文档库 最新最全的文档下载
当前位置:文档库 › 35kV电缆振荡波局放检测试验方案

35kV电缆振荡波局放检测试验方案

35kV电缆振荡波局放检测试验方案
35kV电缆振荡波局放检测试验方案

35kV电力电缆

振荡波局部放电检测试验方案

批准:XXX

审核:XXX

编写:XXX

XX电科院试验所

日期:

电力电缆振荡波局部放电检测试验方案

35kV电力电缆振荡波局部放电检测试验方案

一、概况

XLPE电力电缆由于其绝缘性能好、易于制造、安装方便、供电安全可靠、有利于城市和厂矿布局等优点,在城市电网中得到广泛使用。XLPE电缆在制造和接头操作过程中,绝缘层内部易出现的杂质、微孔、半导电层突起和分层缺陷,当外护套被侵蚀后引起的进水,水树枝演化成电树枝之后均会引起局部放电的发生。

长期的实践证明,局部放电是造成电力电缆绝缘破坏的主要原因。首先,在局部放电的过程中,电离出来的电子、正负离子在电场力的作用下具有较大的能量,当它们撞到绝缘内空气隙的绝缘壁时,足以打断绝缘材料高分子的化学键,产生裂解。其次,在放电点上,介质发热可达到很高的温度,使得绝缘材料在放电点被烧焦或熔化,温度升高还会产生热裂解或促使氧化裂解,同时温度升高会增大介质的电导和损耗,由此产生恶性循环,导致绝缘体破坏。第三,在局部放电过程中会产生许多活性生成物,这些生成物会腐蚀绝缘体,使得介质性能劣化。第四,局部放电有可能产生X射线和Y射线,这两种射线具有较高的能量,促使高分子裂解。除此之外,连续爆破性的放电以及放电产生的高压气体都会使绝缘体产生微裂,从而发展成电树枝。局部放电会不断地破坏绝缘材料,最终导致绝缘击穿。

电力电缆局部放电量与电力电缆绝缘状况密切相关,局部放电量的变化预示着电缆绝缘存在着可能危及电缆安全运行的缺陷。因此,国内外许多专家、学者及一些国际电力权威机构一致推荐局部放电试验为绝缘电力电缆绝缘状况评价的最佳方法,并作为及时发现电缆故障隐患、预测电缆运行寿命、保障电缆安全可靠运行的重要手段。

OWTS振荡波电缆局部放电检测和定位技术,是目前国际国内应用比较广泛的能够有效检测和定位配电电缆局部放电的位置且检测本身不对电缆造成伤害的先进技术。从我国2008年初引进该技术,并成功的应用到奥运场馆及配套设施的电缆检测中,发现了多起电缆接头缺陷,取得了较好的成效,为奥运保电工作作出了一定的贡献。到目前为止,振荡波技术由于其电源与交流电源等效性好,作用时间短、操作方便、易于携带,可有效检测XLPE电力电缆中的各种缺陷,且试验不会对电缆造成伤害,在中国大江南北,包括国庆阅兵、青奥会、亚运会、G20、互联网大会等等、在绝大多数电力单位运用相当广泛。

电力电缆由于其电容量大,很难在现场进行工频电压下的局部放电检测。过去充油电缆采用直流试验,可以大大降低电源的要求。但对XLPE电力电缆,由于其绝缘电阻较高,

电力电缆振荡波局部放电检测试验方案

且交流和直流下电压分布差别较大,直流耐压试验后,在XLPE电缆中,特别是电缆缺陷处会残留大量空间电荷,电缆投运后,这些空间电荷常造成电缆的绝缘击穿事故。采用超低频(0.1Hz)电源进行试验,要求试验时间长,电缆绝缘损伤较大,可引发电缆中的新的缺陷。

振荡波电压是近年来国内外研究较多的一种用于XLPE电力电缆局部放电检测和定位的电源。该电源与交流电源等效性好,作用时间短、操作方便、易于携带,可有效检测XLPE电力电缆中的各种缺陷,且试验不会对电缆造成伤害[4]。

电缆振荡波检测技术属于离线检测的一种有效形式。该技术基于LCR阻尼振荡原理,在完成电缆直流充电的基础上,通过内置的高压电抗器、高压实时固态开关与试品电缆形成阻尼振荡电压波,在试品电缆上施加近似工频的正弦电压波,激发出电缆潜在缺陷处的放电信号。振荡波检测技术起源于欧洲的荷兰大学,系统由瑞士和德国在20世纪90年代研制开发,并在德国、瑞士等国生产,该技术在2007年引进中国。

通过现场试验,在不损害电缆本体绝缘的情况下检查配电电缆的绝缘状况及其内部局部放电情况,以对其绝缘进行评估。

二、振荡波工作原理:

基于OWTS技术的测试电压产生原理如图1所示。直流高压电源首先通过线性连续升压方式对被测电缆进行逐步充电(充电电流恒定)、加压至预设值。加压完成后,固态高压开关S(激光触发场效应管LTT)在小于1μS的时间内闭合,使被测电缆电容与OWTS系统中高压电感L产生谐振,从而在被测电缆上产生阻尼振荡交变电压(DAC),其波形及频率接近工频电压,且持续时间为mS级,对电缆绝缘无损伤。

电缆振荡波局部放电检测基本原理如图1所示:

图1 电缆振荡波局放测试原理

用直流电源将被测试电缆在几秒中内充电至工作电压(额定电压)。实时快速状态开关S闭合,将被测电缆和空心电感构成串联谐振回路,回路开始以的频率

=

fπ2/1

LC

电力电缆振荡波局部放电检测试验方案

进行振荡。空心电感值根据谐振频率的要求进行选择,频率范围5O ~1000Hz ,相近于工

频频率。图1中的中压电路一般具有相对低的介质损耗角的特点,与具有低损耗的空心电

感相配,可得到具有高品质因数的谐振回路。回路品质Q 一般为30~100,振荡波以谐振

频率在0.3~1s 内衰减完毕,这一过程只有几十分之一周波,并对被测试电缆充电,与

50Hz(60Hz)时局部放电非常相似。

振荡波所产生的局放脉冲符合lEC60270推荐值,局放脉冲定位可由行波方法完成,

进而生产电缆故障图,电缆电容C 和δtan 值可通过振荡波的时间和频率特性来计算。

系统采用脉冲反射法进行局部放电定位,原理示意如图2所示。测试一条长度为l 的电缆,假设在

距测试端x 处发生局部放电,脉冲沿电缆向两个相反方向传播,其中一个脉冲(为方便起见,本文中

称为“入射波”)经过时间t 1到达测试端;另一个脉冲(本文中称为“反射波”)向测试对端传播,并

在对端发生反射,之后再向测试端传播,经过时间t 2到达测试端。根据两个脉冲到达测试端的时间差

t ?,可计算局部放电发生位置,即

1x t v

= 2()l x l t v

-+= ()211122

x l v t t l v t =-??-=-??? 式中,v 为脉冲在电缆中传播的波速。

电力电缆振荡波局部放电检测试验方案

图2 脉冲反射法原理示意图

对于长电缆,反射信号有衰减以及背景噪音影响大的解决方案(双端测量)传统单端振荡波测试系统是基于在被测电缆的一端检测局放初始信号和同一局放事件从电缆远端折回反射信号的时间差。如果局放缺陷位于靠近电缆近端一侧,局放的反射波形则需途径超过1,5倍电缆全长的路径才能到达近端的检测单元,这会给局放信号带来无法避免的无谓衰减。

