文档库 最新最全的文档下载
当前位置:文档库 › 爆炸和火灾危险环境装置电力设计规范GB50058-2014

爆炸和火灾危险环境装置电力设计规范GB50058-2014

爆炸和火灾危险环境装置电力设计规范GB50058-2014
爆炸和火灾危险环境装置电力设计规范GB50058-2014

爆炸危险环境电力装置设计规范(GB 50058-2014)

Code for design of electrical installations in explosive atmospheres

主编部门:中国工程建设标准化协会化工分会

批准部门:中华人民共和国住房和城乡建设部

施行日期:2014年10月1日

中华人民共和国住房和城乡建设部公告

第319号

住房城乡建设部关于发布国家标准《爆炸危险环境电力装置设计规范》的公告

现批准《爆炸危险环境电力装置设计规范》为国家标准,编号为GB 50058-2014,自2014年10月1日起实施。其中,第5.2.2(1)、5.5.1条(款)为强制性条文,必须严格执行。原《爆炸和火灾危险环境电力装置设计规范》GB 50058-92同时废止。

本规范由我部标准定额研究所组织中国计划出版社出版发行。

中华人民共和国住房和城乡建设部

2014年1月29日

前言

本规范是根据原建设部《关于印发<2004年工程建设国家标准制订、修订计划>的通知》(建标[2004]67号)的要求,由中国寰球工程公司会同有关单位共同修订而成。

本规范修订的主要内容有:总则、爆炸性气体环境、爆炸性粉尘环境、危险区域的划分,设备的选择等。主要修订下列内容:

1.规范名称的修订,即将《爆炸和火灾危险环境电力装置设计规范》改为《爆炸危险环境电力装置设计规范》;

2.将“名词解释”改为“术语”,作了部分修订并放入正文;

3.将原第四章“火灾危险环境”删除;

4.将例图从原规范正文中删除,改为附录并增加了部分内容;

5.增加了增安型设备在1区中使用的规定;

6.爆炸性粉尘危险场所的划分由原来的两种区域“10区、11区”改为三种区域“20区、21区、22区”;

7.增加了爆炸性粉尘的分组:ⅢA、ⅢB和ⅢC组;

8.将原规范正文中“爆炸性气体环境的电力装置”和“爆炸性粉尘环境的电力装置”合并为第5章“爆炸性环境的电力装置设计”;

9.增加了设备保护级别(EPL)的概念;

10.增加了光辐射式设备和传输系统防爆结构类型。

在修订过程中,规范组进行了广泛的调查研究,认真总结了规范执行以来的经验,吸取了部分科研成果,借鉴了相关的国际标准及发达工业国家的相关标准,广泛征求了全国有关单位的意见,对其中主要问题进行了多次讨论、协调,最后经审查定稿。本规范删除了原规范中关于火灾危险环境的内容,对于火灾危险环境的电气设计,执行国家其他专门的设计规范。本规范共分5章和5个附录,主要内容包括总则,术语,爆炸性气体环境,爆炸性粉尘环境,爆炸性环境的电力装置设计等。

本规范以黑体字标志的条文为强制性条文,必须严格执行。

本规范由住房和城乡建设部负责管理和对强制性条文的解释,由中国工程建设标准化协会化工分会负责日常管理,由中国寰球工程公司负责具体技术内容的解释。本规范在执行过程中如发现需要修改或补充之处,请将意见、建议和有关资料寄送中国寰球工程公司(地址:北京市朝阳区樱花园东街7号,邮政编码:100029),以便今后修订时参考。

1 总则

1.0.1 为了规范爆炸危险环境电力装置的设计,使爆炸危险环境电力装置设计贯彻预防为主的方针,保障人身和财产的安全,因地制宜地采取防范措施,制定本规范。

1.0.2 本规范适用于在生产、加工、处理、转运或贮存过程中出现或可能出现爆炸危险环境的新建、扩建和改建工程的爆炸危险区域划分及电力装置设计。

本规范不适用于下列环境:

1 矿井井下;

2 制造、使用或贮存火药、炸药和起爆药、引信及火工品生产等的环境;

3 利用电能进行生产并与生产工艺过程直接关联的电解、电镀等电力装置区域;

4 使用强氧化剂以及不用外来点火源就能自行起火的物质的环境;

5 水、陆、空交通运输工具及海上和陆地油井平台;

6 以加味天然气作燃料进行采暖、空调、烹饪、洗衣以及类似的管线系统;

7 医疗室内;

8 灾难性事故。

1.0.3 本规范不考虑间接危害对于爆炸危险区域划分及相关电力装置设计的影响。1.0.4 爆炸危险区域的划分应由负责生产工艺加工介质性能、设备和工艺性能的专业人员和安全、电气专业的工程技术人员共同商议完成。

1.0.5 爆炸危险环境的电力装置设计除应符合本规范外,尚应符合国家现行有关标准的规定。

2 术语

2.0.1 闪点flash point

在标准条件下,使液体变成蒸气的数量能够形成可燃性气体或空气混合物的最低液体温度。

2.0.2 引燃温度ignition temperature

可燃性气体或蒸气与空气形成的混合物,在规定条件下被热表面引燃的最低温度。2.0.3 环境温度ambient temperature

指所划区域内历年最热月平均最高温度。

2.0.4 可燃性物质flammable material

指物质本身是可燃性的,能够产生可燃性气体、蒸气或薄雾。

2.0.5 可燃性气体或蒸气flammable gas or vapor

以一定比例与空气混合后,将会形成爆炸性气体环境的气体或蒸气。

2.0.6 可燃液体flammable liquid

在可预见的使用条件下能产生可燃蒸气或薄雾的液体。

2.0.7 可燃薄雾flammable mist

在空气中挥发能形成爆炸性环境的可燃性液体微滴。

2.0.8 爆炸性气体混合物explosive gas mixture

在大气条件下,气体、蒸气、薄雾状的可燃物质与空气的混合物,引燃后燃烧将在全范围内传播。

2.0.9 高挥发性液体highly volatile liquid

高挥发性液体是指在37.8℃的条件下,蒸气绝压超过276kPa的液体,这些液体包括丁烷、乙烷、乙烯、丙烷、丙烯等液体,液化天然气,天然气凝液及它们的混合物。2.0.10 爆炸性气体环境explosive gas atmosphere

