文档库 最新最全的文档下载
当前位置:文档库 › 平面解析几何(直线和圆的方程圆锥曲线)专题

平面解析几何(直线和圆的方程圆锥曲线)专题

平面解析几何(直线和圆的方程圆锥曲线)专题
平面解析几何(直线和圆的方程圆锥曲线)专题

平面解析几何(直线和圆的方程、圆锥曲线)专题

17.0 圆锥曲线几何性质

如果涉及到其两“焦点”,优先选用圆锥曲线第一定义;如果涉及到其“焦点”、“准线”或 “离心率”,优先选用圆锥曲线第二定义;此外,如果涉及到焦点三角形的问题,也要重视焦半径和三角形中正余弦定理等几何性质的应用.

椭圆方程的第一定义:为端点的线段以无轨迹方程为椭圆21212121212121,2,

2,

2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+

双曲线的第一定义:的一个端点的一条射线

以无轨迹

方程为双曲线

21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-

圆锥曲线第二定义(统一定义):平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹.简言之就是 “e =点点距点线距

(数的统一)”,椭圆,双曲线,抛物线相对关系(形的统一)如右图.

当10 e 时,轨迹为椭圆; 当1=e 时,轨迹为抛物线; 当1 e 时,轨迹为双曲线;

当0=e 时,轨迹为圆(a

c

e =,当b a c ==,0时).

圆锥曲线的对称性、圆锥曲线的范围、圆锥曲线的特殊点线、圆锥曲线的变化趋势.其中c e a

=,椭圆中

b a =、双曲线中b a

=. 圆锥曲线的焦半径公式如下图:

特征直角三角形、焦半径的最值、焦点弦的最值及其“顶点、焦点、准线等相互之间与坐标系无关的几何性质”,尤其是双曲线中焦半径最值、焦点弦最值的特点.

17.1 圆锥曲线中的精要结论:

1.焦半径:(1)椭圆22

221(0)x y a b a b +=>>:0201,ex a PF ex a PF -=+=; (左“+”右“-”)

; 椭圆22

221(0)x y a b b a +=>>:

22

10002000()(0),()(0)

a a PF e x a ex x PF e x ex a x c c

=+=+<=-=->d (a -

(2)双曲线

12

22

2=-b y a x :

“长加短减”原则:

a

ex MF a ex MF -=+=0201 构成满足a MF MF 221=-

a

ex F M a ex F M +-='--='0201

(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号)

双曲线22

221x y b a

-=:

1020MF ey a MF ey a =-=+;1020M F ey a

M F ey a ''=-+''=--

(2)抛物线:20p

x PF +

=

2.弦长公式:]4))[(1(1212212122x x x x k x x k AB -++=-?+=

]4)[()1

1(1

1212212122

y y y y k

y y k -+?+

=-?+

=; 【注】:(1)焦点弦长:i .椭圆:)(2||21x x e a AB +±=;

ii .抛物线:AB =1222sin p

x x p α

++=

(2)通径(最短弦):i .椭圆、双曲线:2

2b a

ii .抛物线:2p .

3.过两点的椭圆、双曲线标准方程可设为:12

2=+ny mx (n m ,同时大于0时表示椭圆,0

(1)内接矩形最大面积:2ab ;

(2)P ,Q 为椭圆上任意两点,且OP OQ ⊥,则2222

1111

||||OP OQ a b

+=+ ; (3)椭圆焦点三角形:

i .12

2tan

2

PF F S b θ

?=,(12F PF θ=∠);

ii .点M 是21F PF ?内心,PM 交21F F 于点N ,则c

a

MN PM =||||;

(4)当点P 与椭圆短轴顶点重合时21PF F ∠最大; (5)共离心率的椭圆系的方程:椭圆

)0(12

22

2 b a b y a x =+

的离心率是)(22b a c a

c

e -==

,方程t t b y a x (2

22

2=+是大于0的参数,)0 b a 的离心率也是a

c

e =

,我们称此方程为共离心率的椭圆系方程. 5.双曲线中的结论:

(1)双曲线12222=-b y a x (0,0a b >>)的渐近线:02

222

=-b y a x ;

(2)共渐进线x a b

y ±=的双曲线标准方程为λλ(2

222

=-b

y a x 为参数,λ≠0);

(3)双曲线焦点三角形:

i .2

cot

221θ

b S F PF =?,(21PF F ∠=θ);

ii .P 是双曲线22a x -22

b

y =1(a >0,b >0)的左(右)支上一点,F 1、F 2分别为左、右焦点,则△PF 1F 2

的内切圆的圆心横坐标为)(,a a -;

(4)等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=(渐近线互相垂直),离心率2=e .

(5)共渐近线的双曲线系方程:

)0(2

22

2≠=-

λλb

y a

x 的渐近线方程为

02

22

2=-

b

y a

x 如果双曲线的渐近线为

0=±b y

a x 时,它的双曲线方程可设为)0(22

22≠=-λλb

y a x . (6) 共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲

线.λ=-2222b y a x 与λ-=-2222b y a x 互为共轭双曲线,它们具有共同的渐近线:022

22=-b

y a x .

(7) 若P 在双曲线

12

22

2=-b y a x ,则常用结论1:P 到焦点的

距离为m = n ,

则P 到两准线的距离比为m ︰n .

简证:e

PF e PF d d 21

21= = n

m

常用结论2:从双曲线一个焦点到另一条渐近线的距离等于b . (8) 直线与双曲线的位置关系:

区域①:无切线,2条与渐近线平行的直线,合计2条;

区域②:即定点在双曲线上,1条切线,2条与渐近线平行的直线,合计3条; 区域③:2条切线,2条与渐近线平行的直线,合计4条;

区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条; 区域⑤:即过原点,无切线,无与渐近线平行的直线.

小结:过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.

若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”“?法与渐近线求交和两根之和与两根之积同号. 6.抛物线中的结论:

(1)抛物线22y px =(0)p >的焦点弦AB 性质:

i .2124

p x x =;212y y p =-; ii .

p

BF AF 2

||1||1=+ ; iii .以AB 为直径的圆与准线相切;

iv .以AF (或BF )为直径的圆与y 轴相切; v .α

sin 22

p S AOB

=?. (2)抛物线22y px =(0)p >内结直角三角形OAB 的性质: i . 2

212

214,4P y y P x x -==; ii .AB l 恒过定点)0,2(p ;

iii .B A ,中点轨迹方程:)2(2

p x p y -=;

iv .AB OM ⊥,则M 轨迹方程为:2

2

2

)(p y p x =+-;

1+r 2

r 2-r o

v .2

min 4)(p S AOB =? .

(3)抛物线22y px =(0)p >,对称轴上一定点)0,(a A ,则: i .当0a p <≤时,顶点到点A 距离最小,最小值为a ;

ii .当p a >时,抛物线上有关于x 轴对称的两点到点A 距离最小,最小值为2

2p ap -.

17.2、两个常见的曲线系方程

(1)过曲线1(,)0f x y =,2(,)0f x y =的交点的曲线系方程是12(,)(,)0f x y f x y λ+=(λ为参数).