对于双端振荡波测试系统,在被测电缆的两端均会有一个局放测量单元用来检测局放初始信号,其特征是对于同一局放事件,两端捕捉的都是首先到达各自检测单元的局放信号。对于局放定位算法,这也就意味着系统所捕捉到的有效局放信号所途径的距离均小于被测电缆的全长。和单端测量系统相比,双端系统捕捉到的局放信号将拥有更小的信号衰减。因此对于长电缆的局放检测,双端系统会有更好的测量效果。

双端定位系统

和单端测试类似,双端DAC测试同样需要预先设定加压周期序列。在双端DAC测试过程中,只需要在测试系统的近端单元建立起一个测试序列,系统会自动生成一个数据库并可直接导入远端的测试单元。

电力电缆振荡波局部放电检测试验方案

双端测试连接示意图

关于电缆振荡波测试定位图谱的判断:

直观位置映像图及德国OHV公司DAC衰减曲线专利

位置映像图

典型的局部放电衰减曲线入射波与反射波

电力电缆振荡波局部放电检测试验方案

电缆全长及接头位置的校验波形

三、试验工作内容

使用仪器:德国OHV M30/60电缆振荡波局放检测仪, Easyflex Com多功能脉冲反射仪,绝缘摇表

备选设备:电缆故障测试系统(防止电缆本身绝缘低,试验中击穿)

德国OHV振荡波测试系统

1、被测电缆要求及测试前准备

1)局放测试前,将电缆断电、接地放电,两端悬空,布置好安全围栏;

2)尽量将电缆接头处PT、避雷器等其它设备拆除;

3)电缆头擦拭干净,电缆头与周边接地部位绝缘距离足够;

4)收集电缆长度、型号、类型、投运日期等电缆参数;

电力电缆振荡波局部放电检测试验方案

2、绝缘电阻测试

电缆主绝缘电阻测试,采用2500V-5000V绝缘摇表进行测试,绝缘电阻在试验前后应无明显变化;对于配电电缆主绝缘电阻测试的绝缘电阻只有大于50MΩ才可以进行下一步试验。

3、测试电缆中间接头位置及电缆长度

采用 Easyflex Com多功能脉冲反射仪(如图3)对电缆全长及其中间接头位置进行测试,以测量电缆长度及接头位置和对电缆短路和断路故障进行预定位。

测试要求:

1)电缆全长必须准确,以用于校准;

2)中间接头测量尽量准确和详细,有利于最终判断局放位置;

3)测量范围:50m~15000m,需根据电缆长度调节测量范围。

图3 多功能脉冲反射仪

4、振荡波局部放电试验

4.1 电缆局放校准。

采用OWTS-M30-60型电缆振荡波局部放电测试和定位仪,图4所示为校准界面:

测试要求:

1)将局放校准仪连线的接线端分别夹在被测电缆的线芯和屏蔽上;

电力电缆振荡波局部放电检测试验方案

2)注意在高压测试开始时将校准器连线拆除;

3)局放校准仪的输出频率设定在100Hz;

4)校准区间从100pC~10nC均要校准。在每个台阶下均校准。

图4 局放校准界面

4.2 振荡波局放测试

1)试验接线步骤:

a、将高压单元接地与现场主接地相连;

b、将放电棒与现场主接地相连;

c、将高压开关控制连线连接至控制盒;

d、将直连网线连接至笔记本电脑;

e、将高压测试电缆连接好;

f、将高压单元电源线与电源连接;

g、电缆参数及中间接头参数输入及准备(全文汉化)

电力电缆振荡波局部放电检测试验方案

2)加压测试程序

a、启动高压单元高压。将高压安全钥匙开启,绿灯亮;按下高压控制开关绿色按键,红灯亮;

b、选择被测电缆相位、界面显示模式、量程、加压模式;

c、输入测试电压,逐级加压并保存有效的测试数据;

d、对被测电缆和高压单元放电并换相测试;

e、三相测试结束,关闭高压单元,将被测电缆接地;

3)测试要求及注意事项:

a、0kV电压等级下测量环境噪声;

b、分别在0.3U0、0.5U0、0.7U0、0.9U0、1.0U0、1.2U0、1.3U0、1.5U0、1.7U0电压等级下测量局部放电,测量界面如图5所示;

电力电缆振荡波局部放电检测试验方案

图5 电缆局放测试界面

c、电缆局放故障点局放随着测试电压的升高而变大,每次测试选择相应的量程;

d、尽量减小环境噪音干扰,如有施工可要求暂停;

e、尽量减小来自地线的干扰如电晕等;

f、为排除高压测试电缆与被测电缆之间的连接不好而造成的人为干扰,高压电缆与被测电缆的连接需要严密接触完整。

5、振荡波局放诊断评价

1)绝缘电阻:

绝缘电阻参数作为辅助参考,当绝缘电阻值出现下列其中一种情况,应对电缆进行进

电力电缆振荡波局部放电检测试验方案

一步检查(M代表三相电缆中最小的绝缘电阻值):

a、M<50M?,针对交联电缆;

b、50M?≤M<1GM?,并且最高和最低绝缘相差大于5倍;

c、1G?≤M<1000G?,并且最高和最低绝缘相差大于15倍;

d、低于上次试验的70%。

2)电缆局部放电量:

当电缆的以下部件出现下列的局放量超标情况,应视为缺陷情况:

a、电缆本体:>300pC;

b、电缆终端:>5000pC;

c、电缆中间接头:>500pC。

6、电缆振荡波局放异常处理决策

1)绝缘电阻异常情况处理措施

a、进一步加强跟踪及检测,缩短试验周期;

电力电缆振荡波局部放电检测试验方案

b、进一步进行电缆振荡波局放试验,确认原因。

2)电缆振荡波局放量超标异常情况处理措施

a、带电情况下采用超声波、地电波、红外等手段进行状态监测;

b、保供电期间缩短带电测试周期;

c、更换局放量超标部件;

d、对缺陷电缆线路的故障部件进行更换前、后局放试验;

e、对缺陷电缆接头、终端及本体进行解体试验,初步探讨振荡波有效性,进一步制定我局电缆振荡波局放试验的规程。

7、试验时间:1.5~2.5 小时/段。(含设备转运及安装等,实际测试每条约20-30分钟),如有必要可以配合带电局放一起测试,如上图。

8、人员安排:

整个试验由工作负责人统一指挥,一人操作振荡波局放检测系统,一人负责脉冲反射仪测距、信号校准器输入及各相电缆头测试接线,一人负责电缆主绝缘电阻测试,在监护升压过程(可由工作负责人负责),一人专门负责操作断路器和刀闸,其他人员负责升压时监护。

9、隐患处理、安全措施:

1)、绝缘电阻测试时电缆对侧需专人看守,严禁测试期间电缆头及被测电缆本体或附近处有作业现象;

电力电缆振荡波局部放电检测试验方案

2)、切断被测物(电缆)电源,防止再次通电,确定被测物(电缆)上已无电压,隔离附近带电设施;

3)、升压试验时应在电缆头和试验设备四周装设网状围栏,悬挂“高压,危险!”标示牌,试验现场四周应派专人监护,禁止与试验无关人员靠近;

4)、升压时控制台操作人员应站在绝缘垫上,防止高压反击危及人员安全;

5)、加压过程中应注意观察电压是否波动、数据是否异常,并呼唱报时,发现有异常情况立即降压,直到查明原因后再重新开始加压;

6)、试验时无工作负责人许可,试验人员不得离开岗位或进行其他工作。

7)、工作负责人职责:

a)检查试验设备是否正常;

b)工作负责人作为专职监护人,不参加工作班的试验工作;

c)监督完成整个试验,现场试验由工作负责人统一指挥,包括试验顺序及人员分工。

四、标准依据

1、国际标准:

IEEE P400.4?/D7(标准号)

Draft Guide for Field-Testing of (现场操作指南)

Shielded Power Cable Systems Rated (带屏蔽电缆系统额定值)