在大气条件下,气体或蒸气可燃物质与空气的混合物引燃后,能够保持燃烧自行传播的环境。

2.0.11 爆炸极限explosive limit

1 爆炸下限(LEL) lower explosive limit

可燃气体、蒸气或薄雾在空气中形成爆炸性气体混合物的最低浓度。空气中的可燃性气体或蒸气的浓度低于该浓度,则气体环境就不能形成爆炸。

2 爆炸上限(UEL) upper explosive limit

可燃气体、蒸气或薄雾在空气中形成爆炸性气体混合物的最高浓度。空气中的可燃性气体或蒸气的浓度高于该浓度,则气体环境就不能形成爆炸。

2.0.12 爆炸危险区域hazardous area

爆炸性混合物出现的或预期可能出现的数量达到足以要求对电气设备的结构、安装和使用采取预防措施的区域。

2.0.13 非爆炸危险区域non-hazardous area

爆炸性混合物出现的数量不足以要求对电气设备的结构、安装和使用采取预防措施的区域。

2.0.14 区zone

爆炸危险区域的全部或一部分。按照爆炸性混合物出现的频率和持续时间可分为不同危险程度的若干区。

2.0.15 释放源source of release

可释放出能形成爆炸性混合物的物质所在的部位或地点。

2.0.16 自然通风环境natural ventilation atmosphere

由于天然风力或温差的作用能使新鲜空气置换原有混合物的区域。

2.0.17 机械通风环境artificial ventilation atmosphere

用风扇、排风机等装置使新鲜空气置换原有混合物的区域。

2.0.18 正常运行normal operation

指设备在其设计参数范围内的运行状况。

2.0.19 粉尘dust

在大气中依其自身重量可沉淀下来,但也可持续悬浮在空气中一段时间的固体微小颗粒,包括纤维和飞絮及现行国家标准《袋式除尘器技术要求》GB/T 6719中定义的粉尘和细颗粒。

2.0.20 可燃性粉尘combustible dust

在空气中能燃烧或无焰燃烧并在大气压和正常温度下能与空气形成爆炸性混合物的粉尘、纤维或飞絮。

2.0.21 可燃性飞絮conductive flyings

标称尺寸大于500μm,可悬浮在空气中,也可依靠自身重量沉淀下来的包括纤维在内的固体颗粒。

2.0.22 导电性粉尘conductive dust

电阻率等于或小于1×103Ω·m的粉尘。

2.0.23 非导电性粉尘non-conductive dust

电阻率大于1×103Ω·m的粉尘。

2.0.24 爆炸性粉尘环境explosive dust atmosphere

在大气环境条件下,可燃性粉尘与空气形成的混合物被点燃后,能够保持燃烧自行传播的环境。

2.0.25 重于空气的气体或蒸气heavier-than-air gases or vapors

相对密度大于1.2的气体或蒸气。

2.0.26 轻于空气的气体或蒸气lighter-than-air gases or va-pors

相对密度小于0.8的气体或蒸气。

2.0.27 粉尘层的引燃温度ignition temperature of dust layer

规定厚度的粉尘层在热表面上发生引燃的热表面的最低温度。

2.0.28 粉尘云的引燃温度ignition temperature of dust cloud

炉内空气中所含粉尘云发生点燃时炉子内壁的最低温度。

2.0.29 爆炸性环境explosive atmospheres

在大气条件下,气体、蒸气、粉尘、薄雾、纤维或飞絮的形式与空气形成的混合物引燃后,能够保持燃烧自行传播的环境。

2.0.30 设备保护级别(EPL) equipment protection level

根据设备成为引燃源的可能性和爆炸性气体环境及爆炸性粉尘环境所具有的不同特征而对设备规定的保护级别。

3 爆炸性气体环境

3.1 一般规定

3.1.1 在生产、加工、处理、转运或贮存过程中出现或可能出现下列爆炸性气体混合物环境之一时,应进行爆炸性气体环境的电力装置设计:

1 在大气条件下,可燃气体与空气混合形成爆炸性气体混合物;

2 闪点低于或等于环境温度的可燃液体的蒸气或薄雾与空气混合形成爆炸性气体混合物;

3 在物料操作温度高于可燃液体闪点的情况下,当可燃液体有可能泄漏时,可燃液体的蒸气或薄雾与空气混合形成爆炸性气体混合物。

3.1.2 在爆炸性气体环境中发生爆炸应符合下列条件:

1 存在可燃气体、可燃液体的蒸气或薄雾,浓度在爆炸极限以内;

2 存在足以点燃爆炸性气体混合物的火花、电弧或高温。

3.1.3 在爆炸性气体环境中应采取下列防止爆炸的措施:

1 产生爆炸的条件同时出现的可能性应减到最小程度。

2 工艺设计中应采取下列消除或减少可燃物质的释放及积聚的措施:

1)工艺流程中宜采取较低的压力和温度,将可燃物质限制在密闭容器内;

2)工艺布置应限制和缩小爆炸危险区域的范围,并宜将不同等级的爆炸危险区或爆炸危险区与非爆炸危险区分隔在各自的厂房或界区内;

3)在设备内可采用以氮气或其他惰性气体覆盖的措施;

4)宜采取安全连锁或发生事故时加入聚合反应阻聚剂等化学药品的措施。

3 防止爆炸性气体混合物的形成或缩短爆炸性气体混合物的滞留时间可采取下列措施:

1)工艺装置宜采取露天或开敞式布置;

2)设置机械通风装置;

3)在爆炸危险环境内设置正压室;

4)对区域内易形成和积聚爆炸性气体混合物的地点应设置自动测量仪器装置,当气体或蒸气浓度接近爆炸下限值的50%时,应能可靠地发出信号或切断电源。

4 在区域内应采取消除或控制设备线路产生火花、电弧或高温的措施。

3.2 爆炸性气体环境危险区域划分

3.2.1 爆炸性气体环境应根据爆炸性气体混合物出现的频繁程度和持续时间分为0区、1区、2区,分区应符合下列规定:

1 0区应为连续出现或长期出现爆炸性气体混合物的环境;

2 1区应为在正常运行时可能出现爆炸性气体混合物的环境;

3 2区应为在正常运行时不太可能出现爆炸性气体混合物的环境,或即使出现也仅是短时存在的爆炸性气体混合物的环境。

3.2.2 符合下列条件之一时,可划为非爆炸危险区域:

1 没有释放源且不可能有可燃物质侵入的区域;

2 可燃物质可能出现的最高浓度不超过爆炸下限值的10%;

3 在生产过程中使用明火的设备附近,或炽热部件的表面温度超过区域内可燃物质引燃温度的设备附近;

4 在生产装置区外,露天或开敞设置的输送可燃物质的架空管道地带,但其阀门处按具体情况确定。

3.2.3 释放源应按可燃物质的释放频繁程度和持续时间长短分为连续级释放源、一级释放源、二级释放源,释放源分级应符合下列规定:

1 连续级释放源应为连续释放或预计长期释放的释放源。下列情况可划为连续级释放源:

1)没有用惰性气体覆盖的固定顶盖贮罐中的可燃液体的表面;

2)油、水分离器等直接与空间接触的可燃液体的表面;

3)经常或长期向空间释放可燃气体或可燃液体的蒸气的排气孔和其他孔口。

2 一级释放源应为在正常运行时,预计可能周期性或偶尔释放的释放源。下列情况可划为一级释放源:

1)在正常运行时,会释放可燃物质的泵、压缩机和阀门等的密封处;

2)贮有可燃液体的容器上的排水口处,在正常运行中,当水排掉时,该处可能会向空间释放可燃物质;

3)正常运行时,会向空间释放可燃物质的取样点;

4)正常运行时,会向空间释放可燃物质的泄压阀、排气口和其他孔口。

3 二级释放源应为在正常运行时,预计不可能释放,当出现释放时,仅是偶尔和短期释放的释放源。下列情况可划为二级释放源:

1)正常运行时,不能出现释放可燃物质的泵、压缩机和阀门的密封处;

2)正常运行时,不能释放可燃物质的法兰、连接件和管道接头;

3)正常运行时,不能向空间释放可燃物质的安全阀、排气孔和其他孔口处;

4)正常运行时,不能向空间释放可燃物质的取样点。

3.2.4 当爆炸危险区域内通风的空气流量能使可燃物质很快稀释到爆炸下限值的25%以下时,可定为通风良好,并应符合下列规定:

1 下列场所可定为通风良好场所:

1)露天场所;

2)敞开式建筑物,在建筑物的壁、屋顶开口,其尺寸和位置保证建筑物内部通风效果等效于露天场所;

3)非敞开建筑物,建有永久性的开口,使其具有自然通风的条件;

4)对于封闭区域,每平方米地板面积每分钟至少提供0.3m3的空气或至少1h换气6次。

2 当采用机械通风时,下列情况可不计机械通风故障的影响:

1)封闭式或半封闭式的建筑物设置备用的独立通风系统;

2)当通风设备发生故障时,设置自动报警或停止工艺流程等确保能阻止可燃物质释放的预防措施,或使设备断电的预防措施。

3.2.5 爆炸危险区域的划分应按释放源级别和通风条件确定,存在连续级释放源的区域可划为0区,存在一级释放源的区域可划为1区,存在二级释放源的区域可划为2区,并应根据通风条件按下列规定调整区域划分:

1 当通风良好时,可降低爆炸危险区域等级;当通风不良时,应提高爆炸危险区域等级。

2 局部机械通风在降低爆炸性气体混合物浓度方面比自然通风和一般机械通风更为有效时,可采用局部机械通风降低爆炸危险区域等级。

3 在障碍物、凹坑和死角处,应局部提高爆炸危险区域等级。

4 利用堤或墙等障碍物,限制比空气重的爆炸性气体混合物的扩散,可缩小爆炸危险区域的范围。

3.2.6 使用于特殊环境中的设备和系统可不按照爆炸危险性环境考虑,但应符合下列相应的条件之一:

1 采取措施确保不形成爆炸危险性环境。

2 确保设备在出现爆炸性危险环境时断电,此时应防止热元件引起点燃。

3 采取措施确保人和环境不受试验燃烧或爆炸带来的危害。

4 应由具备下述条件的人员书面写出所采取的措施:

1)熟悉所采取措施的要求和国家现行有关标准以及危险环境用电气设备和系统的使用要求;

2)熟悉进行评估所需的资料。

3.3 爆炸性气体环境危险区域范围

3.3.1 爆炸性气体环境危险区域范围应按下列要求确定:

1 爆炸危险区域的范围应根据释放源的级别和位置、可燃物质的性质、通风条件、障碍物及生产条件、运行经验,经技术经济比较综合确定。

2 建筑物内部宜以厂房为单位划定爆炸危险区域的范围。当厂房内空间大时,应根据生产的具体情况划分,释放源释放的可燃物质量少时,可将厂房内部按空间划定爆炸危险的区域范围,并应符合下列规定:

1)当厂房内具有比空气重的可燃物质时,厂房内通风换气次数不应少于每小时两次,且换气不受阻碍,厂房地面上高度1m以内容积的空气与释放至厂房内的可燃物质所形成的爆炸性气体混合浓度应小于爆炸下限;

2)当厂房内具有比空气轻的可燃物质时,厂房平屋顶平面以下1m高度内,或圆顶、斜顶的最高点以下2m高度内的容积的空气与释放至厂房内的可燃物质所形成的爆炸性气体混合物的浓度应小于爆炸下限;