(2)共焦点的有心圆锥曲线系方程22

2

21x y a k b k

+=--,其中22max{,}k a b <. 当22min{,}k a b <时,表示椭圆;当2222

min{,}max{,}a b k a b <<时,表示双曲线.

17.3、圆

1、圆系方程

(1)过点11(,)A x y ,22(,)B x y 的圆系方程是

1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----=

1212()()()()()0x x x x y y y y ax by c λ?--+--+++=,其中0ax by c ++=是直线AB 的方

程,λ是待定的系数.

(2)过直线l :0Ax By C ++=与圆C :2

2

0x y Dx Ey F ++++=的交点的圆系方程是

22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.

(3)过圆1C :22

1110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程

是2222

111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.

特别地,当1λ=-时,2222

111222()0x y D x E y F x y D x E y F λ+++++++++=就是

121212()()()0D D x E E y F F -+-+-=表示:

①当两圆相交时,为公共弦所在的直线方程;

②向两圆所引切线长相等的点的轨迹(直线)方程,有的称这条直线为根轴;

2、点与圆的位置关系:点00(,)P x y

与圆2

22)()(r b y a x =-+-的位置关系有三种

若d =d r >?点P 在圆外;

d r =?点P 在圆上; d r

3、直线与圆的位置关系

直线0=++C By Ax 与圆2

2

2

)()(r b y a x =-+-的位置关系有三种(2

2

B

A C Bb Aa d +++=

):

0d r >???<相离 ; 0d r ???=相切=; 0d r 相交.

4、两圆位置关系的判定方法:设两圆圆心分别为12,O O 半径分别为12,r r ,d O O =21

124d r r >??+外离条公切线; 123d r r ??=+外切条公切线;

12122r r d r r -<

120d r r <<-??内含无公切线.

5、圆的切线方程及切线长公式

(1)已知圆2

2

0x y Dx Ey F ++++=.

①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是 0000()()

022

D x x

E y y x x y y

F ++++

++=. 当00(,)x y 圆外时, 0000()()

022

D x x

E y y x x y y

F ++++++=表示过两个切点的切

点弦方程.求切点弦方程,还可以通过连心线为直径的圆与原圆的公共弦确定.

②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.

③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线. (2)已知圆222

()()x a y b r -+-=的切线方程.

①若P(0x ,0y )是圆2

2

2

()()x a y b r -+-=上的点,则过点P(0x ,0y )的切线方程为

200()()()()x a x a y b y b r --+--=.特别地,若0;0a b ==,切线方程为200x x y y r +=;

若P(0x ,0y )是圆222

()()x a y b r -+-=外一点,由P(0x ,0y )向圆引两条切线,切点分

别为A ,B 则直线AB 的方程为2

00()()()()x a x a y b y b r --+--=.特别地,若0;0a b ==,

200xx yy r +=

②圆222

x y r +=,斜率为k 的圆的切线方程为y kx =±

(3) 过圆22

0x y Dx Ey F ++++=外一点00(,)x y 的切线长为l =17.4、解析几何与向量综合时可能出现的向量内容: (1)给出直线的方向向量()1,u k =或(),u m n =;

(2)给出OA OB +与AB 相交,等于已知OA OB +过AB 的中点;

在ABC ?中,给出()1

2

AD AB AC =

+,则AD 是ABC ?中BC 边的中线; (3)给出0PM PN +=,等于已知P 是MN 的中点;

(4)给出()

AP AQ BP BQ λ+=+,等于已知,A B 与PQ 的中点三点共线; (5)给出以下情形之一:①||AB AC ;②存在实数,AB AC λλ=使;

③若存在实数,,1,αβαβ+=且,OC OA OB αβ=+使等于已知,,A B C 三点共线. (6)给出1OA OB OP λλ

+=

+,等于已知P 是AB 的定比分点,λ为定比,即AP PB λ=

(7)给出0MA MB ?=,等于已知MA MB ⊥,即AMB ∠是直角,给出0MA MB m ?=<,等于已知AMB ∠是

钝角,给出0MA MB m ?=>,等于已知AMB ∠是锐角; (8)给出(

)MP MA MB MA

MB

λ=+

,等于已知MP 是AMB ∠的平分线;

(9)在平行四边形ABCD 中,给出()()0AB AD AB AD +?-=,等于已知ABCD 是菱形; (10)在平行四边形ABCD 中,给出||||AB AD AB AD +=-,等于已知ABCD 是矩形; (11)设1122(,),(,)A x y B x y ,12

AOB A B B A S x y x y ?=

-.

2221

1||||sin ||||()2

ABC S AB AC A AB AC AB AC ?=

=-?;

(12)O 为ABC ?内一点,则0BOC AOC AOB S OA S OB S OC ???++=;

(13)在ABC ?中,给出OP OA =+()

||

||

AB AC AB AC λ+)

(+∈R λ,则AP 通过ABC ?的内心;

17.5、解题规律盘点 1、点 (1)交点

①直线与圆锥曲线交于不同的两点:直线与二次曲线联立,当二次项系数不为0时,1212

0x x x x ?>??

+=

???=?,

x my b =+与二次曲线联立,1212

0y y y y ?>??

+=

???=?;

②直线与圆锥曲线相切:直线与二次曲线联立, 0

0???=?

二次项系数不等于

③直线与二次曲线有一个公共点:

??

??双曲线直线l

二次项系数为0,表示平行于渐近线的两条直线;二次项系数为0,△=0 l

??

?

直线抛物线 ?二

次项系数为0,表示平行于对称轴的一条直线;二次曲线不为0,△=0 (2)定点处理思路;

(3)①设参数方程;椭圆)0(122

22>>=+b a b y a x 的参数方程是:为参数)

θθθ(sin cos ?

??==b y a x ; 圆222

()()x a x b r -+-=的参数方程:为参数)

θθ

θ

(sin cos ??

?+=+=r b y r a x ②抛物线2

2(0)y px p =≠上的动点可设为:),2(020y p

y P 或)2,2(2pt pt P 或),(00y x P ,其中0202px y =,以简化计算. 2、直线

(1)设直线方程分斜率k 存在、k 不存在两种情况讨论。如果什么信息也没有:讨论斜率不存在情形,当斜率存在时,往往设为斜截式:y kx b =+;

巧设直线方程00()x x k y y -=-回避讨论及运算等问题

当直线过定点00(,)x y 时,若设成00()y y k x x -=-有时会出现下列情况: (i)容易忽视斜率不存在的情形;(ii)运算较繁,有时还会陷入僵局.

(2)过x 轴上一点(,0)m 的直线一般设为x ty m =+可以避免对斜率是否存在的讨论 (3)直线的方向向量(,)m λ?0,(0,),0,(1,),m m m m λλλ

=??

?≠??