5 kV and Above with Damped (5Kv以上阻尼)

Alternating Current Voltage (DAC) (交流的DAC)

2、DL/T 1576-2016

6kV~35kV 电缆振荡波局部放电测试方法

3、附录:

1)输出频率:30-500Hz

2)检测长度:满足3Km电缆的单端测量

电力电缆振荡波局部放电检测试验方案

五.测试案例(上海浦东供电公司)

将电缆线路两端终端头从电网系统中断开,对线路近端和远端做核相并进行擦拭处理。把三相分开留出足够的绝缘距离。

3.1绝缘电阻测试:

使用5000V绝缘摇表

电力电缆振荡波局部放电检测试验方案

A相对地绝缘:6G Ω

B相对地绝缘: 15GΩ

C相对地绝缘:15GΩ

3.2电缆全长测试:

用TDR测电缆全长为3313米,波速172m/us,中间有16组中间接头

(4m,219m,449.2m,560m,761.1m,940.3m,1218.6m,1450.6m,1662.8m,1896.3m,2113.5m,2274. 3m,2489.5m,2736.9m,2878.9m,3117.1m)

3.3.局部放电校准

由于测量数据结果的准确性与校准的准确性有很大关系,因而标准放电脉冲校准尤为重要。图为电缆标准脉冲局部放电校准波形。

电力电缆振荡波局部放电检测试验方案

(以下主要介绍有缺陷A相的测试过程及分析数据)

4.加压测试

下图为A相加压的测试过

电力电缆振荡波局部放电检测试验方案

5.测试数据

PRPDA/局放检测图谱:(A相)

接头置换前

接头置换后

局放位置映像(A相)接头置换前

1600多米处有明显的局放柱状图谱

电力电缆振荡波局部放电检测试验方案

局放测试结果:局放位置映像(A相)接头置换后:

局放柱状图消失,位置映像图正常

6.结论:

接头置换前在距始端1670米处出现明显局放集中现象,且幅值超过1100pC,并且根据浦东供电公司提供的图纸该处1662.8m有中间接头,数据吻合。

对接头进行处理后,在用振荡波测试,局放量最高300PC左右,图谱显示正常,未发现有集中的放

7.接头处理

由于浦东供电公司班组有电缆详细的图纸,也知晓每个接头的具体位置,测试结束的第二天,班组人员对1670米处的接头进行了截断并重做处理,之后对该处的接头进行了详细解剖解析。

以下图很清晰的看到了电缆绝缘层的气泡间隙,此次的测试结果非常成功,接头的解剖很直观的证明了OHV振荡波系统的精确性。

35KV单芯电缆头安装工艺规范及试验规范

35KV单芯电缆头安装工艺规范及试验规范 一、电缆头的处理注意事项: 1、电缆的剥切要小心,严禁伤害主绝缘层。 2、缠绕填充胶、密封胶时要防止局部过粗,防止冷缩管套不下去或不到位。 3、抽拉支撑条时用力要均匀,防止拉脱或错位。 4、半导体层要剥离干净,无残留,半导层末端应平整,并削成锥形。 5、主绝缘层应打磨光滑,无坑洼现象,套装冷缩管前清洁干净,均匀涂抹一层硅脂膏,但不能涂到半导层上,否则无法泄露电荷。硅脂膏必须要涂抹,用来填补绝缘层微小挖坑等以补偿主绝缘。 6、套装终端体套管式必须按照说明书定好位套装,使半导层部分与应力锥可靠搭接。 7、主绝缘长度尺寸应不小说明书的尺寸,否则可能造成泄漏量增大等引发电缆故障。 8、单芯电缆要检测一下恒力弹簧是否有磁性,应该是无磁性的。钢凯与铜屏蔽分别引出接地线,保证在引出位置不能短接。 9、绝缘层端部与接线端子间的绝缘层要削坡角,应平整光滑。 二、21/35-26/35KV电缆头的安装步骤及规范: 1、准备准备: 检查电缆绝缘,详细阅读说明书,准备必须工具。 2、电缆处理及准备: 核对电缆相序,校直电缆并固定 剥离电缆外护套、钢凯和内护套层。 钢凯用恒力弹簧临时固定,用钢锯顺钢凯方相锯一环形深痕,不能锯断第二层钢凯,用一字螺丝刀撬起一个缺口,然后用钳子把钢凯撕开,脱出钢凯带,处理好锯断处的毛刺。外护套与钢凯端部尺寸为30mm。 剥内护套层,用壁纸刀慢慢剥开内护套,保证铜屏蔽与钢凯之间的绝缘。钢凯带

端部距内护套端部20mm。 用PVC带绕包铜屏蔽端口,防止散开。 3、接地处理: 打磨钢凯表面,用恒力弹簧固定接地线,地线在恒力弹簧固定时至少反折一次。 在铜屏蔽根部用恒力弹簧固定另一组接地线,地线在恒力弹簧固定时至少反折一次。 4、密封处理 用J-35或J-20的自粘胶带绕包外护套端部、钢凯端部,内护套,反折铜屏蔽接地线绕包。保证屏蔽层与钢凯之间接地线的绝缘。 用红色的密封胶继续绕包处理,外面再包一层PVC胶带。 5、安装冷缩绝缘直管 按正确的方向套入冷缩管,确保冷缩管与电缆外护套搭接50-60mm,均匀用力拉出支撑条至全部收缩。注意:铜屏蔽接地线与钢凯接地线在引出冷缩直管段之前不能碰到一起,保证两者之间绝缘。 6、剥铜屏蔽和半导体层 首先预留的主绝缘和接线端子的长度,铜屏蔽与冷缩直管段端部距20mm,铜屏蔽与半导体端部20mm,主绝缘的长度即从半导体端部和接线端端子根部应不小于315mm,接线端子长度与主绝缘端部应大约有5mm的余量。 用PVC胶带在铜屏蔽端部绕包两圈,使PVC外侧(电缆端部)边线作为铜屏蔽的断口边线,用壁纸刀在铜屏蔽断口边线上轻轻地划一刀刀痕,用一字螺丝刀撬开一个缺口,然后用钳子慢慢把铜屏蔽沿断口边线撕开,铜屏蔽的断口要整齐、毛刺打磨掉。去掉PVC胶带,用半导体胶带把铜屏蔽端部绕包两圈。 半导体层断口位置(距铜屏蔽端部20mm)用玻璃片或刀片画一个环痕,用玻璃片慢慢把半导体端部刮开,在断口处刮一个斜坡,断口用专用砂纸打磨平整、光滑无

高压电缆局放试验过程步骤及注意事项

试验过程 1、闭上总电源开关、闭上控制电源开关。 2、确认屏蔽室大门已关闭,系统处于通电状态。 3、根据电缆长度和截面,选择好适当的电抗器,高压抽头。当电抗器内电动切换抽头开关已处于完毕定(流)状态时,蜂鸣器应停止声响,表明高压抽头已就绪。 4、选择合适的电压测量量程。 5、检查“调谐速度”,将它调整到最大值的约30%。 6、接通高压电源主回路。 7、升压,以升高“励磁变压器的输出电压”直到所需试验电压值的1%处,例如:试验电压为10KV,那么励磁变压器的输出电压即为0.1KV。 8、在该励磁电压下,调节高压电抗器间隙位置,使试验回路达到谐振。应注意高压输出电压,输出值达到最高时,说明回路已达到谐振状态。 9、当试验回路处于谐振状态时,再按下“升压”按钮以升高输出电压至试验电压值。 10、当试验时间到,按下“降压”按钮,降低输出电压至最小值,再按下“高压分”按钮,试验系统便切断回路高压电源。注意:切勿在试验电压很高情况下直接按下“高压分”按钮,以防造成试品击穿。 11、试验结束后,断开调压器上的“空开”,必要时应断开整个设备电流的进线开关,以保证操作人员的安全。 试验前准备工作: 剥电缆头:1)半导体屏蔽剥(10kV)100~150mm长,(35kV)剥500~700mm长;要求:剥切口要光滑,不允许有尖端点。2)屏蔽铜带剥切长度要比半导体屏蔽长约100mm。3)铠装钢带要剪平并清理干净。 变压器油(氟里昂)准备:过滤、干燥,击穿场强应在40KV 以上。 注意事项:1、做试验时不能随意开操作室的门和窗,此时,如有放电,将会出现滤电的现象,导致出现误导数据。2、试验电缆两端都应浸入到油杯中,高压引到电缆上的叫近油杯,油杯内有弹性铜针。另一短为远油杯,无弹性铜针。3、油要浸过半导体屏蔽约5~10mm,以免放电,远油杯端电缆端部要离油杯底部约10mm。

