文档库 最新最全的文档下载
当前位置:文档库 › 空调水系统施工工艺流程

空调水系统施工工艺流程

空调水系统施工工艺流程
空调水系统施工工艺流程

空调水系统施工工艺流程

一、设备到货后对设备进行开箱检查:

1、设备名称、型号和规格;

2、设备有无缺件、表面有无损坏和锈蚀;

3、设备和易损备件、安装和检修工具以及设备所带的资料应齐全;

4、设备所带资料取出统一保存好,以便竣工验收后交与物业管理部;

5、用记号笔在风机盘管底部做好型号标识,吊装后便于核对机型。

二、设备吊架加工及软连接安装:

1、设备采用防晃减震吊架,具体做法为[5槽钢+¢10通丝杆组成。首先把成品槽钢分为3段(便于操作方便),根据要求(每段55mm为宜)在成品槽钢上做好切割标识。

2、按照槽钢上的切割标识居中进行开孔,开孔直径应比所穿丝杆大2号,开

孔时必须使用专用开孔机具,严禁使用电气焊。

3、根据切割标识切割,利用专用打磨机具进行槽钢块的毛刺打磨,然后做防

腐处理,码放整齐。

4、根据风机盘管的吊装标高进行通丝杆下料,下料的半成品通丝杆两端应使

用专用打磨机具打磨,便于螺母安装。

5、按照施工要求进行软连接下料,宽度一般不能超过250mm,然后用镀锌铁

皮条采用铆固形式与出风口连接。

6、软连接安装完毕后把机体放回对应的包装箱里码放整齐。

二、划线定位:

1、认真熟悉施工图纸并结合精装隔墙及天花图确定风机盘管吊装位置。

2、按照每个机型用薄木板画出吊装孔洞尺寸做模具,根据风机盘管定位尺寸

用模具作打眼标识。

3、在顶板上用记号笔做好对应的风机盘管型号,便于吊装时核对。

三、风机盘管吊装:

1、参照顶板标注型号进行风机盘管吊装,吊装时必须注意以下几点:

(1)风机盘管吊装标高须结合精装天花图二级吊顶标高,必须满足使用功能。(2)风机盘管托水盘尾部与冷凝水出水口保持5mm坡度(出水口低)。

(3)固定风机盘管的通丝杆保持垂直,机体孔洞上口备1颗螺母,下口加减

震垫片然后备2颗螺母。通丝杆在螺母下口外露30—50mm(便于进行

风机盘管标高微调)。

(4)吊装完风机盘管后用包装箱内的塑料袋做好成品保护。

四、管道预制:

1、断管:根据现场测绘草图,在选好的管材上画线,按线断管。使用砂轮锯或

手锯断管,断管后要将管口断面的铁膜、毛刺清除干净。

2、套丝:将断好的管材,按管径、尺寸分次套制丝扣,一般以管径15-32mm者

套二次,40-50mm者套三次。

3、扫口:管道套丝完毕后,用套丝机对管道进行扫口。

4、配装管件:根据现场测绘草图,将已套好丝扣的管材配装管件,配装管件

时应将所有管件带入管丝扣,试试松紧度(一般用手带入3口为宜),在丝扣处

涂铅油、缠麻后带入管件,然后用管钳将管件拧紧,使丝扣外露2-3扣,去掉麻

头,擦净铅油,编号放到适当位置等待调直。

5、管段调直:将已装好管件的管段,在安装前进行调直。在装好管件的管段丝

扣处涂铅油,连接两段或数段,联接时不能只顾预留口方向而要照顾到管材的弯曲度,互相找正后再将预留口方向转到合适部位并保持正直。管段连接后,调直前必须按设计图纸核对其管径、预留口方向、变径部位是否正确。

五、管道安装:

1、管道安装坡度按图纸注明要求施工,无注明处其坡度应为:空调冷热水、采暖管道≥0.003。系统最高点设排气阀,最低点设泄水阀。安装管道时须注意以下几点:

(1)公共走廊排管时必须结合精装电气图,让开筒灯位置(筒灯居中),包括户内小走廊。

(2)安装管道时凡是穿墙体必须加钢制套管,套管型号比管道保温后大2号,

两端与装饰面齐。管道安装完毕后及时对套管内管段进行保温处理,防止堵洞造

成套管偏移。

(3)管道穿二次结构墙剔凿洞口时必须用云石机切割,严禁断钢筋。剔凿产生的垃圾及时清理。

(4)管道安装参照空调路由图并结合装饰天花图。(保证吊顶标高及造型宽度)

(5)户内供回水系统的接驳(户内各房间供回水管误接)。

(6) 木托与抱卡必须配套使用。

六、冷凝水管道PVC管材安装

1、根据图纸及现场情况,进行断管加工。粘接前对承插口先插入试验,不得全部插入,一般为承口的3/4深度。试插合格后,用棉布将承插口需粘接部位的水分、灰尘擦拭干净。如有油污需用丙酮除掉。用毛刷涂抹粘接剂,先涂抹承口后涂抹插口,随即用力垂直插入,插入粘接时将插口稍作转动,以利粘接剂分布均匀,约30秒至1分钟即可粘接牢固。粘牢后立即将溢出的粘接剂擦拭干净。多口粘连时应注意预留口方向。

2、支吊架间距不能大于500mm。

3、管道长度超过5m时在距机体1m处应加排气口。

4、凝结水管道满水试验

隐蔽的凝结水管道在保温前做灌水试验,把分户管道末端封严,从风机盘管托水盘开始注水,在满水15分钟水面下降后,再灌满观察5分钟,液面不降,管道及接口不渗不漏为合格。满水试验合格后拆除末端封堵,逐台检查每台风机盘管托水盘里水是否排净,如果发现托水盘里有存水现象,检查管道坡度进行调整,直至水排净为合格。

七、管道试压:

1、管道试压一般分单项试压和系统试压两种。单项试压是在干管敷设完后或隐蔽部位的管道安

装完毕按设计和规范要求进行水压试验。

系统试压是在全部干、立、支管安装完毕,按设计或规范要求进行水压试验。

联接试压泵一般设在首层,或室外管道入口处。

2、试压前应将预留口堵严,关闭管井立管总阀门和所有泄水阀门及高处放风阀门,打开各分路阀门。

3、打开水源阀门,往系统内充水,满水后在风机盘管跑风处放净冷风并将跑风阀门关闭。

4、检查全部系统,如有漏水处应做好标记,并进行修理,修好后再充满进行加压,压力值达到规范要求后复查,如管道不渗、漏,并持续到规定时间,压力降在允许范围内为合格。

5、拆除试压水泵和水源,把管道系统内水泄净。

6、冬季施工期间竣工而又不能及时供暖的工程进行系统试压时,必须采取可靠措施把水泄净,以防冻坏管道和设备。

八、管道保温:

1、将管道表面清理干净,使管道表面干燥。

2、测量将要保温的管段长度下料,适当多出10mm 的长度。

3 、将保温管面用切刀划开,把保温管套到管道上。

4、在切开的保温管的两切面上涂上保温专用胶水

5、用手指测试胶水是否干化,当手指接触涂胶面时,无粘手现象方进行封管。

6 、封管时压紧粘接口两端,从两端向中间封合。

7、两个管口连接时在两个连接的管端都加上胶水,后轻微压下或对实。

8 、粘接缝处要用胶带封口,以防粘接缝开裂。

9、管道保温应粘贴紧密,表面平整、圆弧均匀、无环形断裂。

九、管道冲洗:

1、管道系统的冲洗应在管道试压合格后,调试、运行前进行。

管道冲洗进水口及排水口应选择适当位置,并能保证将管道系统内的杂物冲洗干净为宜。排水管截面积不应小于被冲洗管道截面60%,排水管应接至排水井或排水沟内。

2、冲洗时,关闭系统主控阀门和泄水阀及排气阀,打开所有管井分户阀门及每台设备的控制阀门,以系统内可能达到的最大压力和流量进行,直到出口处水色和透明度与入口处目测一致为合格。

十、设备接线:

1、严格按照设备厂家设计要求进行施工。

2、接线的同时拆除风机盘管的保护膜,查看电机涡轮内是否有杂物。

十一、设备单体试运转:

1、核对风机、电机的型号、规格是否与设计参数一致;检查各紧固件是否拧紧;进出口帆布短管是否严密。

2、用手盘动叶轮,观察有无卡阻及碰擦现象;手动盘动叶轮第二次,观察叶轮是否停

留在同一位置,出于叶轮的动平衡考虑,叶轮两次应停留在不同位置。

3、风机初次启动经一次启动立即停止运转,检查叶轮与机壳有无摩擦、有无异常振动

及声响;检查运转方向是否正确,是否与机壳标注方向一致。

4、风机启动运转平稳后,用钳形电流表检测起动电流,运转电流、振动、转速及噪声,

并在试运行30分钟后检测轴承温度,其值必须达到设备说明书的文件要求。

5、风机在额定转速下试运转2小时以上,测量轴承温升是否正常,不超过70℃为合格。

十一、系统调试:

1、首先关闭支系统阀门,对主系统注满水后,进行严格的检查,确保无渗漏后进行对支系统的注水,待支系统注满水,检查无渗漏后,进行风机盘管的注水、放气、查漏工作,风机盘管的调试需逐组进行。

2、启动空调水系统的循环水泵,进行系统循环经8h运行正常后,开始进行热水循环,调整电动二通阀,使房间的温度达到设计要求。冷冻水调试待夏天由厂家配合进行,方法与热水调试相雷同。

3、特别需要注意检查电动二通阀、过滤器、风机盘管、阀门、跑风等是否有渗漏现象。

精品文档word文档可以编辑!谢谢下载!

空调冷却循环水系统设计

空调冷却循环水系统设计 民用建筑空调冷却循环水系统相对于工业冷却循环水系统,设计具有一些特点:循环水量较小,设备为定型产品,水质要求较低,季节性运转等。加上民用建筑设计周期短,设计人员往往根据以往的经验,形成定式思维,对一些具体的细节问题,关注不够,造成冷却水系统水温降不下来,系统能耗过大,运转操作不便等问题。该文针对冷却循环水系统经常出现的问题,谈谈自己的设计体会,旨在引起大家的进一步讨论,达到共同认识共同提高的目的。 一、冷却循环水系统设备的合理选型 1.设计基础资料 为保证冷却塔的冷却效果,必须注重气象参数的收集,气象参数应包括空气干球温度θ(℃),空气湿球温度τ(℃),大气压力P(104Pa),夏季主导风向,风速或风压,冬季最低气温等。 根据《采暖通风与空气调节设计规范》和《建筑给水排水设计规范》,冷却塔设计计算所选用的空气干球温度和湿球温度,应与所服务的空调等系统的设计空气干球温度和湿球温度相吻合,应采用历年平均不保证50小时的干球温度和湿球温度。 2、冷却循环水量确定 确定冷却循环水量时,首先要清楚准确地了解空调负荷及空调设备要求的冷却循环水量,同时还要关注空调机的选型,一般可根据制冷量(美RT),估算冷却循环水量Q(m3/h),对于机械式制冷:离心式、螺杆式、往复式制冷机,Q= 0.8RT。对于热力式制冷:单、双效溴化锂吸收式制冷机,Q=(1.0~1.1)RT ;设计时,冷却循环水量一般是由空调专业根据制冷机样本中给出的冷却水量提出

的。需用指出的是,制冷机样本中给出的冷却水量往往比用负荷法计算值小,尤其是进口机,这主要是由于目前冷却塔本身的热工性能达不到进口设备的要求。

空调水系统的设计原则

空调水系统的设计原则 1、空调水系统的设计原则 空调水系统设计应坚持的设计原则是: 力求水力平衡; 防止大流量小温差; 水输送系数要符合规范要求; 变流量系统宜采用变频调节; 要处理好水系统的膨胀与排气; 要解决好水处理与水过滤; 要注意管网的保冷与保暖效果。 ⑴、水系统设计应力求各环路的水力平衡 a、技术要求 空调供冷、供暖水系统的设计,应符合各个环路之间的水力平衡要求。对压差相差悬殊的高阻力环路,应设置二次循环泵。各环路应设置平衡阀或分流三通等平衡装置。如管道竖井面积允许时,应尽量采用管道竖向同程式。 (2)防止大流量小温差 a、造成大流量小温差的原因 设计水流量一般是根据最大的设计冷负荷(或热负荷)再按5℃(或10℃)供回水温差确定的,而实际上出现最大设计冷负荷(或热负荷)的时间,即按满负荷运行的时间仅很短的时间,绝大部分时间是在部分负荷下运行。 水泵扬程一般是根据最远环路、最大阻力,再乘以一定的安全系数后确定的,然后结合上述的设计流量,查找与其一致的水泵铭牌参数而确定水泵型号,而不是根据水泵特性曲线确定水泵型号。因此,在实际水泵运行中,水泵实际工作点是在铭牌工作点的右下侧,故实际水流量要比设计水流量大20%-50%。 在较大的水系统设计中,设计计算时常常没有对每个环路进行水力平衡校核,对于压差相差悬殊的环路,多数也不设置平衡阀等平衡装置,施工安装完毕之后又不进行任何调试,环路之间的阻力不平衡所引起的水力工况、热力工况失调象现只好*大流量来掩盖。 a、避免大流量小温差的方法 考虑到设计时难以做到各环路之间的严格水力平衡,以及施工安装过程中存在的种种不确定因素,在各环路中应设置平衡阀等平衡装置,以确保在实际运行中,各环路之间达到较好的水力平衡。 当遇到某个或几个支环路比其它环路压差相差悬殊(如阻力差100kPa以上),就应在这些环路增设二次循环泵。 ⑶、水系统的膨胀、补水、排水与排气 a、水系统的膨胀 封闭空调冷冻水系统,应在高于回水管路最高点1-2m处设膨胀水箱。膨胀水箱一般可选标准水箱(T905(一),其容积范围为0.2-4.0m3.膨胀水箱设有膨胀管、补水管、溢水管和泄水管,并应设有水位控制仪表或浮球阀。 a、水系统的补水与排水 水系统的注水与补水均应通过膨胀水箱来实现。因此,应将膨胀管单独与制冷站中的回水总管(或集水器)相接,这样在系统安装调试时的新注水或在平时运转中的补充水,均可通过膨胀水箱注水。使整个水系统的注水从位置较低的回水总管(或集水器)由低向高进行,

空调器结构和工作原理

空调器结构和工作原理

空调器结构和工作原理 空调器的结构,一般由以下四部分组成。 制冷系统:是空调器制冷降温部分,由制冷压缩机、冷凝器、毛细管、蒸发器、电磁换向阀、过滤器和制冷剂等组成一个密封的制冷循环。 风路系统:是空调器内促使房间空气加快热交换部分,由离心风机、轴流风机等设备组成。 电气系统:是空调器内促使压缩机、风机安全运行和温度控制部分,由电动机、温控器、继电器、电容器和加热器等组成。 箱体与面板:是空调器的框架、各组成部件的支承座和气流的导向部分,由箱体、面板和百叶栅等组成。 制冷系统的主要组成和工作原理 制冷系统是一个完整的密封循环系统,组成这个系统的主要部件包括压缩机、冷凝器、节流装置(膨胀阀或毛细管)和蒸发器,各个部件之间用管道连接起来,形成一个封闭的循循环系统,在系统中加入一定量的氟利昂制冷剂来实现这冷降温。 空调器制冷降温,是把一个完整的制冷系统装在空调器中,再配上风机和一些控制器来实现的。制冷

