文档库 最新最全的文档下载
当前位置:文档库 › 基于Pockels电光效应的电场电压传感器

基于Pockels电光效应的电场电压传感器

基于Pockels电光效应的电场电压传感器
基于Pockels电光效应的电场电压传感器

光电效应例题汇总

右图中,锌板带正电,验电器也带正电。 光电效应中,金属板发射出来的电子叫光电子,光电子的定向移动可以形成光电流。 相关知识:电磁波按照频率依次增大(波长依次减小)的顺序排列: 无线电波→红外线→可见光→紫外线→x射线→γ射线 可见光又分为7中颜色:红、橙、黄、绿、蓝、靛、紫。 光的频率和颜色是对应关系,一个频率对应一种光的颜色。单色光就是单一频率的光。 光照强度:单位时间内照射到单位面积上的光的能量。(光线和接收面垂直时) 通俗讲,光照强度大就是光线密集的意思。房间里开一盏灯时没有开两盏灯光照强度大。 光电效应的规律:(右图为研究光电效应的电路图) 1.光电管中存在饱和电流。当光照强度、光的颜色一定时,光电流随着AK极之间的电压增大而增大,但是当电压增大到一定程度以后,光电流就不再增大了,光电流能达到的最大值叫饱和电流。 控制光的颜色,饱和电流与光照强度有关,光照越强则饱和电流越大。 2.光电管两端存在着遏止电压。当A、K极之间电压为零时,光电流并不为零。当在A、K极加反向电压时,即A极为负极板,K极为正极板时,光电子在两极之间减速运动。反向电压越大,光电流越小,当反向电压达到某一值时,光电流消失,能够使光电流消失的反向电压叫遏止电压,用U C表示。 遏止电压与光照强度无关,只与入射光的频率有关,频率越大则遏止电压越大。 右图中,甲乙丙三种光的频率大小关系? 甲、乙的光照强度大小关系? 乙、 3.金属能否发生光电效应取决于入射光的频率,与光照强度和光照时间无关。 当入射光的频率低于某一值时,无论光照多强,时间多长都不会发生光电效应。而这一值叫做截止频率,又叫极限频率,用νc表示。 4.如果入射光的频率超过了截止频率,无论光照强度多么弱,发生光电效应仅需10-9s。 爱因斯坦为了解释光电效应,提出了光子说: 1.在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光子,光子的能量E=hν。ν指光的频率。 2.金属中的自由电子吸收光子能量时,必须是一次只能吸收一个光子,而且不能累计吸收。 3.光子不能再分,自由电子吸收光子时要么是全部吸收,要么不吸收。 4.自由电子吸收光子仅需10-9s。

化学传感器的研究背景及发展趋势

引言 化学传感器(Chemical sensor)是由化学敏感层和物理转换器结合而成的,是能提供化学组成的直接信息的传感器件。它用来某种化学物质敏感并将其浓度转换为电信号进行检测来进行化学测量。化学传感器在生产流程分析、环境污染监测、矿产资源的探测、气象观测和遥测、工业自动化、医学上远距离诊断和实时监测、农业上生鲜保存和鱼群探测、防盗、安全报警和节能等多个方面有重要应用。 对化学传感器的研究是近年来由化学、生物学、电学、热学微电子技术、薄膜技术等多学科互相渗透和结合而形成的一门新兴学科。化学传感器的历史并不长,但世界各国对这门新学科的开发研究,投以大量的人力、物力和财力。研究人员俱增,正在向产业化方面开展有效的工作。化学传感器是当今传感器领域中最活跃最有成效的领域。 化学传感器的重要意义在于可把化学组分及其含量直接转化为模拟量(电信号),通常具有体积小、灵敏度高、测量范围宽、价格低廉,易于实现自动化测量和在线或原位连续检测等特点。国内外科研人员很早就致力于研究化学传感器的检测方法和控制方法,研制各式各样的化学传感器分析仪器,并广泛应用于环境监测、生产过程中的监控及气体成分分析、气体泄漏报警等。 第一章化学传感器的研究背景 1.1 化学传感器的产生与发展阶段 1906年Cremer首次发现了玻璃膜电极的氢离子选择性应答现象。随着研究的不断深入,1930年,使用玻璃薄膜的pH值传感器进人了实用化阶段。以后直至1960年,化学传感器的研究进展十分缓慢。1961年,Pungor发现了卤化银薄膜的离子选择性应答现象,1962年,日本学者清山发现了氧化锌对可燃性气体的选择性应答现象,这一切都为气体传感器的应用研究开辟了道路。 真正意义上的化学传感器的发展可分为两个阶段,在60年代和70年代,化学

我国电化学生物传感器的研究进展.

第12卷第6期重庆科技学院学报(自然科学版2010年12月 收稿日期:2010-07-20 基金项目:重庆市教委科学技术研究资助项目(KJ101315 作者简介:刘艳(1968-,女,四川乐山人,副教授,研究方向为电化学传感器。 在生命科学研究和医学临床检验中,需对各种各样的生物大分子进行选择性测定。据统计,全世界每年要进行数亿次免疫学和遗传学病理检验。常用的检验小型化分析装置和检测方法,成为目前现代分析化学研究领域的前沿课题。 1962年,Clark 提出将生物和传感器联用的设 想,并制得一种新型分析装置“酶电极”。这为生命科学打开一扇新的大门,酶电极也成为发展最早的一类生物传感器。生物传感器结合具有分子识别作用的生物体成分(酶、微生物、动植物组织切片、抗原和抗体、核酸或生物体本身(细胞、细胞器、组织作为敏感元件与理化换能器,能产生间断的或连续的信号,信号强度与被分析物浓度成比例。 电化学生物传感器是将生物活性材料(敏感元件与电化学换能器(即电化学电极结合起来组成的生物传感器。当前,电化学生物传感器技术已在环境监测、临床检验、食品和药物分析、生化分析[2-4]等研究中有着广泛的应用。本文在此综述电化学生物传感器的工作原理、分类及几个当今研究的热点。 1 电化学生物传感器概述 1.1 电化学生物传感器的原理 电化学生物传感器是将生物活性材料(敏感元