3)释放至厂房内的可燃物质的最大量应按一小时释放量的三倍计算,但不包括由于灾难性事故引起破裂时的释放量。

3 当高挥发性液体可能大量释放并扩散到15m以外时,爆炸危险区域的范围应划分为附加2区。

4 当可燃液体闪点高于或等于60℃时,在物料操作温度高于可燃液体闪点的情况下,可燃液体可能泄漏时,其爆炸危险区域的范围宜适当缩小,但不宜小于4.5m。

3.3.2 爆炸危险区域的等级和范围可按本规范附录A的规定,并根据可燃物质的释放量、释放速率、沸点、温度、闪点、相对密度、爆炸下限、障碍等条件,结合实践经验确定。3.3.3 爆炸性气体环境内的车间采用正压或连续通风稀释措施后,不能形成爆炸性气体环境时,车间可降为非爆炸危险环境。通风引入的气源应安全可靠,且无可燃物质、腐蚀介质及机械杂质,进气口应设在高出所划爆炸性危险区域范围的1.5m以上处。

3.3.4 爆炸性气体环境电力装置设计应有爆炸危险区域划分图,对于简单或小型厂房,可采用文字说明表达。

爆炸性气体环境危险区域范围典型示例图应符合本规范附录B的规定。

3.4 爆炸性气体混合物的分级、分组

3.4.1 爆炸性气体混合物应按其最大试验安全间隙(MESG)或最小点燃电流比(MICR)分级。爆炸性气体混合物分级应符合表3.4.1的规定。

表3.4.1 爆炸性气体混合物分级

注:1 分级的级别应符合现行国家标准《爆炸性环境第12部分:气体或蒸气混合物按照其最大试验安全间隙和最小点燃电流的分级》GB 3836.12的有关规定。

2 最小点燃电流比(MICR)为各种可燃物质的最小点燃电流值与实验室甲烷的最小点燃电流值之比。

3.4.2 爆炸性气体混合物应按引燃温度分组,引燃温度分组应符合表3.4.2的规定。表3.4.2 引燃温度分组

注:可燃性气体或蒸气爆炸性混合物分级、分组可按本规范附录C采用。

4 爆炸性粉尘环境

4.1 一般规定

4.1.1 当在生产、加工、处理、转运或贮存过程中出现或可能出现可燃性粉尘与空气形成的爆炸性粉尘混合物环境时,应进行爆炸性粉尘环境的电力装置设计。

4.1.2 在爆炸性粉尘环境中粉尘可分为下列三级:

1 ⅢA级为可燃性飞絮;

2 ⅢB级为非导电性粉尘;

3 ⅢC级为导电性粉尘。

4.1.3 在爆炸性粉尘环境中,产生爆炸应符合下列条件:

1 存在爆炸性粉尘混合物,其浓度在爆炸极限以内;

2 存在足以点燃爆炸性粉尘混合物的火花、电弧、高温、静电放电或能量辐射。4.1.4 在爆炸性粉尘环境中应采取下列防止爆炸的措施:

1 防止产生爆炸的基本措施,应是使产生爆炸的条件同时出现的可能性减小到最小程度。

2 防止爆炸危险,应按照爆炸性粉尘混合物的特征采取相应的措施。

3 在工程设计中应先采取下列消除或减少爆炸性粉尘混合物产生和积聚的措施:

1)工艺设备宜将危险物料密封在防止粉尘泄漏的容器内。

2)宜采用露天或开敞式布置,或采用机械除尘措施。

3)宜限制和缩小爆炸危险区域的范围,并将可能释放爆炸性粉尘的设备单独集中布置。

4)提高自动化水平,可采用必要的安全联锁。

5)爆炸危险区域应设有两个以上出入口,其中至少有一个通向非爆炸危险区域,其出入口的门应向爆炸危险性较小的区域侧开启。

6)应对沉积的粉尘进行有效地清除。

7)应限制产生危险温度及火花,特别是由电气设备或线路产生的过热及火花。应防止粉尘进入产生电火花或高温部件的外壳内。应选用粉尘防爆类型的电气设备及线路。

8)可适当增加物料的湿度,降低空气中粉尘的悬浮量。

4.2 爆炸性粉尘环境危险区域划分

4.2.1 粉尘释放源应按爆炸性粉尘释放频繁程度和持续时间长短分为连续级释放源、一级释放源、二级释放源,释放源应符合下列规定:

1 连续级释放源应为粉尘云持续存在或预计长期或短期经常出现的部位。

2 一级释放源应为在正常运行时预计可能周期性的或偶尔释放的释放源。

3 二级释放源应为在正常运行时,预计不可能释放,如果释放也仅是不经常地并且是短期地释放。

4 下列三项不应被视为释放源:

1)压力容器外壳主体结构及其封闭的管口和人孔;

2)全部焊接的输送管和溜槽;

3)在设计和结构方面对防粉尘泄露进行了适当考虑的阀门压盖和法兰接合面。

4.2.2 爆炸危险区域应根据爆炸性粉尘环境出现的频繁程度和持续时间分为20区、21区、22区,分区应符合下列规定:

1 20区应为空气中的可燃性粉尘云持续地或长期地或频繁地出现于爆炸性环境中的区域;

2 21区应为在正常运行时,空气中的可燃性粉尘云很可能偶尔出现于爆炸性环境中的区域;

3 22区应为在正常运行时,空气中的可燃粉尘云一般不可能出现于爆炸性粉尘环境中的区域,即使出现,持续时间也是短暂的。

4.2.3 爆炸危险区域的划分应按爆炸性粉尘的量、爆炸极限和通风条件确定。

4.2.4 符合下列条件之一时,可划为非爆炸危险区域:

1 装有良好除尘效果的除尘装置,当该除尘装置停车时,工艺机组能联锁停车;

2 设有为爆炸性粉尘环境服务,并用墙隔绝的送风机室,其通向爆炸性粉尘环境的风道设有能防止爆炸性粉尘混合物侵入的安全装置。

3 区域内使用爆炸性粉尘的量不大,且在排风柜内或风罩下进行操作。

4.2.5 为爆炸性粉尘环境服务的排风机室,应与被排风区域的爆炸危险区域等级相同。

4.3 爆炸性粉尘环境危险区域范围

4.3.1 一般情况下,区域的范围应通过评价涉及该环境的释放源的级别引起爆炸性粉尘环境的可能来规定。

4.3.2 20区范围主要包括粉尘云连续生成的管道、生产和处理设备的内部区域。当粉尘容器外部持续存在爆炸性粉尘环境时,可划分为20区。

4.3.3 21区的范围应与一级释放源相关联,并应按下列规定确定:

1 含有一级释放源的粉尘处理设备的内部可划分为21区。

2 由一级释放源形成的设备外部场所,其区域的范围应受到粉尘量、释放速率、颗粒大小

和物料湿度等粉尘参数的限制,并应考虑引起释放的条件。对于受气候影响的建筑物外部场所可减小21区范围。21区的范围应按照释放源周围1m的距离确定。

3 当粉尘的扩散受到实体结构的限制时,实体结构的表面可作为该区域的边界。

4 一个位于内部不受实体结构限制的21区应被一个22区包围。

5 可结合同类企业相似厂房的实践经验和实际因素将整个厂房划为21区。

4.3.4 22区的范围应按下列规定确定:

1 由二级释放源形成的场所,其区域的范围应受到粉尘量、释放速率、颗粒大小和物料湿度等粉尘参数的限制,并应考虑引起释放的条件。对于受气候影响的建筑物外部场所可减小22区范围。22区的范围应按超出21区3m及二级释放源周围3m的距离确定。

2 当粉尘的扩散受到实体结构的限制时,实体结构的表面可作为该区域的边界。

3 可结合同类企业相似厂房的实践经验和实际的因素将整个厂房划为22区。

4.3.5 爆炸性粉尘环境危险区域范围典型示例图应符合本规范附录D的规定。

4.3.6 可燃性粉尘举例应符合本规范附录E的规定。

5 爆炸性环境的电力装置设计

5.1 一般规定

5.1.1 爆炸性环境的电力装置设计应符合下列规定:

1 爆炸性环境的电力装置设计宜将设备和线路,特别是正常运行时能发生火花的设备布置在爆炸性环境以外。当需设在爆炸性环境内时,应布置在爆炸危险性较小的地点。

2 在满足工艺生产及安全的前提下,应减少防爆电气设备的数量。

3 爆炸性环境内的电气设备和线路应符合周围环境内化学、机械、热、霉菌以及风沙等不同环境条件对电气设备的要求。

4 在爆炸性粉尘环境内,不宜采用携带式电气设备。

5 爆炸性粉尘环境内的事故排风用电动机应在生产发生事故的情况下,在便于操作的地方设置事故启动按钮等控制设备。

6 在爆炸性粉尘环境内,应尽量减少插座和局部照明灯具的数量。如需采用时,插座宜布置在爆炸性粉尘不易积聚的地点,局部照明灯宜布置在事故时气流不易冲击的位置。

粉尘环境中安装的插座开口的一面应朝下,且与垂直面的角度不应大于60°。

7 爆炸性环境内设置的防爆电气设备应符合现行国家标准《爆炸性环境第1部分:设备通用要求》GB 3836.1的有关规定。

5.2 爆炸性环境电气设备的选择

5.2.1 在爆炸性环境内,电气设备应根据下列因素进行选择:

1 爆炸危险区域的分区;

2 可燃性物质和可燃性粉尘的分级;

3 可燃性物质的引燃温度;

4 可燃性粉尘云、可燃性粉尘层的最低引燃温度。

5.2.2 危险区域划分与电气设备保护级别的关系应符合下列规定:

1 爆炸性环境内电气设备保护级别的选择应符合表5.2.2-1的规定。

表5.2.2-1 爆炸性环境内电气设备保护级别的选择

2 电气设备保护级别(EPL)与电气设备防爆结构的关系应符合表5.2.2-2的规定。表5.2.2-2 电气设备保护级别(EPL)与电气设备防爆结构的关系

注:①在1区中使用的增安型“e”电气设备仅限于下列电气设备:在正常运行中不产生火花、电弧或危险温度的接线盒和接线箱,包括主体为“d”或“m”型,接线部分为“e”

型的电气产品;按现行国家标准《爆炸性环境第3部分:由增安型“e”保护的设备》GB 3836.3-2010附录D配置的合适热保护装置的“e”型低压异步电动机,启动频繁和环境条件恶劣者除外;“e”型荧光灯;“e”型测量仪表和仪表用电流互感器。

5.2.3 防爆电气设备的级别和组别不应低于该爆炸性气体环境内爆炸性气体混合物的级别和组别,并应符合下列规定:

1 气体、蒸气或粉尘分级与电气设备类别的关系应符合表5.2.3-1的规定。当存在有两种以上可燃性物质形成的爆炸性混合物时,应按照混合后的爆炸性混合物的级别和组别选用防爆设备,无据可查又不可能进行试验时,可按危险程度较高的级别和组别选用防爆电气设备。

对于标有适用于特定的气体、蒸气的环境的防爆设备,没有经过鉴定,不得使用于其他的气体环境内。

表5.2.3-1 气体、蒸气或粉尘分级与电气设备类别的关系

2 Ⅱ类电气设备的温度组别、最高表面温度和气体、蒸气引燃温度之间的关系符合表5.2.3-2的规定。

表5.2.3-2 Ⅱ类电气设备的温度组别、最高表面温度和气体、蒸气引燃温度之间的关系

3 安装在爆炸性粉尘环境中的电气设备应采取措施防止热表面点可燃性粉尘层引起的火灾危险。Ⅲ类电气设备的最高表面温度应按国家现行有关标准的规定进行选择。电气设备结构应满足电气设备在规定的运行条件下不降低防爆性能的要求。

5.2.4 当选用正压型电气设备及通风系统时,应符合下列规定:

1 通风系统应采用非燃性材料制成,其结构应坚固,连接应严密,并不得有产生气体滞留的死角。

2 电气设备应与通风系统联锁。运行前应先通风,并应在通风量大于电气设备及其通风系

统管道容积的5倍时,接通设备的主电源。

3 在运行中,进入电气设备及其通风系统内的气体不应含有可燃物质或其他有害物质。

4 在电气设备及其通风系统运行中,对于px、py或pD型设备,其风压不应低于50Pa;对于pz型设备,其风压不应低于25Pa。当风压低于上述值时,应自动断开设备的主电源或发出信号。