斜率不存在

斜率 (4)两解问题:

3、角

(1)余弦定理; (2)到角公式:

(3)向量的夹角公式 4、直线与圆锥曲线

(1)直线与圆锥曲线问题解法: 1.直接法(通法):联立直线与圆锥曲线方程,构造一元二次方程求解. 【运算规律】:直线与圆锥曲线位置关系运算程式

(1)已知曲线

222

2

1x y a

b

±

=(22

1Ax By +=)与直线y kx m =+方程联立得:

2

2

22

2

2

2

2

2

()20b k a x mka x a m a b ±-±-=

(2

22

()210A Ba x Bmkx Bm +-+-=)

【注意】:当曲线为双曲线时,要对222

()b k a -与0进行比较.

2

2

2

2

2

2

2

2

2

2

4

2

2

2

4

2

(2)4()()444mka b k a a m a b a b b a m a b ?=--+-=-+

由根与系数关系知:22222

12122

2

2

2

2

2

2;mka

a m a

b x x x x b k a

b k a

-+=

=

++

【后话】:联立直线与圆锥曲线方程,构造一元二次方程求解时,注意以下问题:①联立的关于“x ”还是关于“y ”的一元二次方程?②二次项系数系数为0的情况讨论了吗?③直线斜率不存在时考虑了吗?④判别式验证了吗?

2.设而不求(代点相减法)——处理弦中点与直线斜率问题 步骤如下:

已知曲线()22

221,0x y a b a b

±=>,①设点11(,)A x y 、22(,)B x y 中点为00(,)M x y ,②作差得

=--=2121x x y y k AB

;20AB OM 20

b x k k a y =;对抛物线22(0)y px p =≠有0

AB 122p y p k y y =

+=.

【细节盘点】

*1.用直线和圆锥曲线方程消元得二次方程后,注意用判别式、韦达定理、弦长公式;注意对参数分类讨论和数形结合、设而不求思想的运用;注意焦点弦可用焦半径公式,其它用弦长公式. *2.在直线与圆锥曲线的位置关系问题中,常与“弦”相关,“平行弦”问题的关键是“斜率”、“中点弦”问题关键是“韦达定理”或“小小直角三角形”或“点差法”、“长度(弦长)”问题关键是长度(弦长)公式或“小小直角三角形”.

*3. 在直线与圆锥曲线的位置关系问题中,涉及到“交点”时,转化为函数有解问题;先验证因所设直线斜率存在,造成交点漏解情况,接着联立方程组,然后考虑消元建立关于x 的方程还是y 的方程,接着讨论方程二次项系数为零的情况,再对二次方程判别式进行分析,即0?=时,直线与曲线相切,…… *4.求解直线与圆锥曲线的“弦长”、“交点”问题时,必要条件(注意判别式失控情况)是他们构成的方程组有实数解,当出现一元二次方程时,务必先有“0?≥”. 求解直线与圆锥曲线的其它问题时,如涉及到二次方程问题,必须优先考虑“二次项系数”与“判别式”问题.

*5.解决直线与圆的关系问题时,要充分发挥圆的平面几何性质的作用(如半径、半弦长、弦心距构成直角三角形,切线长定理、割线定理、弦切角定理等等).

*6.韦达定理在解几中的应用:①求弦长;

②判定曲线交点的个数; ③求弦中点坐标;④求曲线的方程. (2)直线与圆锥曲线相交的弦长公式 :

AB

=

或12||AB x x ==-

12|y y =-=21221221224)(11))(11(||y y y y k

y y k AB -++=-+

= 【注】:弦端点A ),(),,(2211y x B y x ,由方程{

(,)0y kx b

F x y =+= 消去y 得到02=++c bx ax ,0?>,α为

直线AB 的倾斜角,k 为直线的斜率,12||x x -= (3)抛物线的切线方程

①抛物线px y 22

=上一点00(,)P x y 处的切线方程是00()y y p x x =+.

②过抛物线px y 22

=外一点00(,)P x y 所引两条切线的切点弦方程是00()y y p x x =+.

③抛物线2

2(0)y px p =>与直线0Ax By C ++=相切的条件是2

2pB AC =. 5、几何定值、极值问题

几何极值问题实际上就是以几何条件出现的极值问题,通常运用几何中的有关不等式和定理解决,有时运用“对角”变换及局部调整法,有时运用三角方法,如有关三角函数性质、正弦定理、三角形面积公式等转化为三角极值问题解决.有关面积与周长的极值问题除了运用有关面积的几何知识外,常常需要用如下结论:

①周长一定的三角形中,以正三角形的面积最大; ②周长一定的矩形中,以正方形面积最大;

③面积一定的三角形中,以正三角形的周长最小; ④周长一定的平面曲线中,圆所围成的面积最大; ⑤在面积一定的闭曲线中,圆的周长最小;

⑥在边长分别相等的多边形中,以圆内接多边形的面积最大; ⑦在等周长的边形中,以圆内接多边形的面积最大; ⑧在面积一定的边形中,正边形的周长最小.

几何定值问题主要是研究和解决变动的图形中某些几何元素的几何量保持不变,或几何元素的北欧谐几何性质或位置保持不变等问题.

常见的几何定值中的定量问题为定角、定长(线段长、周长、距离之和等)、定比(线段比、面积比)、定积(面积、线段积)等.

常见的几何定值中的定位问题为过定点、过定直线等.

几何定值问题可以分为两类:一类是绝对的定值问题,即需要证明的定值为一确定的常数.这种定值为所给图形的位置、大小、形状无关;另一类是相对定值问题,即要证明的定值与题设图形中的某些定量有关,这种定值是随题设图形的位置、大小和形状的变化而改变的,因此,只有相对的意义,也就是证明题推断的几何量可以用题设已知量的某种确定的关系来表示.

解决定值问题常用的处理思路和方法:

(1)利用综合法证明时,需要改变题目的形式,把一般定值题转化为特殊情况,因此,常作辅助图形;其次要明确图形中哪些元素是固定元素,哪些量是定量,分析问题时要围绕着固定元素和定量进行,把定值固定在已知量上;

(2)利用参数法证明时,要根据题设的条件,选取适当的参数,然后将所要证明的定值用参数表示出来,最后消去参数,便求得用常量表示的定值;

(3)利用计算法证明时,通常借助于正、余弦定理或坐标法将有关量用某些特定的量表示出来,再通过计算证明所求的式子的值为定值;

(4)综合运用几何、代数、三角知识证题. 6、求轨迹方程的常用方法:

⑴直接法:直接通过建立x 、y 之间的关系,构成(,)0F x y =,是求轨迹的最基本的方法.

⑵待定系数法:可先根据条件设所求曲线的方程,再由条件确定其待定系数,代回所列的方程即可. ⑶代入法(相关点法或转移法).

⑷定义法:如果能够确定动点的轨迹满足某已知曲线的定义,则可由曲线的定义直接写出方程.

⑸交轨法(参数法):当动点(,)P x y 坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将x 、

y 均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程.