件与电化学换能器(即电化学电极结合起来组成的生物传感器。当电化学池中溶液的化学成分变化时,电极上流过的电流或电极表面与溶液的电势差会随之发生变化,这样通过测定电流或电势的 变化就可以获取溶液成分或相应的化学反应的变化信息。 电化学生物传感器是在上述电化学传感器原理的基础上,以具有生物活性的物质作为识别元件,通过特定反应使被测成分消耗或产生相应化学计量数的电活性物质,从而将被测成分的浓度或活度变化转换成与其相关的电活性物质的浓度变化,并通过电极获取电流或电位信息,最后实现特定物质的检测。如图1所示,这类传感器中使用的生物活性材料包括酶、微生物、细胞、组织、抗体、抗原等等。 图1电化学生物传感器的工作原理 1.2电化学生物传感器的类别 生物传感器主要包括生物敏感膜和换能器两部 分。按照敏感元件所用生物材料的不同,电化学生物传感器分为酶电极传感器、微生物电极传感器、电化学免疫传感器、组织电极与细胞器电极传感器、电化学DNA 传感器等,其中酶电极由于其高效、专一、反应条件温和且具有化学放大作用而成为电化学生物传感器的研究主流。 按照检测信号的不同,电化学生物传感器可分 我国电化学生物传感器的研究进展 刘 艳 (长江师范学院,重庆408100 摘

霍尔式加速度传感器

湖南科技大学 课程设计 题目霍尔式加速度传感器 作者伍文斌 学院机电工程学院 专业测控技术与仪器 学号1403030104 指导教师杨淑仪、凌启辉 二零一七年六月二十日

目录 摘要 (3) 第一章霍尔传感器基本原理 (4) 1.1霍尔效应 (4) 1.2霍尔元件 (5) 第二章加速度传感器设计方案 (6) 2.1设计理念 (6) 2.2设计电路图 (6) 2.3电路图解析 (7) 第三章传感器结构参数 (10) 第四章参考文献

摘要 霍尔传感器是基于霍效应而将被测量转化成电动势输出的一种传感器。霍尔元件已发展成一个品种多样的磁传感器产品簇,并且得到广泛的应用。霍尔器件是一种磁传感器,用它可以检测磁场及其变化,可以在各种与磁有关的场合中使用。霍尔传感器以霍尔效应为其工作原理。本文的加速度传感器属于霍尔开关器件,当物体移动时,若使其表面带上一定磁场,当其接近传感器时,会输出高电平,通过计算一定时间内的转的圈数(如汽车轮胎的转动圈数),可以得到物体运动的加速度(如汽车行驶的加速度)。霍尔开关器件无触点、无磨损、输出波形清晰、无抖动、无回跳、位置重复精度高。取用了各种补偿和保护措施的霍尔器件的工作温度范围宽等特点,因此应用广泛。 关键字:霍尔效应;霍尔开关器件;转动;加速度

第一章霍尔传感器基本原理 1.1霍尔效应 所谓霍尔效应,是指磁场作用于载流金属导体、半导体中的载流子时,产生横向电位差的物理现象。金属的霍尔效应是1879年被美国物理学家霍尔发现的。当电流通过金属箔片时,若在垂直于电流的方向施加磁场,则金属箔片两侧面会出现横向电位差。半导体中的霍尔效应比金属箔片中更为明显,而铁磁金属在居里温度以下将呈现极强的霍尔效应。 利用霍尔效应可以设计制成多种传感器。霍尔电位差UH的基本关系为 UH=RHIB/d (18) RH=1/nq(金属)(19) 式中RH——霍尔系数: n——载流子浓度或自由电子浓度;