高压电缆试验方案

高压电缆试验方案

麻栗坡县雅郡上苑小区配电工程高压主进线电缆试验方案 编制人:杨会美 审核人:吕明礼 编制日期: 09月07日 云南嘉佑电力工程有限公司

一、工程概况: 本工程为麻栗坡县雅郡上苑小区高压主进线电力电缆试验,10kV电力电缆的绝缘种类为交联聚乙烯绝缘,型号为ZR-YJV22-8.7/15KV-3×300。 二、施工依据: 1、GB50150-91《电气装置安装工程电气设备交接试验标准》 2、DL5009.1- 《电力建设安全工作规程》 三、主要工器具: 2500V兆欧表一只; 30-75谐振式耐压装置一套; 干湿温度计一只;刀闸开关; 试验用联接线;保险丝; 塑料带;放电棒; 警戒绳等; 四、施工作业方案: 电力电缆施放就位,电缆两端的电缆头制作完毕,电缆头表面清洁无杂物,监护人员到达指定位置后方可进行试验准备及工作。 五、工艺流程:

六、施工注意事项: 1、试验前充分学习本措施,并严格按本措施施工。 2、试验前使用仪器、仪表必须经校验合格,试验时应检查设备完好。 3、试验前应熟悉所用仪器设备。 4、耐压过程中应注意仪器及电缆情况,如有异常现象应立即降压并切

断电源。 5、试验时,不可冲击合闸,升压速度不可太快,以免充电电流过大损 坏试验设备。 6、应记录试验时的温度和相对湿度,相对湿度不应大于85%,温度应 高于5℃。 7、试验时应及时作好记录。 七、安全注意事项: 1、进入施工现场正确佩戴好安全帽。 2、试验区域应拉设警戒绳,并悬挂“止步,高压危险”的警示牌。 3、所用仪器外壳接地应可靠,保护仪器及人身安全。 4、试验时专人接溿,专人操作,专人监护,分工应明确。 5、每次升压前要确认无关人员及工作人员已离开危险区。 6、试验过程中如发生异常现象,先切断电源,并用放电棒充分放电后,方可进行处理。 7、试验全过程,电缆两端均有人监视,保持通讯畅通。出现问题及时联系。 8、试验完毕后的电缆经过一段时间的自放电且经过适当的放电棒进行 放电后,才可拆除接线。 9、试验过程中,应正确穿戴绝缘手套、绝缘靴等防护用品。 10、耐压试验严格执行《电气设备耐压试验》安全措施。 八、安全风险分析及其控制措施

振荡波电缆局放检测和定位技术基本原理研究

振荡波电缆局部放电检测和定位技术基本原理研究 随着城市电网电缆化率的程度不断提高,社会发展和进步对供电可靠性的要求也不断提高,如何 准确掌握配电电缆的健康状态,制定正确的检修对策,避免因电缆本身质量问题导致的突发性事故 的发生,变得尤为重要。研究发现,电缆的局部放电量与其绝缘状况密切相关,局部放电量的变化 预示着电缆绝缘可能存在危害电缆安全运行的缺陷。目前,国际上应用比较广泛的振荡波电缆局部 放电检测和定位技术,能够有效检测和定位配电电缆局部放电的位置且检测本身不对电缆造成伤害。本文主要从该系统的电源技术、抗干扰技术、定位技术、典型案例等方面进行介绍,为该技术的进 一步推广应用、改进创新提供技术参考。 近十年来,挤塑型电力电缆特别是XLPE电力电缆由于其绝缘性能好、易于制造、安装方便、供 电安全可靠、有利于城市和厂矿布局等优点,在城市电网中得到广泛使用。但是这种电缆的绝缘结 构中往往会由于加工技术上的难度或原材料不纯而存在气隙和有害性杂质,或者由于工艺原因在绝 缘介质与半导电屏蔽层之间存在间隙或半导电体向绝缘层突出,在这些气隙和杂质尖端处极易产生 局部放电,同时在电力电缆的安装和运行过程当中也可能会产生各种绝缘缺陷导致局部放电。由于XLPE等挤塑型绝缘材料耐放电性较差,在局部放电的长期作用下,绝缘材料不断老化最终导致绝缘 击穿,造成重大事故。 根据北京市电力公司相关统计资料表明,电缆老化、附件质量和工艺不良在 10kV 电缆故障中 占有较大比重。随着电缆运行时间的不断增长,潜伏的局部缺陷对城市电网可靠性的危害将会越来 越突出,对供电质量和公司形象造成的危害也会越来越大。因此,引进先进技术及时检测出电缆潜 伏性缺陷的要求也越来越迫切。 根据 2007 年北京市电力公司对新能源电网公司开展国际对标的重要成果并参考国内外相关文 献资料,采用振荡波电缆局部放电检测和定位技术对配电电缆进行测试,能够及时发现和定位潜伏 性局部放电缺陷且不会对电缆造成伤害,可以大大提高供电可靠性。 振荡波电源技术 电力电缆由于其电容量大,很难在现场进行工频电压下的局部放电检测。过去充油电缆采用直 流试验,可以大大降低电源的要求。但对XLPE电力电缆,由于其绝缘电阻较高,且交流和直流下电 压分布差别较大,直流耐压试验后,在XLPE电缆中,特别是电缆缺陷处会残留大量空间电荷,电缆 投运后,这些空间电荷常造成电缆的绝缘击穿事故[1、2]。采用超低频(0.1Hz)电源进行试验,要求 试验时间长,电缆绝缘损伤较大,可引发电缆中的新的缺陷[3]。 振荡波电压是近年来国内外研究较多的一种用于 XLPE 电力电缆局部放电检测和定位的电源。 该电源与交流电源等效性好,作用时间短、操作方便、易于携带,可有效检测XLPE电力电缆中的各 种缺陷,且试验不会对电缆造成伤害[4]。 OWTS振荡波电缆局部放电检测和定位装置如图1所示。检测时可以灵活施加0—28kV的直流 电压,合上半导体开关后,被试电缆与电感产生阻尼振荡。该装置可以检测的电力电缆电容范围为0.05 μF—2μF。