5 通风过程排出的气体不宜排入爆炸危险环境;当采取有效地防止火花和炽热颗粒从设备及其通风系统吹出的措施时,可排入2区空间。

6 对闭路通风的正压型设备及其通风系统应供给清洁气体。

7 电气设备外壳及通风系统的门或盖子应采取联锁装置或加警告标志等安全措施。

5.3 爆炸性环境电气设备的安装

5.3.1 油浸型设备应在没有振动、不倾斜和固定安装的条件下采用。

5.3.2 在采用非防爆型设备作隔墙机械传动时,应符合下列规定:

1 安装电气设备的房间应用非燃烧体的实体墙与爆炸危险区域隔开;

2 传动轴传动通过隔墙处,应采用填料函密封或有同等效果的密封措施;

3 安装电气设备房间的出口应通向非爆炸危险区域的环境;当安装设备的房间必须与爆炸性环境相通时,应对爆炸性环境保持相对的正压。

5.3.3 除本质安全电路外,爆炸性环境的电气线路和设备应装设过载、短路和接地保护,不可能产生过载的电气设备可不装设过载保护。爆炸性环境的电动机除按国家现行有关标准的要求装设必要的保护之外,均应装设断相保护。如果电气设备的自动断电可能引起比引燃危险造成的危险更大时,应采用报警装置代替自动断电装置。

5.3.4 紧急情况下,在危险场所外合适的地点或位置应采取一种或多种措施对危险场所设备断电。连续运行的设备不应包括在紧急断电回路中,而应安装在单独的回路上,防止附加危险产生。

5.3.5 变电所、配电所和控制室的设计应符合下列规定:

1 变电所、配电所(包括配电室,下同)和控制室应布置在爆炸性环境以外,当为正压室时,可布置在1区、2区内。

2 对于可燃物质比空气重的爆炸性气体环境,位于爆炸危险区附加2区的变电所、配电所和控制室的电气和仪表的设备层地面应高出室外地面0.6m。

5.4 爆炸性环境电气线路的设计

5.4.1 爆炸性环境电缆和导线的选择应符合下列规定:

1 在爆炸性环境内,低压电力、照明线路采用的绝缘导线和电缆的额定电压应高于或等于工作电压,且U 0/U不应低于工作电压。中性线的额定电压应与相线电压相等,并应在同一护套或保护管内敷设。

2 在爆炸危险区内,除在配电盘、接线箱或采用金属导管配线系统内,无护套的电线不应作为供配电线路。

3 在1区内应采用铜芯电缆;除本质安全电路外,在2区内宜采用铜芯电缆,当采用铝芯电缆时,其截面不得小于16mm2,且与电气设备的连接应采用铜-铝过渡接头。敷设在爆炸性粉尘环境20区、21区以及在22区内有剧烈振动区域的回路,均应采用

铜芯绝缘导线或电缆。

4 除本质安全系统的电路外,爆炸性环境电缆配线的技术要求应符合表5.4.1-1的规定。表5.4.1-1 爆炸性环境电缆配线的技术要求

5 除本质安全系统的电路外,在爆炸性环境内电压为1000V以下的钢管配线的技术要求应符合表5.4.1-2的规定。

表5.4.1-2 爆炸性环境内电压为1000V以下的钢管配线的技术要求

6 在爆炸性环境内,绝缘导线和电缆截面的选择除应满足表5.4.1-1和5.4.1-2的规定外,还应符合下列规定:

1)导体允许载流量不应小于熔断器熔体额定电流的1.25倍及断路器长延时过电流脱扣器整定电流的1.25倍,本款第2项的情况除外;

2)引向电压为1000V以下鼠笼型感应电动机支线的长期允许载流量不应小于电动机额定电流的1.25倍。

7 在架空、桥架敷设时电缆宜采用阻燃电缆。当敷设方式采用能防止机械损伤的桥架方式时,塑料护套电缆可采用非铠装电缆。当不存在会受鼠、虫等损害情形时,在2区、22区电缆沟内敷设的电缆可采用非铠装电缆。

5.4.2 爆炸性环境线路的保护应符合下列规定:

1 在1区内单相网络中的相线及中性线均应装设短路保护,并采取适当开关同时断开相线和中性线。

2 对3kV~10kV电缆线路宜装设零序电流保护,在1区、21区内保护装置宜动作于跳闸。5.4.

3 爆炸性环境电气线路的安装应符合下列规定:

1 电气线路宜在爆炸危险性较小的环境或远离释放源的地方敷设,并应符合下列规定: 1)当可燃物质比空气重时,电气线路宜在较高处敷设或直接埋地;架空敷设时宜采用电缆桥架;电缆沟敷设时沟内应充砂,并宜设置排水措施。

2)电气线路宜在有爆炸危险的建筑物、构筑物的墙外敷设。

3)在爆炸粉尘环境,电缆应沿粉尘不易堆积并且易于粉尘清除的位置敷设。

2 敷设电气线路的沟道、电缆桥架或导管,所穿过的不同区域之间墙或楼板处的孔洞应采用非燃性材料严密堵塞。

3 敷设电气线路时宜避开可能受到机械损伤、振动、腐蚀、紫外线照射以及可能受热的地方,不能避开时,应采取预防措施。

4 钢管配线可采用无护套的绝缘单芯或多芯导线。当钢管中含有三根或多根导线时,导线包括绝缘层的总截面不宜超过钢管截面的40%。钢管应采用低压流体输送用镀锌焊接钢管。钢管连接的螺纹部分应涂以铅油或磷化膏。在可能凝结冷凝水的地方,管线上应装设排除冷凝水的密封接头。

5 在爆炸性气体环境内钢管配线的电气线路应做好隔离密封,且应符合下列规定:

1)在正常运行时,所有点燃源外壳的450mm范围内应做隔离密封。

2)直径50mm以上钢管距引入的接线箱450mm以内处应做隔离密封。

3)相邻的爆炸性环境之间以及爆炸性环境与相邻的其他危险环境或非危险环境之间应进行隔离密封。进行密封时,密封内部应用纤维作填充层的底层或隔层,填充层的有效厚度不应小于钢管的内径,且不得小于16mm。