DNA电化学生物传感器的研究进展

万方数据

万方数据

万方数据

万方数据

万方数据

DNA电化学生物传感器的研究进展 作者:张爱春, 周存, ZHANG Ai-chun, ZHOU Cun 作者单位:张爱春,ZHANG Ai-chun(天津工业大学,材料科学与工程学院,天津,300160), 周存,ZHOU Cun(天津工业大学,材料科学与工程学院,天津,300160;天津纺织纤维界面处理工程中心,天 津,300160) 刊名: 天津工业大学学报 英文刊名:JOURNAL OF TIANJIN POLYTECHNIC UNIVERSITY 年,卷(期):2010,29(3) 被引用次数:2次 参考文献(38条) 1.LI Feng;CHEN Wei;ZHANG Shusheng Development of DNA electrochemical biosensor based on covalent immobilization of probe DNA by direct coupling of sol-gel and self-assembly technologies[外文期刊] 2008(04) 2.黄强;刘红英;方宾电化学DNA生物传感器研究的应用前景[期刊论文]-化学进展 2009(05) 3.LI Feng;CHEN Wei;ZHANG Shusheng A simple strategy of probe DNA immobilization by diazotization-coupling on selfassembled 4-aminothiophenol for DNA electrochemical biosensor[外文期刊] 2009(07) 4.赵元弟;庞代文;王宗礼电化学脱氧核糖核酸传感器 1996(03) 5.杨海朋;陈仕国;李春辉纳米电化学生物传感器[期刊论文]-化学进展 2009(01) 6.项纯谈纳米材料修饰电极在生物电化学中的应用[期刊论文]-中国新技术新产品 2009(09) 7.PIVIDORI M I;MERKOCI A;ALEGRET S Electrochemical genosensor design:immobilisation of oligonucleotides onto transducer surfaces and detection methods[外文期刊] 2000(516) 8.任勇DNA探针在固体电极上的固定以及对转基因植物产品的检测[学位论文] 2006 9.LUCARELLI F;MARRAZZAG;TURNERA PF Carbon and sold electrodes as electrochemical transducers for DNA hybfidisation sensors[外文期刊] 2004(06) 10.XU C;CAIH;HEP Characterization of single-stranded DNA on chitosan-modified electrode and its application to the sepuence-specific DNA detection[外文期刊] 2001(05) 11.DELL A D;Tombelli S;Minunni M Detection of clinically relevant point mutations by a novel piezoelectric biosensor[外文期刊] 2006(10) 12.ZHU N N;ZHANGA P;WANGQ J Electrochemical detection of DNA hybridization using methylene blue and electro-deposited zireonia thin films on gold electrodes[外文期刊] 2004(02) 13.ZHANG D;CHEN Y;CHEN H Y Silica-nanoparticle-based interface for the enhanced immobilization and sequence-specific detection of DNA 2004(7/8) 14.张怀;张云怀;李静DNA共价修饰单壁碳纳米管电极的制备及与VB6相互作用的研究[期刊论文]-分析测试学报2008(08) 15.WROBLE N;DEININGER W;HEGEMANN P Covalent immobilization of oligonucleotides on electrodes[外文期刊] 2003(02) 16.KERMAN K;DILSAT O;PINAR K Voltammetric detection of DNA hybridization using methylene blue and selfassembled alkanethiol monolayer on gold eletrodes[外文期刊] 2002(01) 17.周家宏;杨辉;邢巍一个制备脱氧核苷酸修饰电极的简便方法[期刊论文]-应用化学 2001(07) 18.郝青丽;王安子;程荣恩金电极上巯基修饰单链DNA对[Fe(CN)6]3-/4-的电催化作用[期刊论文]-南京理工大学学

霍尔式传感器论文

霍尔式传感器应用论文 学生姓名: 指导教师:孟洁 所在学院:信息技术学院 专业:电气工程及其自动化 中国·大庆 2011 年 5 月

目录 1引言 (3) 2系统设计 (3) 2.1霍尔传感器 (4) 2.2高频滤波电路 (5) 2.3差分运算放大器 (5) 2.4比较器 (5) 2.5断弧提升器 (5) 2.6模拟开关手动自动转换器 (6) 2.7定位起弧电路 (6) 2.2高频滤波电路 (7) 2.3差分运算放大器 (7) 2.4比较器 (7) 2.5断弧提升器 (7) 2.6模拟开关手动自动转换器 (7) 2.7定位起弧电路 (8) 2.8可变占空比产生器 (8) 2.9光电耦合与电机驱动电路 (8) 3割炬定位结构系统图 (10) 结束语 (18)

1引言 等离子自动高低调节器是切割机中必不可少的配套设备,广泛应用于大型装备制造、造船和切割等领域,其主要功能是保证切割割炬与被切割工件保持最佳切割距离,消除由被切割工件的不平度变化引起的加工精度误差。切割机在工作过程中不能准确获取切割割炬与钢板的距离,这就必然影响钢板的切割质量。切割的弧电流强光会给操作人员造成视觉疲劳。因此,给出了一种基于霍尔传感器的设计方案,保证切割过程中割缝宽度均匀,切割精度提高。 2系统设计 该设计方案利用霍尔效应原理产生随磁场变化而产生变化的电压,把变化的电压送到自动高低调节器,控制割炬的上升与下降,形成一个闭环的自动高低调节系统,如图1所示。该闭环自动控制系统由霍尔传感器、自检器、高频滤波器、运算放大器、比较器、断弧提升器、模拟开关手动自动转换器、光电耦合器、三态门互锁器、电机驱动器以及机械丝杆传递定位系统组成。图2所示是系统控制电路图,从而能在切割过程中实时控制割炬与钢板的距离,有效保证钢板的切割质量。