的基本原理按照制冷循环系统的组成部件及其作用,分别由四个过程来实现。 压缩过程:从压缩机开始,制冷剂气体在低温低压状态下进入压缩机,在压缩机中被压缩,提高气体的压力和温度后,排入冷凝器中。 冷凝过程:从压缩机中排出来的高温高压气体,进入冷凝器中,将热量传递给外界空气或冷却水后,凝结成液体制冷剂,流向节流装置。 节流过程:又称膨胀过程,冷凝器中流出来的制冷剂液体在高压下流向节流装置,进行节流减压。蒸发过程:从节流装置流出来的低压制冷剂液体流向蒸发器中,吸收外界(空气或水)的热量而蒸发成为气体,从而使外界(空气或水)的温度降低,蒸发后的低温低压气体又被压缩机吸回,进行再压缩、冷凝、节流、蒸发,依次不断地循环和制冷。单冷型空调器结构简单,主要由压缩机、冷凝器、干燥过滤器、毛细管以及蒸发器等组成。单冷型空调器环境温度适用范围为18℃~43℃。 冷热两用型空调器又可以分为电热型、热泵型和热泵辅助电热型三种。 (1)电热型空调器 电热型空调器在室内蒸发器与离心风扇之间安装

空调原理及系统组成

空调原理及系统组成传热方式与热学定律 对流、传导、辐射 对流:通过流体流动把热量带走。 传导:相互接触的物体之间或物体内部温差传。 辐射:物体通过发出红外线方式把热量散发出去。 热力学第一定律: 能量是可以转换的,可以传递的,能量的总量保持不。物质吸收了热量膨胀,对外界作功把一部份能量传给了外界,热能转化为机械能。 热力学第二定律: 指出了在自然条件下热量只能从高温物体向低温物体转移,而不能由低温物体自动向高温物体转移,也就是说在自然条件下,这个转变过程是不可逆的。要使热传递方向倒转过来,只有靠消耗功来实现。 5?天前上传 下载附件 (25.41 KB) 如:压缩机---做功,将热量从低温热源传送到高温热源,使得低温热源始终保持较低温度,类似于水泵做功实现水从低处往高处流的原理。 一般空调构成及循环

5?天前上传 下载附件 (26.51 KB) 压缩机:“心脏”,压缩和输送制冷剂蒸汽; 膨胀阀:节流降压,并调节进入蒸发器的制冷剂流量; 蒸发器:吸收热量(输出冷量)从而制冷; 冷凝器:输出热量。 5?天前上传 下载附件 (44.75 KB) 空调四大件 蒸发器工作的过程 室内的温度较高,空气流过蒸发器时冷媒蒸发带走空气中的热量,空气温度降低成为冷空气。 空气被冷却时,空气中会有凝水,通过排水器排走。 为了防止冷凝水流到机房内,需要挡板和排水管将其排到室外。 5?天前上传 下载附件 (25.14 KB) 空调的第二个部件冷凝器(这里所指是空冷式),也就是我们通常说的室外

机室外机的工作原理是冷媒向空气放热,由气态转化为液态,向空气排热。所以冷凝器的散热条件对空调制冷有较大影响,有一定的环境及距离要求,后文将会详细讲解。 5?天前上传 下载附件 (29.81 KB) 空调的第三个部件压缩机,压缩机起到的作用如下: 来自蒸发器的低温低压的冷媒气体被压缩机压缩成高温高压的气体进入冷凝器。 冷媒向空气放热,由气态转化为液态,这一过程,实际需要做功,做功这一过程由压缩机来完成。 这一过程中压缩机压缩和输送制冷剂蒸汽(工作过程),通过做功后冷凝器再将热量带到室外。 5?天前上传 下载附件 (38.94 KB) 空调的第四个部件膨胀阀 膨胀阀---对制冷剂节流降压,并调节进入蒸发器的制冷剂流量,高温高压的液体变为低温低压液体膨胀阀通过感应器感应蒸发器出口温度,如果出口过热度偏高,表示蒸发器热负荷偏大,则膨胀阀阀门调节开启变大,制冷剂流量按比例增加。反之,蒸发器出口温度偏低,膨胀阀会逆向关小减少制冷剂流向蒸发器的流量,从而实现减小制冷量。通过膨胀阀的控制,实现空调制冷的动态平衡。 5?天前上传

空调管路系统的设计原则

一、空调管路系统的设计原则 空调管路系统设计主要原则如下: 1.空调管路系统应具备足够的输送能力,例如,在中央空调系统中通过水系统来确保渡过每台空调机组或风机盘管空调器的循环水量达到设计流量,以确保机组的正常运行;又如,在蒸汽型吸收式冷水机组中通过蒸汽系统来确保吸收式冷水机组所需要的热能动力。 2.合理布置管道:管道的布置要尽可能地选用同程式系统,虽然初投资略有增加,但易于保持环路的水力稳定性;若采用异程系统时,设计中应注意各支管间的压力平衡问题。 3.确定系统的管径时,应保证能输送设计流量,并使阻力损失和水流噪声小,以获得经济合理的效果。众所周知,管径大则投资多,但流动阻力小,循环水泵的耗电量就小,使运行费用降低,因此,应当确定一种能使投资和运行费用之和为最低的管径。同时,设计中要杜绝大流量小温差问题,这是管路系统设计的经济原则。 4.在设计中,应进行严格的水力计算,以确保各个环路之间符合水力平衡要求,使空调水系统在实际运行中有良好的水力工况和热力工况。 5.空调管路系统应满足中央空调部分负荷运行时的调节要求; 6.空调管路系统设计中要尽可能多地采用节能技术措施; 7.管路系统选用的管材、配件要符合有关的规范要求; 8.管路系统设计中要注意便于维修管理,操作、调节方便。 二、管路系统的管材 管路系统的管材的选择可参照下表选用:

三、供回水总管上的旁通阀与压差旁通阀的选择 在变水量水系统中,为了保证流经冷水机组中蒸发器的冷冻水流量恒定,在多台冷水机组的供回水总管上设一条旁通管。旁通管上安有压差控制的旁通调节阀。旁通管的最大设计流量按一台冷水机组的冷冻水水量确定,旁通管管径直接按冷冻水管最大允许流速选择,不应未经计算就选择与旁通阀相同规格的管径。 当空调水系统采用国产ZAPB、ZAPC型电动调节阀作为旁通阀,末端设备管段的阻力为0.2MPa时,对应不同冷量冷水机组旁通阀的通径,可按下表选用: 冷冻水压差旁通系统的选择计算 在冷冻水循环系统设计中,为方便控制,节约能量,常使用变流量控制。因为冷水机组为运行稳定,防止结冻,一般要求冷冻水流量不变,为了协调这一对矛盾,工程上常使用冷冻水压差旁通系统以保证在末端变流量的情况下,冷水机组侧流量不变。系统图如图一。