人教版高中数学《直线和圆的方程》教案全套

人教版高中数学《直线和圆的方程》教案全套 直线的倾斜角和斜率 一、教学目标 (一)知识教学点 知道一次函数的图象是直线,了解直线方程的概念,掌握直线的倾斜角和斜率的概念以及直线的斜率公式. (二)能力训练点 通过对研究直线方程的必要性的分析,培养学生分析、提出问题的能力;通过建立直线上的点与直线的方程的解的一一对应关系、方程和直线的对应关系,培养学生的知识转化、迁移能力. (三)学科渗透点 分析问题、提出问题的思维品质,事物之间相互联系、互相转化的辩证唯物主义思想. 二、教材分析 1.重点:通过对一次函数的研究,学生对直线的方程已有所了解,要对进一步研究直线方程的内容进行介绍,以激发学生学习这一部分知识的兴趣;直线的倾斜角和斜率是反映直线相对于x轴正方向的倾斜程度的,是研究两条直线位置关系的重要依据,要正确理解概念;斜率公式要在熟练运用上多下功夫. 2.难点:一次函数与其图象的对应关系、直线方程与直线的对应关系是难点.由于以后还要专门研究曲线与方程,对这一点只需一般介绍就可以了. 3.疑点:是否有继续研究直线方程的必要? 三、活动设计 启发、思考、问答、讨论、练习. 四、教学过程 (一)复习一次函数及其图象 已知一次函数y=2x+1,试判断点A(1,2)和点B(2,1)是否在函数图象上. 初中我们是这样解答的:

∵A(1,2)的坐标满足函数式, ∴点A在函数图象上. ∵B(2,1)的坐标不满足函数式, ∴点B不在函数图象上. 现在我们问:这样解答的理论依据是什么?(这个问题是本课的难点,要给足够的时间让学生思考、体会.) 讨论作答:判断点A在函数图象上的理论依据是:满足函数关系式的点都在函数的图象上;判断点B不在函数图象上的理论依据是:函数图象上的点的坐标应满足函数关系式.简言之,就是函数图象上的点与满足函数式的有序数对具有一一对应关系. (二)直线的方程 引导学生思考:直角坐标平面内,一次函数的图象都是直线吗?直线都是一次函数的图象吗? 一次函数的图象是直线,直线不一定是一次函数的图象,如直线x=a连函数都不是. 一次函数y=kx+b,x=a都可以看作二元一次方程,这个方程的解和它所表示的直线上的点一一对应. 以一个方程的解为坐标的点都是某条直线上的点;反之,这条直线上的点的坐标都是这个方程的解.这时,这个方程就叫做这条直线的方程;这条直线就叫做这个方程的直线. 上面的定义可简言之:(方程)有一个解(直线上)就有一个点;(直线上)有一个点(方程)就有一个解,即方程的解与直线上的点是一一对应的. 显然,直线的方程是比一次函数包含对象更广泛的一个概念. (三)进一步研究直线方程的必要性 通过研究一次函数,我们对直线的方程已有了一些了解,但有些问题还没有完全解决,如 y=kx+b中k的几何含意、已知直线上一点和直线的方向怎样求直线的方程、怎样通过直线的方程来研究两条直线的位置关系等都有待于我们继续研究. (四)直线的倾斜角 一条直线l向上的方向与x轴的正方向所成的最小正角,叫做这条直线的倾斜角,如图1-21中的α.特别地,当直线l和x轴平行时,我们规定它的倾斜角为0°,因此,倾斜角的取值范围是0°≤α<180°.

直线和圆的方程知识与典型例题

直线和圆的方程知识关系 直线的方程一、直线的倾斜角和斜率 1.直线的倾斜角:一条直线向上的方向与x轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与x轴平行或重合时,其倾斜角为0o,故直线倾斜角α的范围是0180 α< o o ≤. 2.直线的斜率:倾斜角不是90o的直线其倾斜角α的正切叫这条直线的斜率k,即 tan kα =. 注:①每一条直线都有倾斜角,但不一定有斜率. ②当ο 90 = α时,直线l垂直于x轴,它的斜率k不存在. ③过两点 111 (,) P x y、 222 (,) P x y 12 () x x ≠的直线斜率公式21 21 tan y y k x x α - == - 二、直线方程的五种形式及适用条件 名称方程说明适用条件 斜截式y=kx+b k—斜率 b—纵截距 倾斜角为90°的直线 不能用此式 点斜式y-y0=k(x-x0) (x0,y0)—直线上已 知点, k ──斜率 倾斜角为90°的直线 不能用此式 两点式1 21 y y y y - - =1 21 x x x x - - (x1,y1),(x2,y2) 是直线上两个已知 点 与两坐标轴平行的直 线不能用此式 截距式 x a + y b =1 a—直线的横截距 b—直线的纵截距 过(0,0)及与两坐 标轴平行的直线不能 用此式 一般式 A x+ B y+C=0 (A、B不全为零) A、B不能同时为零

直线和圆的方程

简单的线性规划例13. 若点(3,1)和(4 -,6)在直线0 2 3= + -a y x的两侧,则实数a的取值范围是 ()724 A a a <-> 或()724 B a -<<()724 C a a =-= 或(D)以上都不对例14. ABC ?的三个顶点的坐标为(2,4) A,(1,2) B-,(1,0) C,点(,) P x y在ABC ?内部及边界上运动,则2 y x -的最大值为,最小值为。 例15. 不等式组: 10 x y x y y -+ + ? ? ? ? ? ≥ ≤ ≥ 表示的平面区域的面积是; 例16.20个劳动力种50亩地,这些地可种蔬菜、棉花或水稻,如果种这些农作物每亩地所需的劳动力和预计产值如下表。问怎样安排才能使每亩都种上农作物,所有的劳动力都有工作且农作物的预计产值最高? 例17.某集团准备兴办一所中学,投资1200万用于硬件建设.为了考虑社会效益和经济利益,对该地区教育市场进行调查,得出一组数据列表(以班为单位)如下: 根据有关规定,除书本费、办公费外,初中生每年可收取学费600元,高中生每年可收取学费1500元.因生源和环境等条件限制,办学规模以20至30个班为宜.

直线与圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(2 2= ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 例2 求半径为4,与圆04242 2=---+y x y x 相切,且和直线0=y 相切的圆的方程.