霍尔齿轮转速传感器的工作原理和优点

霍尔齿轮转速传感器的工作原理和优点 作者: 发布时间:2009-11-25 来源: 关键字:霍尔转速传感器 霍尔转速传感器的主要工作原理是霍尔效应,也就是当转动的金属部件通过霍尔传感器的磁场时会引起电势的变化,通过对电势的测量就可以得到被测量对象的转速值。霍尔转速传感器的主要组成部分是传感头和齿圈,而传感头又是由霍尔元件、永磁体和电子电路组成的。 霍尔转速传感器的工作原理 霍尔转速传感器在测量机械设备的转速时,被测量机械的金属齿轮、齿条等运动部件会经过传感器的前端,引起磁场的相应变化,当运动部件穿过霍尔元件产生磁力线较为分散的区域时,磁场相对较弱,而穿过产生磁力线较为几种的区域时,磁场就相对较强。 霍尔转速传感器就是通过磁力线密度的变化,在磁力线穿过传感器上的感应元件时,产生霍尔电势。霍尔转速传感器的霍尔元件在产生霍尔电势后,会将其转换为交变电信号,最后传感器的内置电路会将信号调整和放大,输出矩形脉冲信号。 霍尔转速传感器的测量方法 霍尔转速传感器的测量必须配合磁场的变化,因此在霍尔转速传感器测量非铁磁材质的设备时,需要事先在旋转物体上安装专门的磁铁物质,用以改变传感器周围的磁场,这样霍尔转速传感器才能准确的捕捉到物质的运动状态。 霍尔转速传感器主要应用于齿轮、齿条、凸轮和特质凹凸面等设备的运动转速测量。高转速磁敏电阻转速传感器除了可以测量转速以外,还可以测量物体的位移、周期、频率、扭矩、机械传动状态和测量运行状态等。 霍尔转速传感器目前在工业生产中的应用很是广泛,例如电力、汽车、航空、纺织和石化等领域,都采用霍尔转速传感器来测量和监控机械设备的转速状态,并以此来实施自动化管理与控制。 霍尔转速传感器的应用优势 霍尔转速传感器的应用优势主要有三个,一是霍尔转速传感器的输出信号不会受到转速值的影响,二是霍尔转速传感器的频率相应高,三是霍尔转速传感器对电磁波的抗干扰能力强,因此霍尔转速传感器多应用在控制系统的转速检测中。 同时,霍尔转速传感器的稳定性好,抗外界干扰能力强,如抗错误的干扰信号等,因此不易因环境的因素而产生误差。霍尔转速传感器的测量频率范围宽,

光化学传感器及其最新进展

文章编号:100525630(2004)0420057205 光化学传感器及其最新进展 Ξ 徐艳平,顾铮先,陈家璧 (上海理工大学光电功能薄膜实验室,上海200093) 摘要:从传感器材料、检测方法及传感器结构几方面,围绕光化学传感器的灵敏度、选 择性和稳定性展开讨论,总结了光化学传感器近年来的最新进展,并对其今后的发展方向 做出展望。 关键词:光化学传感器;光纤传感器;表面等离子体激元共振 中图分类号:T P 212.14 文献标识码:A Recen t develop m en ts of optica l che m ica l sen sors X U Y an 2p ing ,GU ZH eng 2x ian ,CH EN J ia 2bi (L abo rato ry of Pho to 2electric Functi onal F il m s ,U niversity of Shanghai fo r Science and Techno logy ,Shanghai 200093,China ) Abstract :T he state 2of 2the 2art of op tical chem ical sen so rs is stated in th is p ap er abou t sen so r m aterials ,detecti on m ethods and sen so r structu res .T he p rop erties of op tical chem ical sen so rs such as sen sitivity ,selectivity and stab ility are discu ssed .Fu tu re p ro sp ects of op tical chem ical sen so rs are discu ssed . Key words :op tical chem ical sen so rs ;fiber op tic sen so rs ;su rface p las m on resonance 1 引 言 光化学传感器是利用敏感层与被测物质相互作用前后物理、化学性质的改变而引起的传播光诸特性的变化检测物质的一类传感器[1]。光化学传感器与其它原理的传感器相比,具有安全性好、可远距离检测、分辨力高、工作温度低、耗用功率低、可连续实时监控、易转换成电信号等优点。随着光纤技术及光集成技术的迅猛发展,光化学传感器引起了人们的极大关注,并且已经广泛地应用于工业、环境、生物医学的检测中[2]。 现首先总结了无机材料(氧化物半导体)和有机材料的应用,并介绍了溶胶凝胶工艺制备光化学传感器敏感材料方面的最新进展以及生物敏感材料。其次介绍了光谱法、干涉法、表面等离子体激元共振(su rface p las m on resonance ,SPR )等传感器检测方法的最新进展。最后对今后光化学传感器的发展做出展望。 2 传感器材料 敏感材料作为光化学传感器的重要组成部分,将直接影响传感器的各种性能,如稳定性、选择性、灵敏度和响应时间。现在研究最多的是氧化物半导体、有机半导体材料、生物识别材料等。现将从无机材料、有 第26卷 第4期 2004年8月 光 学 仪 器O PT I CAL I N STRUM EN T S V o l .26,N o.4 A ugu st,2004 Ξ收稿日期:2003209211 基金项目:上海市曙光计划资助项目(02SG 01),上海市科技发展基金资助项目(01F 032) 作者简介:徐艳平(19772),男,山东烟台人,在读博士生,主要从事光电功能薄膜及其传感器、光电精密测量与工程方面的研究。

(完整版)光电效应练习题(含答案)