中央空调系统的构成及工作原理

中央空调系统的构成及工作原理 中央空调系统的组成如图1所示。 它主要由制冷机、冷却水循环系统、冷冻水循环系统、风机盘管系统和冷却塔组成。 各部分的作用及工作原理如下: 制冷机通过压缩机将制冷剂压缩成液态后送蒸发器中与冷冻水进行热交换,将冷冻水制冷,冷冻泵将冷冻水送到各风机风口的冷却盘管中,由风机吹送达到降温的目的。经蒸发后的制冷剂在冷凝器中释放出热量成气态,冷却泵将冷却水送到冷却塔上由水塔风机对其进行喷淋冷却,与大气之间进行热交换,将热量散发到大气中去。 图1 中央空调系统的组成 注:T为环境温度,即室外温度,四季不同,夏天可达35℃。 中央空调工作原理 户式中央空调--工作原理一户式中央空调的分类 ☆风管机 一台定频室外机,一台定频室内机,通过风管把冷热风送至每个房间,可方便将室外新风引入;对空气进行加湿等集中处理也较容易,是廉价的机器,设计合理每个房间的噪声仅增加1~3分贝,卧室不必吊顶,每个房间在可高于主温控器设定的温度以上,对温度进行控制;可以有一定比例的能量转移,达到节能及加快空调冷热速度的效果。 室内机局部噪声较大,根据现场不同的安装条件,实测在42~52分贝之间,对设计及安装

要求很专业。 ☆一拖多机组 (1)定频多联机 把分体空调集中到一个室外机中,最多一拖三里面有三台压缩机,冷媒系统各自独立;把明装壁挂室内机改变成暗藏式;引进新风困难,是分体空调的一种变形,卧室内风机噪音由低到高要增加7~14分贝,最高达50分贝。每个卧室需增加长1.2m以上,宽0.6m,高0.3 m的吊顶,另需设检修孔;每个内机都需有冷凝水排放的管路。 冷媒系统独立,但电路部分的有共用点;如发生外风机,外机温度探头、压力保护或电器局部短路等故障时,整套机器将无法运行。 (2)定、变频一拖多 其中有1~2台变频压缩机或另加1台定频压缩机,电路上有射频干扰,对电脑有影响。检修孔新风引入吊顶与冷凝水与多联机相同;对氟管的分支器要求设计合理;对上,下层共用1台机器,管路要求更高;较易在全开启时出现末端内机效果太差的情况。 ☆冷热水机 定频冷热水机或变频冷热水机 大型中央空调的缩小,冷凝器由水冷变成风冷;用水泵将冷热水送至风机盘管。引入新风、检修孔、吊顶冷凝水排放、噪声指标与多联机相同。但又增加了冷热水管;由于温度差很大,密封问题突出,出现漏水对装潢的破坏较大。另外大型中央空调蒸发器都定时清理和酸洗;家用冷热水机对此还无良策,长期使用冷热交换器的效率将大打折扣。如能与中央水处理系统相结合,可克服上述难点。 单独房间使用空调,其它房间风机盘管有冷热水管流过,也会产生能耗;现较流行采用电磁水阀来关闭水路;除去造价上的因素外;还会使局部水流速过高,产生噪声的问题。 二. 户式中央空调的工作原理 1.冷(热)水机组的基本工作过程是:室外的制冷机组对冷(热)媒水进行制冷降温(或加热升温),然后由水泵将降温后的冷媒(热)水输送到安装在室内的风机盘管机组中,由风机盘管机组采取就地回风的方式与室内空气进行热交换实现对室内空气处理的目的。

空调水系统工作原理

空调水系统工作原理 与一般空调一样,有四大部件,压缩机,冷凝器,节流装置,蒸发器,制冷剂依次在上述四大部件循环,压缩机出来的冷媒(制冷剂)高温高压的气体,流经冷凝器,降温降压,冷凝器通过冷却水系统将热量带到冷却塔排出,冷媒继续流动经过节流装置,成低温低压液体,流经蒸发器,吸热,再经压缩。在蒸发器的两端接有冷冻水循环系统,制冷剂在此次吸的热量将冷冻水温度降低,使低温的水流到用户端,再经过见机盘管进行热交换,将冷风吹出。 这里有三个系统,你弄明白,基本就明白的了。一个是制冷剂的循环系统,一个是冷却水系统的,一个是冷冻水系统的。冷却水系统就是接冷却塔的,将热量带到外界的,冷冻水系统就是连接用户与蒸发器的,将末端的热量带到蒸发器。冷水机,的水在这里相当于一种载冷剂,担当中间角色运送热量,本身的制冷在于制冷剂循环系统。中央空调水系统的工作原理及组成中央空调水系统的 输送介质通常使用水为载冷剂,氟利昂为制冷剂。主要是由室外主机、管道系统、室内末端(风盘)、控制开关等组成。家庭用的管道系统通常采用P P-R管和铜管,商用中央空调管道系统通常采用镀锌钢管,保温采用3-5公分橡塑保温,确保管道表面无冷凝现象。 它主要通过室外主机的热交换产生冷热源,管道 中的冷、热水通过水泵压力输送到室内空间的各个末端装置,冷热水通过风盘中的翅片与室内空气进行热

量交换,产生冷、热风,从而对整个室内空间进行温度调节。室内的风机盘管可以对房间的温度和风速 进行调节,可以达到每个房间自由开关,从而达到省电的功能,在大的制药厂、电子工厂、医院等特定场所对室内的空气调节的要求将更高,往往将使用大的末端设备,如空调箱、新风处理机等、通过这些大型多功能的末端设备对室内进行制冷、制热、新风处理、恒温恒湿处理等,从而使室内的空气达到更高的要求。 对于大型的中央空调的系统组成更加复杂,往往 需要专用的空调库房、专门的维护人员、而家用和小型的商用相比就简单方便、业主往往通过厂家技术人员指导一到两次就可以自行熟练的使用、充分的体现中央空调人性化控制系统给人类所带来的方便、快捷、舒适的享受。

空调水系统的设计原则

空调水系统的设计原则 水系统 1、空调水系统的设计原则 l 空调水系统设计应坚持的设计原则是: l ★力求水力平衡; l ★防止大流量小温差; l ★水输送系数要符合规范要求; l ★变流量系统宜采用变频调节; l ★要处理好水系统的膨胀与排气; l ★要解决好水处理与水过滤; l 要注意管网的保冷与保暖效果。 ⑴、水系统设计应力求各环路的水力平衡 l a、技术要求 l 空调供冷、供暖水系统的设计,应符合各个环路之间的水力平衡要求。对压差相差悬殊的高阻力环路,应设置二次循环泵。各环路应设置平衡阀或分流三通等平衡装置。如管道竖井面积允许时,应尽量采用管道竖向同程式。 (2)防止大流量小温差 l a、造成大流量小温差的原因 l ★设计水流量一般是根据最大的设计冷负荷(或热负荷)再按5℃(或10℃)供回水温差确定的,而实际上出现最大设计冷负荷(或热负荷)的时间,即按满负荷运行的时间仅很短的时间,绝大部分时间是在部分负荷下运行。