高二数学直线和圆的方程综合测试题

高二数学《直线和圆的方程》综合测试题 一、 选择题: 1.如果直线l 将圆:04222=--+y x y x 平分,且不通过第四象限,那么l 的斜率取值范围是( ) A .]2,0[ B .)2,0( C .),2()0,(+∞-∞ D .),2[]0,(+∞-∞ 2.直线083=-+y x 的倾斜角是( ) A. 6π B. 3 π C. 32π D. 65π 3. 若直线03)1(:1=--+y a ax l ,与02)32()1(:2=-++-y a x a l 互相垂直, 则a 的值为( ) A .3- B .1 C .0或2 3 - D .1或3- 4. 过点)1,2(的直线中被圆04222=+-+y x y x 截得的弦长最大的直线方程 是( ) A.053=--y x B. 073=-+y x C. 053=-+y x D. 053=+-y x 5.过点)1,2(-P 且方向向量为)3,2(-=的直线方程为( ) A.0823=-+y x B. 0423=++y x C. 0132=++y x D. 0732=-+y x 6.圆1)1(22=+-y x 的圆心到直线x y 3 3 = 的距离是( ) A. 2 1 B. 23 C.1 D. 3 7.圆4)1()3(:221=++-y x C 关于直线0=-y x 对称的圆2C 的方程为:( ) A. 4)1()3(22=-++y x B. 4)3()1(22=-++y x C. 4)3()1(22=++-y x D. 4)1()3(22=++-y x

8.过点)1,2(且与两坐标轴都相切的圆的方程为( ) A .1)1()1(22=-+-y x B .25)5()5(22=-++y x C .1)1()1(22=-+-y x 或25)5()5(22=-+-y x D .1)1()1(22=-+-y x 或25)5()5(22=-++y x 9. 直线3y kx =+与圆22(2)(3)4x y -+-=相交于N M ,两点,若≥||MN 则k 的取值范围是( ) A .3 [,0]4 - B .[ C .[ D .2 [,0]3 - 10. 下列命题中,正确的是( ) A .方程 11 =-y x 表示的是斜率为1,在y 轴上的截距为2的直线; B .到x 轴距离为5的点的轨迹方程是5=y ; C .已知ABC ?三个顶点)0,3(),0,2(),1,0(-C B A ,则 高AO 的方程是0=x ; D .曲线023222=+--m x y x 经过原点的充要条件是0=m . 11.已知圆0:22=++++F Ey Dx y x C ,则0==E F 且0

高中数学讲义 第八章 直线和圆的方程(超级详细)

高中数学复习讲义第八章直线和圆的方程

【方法点拨】 1.掌握直线的倾斜角,斜率以及直线方程的各种形式,能正确地判断两直线位置关系,并能熟练地利用距离公式解决有关问题.注意直线方程各种形式应用的条件.了解二元一次不等式表示的平面区域,能解决一些简单的线性规划问题. 2.掌握关于点对称及关于直线对称的问题讨论方法,并能够熟练运用对称性来解决问题. 3.熟练运用待定系数法求圆的方程. 4.处理解析几何问题时,主要表现在两个方面:(1)根据图形的性质,建立与之等价的代数结构;(2)根据方程的代数特征洞察并揭示图形的性质.5.要重视坐标法,学会如何借助于坐标系,用代数方法研究几何问题,体会这种方法所体现的数形结合思想. 6.要善于综合运用初中几何有关直线和圆的知识解决本章问题;还要注意综合运用三角函数、平面向量等与本章内容关系比较密切的知识. 第1课直线的方程 【考点导读】 理解直线倾斜角、斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的几种形式,能根据条件,求出直线的方程. 高考中主要考查直线的斜率、截距、直线相对坐标系位置确定和求在不同条件下的直线方程,属中、低档题,多以填空题和选择题出现,每年必考.

【基础练习】 1. 直线x cos α+ 3y +2=0 的倾斜角范围是50,,66πππ????????????? 2. 过点)3,2(P ,且在两坐标轴上的截距互为相反数的直线方程是 10320-+=-=或x y x y 3.直线l 经过点(3,-1),且与两坐标轴围成一个等腰直角三角形,则直线l 的方程为42=-=-+或y x y x 4.无论k 取任何实数,直线()()()14232140k x k y k +--+-=必经过一定点P ,则P 的坐标为(2,2) 【范例导析】 例1.已知两点A (-1,2)、B (m ,3) (1)求直线AB 的斜率k ; (2)求直线AB 的方程; (3)已知实数m 1? ?∈???? ,求直线AB 的倾斜角α的取值范围. 分析:运用两点连线的子斜率公式解决,要注意斜率不存在的情况. 解:(1)当m =-1时,直线AB 的斜率不存在. 当m ≠-1时,1 1 k m = +, (2)当m =-1时,AB :x =-1, 当m ≠1时,AB :()1 211 y x m -= ++. (3)①当m =-1时,2 π α=; ②当m ≠-1时, ∵( 1,1k m ?=∈-∞?+∞??+??

高中数学圆的方程含圆系典型题型归纳总结

高中数学圆的方程典型题型归纳总结 类型一:巧用圆系求圆的过程 在解析几何中,符合特定条件的某些圆构成一个圆系,一个圆系所具有的共同形式的方程称为圆系方程。常用的圆系方程有如下几种: ⑴以为圆心的同心圆系方程 ⑵过直线与圆的交点的圆系方程 ⑶过两圆和圆的交 点的圆系方程 此圆系方程中不包含圆,直接应用该圆系方程,必须检验圆是否满足题意,谨防漏解。 当时,得到两圆公共弦所在直线方程 例1:已知圆与直线相交于两点,为坐标原点,若,求实数的值。 分析:此题最易想到设出,由得到,利用设而不求的思想,联立方程,由根与系数关系得出关于的方程,最后验证得解。倘若充分挖掘本题的几何关系,不难得出在以为直径的圆上。而刚好为直线与圆的交点,选取过直线与圆交点的圆系方程,可极大地简化运算过程。 解:过直线与圆的交点的圆系方程为: ,即 ………………….① 依题意,在以为直径的圆上,则圆心()显然在直线上,则,解之可得 又满足方程①,则故 例2:求过两圆和的交点且面积最小的圆的方程。 解:圆和的公共弦方程为 ,即 过直线与圆的交点的圆系方程为 ,即 依题意,欲使所求圆面积最小,只需圆半径最小,则两圆的公共弦必为所求圆的直径,圆心必在公共弦所在直线上。即,则 代回圆系方程得所求圆方程

例3:求证:m 为任意实数时,直线(m -1)x +(2m -1)y =m -5恒过一定点P ,并求P 点坐标。 分析:不论m 为何实数时,直线恒过定点,因此,这个定点就一定是直线系中任意两直线的交点。 解:由原方程得 m(x +2y -1)-(x +y -5)=0,① 即???-==?? ?=-+=-+4y 9 x 0 5y x 01y 2x 解得, ∴直线过定点P (9,-4) 注:方程①可看作经过两直线交点的直线系。 例4已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1, 即l 恒过定点A (3,1). ∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =- 2 1 , ∴l 的方程为2x -y -5=0. 评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢? 思考讨论 类型二:直线与圆的位置关系 例5、若直线m x y +=与曲线2 4x y -=有且只有一个公共点,求实数m 的取值范围. 解:∵曲线24x y -= 表示半圆)0(422≥=+y y x ,∴利用数形结合法,可得实数m 的取值范 围是22<≤-m 或22=m . 变式练习:1.若直线y=x+k 与曲线x= 2 1y -恰有一个公共点,则k 的取值范围是___________. 解析:利用数形结合. 答案:-1<k ≤1或k=-2 例6 圆9)3()3(2 2=-+-y x 上到直线01143=-+y x 的距离为1的点有几个? 分析:借助图形直观求解.或先求出直线1l 、2l 的方程,从代数计算中寻找解答. 解法一:圆9)3()3(2 2 =-+-y x 的圆心为)3,3(1O ,半径3=r . 设圆心1O 到直线01143=-+y x 的距离为d ,则324 311 34332 2 <=+-?+?= d . 如图,在圆心1O 同侧,与直线01143=-+y x 平行且距离为1的直线1l 与圆有两个交点,这两个交点符合题意. 又123=-=-d r . ∴与直线01143=-+y x 平行的圆的切线的两个切点中有一个切点也符合题意. ∴符合题意的点共有3个. 解法二:符合题意的点是平行于直线01143=-+y x ,且与之距离为1的直线和圆的交点.设 所求直线为043=++m y x ,则14 3112 2 =++= m d , ∴511±=+m ,即6-=m ,或16-=m ,也即 06431=-+y x l :,或016432=-+y x l :. 设圆9)3()3(2 2 1=-+-y x O : 的圆心到直线1l 、2l 的距离为1d 、2d ,则 34 36 34332 2 1=+-?+?= d ,14 316 34332 2 2=+-?+?= d . ∴1l 与1O 相切,与圆1O 有一个公共点;2l 与圆1O 相交,与圆1O 有两个公共点.即符合题意的点共3个. 说明:对于本题,若不留心,则易发生以下误解: ∵m ∈R ,∴ 得