光电效应规律和光电效应方程 一、选择题 1.下列关于光电效应实验结论的说法正确的是() A.对于某种金属,无论光强多强,只要光的频率小于极限频率就不能产生光电效应 B.对于某种金属,无论光的频率多低,只要光照时间足够长就能产生光电效应 C.对于某种金属,超过极限频率的入射光强度越大,所产生的光电子的最大初动能就越大 D.对于某种金属,发生光电效应所产生的光电子,最大初动能与入射光的频率成正比 【解析】选A. 发生光电效应的条件是入射光的频率大于金属的极限频率,与入射光的强度、光照时间无关,所以光的频率小于极限频率就不能产生光电效应,故A正确,B错误.根据光电效应方程E k=hν-W0,可知入射光的频率大于极限频率时,频率越高,光电子的最大初动能越大,与入射光强度无关,故C错误.根据光电效应方程E k=hν-W0,可知光电子的最大初动能与入射光的频率是一次函数关系,故D错误. 2.在光电效应实验中,用频率为ν的光照射光电管阴极,发生了光电效应,下列说法正确的是() A.增大入射光的强度,光电流增大 B.减小入射光的强度,光电效应现象消失 C.改用频率小于ν的光照射,一定不发生光电效应 D.改用频率大于ν的光照射,光电子的最大初动能变大 【解析】选AD.增大入射光强度,单位时间内照射到单位面积的光电子数增加,则光电流将增大,故选项A正确;光电效应是否发生取决于照射光的频率,而与照射强度无关,故选项B错误;用频率为ν的光照射光电管阴极,发生光电效应,用频率较小的光照射时,若光的频率仍大于极限频率,则仍会发生光电效应,选项C错误;根据hν-W0= 2 1 mv2可知,增加照射光频率,光电子的最大初动能也增大,故选项D正确. 3.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针就张开了一个角度,如图所示,这时() A.锌板带正电,指针带负电B.锌板带正电,指针带正电C.锌板带负电,指针带正电D.锌板带负电,指针带负电 【解析】选B.弧光灯照射锌板发生光电效应,锌板上有电子逸出,锌板带正电,验电器指针也带正电,故B正确 4.关于光电效应有如下几种叙述,其中叙述正确的是() A.金属的逸出功与入射光的频率成正比 s

葡萄糖电化学传感器的研究进展

葡萄糖电化学传感器的研究进展 葡萄糖电化学传感器的研究进展 李传平200941601040 (青岛大学化学化工与环境学院山东266071) 摘要葡萄糖电化学传感器是生物传感器的一种,是一门由生物、化学、医学、

电子技术等多个学科互相渗透建立起来的高新电化学技术, 它是一种将葡萄糖类酶的专一性与一个能够产生和待测物浓度成比例的信号传导器结合起来的分析装置。其具有选择性好、灵敏度高、分析速度快、成本低、能在复杂体系中进行在线连续监测的特点, 已在生物、医学、医药、及军事医学等领域显示出广阔的应用前景, 引起了世界各国的极大关注。【1】 关键词葡萄糖电化学传感器组成特点研究进展应用研究 生物传感器是一类特殊的化学传感器, 它是以葡萄糖酶作为生物敏感基元, 对被测目标具有高度选择性的检测器。它通过各种物理、化学型信号转换器捕捉目标物与敏感基元之间的反应,然后将反应的程度用离散或连续的电信号表达出来, 从而得出被测物的浓度。【1】1967年S.J.乌普迪克等制出了第一个葡萄糖传感器。将葡萄糖氧化酶包含在聚丙烯酰胺胶体中加以固化,再将此胶体膜固定在隔膜氧电极的尖端上,便制成了葡萄糖传感器。当改用其他的酶或微生物等固化膜,便可制得检测其对应物的其他传感器。经过40多年的不断发展,当今的葡萄糖电化学传感器技术除了临床葡萄糖分析,葡萄糖检测装置也应用于生物技术和食品工业。这种广泛的应用领域大大促进了葡萄糖电化学传感器的发展和多样化。 [2] 1 葡萄糖电化学生物传感器的基本组成、工作原理、特点 葡萄糖电化学生物传感器一般有两个主要组成部分: 其一是生物分子识别元件( 感受器) , 是具有分子识别能力的葡萄糖酶类; 其二是信号转换器( 换能器) , 主要有电化学电极( 如电位、电流的测量) 、光学检测元件、热敏电阻、场效应晶体管、压电石英晶体及表面等离子共振器件等。当待测物与分子识别元件特异性结合后, 所产生的复合物( 或光、热等) 通过信号转换器变为可以输出的电信号、光信号等, 从而达到分析检测的目的。 与传统的分析方法相比, 生物传感器这种新的检测手段具有如下优点: ( 1) 生物传感器是由选择性好的生物材料构成的分子识别元件, 因此一般不需要样品的预处理, 样品中的被测组分的分离和检测同时完成, 且测定时一般不需加入其它试剂。( 2) 由于它的体积小, 可以实现连续在线监测。( 3)响应快, 样品用量少, 且由于敏感材料是固定化的,可以反复多次使用。(4) 传感器连同测定仪的成本远低于大型的分析仪器, 便于推广普及。[3] 2 葡萄糖电化学生物传感器的发展 葡萄糖氧化酶(glucose oxidase,GOD),1928年由Muller等发现后,Nekamatsu、Konelia、Yoshio等先后对其作了大量的研究并投人生产,Fiedurek和Rogalski 等对酶单位的增加做了大量的研究工作,尤其对葡萄糖氧化酶的辅基一黄素腺嘌呤二核苷酸(FAD)做了深入的研究,并给出了详细的说明,目前该酶在临床检测和食品工业有广泛的用途。葡萄糖传感器就是利用葡萄糖氧化酶催化氧化葡萄糖的专性,检测各种物质中的葡萄糖含量,葡萄糖传感器 在生物和医学上有着极其重要的应用价值。1962年,Clark和Lyons提出将酶与电极结合,可以通过检测其酶催化反应所消耗的氧来测定葡萄糖的含量。1967年,Updike和Hicks首次研制出以铂(Pt)电极为基体的第一支葡萄糖氧化酶电极,通过检测酶反应的产物H:0:来测定葡萄糖含量。至此,葡萄糖氧化酶电极经过三代的发展。第一代酶生物传感器是以氧为中继体的电催化酶层: GOD ox +葡萄糖→GoD ed +葡萄糖 (1一1)