l ★水泵扬程一般是根据最远环路、最大阻力,再乘以一定的安全系数后确定的,然后结合上述的设计流量,查找与其一致的水泵铭牌参数而确定水泵型号,而不是根据水泵特性曲线确定水泵型号。因此,在实际水泵运行中,水泵实际工作点是在铭牌工作点的右下侧,故实际水流量要比设计水流量大20%-50%。 l★在较大的水系统设计中,设计计算时常常没有对每个环路进行水力平衡校核,对于压差相差悬殊的环路,多数也不设置平衡阀等平衡装置,施工安装完毕之后又不进行任何调试,环路之间的阻力不平衡所引起的水力工况、热力工况失调象现只好*大流量来掩盖。 l la、避免大流量小温差的方法 l★考虑到设计时难以做到各环路之间的严格水力平衡,以及施工安装过程中存在的种种不确定因素,在各环路中应设置平衡阀等平衡装置,以确保在实际运行中,各环路之间达到较好的水力平衡。 l当遇到某个或几个支环路比其它环路压差相差悬殊(如阻力差100kPa以上),就应在这些环路增设二次循环泵。 ⑶、水系统的膨胀、补水、排水与排气 l a、水系统的膨胀 封闭空调冷冻水系统,应在高于回水管路最高点1-2m处设膨胀水箱。膨胀水箱一般可选标准水箱(T905(一),其容积范围为-4.0m3.膨胀水箱设有膨胀管、补水管、溢水管和泄水管,并应设有水位控制仪表或浮球阀。 la、水系统的补水与排水 l 水系统的注水与补水均应通过膨胀水箱来实现。因此,应将膨胀管单独与制冷站中的回水总管(或集水器)相接,这样在系统安装调试时的新注水或在平时运转中的补充水,均可通过膨胀水箱注水。使整个水系统的注水从位置较低的回水总管(或集水器)由低向高进行,从而将管路系统中的空气由下往上通过排气阀和膨胀水箱排除。许多工程安装为图省工省料,将膨胀水箱的膨胀管就近与较高处的回水管相接,致使系统中的空气难以排除而招致供水压力长时间不稳定。

大型中央空调工作原理及系统结构图

本资料由常州好彩中央空调大卖场友情提供 大型中央空调工作原理及系统结构图 来源:中国节能产业网时间:2009-8-20 10:13:54 中央空调系统主要由制冷机、冷却水循环系统、冷冻水循环系统、风机盘管系统和冷却塔组成。各部分的作用及工作原理如下: 制冷机通过压缩机将制冷剂压缩成液态后送蒸发器中与冷冻水进行热交换,将冷冻水制冷,冷冻泵将冷冻水送到各风机风口的冷却盘管中,由风机吹送达到降温的目的。经蒸发后的制冷剂在冷凝器中释放出热量成气态,冷却泵将冷却水送到冷却塔上由水塔风机对其进行喷淋冷却,与大气之间进行热交换,将热量散发到大气中去。 中央空调系统部分组成: 冷冻水循环系统 该部分由冷冻泵、室内风机及冷冻水管道等组成。从主机蒸发器流出的低温冷冻水由冷冻泵加压送入冷冻水管道(出水),进入室内进行热交换,带走房间内的热量,最后回到主机蒸发器(回水)。室内风机用于将空气吹过冷冻水管道,降低空气温度,加

速室内热交换。 冷却水循环部分 该部分由冷却泵、冷却水管道、冷却水塔及冷凝器等组成。冷冻水循环系统进行室内热交换的同时,必将带走室内大量的热能。该热能通过主机内的冷媒传递给冷却水,使冷却水温度升高。冷却泵将升温后的冷却水压入冷却水塔(出水),使之与大气进行热交换,降低温度后再送回主机冷凝器(回水)。 主机 主机部分由压缩机、蒸发器、冷凝器及冷媒(制冷剂)等组成,其工作循环过程如下: 首先低压气态冷媒被压缩机加压进入冷凝器并逐渐冷凝成高压液体。在冷凝过程中冷媒会释放出大量热能,这部分热能被冷凝器中的冷却水吸收并送到室外的冷却塔上,最终释放到大气中去。随后冷凝器中的高压液态冷媒在流经蒸发器前的节流降压装置时,因为压力的突变而气化,形成气液混合物进入蒸发器。冷媒在蒸发器中不断气化,同时会吸收冷冻水中的热量使其达到较低温度。最后,蒸发器中气化后的冷媒又变成了低压气体,重新进入了压缩机,如此循环往复

中央空调水循环系统简介

中央空调系统简介 随着我国国民经济的快速增长,中央空调被广泛使用,尤其是城市的宾馆、饭店、大型商场、娱乐场所、大型写字楼、办公楼、现代化生产车间都相继安装了中央空调设备,它不仅给人们带来舒适的环境,同时也被用来调节工业生产所需环境的温度和湿度。中央空调循环水系统包括冷却水系统、冷冻水系统和采暖水系统。冷却水系统是由热交换器、冷却水泵、管道、冷却塔、贮水池组成。冷却水在冷冻机里冷却受热受压的制冷剂,温度上升至37℃左右,经水泵送至冷却塔,冷却后返回至冷冻机中循环使用。冷冻水系统是由热交换器、冷冻水泵、管道、风机盘管、膨胀水箱组成。冷冻水在冷冻机中被制冷剂冷却至7℃左右后送往风机盘管,与空气进行热交换升温至12℃左右后,再返回到冷冻机中被冷却。热媒水在热水锅炉中被加热至60℃左右后送往风机盘管,与空气进行热交换降至55℃左右后,再返回到锅炉中加热。热水和冷冻水共用一套管道系统。1.中央空调系统特点 中央空调一般承担着夏季供冷、冬季供热的任务,春季和秋季停机检修或保养,即使在正常运行期间也根据气温的变化和工作环境的需要停机。大多数企事业单位由于编制上的限制不设专门水处理技术管理人员,实行粗放式管理,因此,水处理技术和方案对这一情况应有较强的适应性,既要有良好的处理效果,又要管理简单方便,水处理成本低廉。 2.冷冻水系统特点 冷冻水系统是以水做冷媒介质和空气进行能量交换的密闭式体系,虽然与外界接触较少,但在整个体系的最高处设有膨胀水箱,这样冷冻水介质还是和空气有所接触,使溶解氧和一些营养物进入冷冻水系统,导致粘泥沉积,不仅影响传热,还可能形成氧浓差引起设备的腐蚀,经常出现黄褐色水质或黑灰色水质。因此,对于冷冻水系统水处理 的重点是控制设备的腐蚀及粘泥的产生。 3.冷却水系统特点 冷却水在循环使用过程中不断蒸发浓缩,含盐量不断上升,为了不使含盐量无限制的升高,必须排放掉一部分冷却水,同时补入新鲜水,前者称之为排污,后者称之为补水。含盐量上升后极易在热交换器的水侧形成水垢,垢的形成不仅使传热效率下降、制冷负荷增大,还会形成垢下腐蚀,造成水电浪费和缩短机组使用寿命。冷却水系统的另一特点是保有水量小,极易浓缩,如掌握不好排污量和补水量,浓缩倍数波动较大,难以保证水处理效果。因此,对于冷却水系统水处理的重点是控制结垢兼顾缓蚀。 中央空调系统为什么会有上面所讲的问题呢,主要是由于其媒介——水所造成的。 自然界中的水是怎样的? 水在自然界中大量的存在,比较容易取得,价格便宜。水的物理化学性质稳定,水的潜热大,这是水成为工业首选作为冷却介质或热载体的重要原因。但自然界中的水并非纯净的物质,因为水是很好的溶剂,当它流过岩石、矿床和土壤时,就会有很多的盐类溶入其中。空气中带入尘埃、有机物及其它们的分解产物,水中生长的物质,都将成为各种各样的杂质,溶入水中。那么,溶入水中的盐类和杂质以离子形态存在的有阳离子:Ca2+、Mg2+、Na+、Fe2+、Zn2+、 Cu2+、Mn2+、H+、NH4+等;以阴离子形态存在的有:CO 32-、HCO 3 -、Cl-、SO 4 2-、NO 3 -、HSiO 3 -、F-、 H 2PO 4 -、OH-、H 2 BO 3 -、HPO 4 2-、HCO 3 -、NO 2 -、HS-等;以气态存在于水中的有:CO 2 、O 2 、N 2 、HN 3 、 SO 2、H 2 S、CH 4 、H 2 等;以悬浮物形式存在于水中的有粘土、无机的土壤污物、有机污物、有 机废水、各种微生物;还有以胶体形式存在于水中的SiO 2、Fe 2 O 3 、Al 2 O 3 、MnO 2 、植物色素、 生长在水中的各种细菌和藻类。 人类可利用的淡水资源主要来自地表水(江河水、湖水)和地下水(井水),不同水源、不同地区、周围的不同环境和不同季节,自然界水中的各类杂质的品种和量有很大的差别。