最新高考数学直线和圆的方程专题复习(专题训练)

专题六、解析几何(一) 直线和圆 1.直线方程:0=+++=c by ax t kx y 或 2.点关于特殊直线的对称点坐标: (1)点),(00y x A 关于直线方程x y =的对称点),(n m A '坐标为:0y m =,0x n =; (2) 点),(00y x A 关于直线方程b x y +=的对称点),(n m A '坐标为:b y m -=0,b x n +=0; (3)点),(00y x A 关于直线方程x y -=的对称点),(n m A '坐标为:0y m -=,0x n -=; (4)点),(00y x A 关于直线方程b x y +-=的对称点),(n m A '坐标为:b y m +-=0,b x n +-=0; 3.圆的方程:()()2 2 2 x a y b r -+-=或() 2 2 2 2 040x y Dx Ey F D E F ++++=+->, 无xy 。

4.直线与圆相交: (1)利用垂径定理和勾股定理求弦长: 弦长公式:222d r l -=(d 为圆心到直线的距离),该公式只适合于圆的弦长。 若直线方程和圆的方程联立后,化简为:02 =++c bx ax ,其判别式为?,则 弦长公式(万能公式):12l x =-= a k a c a k ? +=--+=2 2214b 1)( 注意:不需要单独把直线和圆的两个交点的坐标求出来来求弦长,只要设出它们的坐标即可, 再利用直线方程和圆的联立方程求解就可达到目标。这是一种“设而不求”的技巧,它可以简化运算,降低思考难度,在解析几何中具有十分广泛的应用。 5.圆的切线方程: (1)点在圆外: 如定点()00,P x y ,圆:()()2 2 2 x a y b r -+-=,[()()2 2 2 00x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=-;第二步:通过d r =,求出k ,从而得到切线方程,这里的切线方程的有两条。特别注意:当k 不存在时,要单独讨论。 (2)点在圆上: 若点P ()00x y ,在圆()()2 2 2 x a y b r -+-=上,利用点法向量式方程求法,则切线方程为: ?=--+--0)(()((0000b y y y a x x x ))()()()()200x a x a y b y b r --+--=。 点在圆上时,过点的切线方程的只有一条。 由(1)(2)分析可知:过一定点求某圆的切线方程,要先判断点与圆的位置关系。 (3)若点P ()00x y ,在圆()()222x a y b r -+-=外,即()()22 200x a y b r -+->, 过点P ()00x y ,的两条切线与圆相交于A 、B 两点,则AB 两点的直线方程为: 200))(())((r b y b y a x a x =--+--。 6.两圆公共弦所在直线方程: 圆1C :2 2 1110x y D x E y F ++++=,圆2C :2 2 2220x y D x E y F ++++=, 则()()()1212120D D x E E y F F -+-+-=为两相交圆公共弦方程。 7.圆的对称问题: (1)圆自身关于直线对称:圆心在这条直线上。 (2)圆C 1关于直线对称的圆C 2:两圆圆心关于直线对称,且半径相等。 (3)圆自身关于点P 对称:点P 就是圆心。

2020高考数学(理)二轮专题复习讲义《五 第1讲 直线与圆(小题)》

第1讲直线与圆(小题) 热点一直线的方程及应用 1.两条直线平行与垂直的判定 若两条不重合的直线l1,l2的斜率k1,k2存在,则l1∥l2?k1=k2,l1⊥l2?k1k2=-1.若给出的直线方程中存在字母系数,则要考虑斜率是否存在. 2.求直线方程 要注意几种直线方程的局限性.点斜式、斜截式方程要求直线不能与x轴垂直,两点式不能表示与坐标轴垂直的直线,而截距式方程不能表示过原点的直线,也不能表示垂直于坐标轴的直线. 3.两个距离公式

(1)两平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离d = |C 1-C 2|A 2 +B 2 (A 2+B 2≠0). (2)点(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2 (A 2 +B 2≠0). 例1 (1)(2019·宝鸡模拟)若直线x +(1+m )y -2=0与直线mx +2y +4=0平行,则m 的值是( ) A.1 B.-2 C.1或-2 D.-32 答案 A 解析 ①当m =-1时,两直线分别为x -2=0和x -2y -4=0,此时两直线相交,不合题意. ②当m ≠-1时,两直线的斜率都存在,由直线平行可得??? -11+m =-m 2, 2 1+m ≠-2 解得m =1. 综上可得m =1. (2)我国魏晋时期的数学家刘徽创立了割圆术,也就是用内接正多边形去逐步逼近圆,即圆内接正多边形边数无限增加时,其周长就越逼近圆周长,这种用极限思想解决数学问题的方法是数学史上的一项重大成就.现作出圆x 2+y 2=2的一个内接正八边形,使该正八边形的其中4个顶点在坐标轴上,则下列4条直线中不是该正八边形的一条边所在直线的为( ) A.x +(2-1)y -2=0 B.(1-2)x -y +2=0 C.x -(2+1)y +2=0 D.(2-1)x -y +2=0 答案 C 解析 如图所示可知A (2,0), B (1,1), C (0,2), D (-1,1),

高中数学直线与圆的方程知识点总结49648

高中数学之直线与圆的方程 一、概念理解: 1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°; ③范围:0°≤α<180° 。 2、斜率:①找k :k=tan α (α≠90°); ②垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。 3、斜率与坐标:1 21 22121tan x x y y x x y y k --=--= =α ①构造直角三角形(数形结合); ②斜率k 值于两点先后顺序无关; ③注意下标的位置对应。 4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在) 特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=?k k 。 ②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。 ③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程: ①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(21211 21 121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接 带入即可; ④截距式: 1=+b y a x 将已知截距坐标),0(),0,( b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 用得比较多的是点斜式、斜截式与一般式。 2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可

(完整word版)职高数学第八章直线和圆的方程及答案

第8章直线和圆的方程 练习8.4.1 圆的标准方程 1.圆心在原点,半径为3的圆的标准方程为 2.圆22(3)(2)13x y -++=的周长是 3.以C(-1,2)为圆心,半径为5的圆的标准方程是 练习8.4.2 圆的一般方程 1.圆224240x y x y +-+-=的圆心坐标是 2.求下列圆的圆心坐标和半径: (1)2210150x y y +-+= (2)22241x x y y -++=- 练习8.4.3 确定圆的条件 1. 求以点(4,1)-为圆心,半径为1的圆的方程. 2. 求经过直线370x y ++=与32120x y --=的交点,圆心为(1,1)C -的圆的方程. 3. 求经过三点(0,0)O ,(1,0)M ,(0,2)N 的圆的方程. 练习8.4.4 直线与圆的位置关系 1.判断下列直线与圆的位置关系: (1)直线2x y +=与圆222x y +=; (2)直线 y =与圆22(4)4x y -+=; (3)直线51280x y +-=与圆22(1)(3)8x y -++=.