霍尔效应实验的应用与拓展—论文

学号:*********** 某某某某某某某学院学年论文 专业:********* 年级:20**级 姓名:******* 指导教师:******* 完成学期:20**-20**第**学期

霍尔效应实验应用与拓展 摘要:霍尔效应实验是物理专业学生的一个重要实验。本文详细介绍了霍尔效应的实验原理、霍尔效应的发现、本质以及霍尔实验的应用及霍尔实验的拓展。 关键词:霍尔效应;测量方法;应用发展前景 With the development of experimental application of Hall effect Abstract: Hall Effect experiment is an important experiment physics majors. This paper introduces the experimental principle, the Hall Effect of the discovery of the Hall Effect, nature and application and Hall experimental development. Key words: Hall Effect; Measuring method; Applied prospects for development 引言随着半导体物理学的迅速发展,霍尔系数和电导率的测量已成为研究半导体材料的主要方法之一。通过实验测量半导体材料的霍尔系数和电导率可以判断材料的导电类型、载流子浓度、载流子迁移率等主要参数。若能测量霍尔系数和电导率随温度变化的关系,还可以求出半导体材料的杂质电离能和材料的禁带宽度。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽、寿命长、可靠性高等优点,已广泛用于非电量测量、自动控制和信息处理等方面。在工业生产要求自动检测和控制的今天,作为敏感元件之一的霍尔器件,将有更广阔的应用前景。了解这一富有实用性的实验,对日后的工作将有益处。 1.霍尔效应的原理 霍尔效应是电磁效应的一种,这一现象是美国物理学家霍尔(A.H.Hall,1855—1938)于1879年在研究金属的导电机制时发现的。如果对位于磁场(B)中的导体(d)施加一个电压(Iv),该磁场的方向垂直于所施加电压的方向,那么则在既与磁场垂直又和所施加电流方向垂直的方向上会产生另一个电压(UH),人们将这个电压叫做霍尔电压,产生这种现象被称为霍尔效应。这个电势差也被称为霍尔电势差。 2.霍尔效应的发现与本质 霍尔效应在1879年被物理学家霍尔发现,它定义了磁场和感应电压之间的关系,这种效应和传统的电磁感应完全不同。当电流通过一个位于磁场中的导体的时候,磁场会对导体

光电效应习题(有答案)..

黑体辐射和能量子的理解 一、基础知识 1、能量子 (1)普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的整数倍.即能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值£叫做能量子. ⑵能量子的大小:£= h v ,其中v是电磁波的频率,h称为 普朗克常量.h = 6.63 x 10 -34 J ? S. 2、光子说: (1)定义:爱因斯坦提出的大胆假设。内容是:空间传播的光的能量是不连续的,是一份一份的,每一份叫做一个光子.光子的能量为£= h V,其中h是普朗克常量,其值为6.63 x 10-34 J ? S. 二、练习 1、下列可以被电场加速的是( B ) A. 光子 B .光电子C. X射线 D.无线电波 2、关于光的本性,下列说法中不正确的是( B ) A. 光电效应反映光的粒子性

B. 光子的能量由光的强度所决定 C. 光子的能量与光的频率成正比 D. 光在空间传播时,是不连续的,是一份一份的,每一份 叫做一个光子 对光电效应实验的理解 一、基础知识(用光电管研究光电效应的规律) 1、常见电路(如图所示) 2、两条线索 (1) 通过频率分析:光子频率高-光子能量大-产生光电子的 最大初动能大. (2) 通过光的强度分析:入射光强度大-光子数目多-产生的

光电子多-光电流大. 3、遏止电压与截止频率

(1)遏止电压:使光电流减小到零的反向电压. ⑵截止频率:能使某种金属发生光电效应的最小频率叫做该种 金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率. ⑶逸出功:电子从金属中逸出所需做功的最小值,叫做该金属 的逸出功. 二、练习 1、如图所示,当开关S断开时,用光子能量为2.5的一束 光照射阴极 P,发现电流表读数不为零. 合上开关,调节滑动变 阻器,发现当电压表读数小于0.60 V时,电流表读数仍 不为零;当电压表读数大于或等于0.60 V时,电流表读数为零. (1)求此时光电子的最大初动能的大小; (2)求该阴极材料的逸出功. 答案(1)0.6 (2)1.9 解析设用光子能量为2.5的光照射时,光电子的最大初动 能为,阴极材料逸出功为W 当反向电压达到U0= 0.60 V以后,具有最大初动能的光电 子达不到阳极,因此0 = 由光电效应方程知=h V -W 由以上二式得=0.6 , W J= 1.9 .