空调水系统的设计与施工

空调水系统的设计与施工 一、设备间面积及层高与管路布置原则 随着智能建筑及建筑功能的发展,设备布置所需的空间越来越受限制了。设备间的管路管线只有认真合理的进行空间管理,才能节省空间,并避免不必要的返工。 设备层布置原则:20层以内的高层建筑:宜在上部或下部设一个设备层 30层以内的高层建筑:宜在上部和下部设两个设备层 30层以上超高层建筑:宜在上、中、下分别设设备层 生产厂房宜在其周边辅房内设空调设备,冷水机组及锅炉房等设备宜设在独立的建筑内。 设备层内管道布置原则:离地h≤2.0m布置空调设备,水泵等 h=2。5~3.0m布置冷、热水管道 h=3.6~4.6m布置空调通风管道 h>4.6m布置电线电缆 设备层层高概略: 在实际施工中往往因为机房空间不够或管线布置不合理,导致没有空调水阀组的安装位置,阀门装设过高,不便操作。 二、水泵选择与安装 在设计空调水系统时应进行必要的水力计算,根据设计流量计算出在该流量下管路的阻力,以确保选用水泵的扬程合理。在对流量和扬程乘以一定的安全裕量后,进行水泵的选择。有些设计人员未进行设计计算,认为扬程大一些保险,导致所选择的水泵不能满足要求,或者造成运行费用增加,甚至水泵不能正常工作. 一般工程项目中配置的冷水机组都在2至4台之间,对于规模很大的工程项目,甚至需要5台以上的冷水机组并联工作。制冷站内的主机与水泵的匹配一般来说是一机对一泵,以保证冷水机组的水流量及正常运行,因此,目前我国空调水系统大多为有2台或2台以上水泵并联的定流量系统或一次泵变流量系统.空调设计时,都是按最大负荷情况来进行设备选择以保证最不利情况时的需要.在循环水泵采用并联运行方式时,选择水泵一定要按管路特性与水泵并联特性曲线进行选型计算。选型时,除应注意水泵在设计工况时的性能参数外,还应关注水泵的特性曲线,尽量选择特性曲线陡的水泵并联工作.运行人员应注意工况转换时对阀门的调节. 很多空调设计都是冬夏两用的,即随着季节数外,还应关注水泵的特性曲线,尽量选择特性曲线陡的水泵并联工作。运行人员应注意工况转换时对阀门的调节。

中央空调系统原理示意图

中央空调系统原理示意图 不同类别的中央空调使用效果也不尽相同。中央空调系统主要分为中央空调氟系统、水系统以及空气系统,这三种中央空调系统示意图不同,原理也各不相同。 中央空调系统示意图-中央空调氟系统原理 中央空调氟系统示意图 中央空调氟系统以制冷剂为输送介质,采用变制冷剂流量技术,室外主机由室外侧换热器、压缩机和其他制冷附件组成,室内机由直接蒸发式换热器和风机组成。一台室外机通过管路能够向若干个室内机输送制冷剂液体。通过控制压缩机的制冷剂循环量和进入室内各换热器的制冷剂流量,可以适时地满足室内冷、热负荷要求。 中央空调系统示意图-中央空调水系统原理

中央空调水系统示意图 中央空调水系统实际上就是小型的风冷冷水机组加风机盘管系统。水系统机组的输送介质通常为水或者乙二醇溶液,它通过室外主机产生出空调冷/热水,由管路系统输送至室内机,它是一种集中产生冷/热量,分散处理个房间负荷的空调系统形式,水系统机组的末端装置通常为风机盘管。该系统在大型中央空调系统里面使用最广。 中央空调系统示意图-中央空调空气系统原理 中央空调空气系统示意图 中央空调空气系统是以空气为输送介质。其原理与大型全空气中央空调系统的原理基本相同。供冷时,室外的制冷机组吸收来自室内机组的制冷剂蒸气经压缩、冷凝后向各室内机组输送液体制冷剂。供热时,室外的制冷机组吸收来自冷凝器的制冷剂蒸气经压缩后向各室内机组输送汽体制冷剂,室内机组通过布置在天花板上的回风口将空气吸入,进行热交换后送入安装在室内各房间天花板中的风管(道)内,并通过出风口上的散流器向室内各房间输送空气。 本文由舒适100网编辑部整理发布

水冷式中央空调工作原理

水冷式中央空调工作原理 家用中央空调的分类 中央空调是集中处理空调负荷的系统型式,其冷/热量是通过一定的介质输送到空调房间里去的。按照家用小型中央空调的输送介质的不同,常见的家用小型中央空调可以分成以下三种主要型式。 1、风管式系统 风管式系统以空气为输送介质,其原理与大型全空气中央空调系统的原理基本相同。它利用室外主机集中产生冷/热量,将从室内引回的回风(或回风和新风的混风)进行冷却伽热处理后,再送人室内消除其空调冷/热负荷。 相对于其它的家用小型中央空调型式,风管式系统初投资较小。如若引人新风,其空气品质能得到较大的改善。但风管式系统的空气输配系统所占用建筑物空间较大,一般要求住宅要有较大的层高。而且它采用统一送风的方式,在没有变风量末端的情况下,难以满足不同房间不同的空调负荷要求。而变风量末端的引人将会使整个空调系统的初投资大大增加。 2、冷/热水机组 冷/热水机组的输送介质通常为水或乙二醇溶液。它通过室外主机产生出空调冷/热水,由管路系统输送至室内的各末端装置,在末端装置处冷/热水与室内空气进行热量交换,产生出冷/热风,从而消除房间空调负荷。它是一种集中产生冷/热量,但分散处理各房间负荷的空调系统型式。 该系统的室内末端装置通常为风机盘管。目前风机盘管一般均可以调节其风机转速 3、VRV系统 变制冷剂流量(Varied Refrigerant Volume,简称VRV)空调系统是一种冷剂式空调系统,它以制冷剂为输送介质,室外主机由室外侧换热器、压缩机和其他制冷附件组成,末端装置是由直接蒸发式换热器和风机组成的室内机。一台室外机通过管路能够向若干个室内机输送制冷剂液体。通过控制压缩机的制冷剂循环量和进入室内各换热器的制冷剂流量,可以适时地满足室内冷、热负荷要求VRV系统具有节能、舒适、运转平稳等诸多优点,而且各房间可独立调节,能满足不同房间不同空调负荷的需求。但该系统控制复杂,对管材材质、制造工艺、现场焊接等方面要求非常高,且其初投资比较高。 除了风管式系统、冷/热水机组、VRV系统这三种基本的系统型式以外,还可以互相交叉,衍生出一些新型的系统。例如,将冷/热水机组和风管式系统进行组合,往室内送冷热水处理房间空调负荷,而新风统一由室外机处理后分别送人各个房间。 此外,在燃气利用便利的地区,冬季由燃气炉提供热量的方式使用得也较多。燃气炉可以集成在家用小型中央空调系统里,也可以单独设置。