4)供隔离密封用的连接部件,不应作为导线的连接或分线用。

6 在1区内电缆线路严禁有中间接头,在2区、20区、21区内不应有中间接头。

7 当电缆或导线的终端连接时,电缆内部的导线如果为绞线,其终端应采用定型端子或接线鼻子进行连接。

铝芯绝缘导线或电缆的连接与封端应采用压接、熔焊或钎焊,当与设备(照明灯具除外)连接时,应采用铜-铝过渡接头。

8 架空电力线路不得跨越爆炸性气体环境,架空线路与爆炸性气体环境的水平距离不应小于杆塔高度的1.5倍。在特殊情况下,采取有效措施后,可适当减少距离。

5.5 爆炸性环境接地设计

5.5.1 当爆炸性环境电力系统接地设计时,1000V交流/1500V直流以下的电源系统的接地应符合下列规定:

1 爆炸性环境中的TN系统应采用TN-S型;

2 危险区中的TT型电源系统应采用剩余电流动作的保护电器;

3 爆炸性环境中的IT型电源系统应设置绝缘监测装置。

5.5.2 爆炸性气体环境中应设置等电位联结,所有裸露的装置外部可导电部件应接入等电位系统。本质安全型设备的金属外壳可不与等电位系统连接,制造厂有特殊要求的除外。具有阴极保护的设备不应与等电位系统连接,专门为阴极保护设计的接地系统除外。5.5.3 爆炸性环境内设备的保护接地应符合下列规定:

1 按照现行国家标准《交流电气装置的接地设计规范》GB/T 50065的有关规定,下列不需要接地的部分,在爆炸性环境内仍应进行接地:

1)在不良导电地面处,交流额定电压为1000V以下和直流额定电压为1500V及以下的设备正常不带电的金属外壳;

2)在干燥环境,交流额定电压为127V及以下,直流电压为110V及以下的设备正常不带电的金属外壳;

3)安装在已接地的金属结构上的设备。

2 在爆炸危险环境内,设备的外露可导电部分应可靠接地。爆炸性环境1区、20区、21区内的所有设备以及爆炸性环境2区、22区内除照明灯具以外的其他设备应采用专用的接地线。该接地线若与相线敷设在同一保护管内时,应具有与相线相等的绝缘。爆炸性环境2

区、22区内的照明灯具,可利用有可靠电气连接的金属管线系统作为接地线,但不得利用输送可燃物质的管道。

3 在爆炸危险区域不同方向,接地干线应不少于两处与接地体连接。

5.5.4 设备的接地装置与防止直接雷击的独立避雷针的接地装置应分开设置,与装设在建筑物上防止直接雷击的避雷针的接地装置可合并设置,与防雷电感应的接地装置亦可合并设置。接地电阻值应取其中最低值。

5.5.5 0区、20区场所的金属部件不宜采用阴极保护,当采用阴极保护时,应采取特殊的设计。阴极保护所要求的绝缘元件应安装在爆炸性环境之外。

附录A 爆炸危险区域划分示例图及爆炸危险区域划分条件

A.0.1 爆炸危险区域划分应按图A.0.1划分。

图A.0.1 爆炸危险区域划分示例图

a-正压控制室;b-正压配电室;c-车间;e-容器;f-蒸馏塔;g-分析室(正压或吹净);h-泵(正常运行时不可能释放的密封);

j-泵(正常运行时有可能释放的密封);k-泵(正常运行时有可能释放的密封);l-往复式压缩机;m-压缩机房(开敞式建筑);n-放空口(高处或低处)

A.0.2 爆炸危险区域划分条件应符合表A.0.2的规定。

表A.0.2 爆炸危险区域划分条件

注:*指垂直距离也应记录。

附录B 爆炸性气体环境危险区域范围典型示例图

B.0.1 在结合具体情况,充分分析影响区域的等级和范围的各项因素包括可燃物质的释放量、释放速度、沸点、温度、闪点、相对密度、爆炸下限、障碍等及生产条件,运用实践经验加以分析判断时,可使用下列示例来确定范围,图中释放源除注明外均为第二级释放源。

1 可燃物质重于空气、通风良好且为第二级释放源的主要生产装置区(图B.0.1-1和图B.0.1-2),爆炸危险区域的范围划分宜符合下列规定:

1)在爆炸危险区域内,地坪下的坑、沟可划为1区;

2)与释放源的距离为7.5m的范围内可划为2区;

3)以释放源为中心,总半径为30m,地坪上的高度为0.6m,且在2区以外的范围内可划为附加2区。

图B.0.1-1 释放源接近地坪时可燃物质重于空气、通风良好的生产装置区

图B.0.1-2 释放源在地坪以上时可燃物质重于空气、通风良好的生产装置区

2 可燃物质重于空气,释放源在封闭建筑物内,通风不良且为第二级释放源的主要生产装置区(图B.0.1-3),爆炸危险区域的范围划分宜符合下列规定:

1)封闭建筑物内和在爆炸危险区域内地坪下的坑、沟可划为1区;

2)以释放源为中心,半径为15m,高度为7.5m的范围内可划为2区,但封闭建筑物的外墙和顶部距2区的界限不得小于3m,如为无孔洞实体墙,则墙外为非危险区;

3)以释放源为中心,总半径为30m,地坪上的高度为0.6m,且在2区以外的范围内可划为附加2区。

图B.0.1-3 可燃物质重于空气、释放源在封闭建筑物内通风不良的生产装置区

注:用于距释放源在水平方向15m的距离,或在建筑物周边3m范围,取两者中较大者。

3 对于可燃物质重于空气的贮罐(图B.0.1-4和图B.0.1-5),爆炸危险区域的范围划分宜符合下列规定:

1)固定式贮罐,在罐体内部未充惰性气体的液体表面以上的空间可划为0区,浮顶式贮罐在浮顶移动范围内的空间可划为1区;

2)以放空口为中心,半径为1.5m的空间和爆炸危险区域内地坪下的坑、沟可划为1区;