带方向性的主动式轮速传感器简析

带方向性的主动式轮速传感器简析 摘要:针对主动式轮速传感器的发展趋势,在分析其原理的基础上,介绍了下一代轮速传感器–即可以指明车轮前进方向或者是后退方向的主动式轮速传感器的原理,并利用示波器在实车上采集到带方向性主动式轮速传感器的波形图,综合德国大陆汽车公司规范定义,简要分析了带方向性的主动式轮速传感器的解析方法。 关键词:主动式轮速传感器;带方向性;数据协议 Abstract:In this paper,regarding to active wheel speed sensor development trend,based on the principle of current wide used active sensor,the logic of next generation active wheel speed senor –with capability to show the wheel moving direction is showed. Use oscilloscope on vehicle to collect waveform,introduce the analyze method to active wheel speed with direction the waveform based on the Germany Continental Corporation specification. Key words:Active wheel speed sensor;With direction;Data Protocol 随着汽车工业的发展,汽车已经不是简单的行驶工具,而是逐渐的成为集科技、安全和舒适为一体的代步工具。汽车产品作为一种消费品存在已经变的越来越普遍,尤其在国内,汽车的生产制造和销售水平正在以较快的速度发展。为了有效提高汽车的制动效率和制动安全性,现在一般汽车厂商所生产的汽车产品中普遍都装有制动防抱死ABS(Anti-lock brake system)系统。 轮速传感器作为ABS系统的必要组成部分,起到非常重要的作用。利用轮子转动带动磁性齿圈转动引起的磁场变化,轮速传感器接收到磁场的变化,并准确的向信号的接收方反馈出轮子的转速和转动方向等信息,是轮速传感器的任务。 1.当前主动式轮速传感器的原理 主动式轮速传感器的最主要是霍尔效应。当电流垂直于外磁场通过导体时,在导体的平行于磁场和电流方向的两个端面之间会出现电势差,这一现象就是霍尔效应。这个电势差也被称为霍尔电势差。 在半导体上外加与电流方向垂直的磁场,会使得半导体中的电子与空穴受到不同方向的洛伦兹力而在不同方向上聚集,在聚集起来的电子与空穴之间会产生电场,电场强度与洛伦兹力产生平衡之后,不再聚集,此时电场将会使后来的电子和空穴受到电场力的作用而平衡掉磁场对其产生的洛伦兹力,使得后来的电子和空穴能顺利通过不会偏移,从而产生内建电压。 2.带方向性轮速传感器原理

光化学传感器的设计_合成及识别性能研究

第28卷 第4期影像科学与光化学Vo l.28 N o.4 2010年7月Imag ing Science and Photochemistr y July,2010 研究生论文摘要 光化学传感器的设计、合成及识别性能研究 博士研究生 王 芳 导师 汪鹏飞 (学位授予单位 中国科学院理化技术研究所,北京100190) 光化学传感器被广泛地用于检测各种金属离子和阴离子.荧光化学传感器具有选择性好、灵敏度高、简便快速等优点,比色化学传感器则可不借助于任何昂贵的仪器设备而直接用肉眼识别.本论文分别以黄酮﹑香豆素作为发光基团,设计、合成了识别氟离子(F-)和生物巯基化合物(还原性谷胱甘肽和半胱氨酸)的光化学传感器,并研究了其光谱性质和识别机制,另外我们对基于多孔硅的光化学传感器方面进行了一些初步尝试,取得了一些有意义的结果. 1.设计合成了一种具有激发态分子内质子转移(ESIPT)性质的3 羟基黄酮衍生物L,它能够和Zr EDT A在水相中形成三元络合体系,氟离子的加入可以使体系荧光发生明显变化,其它常见阴离子没有明显干扰.由于氟离子与Zr EDT A的络合能力比黄酮衍生物与Zr EDTA的络合能力更强,所以加入的氟离子可以将黄酮衍生物从三元络合体系中置换出来,从而导致体系荧光发生变化.其它阴离子不能够和Zr EDT A发生络合,所以体系荧光不发生变化.另外,该识别过程可以用肉眼清楚观察到,所以同时是一种良好的比色化学传感器. 2.设计合成了一种基于香豆素结构的具有S S键的席夫碱衍生物(C).它在水相中具有较弱荧光,随着生物巯基化合物如半胱氨酸(Cy s)和还原型谷胱甘肽(GSH)的加入荧光逐渐增强,原因是巯基的加入使化合物C中的S S键发生断裂,形成强亲核性S-,然后合环形成一种具有强荧光的化合物Coumarin6.其它不含有巯基的常见氨基酸和氧化型谷胱甘肽的加入都不会使溶液的荧光增强. 3.通过电化学腐蚀的方法制备得到发橙色荧光的多孔硅,发现其在空气中放置时荧光强度会逐渐降低,直至消失.通过荧光光谱和透射电镜图片初步验证了量子限域效应发光机理.为了提高其光学性质的稳定性,对其进行热化学和光化学表面修饰,并且在其表面引入了可以和H g2+进行络合的识别基团,得到多孔硅光化学传感器S1和S2.H g2+的加入对S1和S2的荧光光谱有猝灭作用,原因是发生了从多孔硅表面到H g2+的电子转移. 2010年5月18日通过博士论文答辩 312

光电子技术习题

1. 一氦氖激光器,发射波长为6.3287 10-?m 的激光束,辐射量为5mW ,光束的发散角为 310-?,求此激光束的光通量及发光强度。又此激光器输出光束的截面(即放电毛细管 的截面)直径为1mm ,求其亮度。 解:波长的光的视见函数值为=)(λV ,W lm K m /683=则其激光束的光通量为: e m v V K Φ??=Φ)(λ=683??238.05310-?=lm 1弧度 = 1单位弧长/1单位半径, 1立体角=以该弧长为直径的圆面积/1单位半径的值的平方,则光束的发散角为3 10-?时的立体角为 24 απ = Ω= 23)100.1(4 -??π =610-? 发光强度为: cd I v v 610035.1?=Ω Φ= 亮度为: 2cos r I A I L v v v πθ=?= =212/10m cd ? 2.已知氦氖激光器输出的激光束束腰半径为0.5mm ,波长为,在离束腰100mm 处放置一个倒置的伽利略望远系统对激光束进行准直与扩束,伽利略望远系统的目镜焦距 mm f e 10-=',物镜焦距mm f o 100=' ,试求经伽利略望远系统变换后激光束束腰大小、位 置、激光束的发散角和准直倍率。 解:已知束腰半径010.5w mm =,632.8nm λ=,束腰到目镜的距离为1100z mm = ∴可以求得目镜前主平面上的截面半径 2 10.50.502w w mm === 波阵曲面的曲率半径: 22 0122116 1 3.140.5(1())100(+())=-15488.857mm 100632.810 w R z z πλ-?=+=-?-??1 Q '' 11111R R f -= ∴将115488.857mm R =-,'10f mm =-带入得'1R : ''111111115488.85710 R R f =+=+--