空调水系统的设计原则

, 空调水系统的设计原则 水系统 1、空调水系统的设计原则 l 空调水系统设计应坚持的设计原则是: l ★力求水力平衡; l ★防止大流量小温差; l ★水输送系数要符合规范要求; l ★变流量系统宜采用变频调节; ( l ★要处理好水系统的膨胀与排气; l ★要解决好水处理与水过滤; l 要注意管网的保冷与保暖效果。 ⑴、水系统设计应力求各环路的水力平衡 l a、技术要求 l 空调供冷、供暖水系统的设计,应符合各个环路之间的水力平衡要求。对压差相差悬殊的高阻力环路,应设置二次循环泵。各环路应设置平衡阀或分流三通等平衡装置。如管道竖井面积允许时,应尽量采用管道竖向同程式。 (2)防止大流量小温差 l a、造成大流量小温差的原因 … l ★设计水流量一般是根据最大的设计冷负荷(或热负荷)再按5℃(或10℃)供回水温差确定的,而实际上出现最大设计冷负荷(或热负荷)的时间,即按满负荷运行的时间仅很短的时间,绝大部分时间是在部分负荷下运行。 l ★水泵扬程一般是根据最远环路、最大阻力,再乘以一定的安全系数后确定的,然后结合上述的设计流量,查找与其一致的水泵铭牌参数而确定水泵型号,而

不是根据水泵特性曲线确定水泵型号。因此,在实际水泵运行中,水泵实际工作点是在铭牌工作点的右下侧,故实际水流量要比设计水流量大20%-50%。 l★在较大的水系统设计中,设计计算时常常没有对每个环路进行水力平衡校核,对于压差相差悬殊的环路,多数也不设置平衡阀等平衡装置,施工安装完毕之后又不进行任何调试,环路之间的阻力不平衡所引起的水力工况、热力工况失调象现只好*大流量来掩盖。 l la、避免大流量小温差的方法 l★考虑到设计时难以做到各环路之间的严格水力平衡,以及施工安装过程中存在的种种不确定因素,在各环路中应设置平衡阀等平衡装置,以确保在实际运行中,各环路之间达到较好的水力平衡。 l当遇到某个或几个支环路比其它环路压差相差悬殊(如阻力差100kPa以上),就应在这些环路增设二次循环泵。 ⑶、水系统的膨胀、补水、排水与排气 ! l a、水系统的膨胀 封闭空调冷冻水系统,应在高于回水管路最高点1-2m处设膨胀水箱。膨胀水箱一般可选标准水箱(T905(一),其容积范围为-4.0m3.膨胀水箱设有膨胀管、补水管、溢水管和泄水管,并应设有水位控制仪表或浮球阀。 la、水系统的补水与排水 l 水系统的注水与补水均应通过膨胀水箱来实现。因此,应将膨胀管单独与制冷站中的回水总管(或集水器)相接,这样在系统安装调试时的新注水或在平时运转中的补充水,均可通过膨胀水箱注水。使整个水系统的注水从位置较低的回水总管(或集水器)由低向高进行,从而将管路系统中的空气由下往上通过排气阀和膨胀水箱排除。许多工程安装为图省工省料,将膨胀水箱的膨胀管就近与较高处的回水管相接,致使系统中的空气难以排除而招致供水压力长时间不稳定。 l水系统的排水阀应设在系统的最低点(集水器或制冷机水管路最低点),以便检修时能将管路系统中的水全部排除。 la、水系统的排气 l安装在每层建筑物的风机盘管、新风机组回水管路末端最高点,均应装设自动排气阀。如支环路较长而使管路转弯较多时,或某些水管为躲避消防管、新风管和装设在吊顶内的较大断面电缆等而有上下转弯时,均应在转弯的最高点设置自动排气阀。旅馆水系统

空调系统分类及原理

空调系统分类及原理 一幢建筑的空调系统通常包括以下设备及其附件: 冷、热源设备——提供空调用冷、热源;冷、热介质输送设备及管道——把冷、热介质输送到使用场所;空气处理设备及输送设备及管道——对空气进行处理并运送至需空气调节的房间;温、湿度等参数的控制设备及元器件。根据以上设备的情况,可对空调系统进行一系列的分类。 一、按照处理空气所采用的冷、热介质来分类 ㈠央空调系统 通过冷、热源设备提供满足要求的冷、热水并由水泵输送至各个空气处理设备中与空气进行交换后,把处理后的空气送至空气调节房间。简单的说,中央空调系统就是冷热源集中处理空调调节系统。 ㈡散式系统 实际上已经不是空调设计中“系统”的概念,它是把冷热源设备、空气处理及起输送设备组合一体,直接设于空气调节房间。其典型的例子就是直接蒸发式空调机组,如分体式空调机。 ㈢他空调系统 既有中央空调的某些特点,又有分散式空调的某些特点,变冷媒流量空调系统和水源热泵系统等。 二、按冷、热介质的到达位置来分类 这里所提到的冷、热源介质,是指为空气处理所提供的冷、热源的种类而不包括被处理的空气本身。 ㈠全空气系统

冷、热介质不进入被空调房间而只进入空调机房,被空气调节房间的冷、热量全部由经过处理的冷、热空气负担,被空气调节房间只有风道存在。典型的例子是目前所常见的确一、二次回风空调系统。 ㈡气-水系统 空气与作为冷、热介质的水同时送进被空气调节房间,空气解决房间的通风换气或提供满足房间最小卫生要求的新风量,水则通过房间的小型空气处理设备而承担房间的冷、热量及湿负荷。 (三)接蒸发式系统 利用冷媒直接与空气进行一次热交换,将使得在输送同样冷(热)量至同一地点时所用的能耗更少一些。其作用围比中央空调系统小的多。 空调系统分类 一.中央空调概念 空气调节,简称空调,就是把经过一定处理后的空气,以一定的方式送入室,使室空气的温度、湿度、清洁度和流动速度等控制在适当的围以满足生活舒适和生产工艺需要的一种专门技术。中央空调系统是由一台主机(或一套制冷系统或供风系统)通过风道送风或冷热水源带动多个未端的方式来达到室空气调节的目的的空调系统。 二.空调系统分类 空调根据不同的分类标准,可以分为如下几类: (一)按输送工作介质分类 1.全空气式空调系统

酒店中央空调水系统构成及原理

酒店中央空调水系统构成及原理 中央空调循环水系统构成如图1所示: 空调水系统主要是由制冷机组、冷冻水泵、冷却水泵、冷却塔等组成的一个系统。 该系统的工作原理是制冷剂在制冷机组的蒸发器中汽化吸收冷冻水的热量,从而使载冷剂一冷冻水的温度降低,然后,在蒸发器内被汽化的制冷剂经制冷机组的压缩机时被压缩成高压高温的气体,当高温高压的制冷剂流经冷凝器时被来自冷却塔的冷却水冷却变成低温高压的气体,低温高压的制冷剂通过膨胀阀后重新变成了低温低压的液体,而后再在蒸发器内气化,完成一次循环。 通过不断的循环,载冷剂不断地输送冷量到空气处理单元,同时,制冷机组产生的热量不断的被冷却水所带走,在流经冷却塔时散发到空气中,冷却塔上装有风机,对流经冷却塔的水进行降温。中央空调制热时,冷却水系统停止运行,空调机组直接对冷冻水进行加热,目前主要有电加热和燃气燃烧加热。经过加热后的水通过管道流至各个房间,风机把进风口吸进的凉空气通过热管加热在通过出风口排出,此时一吹出的便是热风,达到了制热的目的。同时变冷的水流进机组,再一次被加热,然后采暖泵迫使热水再一次流入房间管道,如此形成循环。 实际中央空调应用中,由于其冷冻水和热水用一套水循环管道,所以在设计水泵时,有些设计只有两种水循环系统,即冷却水循环和冷冻水循环,此时水泵也就只有冷冻水泵和冷却水泵,夏季两种水泵均工作,而到了冬季,关闭冷却水泵,只有冷冻水泵工作。但是由于夏季的制冷量很大,所以冷冻水的流量同时也很大,因此冷冻水泵的功率设计比较大,是按最大制冷量加余量而设计。冬季时,制热量相