35kV电缆耐压试验方法

https://www.wendangku.net/doc/da13980079.html, 35kV电缆耐压试验方法 近年来,橡塑电缆特别是交联聚乙烯电缆得到了充分的发展,在中压等级基本取代了绝缘纸电缆和油电缆。为了检查电缆的抗压强度好坏,因此需要对电缆进行绝缘耐压试验。通过耐压试验可以有效的检查出电缆绝缘中的气泡、机械损伤等局部缺陷,反映出出电缆绝缘老化、受潮等情况。根据试验电压的不同,电缆耐压试验又分为直流耐压试验和交流耐压试验(工频交流耐压和超低频耐压)。 1、通过直流耐压试验可以检查出电缆绝缘中的气泡、机械损伤等局部缺陷,通过直流泄漏电流测量可以反映绝缘老化、受潮等缺陷,从而判断绝缘状况的好坏。但是根据国内外一些运行经验表明,如果对交联聚乙烯电缆施加直流电压,直流耐压试验在绝缘中的应力分布与实际交流运行电压在绝缘中的应力分布是不同的。前者主要按电阻分布,后者主要按电容分布,所以直流耐压试验并不能反映交联聚乙烯电缆的故障及实际运行情况;直流耐压试验不仅不能有效地发现交联聚乙烯电缆绝缘中的水树枝老化现象等绝缘缺陷,而且由于空间电荷的作用,还容易造成高压电缆在交流情况下某些不会发生问题的地方,在进行直流高压试验后,投运不久即发生过程中被击穿;直流耐压试验时,电缆缺陷部分发生闪络或击穿可能会危害到其他正常的电缆和接头的绝缘部分;直流耐压试验有积累效应,将加速绝缘的老化,缩短其使用寿命。因此中压电缆不宜采用直流耐压试验! 2、通过施加交流试验电压,可以弥补电缆直流耐压试验的不足,并且可以有效地鉴别正常绝缘的绝缘水平。测量电缆的交流耐压试验最常用的设备是变频串联谐振耐压装置,串联谐振试验装置是运用串联谐振原理,利用励磁变压器激发串联谐振回路,调节变频控制器的输出频率,使回路电感L 和试品C 串联谐振,谐振电压即为加到试品上电压。由于电

高压电缆局放在线监测系统(亿森)

高压电缆局放在线监测系统 设计方案 福州亿森电力设备设备有限公司 2016年9月

摘要:在XLPE电缆投入运行后,由于绝缘的老化变质、过热、机械损伤等,使得电缆在运行中绝缘裂化,为了防止由于绝缘劣化造成电缆运行事故,需要对电缆的运行状态进行即时监测,监测系统控制着电缆及其附件的质量。局部放电是目前比较有效的在线监测方法,局部放电检测目前相应有电磁耦合法、超高频法和超声波法、光学测量法等,本文将着重论述这些方法各自的优势与不足,同时对目前发展起来的PD混沌监测方法进行讨论。 关键词:XLPE电缆;在线监测;局部放电;混沌法 0引言 随着电力系统的飞速发展以及旧城改造工程的进行,电力电缆在电力网络中的应用愈发广泛。电力电缆的基本结构包括线芯、绝缘层、屏蔽层和保护层四个部分。其中线芯即导体,是电力电缆中传输电能的部分,是电缆的主要结构。绝缘层将线芯与外界电气上隔离。屏蔽层包括导体屏蔽层和绝缘屏蔽层,一般存在于15kV及以上电缆中。保护层是用来防止外界的杂质和水分的渗入和外力的破坏[1]。 电力电缆按照电压等级分类有低压电缆(35kV及以下输配电线路)、中低压电缆(35kV及以下)、高压电缆(110kV及以上)、超高压电缆(275~800kV)、特高压电缆(1000kV及以上)。 按照绝缘材料电力电缆可以分为塑料绝缘电缆和橡皮绝缘电缆。其中油纸绝缘电缆应用历史最长。它安全可靠,使用寿命长,价格低廉。主要缺点是敷设受落差限制。塑料绝缘电缆主要用于低压电缆,常用的绝缘材料有聚氯乙烯、聚乙烯、交联聚乙烯。橡皮绝缘电缆弹性好,适合用于移动频繁弯曲半径小的敷设地点。 我国早期使用的多是油纸绝缘电缆,但自1970 年以来,交联聚乙烯(XLPE)电力电缆得以广泛应用,并逐渐取代了油纸绝缘电缆的地位。XLPE电缆电气性能优越,具有击穿电场强度高、介质损耗小、载流量大等优点因而得到了广泛的应用。 在线检测电缆故障的方法有很多,如直流分量法、损耗电流谐波分量法、局部放电法等,其中,局部放电法是目前用于现场比较有效的在线检测方法。XLPE电缆发生局部放电时一般会产生电流脉冲、电磁辐射、超声波等现象,根据检测物理量的不同,局部放电检测相应有电磁耦合法、超高频法和超声波法等,其中,电磁耦合法由于传感器灵敏度高、安装方便,且与电缆无电气连接,是目前应用最为广泛的一种方法。 本文主要论述了XLPE电缆局部放电在线监测的一些基本方法的优势与缺陷,并对电缆局部放电的混沌监测方法进行了讨论[2]。 1 PD在线监测的意义以及技术 难点 局部放电,是绝缘介质中的一种电气放电,这种放电仅限制在被测介质中一部分且只使导体间的绝缘局部桥接,这种放电可能发生或可能不发生于导体的邻近。电力设备绝缘中的某些薄弱部位在强电场的作用下发生局部放电是高压绝缘中普遍存在的问题。虽然局部放电

10kV 电缆振荡波局放测试系统测试要求

10kV电力电缆 阻尼振荡波局部放电检测试验方案 (试行)

10kV 电力电缆振荡波局部放电检测试验方案 一、试验标准和目的 根据要求,通过现场试验,在不损害电缆本体绝缘的情况下检查10kV 电缆的绝缘状况及其内部局部放电情况,以对其绝缘进行评估。 二、试验仪器 ONSITE MV 10 型电缆振荡波局放检测系统 三、试验内容 10kV 电缆振荡波局部放电检测基本原理如图1所示: 图1 电缆振荡波局放测试原理 用交流电源将被测试电缆在几秒中内充电至工作电压(额定电压)。实时快速状态开关S 闭合,将被测电缆和空心电感构成串联谐振回路,回路开始以的频率进行振荡。空心电感值根据谐振频率的要求进行选择,频率范围5O ~1000Hz ,相近于工频频率。图1中的中压电路一般具有相对低的介质损耗角的特点,与具有低损耗的空心电感相配,可得到具有高品质因数的谐振回路。回路品质Q 一般为30~100,振荡波以谐振频率在0.3~1s 内衰减完毕,这一过程只有几十分之一周波,并对被测试电缆充电,与50Hz(60Hz)时局部放电非常相似。 振荡波所产生的局放脉冲符合lEC60270推荐值,局放脉冲定位可由行波方法完成,进而生产电缆故障图,电缆电容C 和δtan 值可通过振荡波的时间和频率特性来计算。 LC f π2/1=

1、被测电缆要求及测试前准备 1)局放测试前,将电缆断电、接地放电,两端悬空,布置好安全围栏; 2)尽量将电缆接头处PT、避雷器等其它设备拆除; 3)电缆头擦拭干净,电缆头与周边接地部位绝缘距离足够; 4)收集电缆长度、型号、类型、投运日期等电缆参数; 5)电缆长度L:电缆一侧测量方式:50m≦L≦6km; 电缆两端测量方式:L>6km。 6)测试用电缆用发电机、10KV放电棒、接地线、220V电源插盘。 2、振荡波局部放电试验 2.1 电缆局放校准。 采用ONSITE MV 10型电缆振荡波局部放电测试和定位仪,图2所示为校准界面: 图2 局放校准界面 测试要求: 1)将局放校准仪连线的接线端分别夹在被测电缆的线芯和屏蔽上; 2)注意在高压测试开始时将校准器连线拆除; 3)局放校准仪的输出频率设定在100Hz; 4)校准区间从100pC~100nC均要校准。