2.求以(2,1)C -为圆心,且与直线250x y +=相切的圆的方程. 练习8.4.5 直线方程与圆的方程应用举例 1. 光线从点M (?2,3)射到点P (1,0),然后被x 轴反射,求反射光线所在直线的方程 2. 赵州桥圆拱的跨度是37.4米,圆拱高约为7.2米,适当选取坐标系求出其拱圆 的方程. 3.某地要建造一座跨度为8米,拱高为2米的圆拱桥,每隔1米需要一根支柱支撑,求第二根支柱的长度(精确到0.01m).

直线和圆的方程练习题

《直线和圆的方程》练习题 一、选择题 1、三角形ABC 中,A(-2,1),B(1,1),C(2,3),则k AB ,k BC 顺次为 ( ) A . - 71,2 B . 2,-1 C . 0,2 D . 0,-7 1 2、斜率为-21,在y 轴上的截距为5的直线方程是 ( ) A . x -2y = 10 B . x + 2y = 10 C . x -2y + 10 = 0 D . x + 2y + 10 = 0 3、经过(1,2)点,倾斜角为135?的直线方程是 ( ) A . y -2 = x -1 B . y -1 =-(x -2) C . y -2 = -(x -1) D . y -1 =x -2 4、原点在直线l 上的射影是P (-2,1),则直线l 的方程为 ( ) A . x + 2y = 0 B . x + 2y -4 = 0 C . 2x -y + 5 = 0 D . 2x + y + 3 = 0 5、如果直线ax + 2y + 2 = 0与3x -y -2 = 0直线平行,那么系数a = ( ) A . -3 B . -6 C . -23 D . 3 2 6、点(0,10)到直线y = 2x 的距离是 ( ) A . 25 B . 5 C . 3 D . 5 7、到点C(3,-2)的距离等于5的轨迹方程为 ( ) A .(x -3)2 + (y + 2)2 = 5 B . (x -3)2 + (y + 2)2 = 25 C . (x + 3)2 + (y -2)2 = 5 D .(x + 3)2 + (y -2)2 = 25 8、已知圆的方程为x 2 + y 2-4x + 6y = 0,下列是通过圆心直线的方程为( ) A . 3x + 2y + 1 = 0 B . 3x -2y + 1= 0 C .3x -2y = 0 D . 3x + 2y = 0 9、已知点A(3,-2),B(-5,4),以线段AB 为直径的圆的方程为 ( ) A .(x + 1)2 + (y -1)2 = 25 B .(x -1)2 + (y + 1)2 = 100 C .(x -1)2 + (y + 1)2 = 25 D .(x + 1)2 + (y -1)2 = 100 10、直线3x + 4y + 2 = 0与圆x 2 + y 2 + 4x = 0交于A ,B 两点,则线段AB 的垂直平分线的方程是 ( ) A . 4x -3y -2 = 0 B . 4x -3y -6 = 0 C . 4x + 3y + 6 = 0 D . 4x + 3y + 8 = 0 11、直线3x -4y -5 = 0和(x -1)2 + (y + 3)2 = 4位置关系是 ( ) A . 相交但不过圆心 B . 相交且过圆心 C . 相切 D . 相离 12、点P (1,5)关于直线x + y = 0的对称点的坐标是 ( ) A . (5,1) B . (1,-5) C .(-1,5) D . (-5,-1) 13、过点P(2,3)且在两坐标轴有相等截距的直线方程是 ( ) A .x + y -5 = 0 B .x + y + 5 = 0 C .x + y -5 = 0 或x + y + 5 = 0 D .x + y -5 = 0 或3x -2y = 0

圆的方程、直线和圆的位置关系(附答案)

高考能力测试数学基础训练25 基础训练25 圆的方程、直线和圆的位置关系 ●训练指要 掌握圆的标准方程及一般方程,会用待定系数法,求圆的方程. 熟练掌握直线与圆的位置关系的代数确定方法与几何确定方法. 一、选择题 1.方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,则a 的取值范围是 A.a <-2或a >3 2 B.-32<a <0 C.-2<a <0 D.-2<a < 32 2.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得的弦长等于 A.6 B.2 25 C.1 D.5 3.方程x 4-y 4-4x 2+4y 2=0表示的曲线是 A.两个圆 B.四条直线 C.两条平行线和一个圆 D.两条相交直线和一个圆 二、填空题 4.经过点M (1,3)的圆x 2+y 2=1的切线方程是_________. 5.若圆经过点A (a ,0),B (2a ,0),C (0,a )(a ≠0),则这个圆的方程为_________.

三、解答题 6.求过直线2x+y+4=0和圆x2+y2+2x-4y+1=0的交点,且面积最小的圆的方程. 7.当C为何值时,圆x2+y2+x-6y+C=0与直线x+2y-3=0的两交点P、Q满足OP⊥OQ?(其中O为坐标原点) 8.已知圆C:x2+(y-1)2=5,直线l:mx-y+1=0, (1)求证:对m∈R,直线l与圆C总有两个不同交点; (2)设l与圆C交于A、B两点,若|AB|=17,求l的倾斜角; (3)求弦AB的中点M的轨迹方程.