对较小,不需要很大的制热量,自然需要的热水循环量也就较小,如果还用冷冻水泵就会造成很大的浪费。因此有些中央空调设计时,会单独设计一个热水循环系统,它通过节流阀连接到冷冻水管道上,夏季时,关闭节流阀,使冷冻水使用循环管道,冬季时,关闭冷冻水的节流阀,打开热水节流阀,使热水使用循环管道。这样的话,热水的水泵功率就可以根据制热量加余量来设计,不会造成很大的浪费。考虑到第二种现象在目前的中央空调应用中比较常见,因此本水系统控制系统针对第二种情况设计。对于冷冻/热水系统,其出水温度取决于蒸发器的设定值,回水温度取决于大厦的热负荷。现采用蒸发器的出水管和回水管路上装有检测其温度的变送器,通过冷冻水的温差控制,即可使冷冻水泵的转速相应于热负载的变化而变化。参考目前中央空调机组设计和运行的实际情况,冷冻温差为5一7℃时最为合理。冬季的时候,由于进水温度低,出水温度高,所以温差为负值。对于冷却水系统,由于低温冷却水(冷凝器进水)温度取决于环境温度与冷却塔的工况,只需控制高温冷却水(冷凝器出水)的温度,即可控制温差。 采用在冷却水出水管安装温度变送器,通过控制冷凝器出水温度,便可使冷却水泵的转速相应于热负载的变化而变化,参考目前中央空调机组设计和运行的实际情况,冷却水出水温度为37℃左右时最为合理。中央空调机组在设计时,对于冷冻和冷却水的流量有一个最小值,即机组在运行时,流量不能小于这个值,这是因为如果流量过小,可能会发生机组冻管,损坏中央空调机组。因此,我们在根据温度和温差对水泵转速进行调节时,必须要保证空调机组正常运行所需要的最小流量。如果我们要检测冷冻水和冷却水的流量,应该安装流量传感器,但是流量传感器一般采用法兰安装,串接在水管上,安装复杂并且价格昂贵。考虑到水的流量和其压力有一定的线性关系,在实际检测流量中,一般安装压力传感器,通过测量压力值来计算出流量值。压力传感器安装方便,一般为螺纹安装,并且价格适中。控制策略如图2所示:

中央空调系统制冷原理介绍

制冷原理图 中央空调制冷原理图

空调系统通过三个循环把室内的热量传到室外:冷冻水循环,制冷剂循环,冷却水循环。 制冷主机: 制冷主机通过压缩机让制冷剂迅速冷冻循环水,冷冻循环水的温度快速降低(一般经过制冷主机制冷后的水温在7℃左右),这是中央空调冷源提供的地方,通过制冷主机冷冻的冷冻水由冷冻水泵送入空调房间。 冷冻水泵: 冷冻水带走制冷剂的冷量后,再到空调系统末端(如风机盘管,空调机组)与空气换热,温度升高后再回到冷水机组内带走制冷剂冷量,这样构成冷冻水循环系统,在这个系统上的泵称为冷冻水泵。 冷却水泵: 制冷剂在冷水机组里循环,经过压缩机使温度升高,这时用水将温度降下来,这部分水称为冷却水,冷却水通过冷冷却水泵把制冷主机所产生的热量带走,再经过冷却塔把热量释放到空气中,然后回到冷水机组,这样构成一个冷却水循环系统,在这个系统上的泵是冷却水泵。 冷却塔: 通过冷却水泵将温度较高的水送上冷却塔,通过冷却塔喷头,让水自上而下流动,一方面,通过自然空气带走水中热量;另一方面,通过冷却风机带动空气加速运动,通过空气带走热量的同时加快蒸发,让水温降低。温度降低后的冷却水再次循环进入制冷主机,带走制冷主机产生的废热,如此循环。 风机盘管: 风机盘管空调系统是将由风机和盘管组成的机组直接放在房间内,工作时盘管内根据需要流动热水或冷水,风机把室内空气吸进机组,经过过滤后再经盘管冷却或加热后送回室内,如此循环以达到调节室内温度和湿度的目的。 中央空调水系统的工作原理 与一般空调一样,有四大部件,压缩机,冷凝器,节流装置,蒸发器,制冷剂依次在上述四大部件循环,压缩机出来的冷媒(制冷剂)高温高压的气体,流经冷凝器,降温降压,冷凝器通过冷却水系统将热量带到冷却塔排出,冷媒继续流动经过节流装

中央空调原理简介

中央空调原理简介 中央空调原理包括:一、中央空调制冷原理:有压缩式、吸收式等,这里不再细述;二、中央空调系统原理:有风系统工作原理、水系统工作原理、盘管系统工作原理等,简单介绍如下: 1、中央空调原理的新风系统工作: 室外的新鲜空气受到风处理机的吸引进入风柜,并经过过滤降温除湿后由风道送入每个房间,这时的新风不能满足室内的热湿负荷,仅能满足室内所需的新风量,随着室内风机盘管处理室内空气热湿负荷的同时,多余出来的空气通过回风机按阀门的开启比例一部分排出室外,一部分返回到进风口处以便再次循环利用。如图: 2、中央空调原理的盘管系统工作: 室内的风机盘管工作时吸入一部分由风柜处理后的新风,再吸入一部分室内未处理的空气经过工艺处理后,由风口送出能够吸收室内余热余湿的冷空气,使室内温度湿度达到所需要的标准,如此循环工作。如图: 3、中央空调原理的风管积尘原因:

室外空气经中央空调处理时,由于大多数粗精效过滤网仅能过滤3um 以上的悬浮颗粒物,其微细颗粒物则随风直接进入风管,而风管内表面实际粗糙度远远高于微细颗粒物的大小,因此,这些微细的颗粒物随着空气与风管内壁相互碰撞摩擦产生静电吸附越积越多,从而导致风管内壁的粗糙度越来越大,灰尘粘附加速进行,如此长年累月形成较厚积尘。如图: 页次:1/1 1篇/页首页上一页下一页尾页合计1篇 风机盘管 我公司供应的变风量新风机组风机盘管外形美观,性能良好,已达到国内一流水平,可以取代进口同类产品。风机盘管空调器主要由风机、热交换器(盘管)、凝水盘、壳体及控制器组成。风机盘管品种齐全、性能优越,用途广泛。风机盘管用于要求噪声小,温度调节灵活的各种宾馆、公寓、饭店、医院、商业大楼等处。 电工中高级题库 五级工(两份,运行、电修各一份) 一、填空 1、对修理后的直流电机进行空载试验,其目的在于检查各机械运转部分是否正常,有无过热、声音、振动现象。 2、直流测速发电机接励磁方式可分为他励式永励与式。 3、整台电机一次更换半数以上的电刷之后,最好先以 1/4~1/2 的额定负载运行 12h 以上,使电刷有较好配合之后再满载运行。 4、同步电机的转速与交流电频率之间保持严格不变的关系,这是同步电机与异步电机的基本差别之一。 5、凸极式同步电动机的转子由转轴、磁轭和磁极组成。 6、对电焊变压器内电抗中的气隙进行调节,可以获得不同的焊接电流。当气隙增大时,电抗器的电抗减小,电焊工作电流增大,当气隙减小时,电器的电抗增大,电焊工作电流减小。 7、异步电动机做空载试验时,时间不小于 1min 。试验时应测量绕组是否过热或发热不均匀,并要检

相关文档
相关文档 最新文档