35kv300mm2电缆交流耐压试验的变频串联谐振试验技术方案

BPXZ-HT-132kV A/22kV/66k变频串联谐振试验装置 一、被试品对象及试验要求 1.35kV/300mm2电缆交流耐压试验,长度1000m,电容量≤0.19μF,试验频率为30-300Hz,试验电压52kV。 2.10kV/300mm2电缆交流耐压试验,长度3000m,电容量≤1.11μF,试验频率为30-300Hz,试验电压22kV。 二、工作环境 1.环境温度:-150C–45 0C; 2.相对湿度:≤90%RH; 3.海拔高度: ≤2500米; 三、装置主要技术参数及功能 1.额定容量:132kV A; 2.输入电源:220V/380V电压,频率为50Hz; 3.额定电压:22kV;66kV 4.额定电流:6A;2A 5.工作频率:30-300Hz; 6.波形畸变率:输出电压波形畸变率≤1%; 7.工作时间:额定负载下允许连续60min;过压1.1倍1分钟; 8.温升:额定负载下连续运行60min后温升≤65K; 9.品质因素:装置自身Q≥30(f=45Hz); 10.保护功能:对被试品具有过流,过压及试品闪络保护(详见变频电源部分); 11.测量精度:系统有效值1.5级; 四、设备遵循标准 GB10229-88 《电抗器》 GB1094《电力变压器》 GB50150-2006《电气装置安装工程电气设备交接试验标准》DL/T 596-1996 《电力设备预防性试验规程》 GB1094.1-GB1094.6-96 《外壳防护等级》 GB2900《电工名词术语》

GB/T16927.1~2-1997《高电压试验技术》 五、装置容量确定 10kV/300mm2电缆,长度3000m,电容量≤1.11μF,试验频率为30-300Hz,试验电压22kV。 频率取37HZ =2π×37×1.11×10-6×22×103=5.7A 试验电流 I=2πfCU 试 对应电抗器电感量 L=1/ω2C=16H, 设计三节电抗器,单节电抗器为44kVA/22kV/48H 验证:35kV/300mm2电缆交流耐压试验,长度1000m,电容量≤0.19μF,试验频率为30-300Hz,试验电压52kV。 使用电抗器三串联,此时电感量为L=48*3=144H 试验频率f=1/2π√LC=1/(2×3.14×√1445×0.19×10-6)=30Hz。 试验电流 I=2πfCU =2π×30×0.19×10-6×52×103=1.86A 试 结论:装置容量定为132kVA/22kV/66kV,分三节电抗器,电抗器单节为44kVA/22kV/2A/48H通过组合使用能满足上述被试品的试验要求。 六、系统配置及其参数 1.激励变压器JLB-6kV A/1/3kV/0.4kV 1台 a)额定容量:6kV A; b)输入电压:380V,单相; c)输出电压:1kV;3kV ; d)结构:干式;

高压电力电缆局放测试的方法

https://www.wendangku.net/doc/da13980079.html, 高压电力电缆局放测试的方法 高压电力电缆局放测试的方法首先是交流耐压试验电源处理,交流耐压试验电源处理用到的装置是串联谐振 1、交流耐压试验电源处理 高压电缆交流耐压采用的是变频谐振装置产生试验电源,变频柜是装置的核心部件,变频柜通过晶闸管的整流和逆变获取试验所需的频率,在电源变换过程中引入了大量的高频脉冲电流成份。

https://www.wendangku.net/doc/da13980079.html, . 变频谐振系统输出的电源不能直接作为电缆局放试验的电源直接施加于被试对象进行局部放电测试,必须采取有效措施对试验电源进行预处理,通过设置串联电抗、防晕导线、均压环进行对试验电源质量进行改善,其电气原理所下图所示。 . 2、电缆终端局放测试回路 电缆终端的局放测试回路如下图,当被试电缆内部发生了局部放电时,耦合电容瞬时对电缆终端充电,形成高频的脉冲充电电流波形,脉冲电流的幅值、发生的频度反映了电缆

https://www.wendangku.net/doc/da13980079.html, 内部局部放电的严重程度,通道1、通道2两个传感器将局放信号传送至局放诊断系统进行分析处理。 . 在电缆的中间接头,测试原理如图所示,一侧电缆的铠装与电缆导体之间存在电容Ca,另一侧电缆的导体与铠装之间存在电容Cb,如果在电缆的中间接头发生局部放电,那么形成两个电容C1和C2,此时Ca和Cb就会通过导体向C1和C2充放电,从而形成局放电流回路,在两侧电缆屏蔽层桥接一个高频低阻的电容臂C0和高频电流传感器,就可以检测到局放的脉冲电流信号。 .

https://www.wendangku.net/doc/da13980079.html, . 3、高压电缆局放测试的技术难点 a) 测试系统灵敏度要求高 高压电缆发生局放时产生的脉冲信号微弱,要求传感器及测试系统有相当高的检出灵敏度。 b) 现场干扰因素复杂 在现场实施电缆局放试验时干扰信号会严重影响电缆局放的检测和诊断,主要有临近试验现场的运行设备产生的电晕或者局部放电信号、交流耐压试验装置自身的局部放电信号、交流耐压试验回路的引线产生的电晕信号三个方面的因素。 因此甄别并排除干扰信号、提取有效的信息并根据其特征诊断电缆的绝缘状态是一项具有挑战性的技术难题。 c) 对测试人员的要求高 高压电缆局放的信号主要集中在0-30MHz范围内,信号频带较宽,加上现场存在一定的干扰信号,测试人员通过信号抑制、识别、分类、提取、判断等技术手段,准确的解析复杂的电子信号成份实现电缆的状态诊断。这项技术要求测试人员熟练使用示波器、频谱仪、滤波器等电子设备,并具备高频电子信号分析判断能力。u d) 国家标准及行业标准没有明确的指引 高压电缆局放测试是目前国内比较新的技术应用课题,国内仅有北京供电局进行过类似尝试,佛山局在这一技术领域走在了国内前列。 4、局放诊断判据

高压电缆耐压试验

电缆耐压试验 1.电缆串联谐振试验装置采用调节电源的频率的方式,使得电抗器与被试电容器实现谐振,在被试品上获得高电压大电流,是当前高电压试验的一种新的方法和潮流,在国内外已经得到广泛的应用。电缆串联谐振试验装置采用了专用的SPWM数字式波形发生芯片,频率分辨率16位,在20~300Hz时频率细度可达;采用了正交非同步固定式载波调制方式,确保在整个频率区间内输出波形良好;功率部分采用IPM模块,在最小重量下确保仪器稳定和安全 组成部件 电缆串联谐振试验装置由调频调压电源、励磁变压器、电抗器、电容分压器组成 主要用于 高压交联电缆的交流耐压试验; 2. 6kV-500kV变压器的工频耐压试验 ; 和SF6开关的交流耐压试验 ; 4.发电机的交流耐压试验 5.其它电力高压设备如母线,套管,互感器的交流耐压试验。 原理 我们已知,在回路频率f=1/2π√LC时,回路产生谐振,此时试品上的电压是励磁变高压端输出电压的Q倍。Q为系统品质因素,即电压谐振倍数,一般为几十到一百以上。先通过调节变频电源的输出频率使回路发生串联谐振,再在回路谐振的条件下调节变频电源输出电压使试品电压达到试验值。由于回路的谐振,变频电源较小的输出电压就可在试品CX上产生较高的试验电压。 技术参数 *工作电源;220V/380V,50HZ *试验容量:30-30000KVA

