 用电解法。而钠离子的得电子能力又不如氢离子,故不能在水 溶液中电解,只能在熔融状态下电解。)

相关文档
相关文档 最新文档