电流型电化学传感器的研究进展

电流型电化学传感器的研究进展 作为一种新科技革命和信息社会的重要技术基础,传感技术已成为人们现代生活的重要组成部分。近年来,电化学传感器的研究受到人们的广泛关注。电极系统组成、电极类型、电解液等重要组成部分的选择对于电流型传感器的性能影响尤为关键。文章详细总结了电流型电化学气体传感器的发展状况,阐述了电极系统、电解液类型对传感器性能的影响,并讨论了电流型传感器的未来发展和应用前景。 标签:传感器;电极;电解液 1 概述 传感器是一种能感应信息并将其转换为可测量信号的器件[1]。作为一种新技术革命和信息社会的重要基础技术,传感器的发展特别迅速,已成为人们现代生活的重要组成部分[2]。 按照感性信号不同,传感器可分为物理传感器和化学传感器,化学传感器可以详细划分为电化学式传感器、光学式传感器、热学式传感器和质量式传感器等。其中电化学传感器由于其敏感度高、能耗低、信号稳定等特点,被广泛使用[3,4]。 电化学传感器是目前发展最为成熟和应用最广的一类传感器[5],按照其输出信号的不同可以分为电位型电化学传感器、电流型电化学传感器和电导型电化学传感器[6]。其中电位型傳感器是基于电极电势与被测组分浓度之间的关系,通过电极电势的变化来感知浓度的变化。电导型传感器是基于被测物质氧化或还原后电解质溶液电导变化实现检测的。本文主要介绍电流型传感器及其性能影响因素。 2 电流型传感器 电流型传感器是在电位恒定的条件下,使被测物发生定电势电解,基于扩散控制条件下极限电流与浓度的线性关系,从而检测被测物质组分的实时变化的一类传感器[7]。通常也被称为控制电位电解型气体传感器,这种传感器包括供气体进入的气室或薄膜、电极、离子导电性的电解质溶液几部分。电流型传感器是当前业内应用最为广泛的传感器。电流型传感器的工作过程一般包括被测气体进入传感器气室;待测物质通过反应气室到达透气膜附近,并向电极-电解液界面扩散;电活性物质在电解液中溶解;电活性物质在电极表面吸附;扩散控制下的电化学反应;产物脱附;产物离开电极表面的扩散;产物的排除等过程。 3 性能影响因素 影响传感器性能的最主要因素包括电极因素和电解液因素两部分,电极因素

关于霍尔效应的论文

关于霍尔效应的论文 一:基本概念 美国物理学家霍尔于1879年在实验中发现,当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应。这个电势差也被叫做霍尔电势差。二:基本原理 霍尔效应是磁电效应的一种,当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这个电势差就被叫做霍尔电势差。 导体中的载流子在外加磁场中运动时,因为受到洛仑兹力的作用而使轨迹发生偏移,并在材料两侧产生电荷积累,形成垂直于电流方向的电场,最终使载流子受到的洛仑兹力与电场斥力相平衡,从而在两侧建立起一个稳定的电势差即霍尔电压。正交电场和电流强度与磁场强度的乘积之比就是霍尔系数。平行电场和电流强度之比就是电阻率。此外,大量的研究揭示:参加材料导电过程的不仅有带负电的电子还有带正电的空穴。 方便起见,假设一导体为长方体,长度为a ,b ,c .磁场垂直ab 平面,电流经过ad,则I=nqv(ad),n为电荷密度。设霍尔电压VH,导体沿霍尔电压方向的电场为VH/a,设磁场强度为B。则由 qVH/a=qvB得VH=vBa,把v=i/nqad带入得VH=iB/nqd. 因此,对于一个已知霍尔系数的导体,通过一个已知方向、大小的电

流,同时测出该导体两侧的霍尔电势差的方向与大小,就可以得出该导体所处磁场的方向和大小。 三:霍尔效应的主要应用 根据霍尔效应做成的霍尔器件,就是以磁场为工作媒体,将物体的运动参量转变为数字电压的形式输出,使之具备传感和开关的功能。 讫今为止,已在现代汽车上广泛应用的霍尔器件有:在分电器上作信号传感器、ABS系统中的速度传感器、汽车速度表和里程表、液体物理量检测器、各种用电负载的电流检测及工作状态诊断、发动机转速及曲轴角度传感器、各种开关,等等。 例如:汽车点火系统,设计者将霍尔传感器放在分电器内取代机械断电器,用作点火脉冲发生器。这种霍尔式点火脉冲发生器随着转速变化的磁场在带电的半导体层内产生脉冲电压,控制电控单元(ECU)的初级电流。相对于机械断电器而言,霍尔式点火脉冲发生器无磨损免维护,能够适应恶劣的工作环境,还能精确地控制点火正时,能够较大幅度提高发动机的性能,具有明显的优势。 用作汽车开关电路上的功率霍尔电路,具有抑制电磁干扰的作用。许多人都知道,轿车的自动化程度越高,微电子电路越多,就越

相关文档