*试验电压:1000KV及以下 *谐振频率范围:20-300Hz *试验电压波形:正弦波波形畸变率小于等于% *试验电压冷确度:1级 *频率调节: *保护响应时间 :小于1微秒 *系统具有过电压保护、过电流保护、放电保护、击穿跳闸保护、过热保护。 产品的别称 变频串联谐振耐压试验装置、调频串联谐振耐压设备、工频谐振试验装置、变频串联谐振试验变压器、变频串联谐振试验系统、变频串联谐振耐压试验仪、电缆交流耐压试验装置、串联谐振装置、串联谐振耐压设备、GIS耐压试验装置等 技术特点 *通过国家权威部门--电力工业电气设备质量检验测试中心(武汉高压研究所)严格的型式试验鉴定,质量可靠,确保试验人员、被试品和试验设备本身的安全; *便携式交流工频耐压仪(由干式试验变压器、控制箱两部分组成)体积小,重量轻;,结 构简单、可靠性高;可方便在现场使用。 * 变频串联谐振耐压试验装置由变频电源、励磁变压器、电抗器和电容分压器组成: 体积小,重量轻,特别适合现场使用;结构复杂、接线繁多、成本高;

长电力电缆振荡波局部放电检验测试验方案计划

国家电网合肥供电公司 10kV长电力电缆阻尼振荡波 测试方案 安徽立翔电力技术服务有限公司 二零一七年七月

目录 一、试验标准和目的............................................................................................................... - 2 - 二、试验仪器........................................................................................................................... - 2 - 三、试验内容........................................................................................................................... - 3 - 1、术语及定义.................................................................................................................. - 3 - 2、试验原理介绍.............................................................................................................. - 3 - 3、被测电缆要求及测试前准备...................................................................................... - 5 - 4、绝缘电阻测试.............................................................................................................. - 5 - 5、测试电缆中间接头位置及电缆长度.......................................................................... - 5 - 6、振荡波局部放电试验.................................................................................................. - 6 - 6.1 电缆局放校准...................................................................................................... - 6 - 6.2 振荡波局放测试.................................................................................................. - 6 - 1)试验接线步骤:................................................................................................... - 6 -2)加压测试程序....................................................................................................... - 7 -3)测试要求及注意事项:....................................................................................... - 7 - 7、振荡波局放诊断评价.................................................................................................. - 8 - 1)绝缘电阻:........................................................................................................... - 8 -2)电缆局部放电量:............................................................................................... - 8 - 8、电缆振荡波局放异常处理决策.................................................................................. - 8 - 1)绝缘电阻异常情况处理措施............................................................................... - 8 -2)电缆振荡波局放量超标异常情况处理措施....................................................... - 8 - 9、试验时间:1.5~2.5 小时/段..................................................................................... - 9 - 四、人员安排:....................................................................................................................... - 9 - 五、安全措施:....................................................................................................................... - 9 -

35kv电缆试验方案

目录 1 目的 (2) 2 依据 (2) 3 项目 (2) 4 条件 (2) 5 仪器设备 (2) 6 步骤 (2) 7 数据处理及结果判定 (3) 8 注意事项 (3) 9 记录表格 (4)

1.目的 电缆安装后的现场交流耐压试验目的是检查其绝缘性能是否完好,以防止因制造质量不良、意外缺陷 (如安装错误、异物、运输和安装过程的损坏等)导致运行中发生内部绝缘故障。 2.依据 2.1GB50150-2006《电气装置安装工程电气设备交接试验标准》 2.2 Q/FJG 10029.2-2004《福建省电力有限公司电力设备交接及预防性试验规程》 3.项目 3.1绝缘电组测量 3.2交流耐压试验 3.3直流电阻测量 4.条件 4.1 人员要求:2~4人,试验负责人需高压电气试验中级工以上水平,其余至少是接受过电气培训的电气试验初级工; 4.2对于安装户外的试品:绝缘项目试验应该避免在雨天或空气湿度大于80%的情况下进行,其它项目应避免雨天进行,应记录周围环境温度。对于安装户内的试品,试验应在湿度不大于80%的环境状况下进行。 4.3现场试验电源容量应满足试品试验要求,至少应有30A电源。 5.仪器设备 6.步骤 6.1绝缘电阻测量 绝缘电阻测量:用5000V摇表,主回路对地、各相间绝缘、绝缘电阻值均应在1000MΩ以上。在交流耐压试验前后都应进行绝缘电阻测试,前后两次测试数据比较应无明显差别。电缆外护套绝缘电阻用500 V摇表,每千米绝缘电阻值不低于0.5MΩ 6.2交流耐压试验 该项试验可利用调感或调频串联谐振耐压装置进行。一般使用变频谐振耐压装置。 6.2.1试验接线图

交流高压电缆局部放电的在线监测概述

交流高压电缆局部放电的在线监测 陈敬德,1140319060;指导老师:李旭光 (上海交通大学电气工程系,上海,200240) 摘要:在XLPE电缆投入运行后,由于绝缘的老化变质、过热、机械损伤等,使得电缆在运行中绝缘裂化,为了防止由于绝缘劣化造成电缆运行事故,需要对电缆的运行状态进行即时监测,监测系统控制着电缆及其附件的质量。局部放电是目前比较有效的在线监测方法,局部放电检测目前相应有电磁耦合法、超高频法和超声波法、光学测量法等,本文将着重论述这些方法各自的优势与不足,同时对目前发展起来的PD混沌监测方法进行讨论。 关键词:XLPE电缆;在线监测;局部放电;混沌法 0引言 随着电力系统的飞速发展以及旧城改造工程的进行,电力电缆在电力网络中的应用愈发广泛。电力电缆的基本结构包括线芯、绝缘层、屏蔽层和保护层四个部分。其中线芯即导体,是电力电缆中传输电能的部分,是电缆的主要结构。绝缘层将线芯与外界电气上隔离。屏蔽层包括导体屏蔽层和绝缘屏蔽层,一般存在于15kV及以上电缆中。保护层是用来防止外界的杂质和水分的渗入和外力的破坏 [1]。 电力电缆按照电压等级分类有低压电缆(35kV 及以下输配电线路)、中低压电缆(35kV及以下)、高压电缆(110kV及以上)、超高压电缆(275~800kV)、特高压电缆(1000kV及以上)。按照绝缘材料电力电缆可以分为塑料绝缘电缆和橡皮绝缘电缆。其中油纸绝缘电缆应用历史最长。它安全可靠,使用寿命长,价格低廉。主要缺点是敷设受落差限制。塑料绝缘电缆主要用于低压电缆,常用的绝缘材料有聚氯乙烯、聚乙烯、交联聚乙烯。橡皮绝缘电缆弹性好,适合用于移动频繁弯曲半径小的敷设地点。 我国早期使用的多是油纸绝缘电缆,但自1970 年以来,交联聚乙烯(XLPE)电力电缆得以广泛应用,并逐渐取代了油纸绝缘电缆的地位。XLPE电缆电气性能优越,具有击穿电场强度高、介质损耗小、载流量大等优点因而得到了广泛的应用。 在线检测电缆故障的方法有很多,如直流分量法、损耗电流谐波分量法、局部放电法等,其中,局部放电法是目前用于现场比较有效的在线检测方法。XLPE电缆发生局部放电时一般会产生电流脉冲、电磁辐射、超声波等现象,根据检测物理量的不同,局部放电检测相应有电磁耦合法、超高频法和超声波法等,其中,电磁耦合法由于传感器灵敏度高、安装方便,且与电缆无电气连接,是目前应用最为广泛的一种方法。 本文主要论述了XLPE电缆局部放电在线监测的一些基本方法的优势与缺陷,并对电缆局部放电的混沌监测方法进行了讨论[2]。 1 PD在线监测的意义以及技术 难点 局部放电,是绝缘介质中的一种电气放电,这种放电仅限制在被测介质中一部分且只使导体间的绝缘局部桥接,这种放电可能发生或可能不发生于导体的邻近。电力设备绝缘中的某些薄弱部位在强电场的作用下发生局部放电是高压绝缘中普遍存在的问题。虽然局部放电一般不会引起绝缘的穿透性击穿,但可以导致电介质(特别是有机电介质)的局部损坏。若局部放电长期存在,在一定条件下会导