高考能力测试数学基础训练25答案 一、1.D 2.A 3.D 二、4.x =1或4x -3y +5=0 5.x 2+y 2-3ax -3ay +2a 2=0 三、6.5 4)56()513(22=-++y x 提示:求得直线与圆的交点A (-5 2,511),B (-3,2),利用圆的直径式方程得所求圆方程为.5 4)56()513(.0)2)(52()3)(511(22=-++=--+++y x y y x x 即 7.C =3 提示:联立直线与圆方程,消去x 得5y 2-20y +12+C=0. 由Δ>0?c <8. 设P (x 1,y 1),Q (x 2,y 2),则y 1+y 2=4,y 1y 2=5 12C +. x 1·x 2=(3-2y 1)(3-2y 2)=-15+5 4(12+C ). OP ⊥OQ ?x 1x 2+y 1y 2=0?C =3. 满足C <8. ∴C =3为所求. 8.(1)略;(2)60°或120° (3)x 2+y 2-x -2y +1=0(x ≠1) 提示:(1)l 方程化为y -1=mx ,

直线和圆的方程知识点汇总

直线和圆--知识总结 一、直线的方程 1、倾斜角: ,围0≤α<π, x l //轴或与x 轴重合时,α=00 。 2、斜率: k=tan α α与κ的关系:α=0?κ=0 已知L 上两点P 1(x 1,y 1) 0<α< 02 >?k π P 2(x 2,y 2) α= κπ ?2 不存在 ?k= 1 212x x y y -- 022

高三总复习直线与圆的方程知识点总结及典型例题

直线与圆的方程 一、直线的方程 1、倾斜角: ,范围0≤α<π, x l //轴或与x 轴重合时,α=00。 2、斜率: k=tan α α与κ的关系:α=0?κ=0 已知L 上两点P 1(x 1,y 1) 0<α< 02 >?k π P 2(x 2,y 2) α= κπ ?2 不存在 ?k= 1 212x x y y -- 022

二、两直线的位置关系 1、 2、L 1 到L 2的角为0,则1 21 21tan k k k k ?+-= θ(121-≠k k ) 3、夹角:1 21 21tan k k k k +-= θ 4、点到直线距离:2 2 00B A c By Ax d +++= (已知点(p 0(x 0,y 0),L :AX+BY+C=0) ①两行平线间距离:L 1=AX+BY+C 1=0 L 2:AX+BY+C 2=0?2 221B A c c d +-= ②与AX+BY+C=0平行且距离为d 的直线方程为Ax+By+C ±022 =+B A d ③与AX+BY+C 1=0和AX+BY+C 2=0平行且距离相等的直线方程是 02 2 1=++ +C C BY AX 5、对称:(1)点关于点对称:p(x 1,y 1)关于M (x 0,y 0)的对称)2,2(1010Y Y X X P --' (2)点关于线的对称:设p(a 、b)

考点:直线与圆的方程综合测试(教师版)

直线与圆的方程 (时间:90分钟__分数:120分) 一、选择题(共10小题,每小题5分,共50分) 1.(2015·河南安阳期末,3)x cos α+y sin α+1=0,α∈? ? ???0,π2的倾斜角为( ) A .α B.π2+α C .π-α D.π 2-α 【答案】 B 设直线x cos α+y sin α+1=0的倾斜角为θ, 则斜率 k =tan θ=-cos αsin α=sin ? ??? ?π2+αcos ? ?? ?? π2+α=tan ? ???? π2+α. 又α∈? ? ???0,π2,所以θ=π2+α. 2.(2015·山西太原二模,3)“a =2”是“直线y =-ax +2与y =a 4x -1垂直”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 【答案】 A 由a =2得两直线斜率满足(-2)×2 4=-1,即两直线垂直;由两直线垂直得(-a )×a 4=-1,解得a =±2,故选A. 3.(2014·吉林长春调研,5)已知直线3x +4y -3=0与直线6x +my +14=0平行,则它们之间的距离是( ) A.1710 B.17 5 C .8 D .2 【答案】 D ∵直线3x +4y -3=0与直线6x +my +14=0平行, ∴63=m 4≠-14 3,∴m =8,即直线6x +my +14=0为3x +4y +7=0,∴两平行直线间的距离为|7+3| 32+42 =2.故选D. 4.(2015·福建泉州一模,5)已知圆C :x 2+y 2=25,直线l 在x 轴、y 轴上的截距分别为6和8,则圆上的点到直线l 的最大值为( ) A.245 B .5 C .10 D.495 【答案】 D 由题意知,直线l 的方程为4x +3y -24=0,则圆心到直线的距离为d = |0+0-24| 42+32

高考文科数学练习题圆的方程、直线与圆及圆与圆的位置关系

第2课时 系统题型——圆的方程、直线与圆及圆与圆的位置关系 一、学前明考情——考什么、怎么考 [真题尝试] 1.[考查与圆有关的最值问题](2018·全国卷Ⅲ)直线x +y +2=0分别与x 轴,y 轴交于A ,B 两点,点P 在圆(x -2)2+y 2=2上,则△ABP 面积的取值范围是( ) A .[2,6] B .[4,8] C .[2,32] D .[22,32] 解析:选A 设圆(x -2)2+y 2=2的圆心为C ,半径为r ,点P 到直线x +y +2=0的距 离为d ,则圆心C (2,0),r =2,所以圆心C 到直线x +y +2=0的距离为|2+2|2 =22,可得d max =22+r =32,d min =22-r = 2.由已知条件可得|AB |=22,所以△ABP 面积的 最大值为12|AB |·d max =6,△ABP 面积的最小值为12 |AB |·d min =2.综上,△ABP 面积的取值范围是[2,6]. 2.[考查圆的一般方程](2016·全国卷Ⅱ)圆x 2+y 2-2x -8y +13=0的圆心到直线ax +y -1=0的距离为1,则a =( ) A .-43 B .-34 C. 3 D .2 解析:选A 因为圆x 2+y 2-2x -8y +13=0的圆心坐标为(1,4),所以圆心到直线ax +y -1=0的距离d =|a +4-1|a 2+1 =1,解得a =-43. 3.[考查直线与圆相交](2016·全国卷Ⅲ)已知直线l :x -3y +6=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与x 轴交于C ,D 两点,则|CD |=________. 解析:如图所示,∵直线AB 的方程为x -3y +6=0,∴k AB =33 ,∴∠BPD =30°,从而∠BDP =60°.在Rt △BOD 中,∵|OB |=23,∴ |OD |=2.取AB 的中点H ,连接OH ,则OH ⊥AB ,∴OH 为直角梯形 ABDC 的中位线,∴|OC |=|OD |,∴|CD |=2|OD |=2×2=4. 答案:4 [把握考情] 常规角度 1.圆的方程.主要考查圆的方程的求法,圆的最值问题. 2.直线与圆的位置关系.主要考查圆的切线方程、圆的弦长问题. 主要以选择题、填空题形式考查,有时也会以解答题形式考查,难度中低档

直线与圆的方程典型例题(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。 高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为2 2 2 )()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 2 2 )(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 2224)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C

∴半径204)11(2 2 = ++==AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 例2 求半径为4,与圆04242 2 =---+y x y x 相切,且和直线0=y 相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解. 解:则题意,设所求圆的方程为圆2 22)()(r b y a x C =-+-: . 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆04242 2 =---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA . (1)当)4,(1a C 时,2 2 2 7)14()2(=-+-a ,或2 2 2 1)14()2(=-+-a (无解),故可得 1022±=a . ∴ 所 求 圆 方 程 为 2 224)4()1022(=-+--y x ,或 2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2 2 2 7)14()2(=--+-a ,或2 2 2 1)14()2(=--+-a (无解),故 622±=a . ∴ 所 求 圆 的 方 程 为 2 224)4()622(=++--y x ,或 2224)4()622(=+++-y x . 说明:对本题,易发生以下误解: 由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如 2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其 圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2 2 2 7)14()2(=-+-a ,解

相关文档
相关文档 最新文档