35kV电力电缆试验专项方案

×××××工程 ××××××试验方案 施工单位:(盖章)监理单位:(盖章)编制:审批: 审核:日期:年月日 批准:建设单位:(盖章) 审批: 日期:年月日日期:年月日

目录 1 工程概况 (1) 2 工作任务 (1) 3 编制依据 (1) 4 试验条件 (1) 5 试验项目安排及要求 (3) 6 质量保证 (6) 7 安全措施 (6) 8 环境保护措施 (7) 附件1:电气试验单位或人员相关资质、资格证明............................................................ I 附件2:电力电缆试验记录................................................................................................... II

35kV电力电缆试验方案 1 工程概况 1.1 工程名称 ×××××××××××工程 1.2 工程性质 新建 1.3 建设地点 ×××省××市×××县×××镇 1.4 主要工作量 采用定向钻新建×××××至××××YJV32-26/35kV 3×150 湖底穿越电缆1.3km;新建35kV LGJ-120架空线400m ,其中12m终端线路管塔2基,断路器2台;定向钻电缆套管(无缝钢管D219×7)1120m。 2 工作任务 2.1 目的 检验电缆在运输、存放、敷设过程中是否受到损伤,电缆头制作质量是否达到标准要求,保证电缆安全可靠地投入运行。 2.2 试验范围 新建×××××至××××YJV32-26/35kV 3×150 湖底穿越交联聚氯乙烯护套聚乙烯绝缘钢丝铠装电力电缆。 2.3 时间安排 ××××年××月××日至××××年××月××日,试验完毕。 3 编制依据 3.1 国家颁发的有关建设工程质量的法律、法规 3.2 国家、行业颁发的有关建设工程质量的规范、规程、标准 GB 50150-2006 电气装置安装工程电气设备交接试验标准 DL/T 596-2005 电力设备预防性试验规程 GB 26860-2011电业安全工作规程 3.3 勘察设计文件中的有关工程质量的要求和说明 3.4 工程建设合同中有关工程质量的符合国家有关法规的约定 4 试验条件 4.1 环境条件 天气良好,相对湿度不高于80%,温度不低于5℃。 4.2 现场条件 电缆敷设到位,电缆头制作完毕。现场低压三相五线制电源已准备就绪。 4.3 人员条件 4.3.1 从事本电气试验单位或个人依照《承装(修、试)电力设施许可证管理办法(电监会令第28号)》取得四级或以上承试类许可证。 4.3.2 从事本电气试验操作人员具备有效的高压电工作业特种作业操作证和相应的技术等级证书,并熟练掌握试验方法、仪器的操作使用。 4.3.3 试验负责人、试验操作人和现场安全负责人已到位,责任分工明确。

10kV电力电缆局放测试

浅谈10kV电力电缆局部放电测试及缺陷处理 ——OWTS振荡波局放测试及定位系统 摘要:本文简单介绍了电缆局部放电的原因和危害,以及振荡波测试系统的工作原理,以某路电缆为例,重点介绍了振荡波测试系统在电缆局部放电测试定位中的现场应用,总结了OWTS测试、分析中的经验和技巧,并对存在局放缺陷电缆的消缺进行新方法的尝试,为日后处理电缆的局放现象提供参考意见。 关键词:电缆,局部放电,振荡波,消缺方法 1前言 随着现代社会经济的飞速发展,人们对中心城区的环境、安全及形象的关注,越来越多的电力电缆已经逐步代替了配电架空线路运行。电力电缆将成为未来中心城区配电网运行的主流设备,因电缆故障引起的线路跳闸也日渐增多,电缆本体和附件的电气绝缘损坏是造成配网设备故障率高的主要原因,如何预防及控制电缆本体和附件的电气绝缘损坏已成为当前电缆配电网运行维护的关键。 2 绝缘的老化 2.1 概述 电气设备的绝缘在运行中会受到各种因素如电场、热、机械应力、环境因素等的作用,其内部将发生复杂的化学与物理变化,导致性能逐渐劣化,这种现象称为老化。在设备正常运行的条件下,老化是渐进的、长期的过程。 绝缘材料的老化以有机绝缘材料的老化问题最为突出。液体有机绝缘材料老化时表观上发生混浊、变色等;高分子有机绝缘材料老化时表观上发生变色、粉化、起泡、发粘、脆化、出现裂纹或裂缝、变形等。多数情况下、绝缘材料的老化是由于其化学结构发生了变化,即由于降解、氧化、交联等化学反应,改变了其组成和化学结构;但是有的老化仅仅是由于其物理结构发生了变化所致,例如绝缘材料中的增塑剂不断挥发或其中球晶不断长大,这些都会使材料变硬、变脆而失去使用价值。通常绝缘材料性能的劣化是不可逆的,其最终将会引起击穿,直接影响电力设备和电力系统的运行可靠性。 绝缘劣化过程的发展需要一定能量,亦即依赖于外界因素的作用,如电场、热、机械应力、环境因素等。运行情况下常常是多种因素同时作用,互相影响,过程复杂。

10KV电缆耐压试验方案

试验方案 10kV XLPE电力电缆交流耐压试验 编写: 审核: 批准: 变电管理所试验班 2008年8月8日

1 试验目的: 为了检查110kV银滩变电站,10 k V银滩线903电缆的绝缘性能和运行状况是否良好,保证电网的安全运行,参照Q/GX D 126.01-2006《电力设备交接和预防性试验规程》,对其进行试验。 2 电缆规范: 电缆型号:YJV22-3×300 电缆规格:3×300mm2 电缆电压:8.7/15kV 电缆电容量:0.37 uF/km 电缆长度:1.1km 生产厂家:浙江万马集团 出厂日期:2007-01 3 试验依据: GB50150-2006《电气装置安装工程电气设备交接试验标准》中18.0.5条表18.0.5之规定。依该标准确定试验电压为21.75kV(2.5U0),试验时间为5min(2.5U0时)。 4 试验仪器: HDSR-F162/162串联谐振试验设备一套; 干湿温度计一块; 5000V兆欧表一块; 工具箱一套; 三相电源线若干。 5 试验项目: ①耐压前电缆主绝缘电阻测量; ②串联谐振法交流耐压试验; ③耐压后电缆主绝缘电阻测量; 6 试验步骤及技术措施: 6.1电缆主绝缘电阻测量 6.1.1 测量方法 用5000V兆欧表,依次测量各相线芯对其他两相及金属套的绝缘电阻,金

属套及非被试相线芯接地。测量前将被测线芯接地,使其充分放电,放电时间一般为2-5分钟。由于存在吸收现象,兆欧表的读数随时间逐步增大,测量时应读取绝缘电阻的稳定值,作为电缆的绝缘电阻值。 6.1.2 测量步骤 1)测量并记录环境温度、相对湿度、电缆铭牌、仪器名称及编号; 2)将所有被试部分充分放电,非被试相电缆线芯及金属套接地; 3)将兆欧表地线端子(E)用接地线与接地导体连接好,兆欧表火线端子(L)接至被测部位的引出端头上,兆欧表读数稳定后记录绝缘电阻值。拆除兆欧表相线; 4)将被试电缆对地放电并接地; 5)依照此步骤测试其他两相。 6.1.3 注意事项 在试验中读取绝缘电阻后,应先断开接至被试品的火线端子,然后再将兆欧表停止运转;由于电缆的吸收现象比较严重,特别是对于大电容电缆,兆欧表开始读数可能非常的低,这一现象是正常的。 6.1.4试验标准 1)电缆绝缘电阻不小于10MΩ·km。 2)耐压试验前后,绝缘电阻测量应无明显变化。 6.2电缆主绝缘交流耐压试验 6.2.1本试验采用串联补偿谐振法,试验接线如图1所示。

相关文档
相关文档 最新文档