3)距离贮罐的外壁和顶部3m的范围内可划为2区;

4)当贮罐周围设围堤时,贮罐外壁至围堤,其高度为堤顶高度的范围内可划为2区。

图B.0.1-4 可燃物质重于空气、设在户外地坪上的固定式贮罐

图B.0.1-5 可燃物质重于空气、设在户外地坪上的浮顶式贮罐

4 可燃液体、液化气、压缩气体、低温度液体装载槽车及槽车注送口处(图B.0.1-6),爆炸危险区域的范围划分宜符合下列规定:

1)以槽车密闭式注送口为中心,半径为1.5m的空间或以非密闭式注送口为中心,半径为3m的空间和爆炸危险区域内地坪下的坑、沟可划为1区;

2)以槽车密闭式注送口为中心,半径为4.5m的空间或以非密闭式注送口为中心,半径为7.5m的空间以及至地坪以上的范围内可划为2区。

爆炸和火灾环境危险区域划分

爆炸、火灾危险环境分区 -------GB50058-92部分内容解读 在国家标准《建筑物防雷设计规范》GB50057-94的第二章中,对建筑物的防雷分类做出了规定,其中涉及到的一个重要概念就是爆炸和火灾危险环境的分区。 在国家标准《爆炸和火灾危险环境电力装置设计规范》GB50058-92中,对爆炸性气体环境危险区域划分、爆炸性粉尘环境危险区域划分和火灾危险区域划分做出了规定。 爆炸危险环境包括爆炸性气体环境和爆炸性粉尘环境。 爆炸性气体环境指含有爆炸性气体混合物的环境。 爆炸性气体混合物是大气条件下气体、蒸气、薄雾状的易燃物质与空气的混合物,点燃后燃烧将在全范围内传播。 爆炸性粉尘环境指含有爆炸性粉尘混合物的环境。 爆炸性粉尘混合物是大气条件下粉尘或纤维状易燃物质与空气的混合物,点燃后燃烧将在全范围内传播。 火灾危险环境:存在火灾危险物质以致有火灾危险的区域。 ◆爆炸性气体环境危险区域的划分: 《爆炸和火灾危险环境电力装置设计规范》GB50058-92第2. 2.1条: 爆炸性气体环境应根据爆炸性气体混合物出现的频繁程度和持续时间,按下列规定进行分区:

一、0区:连续出现或长期出现爆炸性气体混合物的环境; 二、1区:在正常运行时可能出现爆炸性气体混合物的环境; 三、2区:在正常运行时不可能出现爆炸性气体混合物的环境, 或即使出现也仅是短时存在的爆炸性气体混合物的环境。 (注1:正常运行是指正常的开车、运转、停车,易燃物质产品的装卸,密闭容器盖的开闭,安全阀、排放阀以及所有工厂设备都在其设计参数 范围内工作的状态。) 在对具体建筑物进行判断、划分的过程中,可以按照以下步骤进行: 步骤一:采取排除法,首先根据非爆炸危险区域的各项条件,判断现场是否属于非爆炸危险区域。 《爆炸和火灾危险环境电力装置设计规范》GB50058-92第 2.2.2条规定: 符合下列条件之一时,可划为非爆炸危险区域: 一、没有释放源并不可能有易燃物质侵入的区域; 二、易燃物质可能出现的最高浓度不超过爆炸下限值的10%; 三、在生产过程中使用明火的设备附近,或炽热部件的表面温 度超过区域内易燃物质引燃温度的设备附近; 四、在生产装置区外,露天或开敞设置的输送易燃物质的架空 管道地带,但其阀门处按具体情况定。 步骤二:对释放源级别进行判断。 《爆炸和火灾危险环境电力装置设计规范》GB50058-92第 2.2.3条: 释放源应按易燃物质的释放频繁程度和持续时间长短分

爆炸和火灾危险环境电气装置施工及验收规范GB

电气装置安装工程爆炸和火灾危险环境电气装置施工及验收规范GB50257—96 中华人民共和国国家标准 电气装置安装工程爆炸和火灾危险环境 电气装置施工及验收规范 GB50527—96 主编部门:中华人民共和国电力工业部 批准部门:中华人民共和国建设部 施行日期:1996年12月1日 关于发布《电气装置安装工程低压电器施工及验收规范》等四项国家标准的通知 建标[1996]337号 根据国家计委计综[1986]2630号文和建设部(91)建标技字第6号文的要求,由电力工业部会同有关部门共同修订的《电气装 置安装工程低压电器施工及验收规范》等四项标准,已经有关部门会审。现批准《电气装置安装工程低压电器施工及验收规范》GB50254—96、《电气装置安装工程电力变流设备施工及验收规范》GB50255—96、《电气装置安装工程起重机电气装置施工及验收规范》GB50256—96和《电气装置安装工程爆炸和火灾危险环境电气装置施工及验收规范》GB50257—96为强制性国家标准,自一九九六年十二月一 日起施行。原《电气装置安装工程施工及验收规范》GBJ232—82中第七篇“低压电器篇”、第六篇“硅整流装置篇”、第八篇“起重机电气装置篇”、第十六篇”爆炸和火灾危险场所电气装置篇”同时废止。 本规范由电力工业部负责管理,具体解释等工作由电力部电力建设研究所负责,出版发行由建设部标准定额研究所负责组织。 中华人民共和国建设部 一九九六年六月五日 1 总则 1.0.1为保证爆炸和火灾危险环境的电气装置的施工安装质量,促进施工安装技术的进步,确保设备的安全运行以及国家和人民生 命财产的安全,制订本规范。 1.0.2本规范适用于在生产、加工、处理、转运或贮存过程中出现或可能出现气体、蒸汽、粉尘、纤维爆炸性混合物和火灾危险物 质环境 的电气装置安装工程的施工及验收。本规范不适用于下列环境: 1.0. 2.1矿井井下。 1.0. 2.2制造、使用、贮存火药、炸药、起爆药等爆炸物质的环境。 1.0. 2.3利用电能进行生产并与生产工艺过程直接关联的电解、电镀等电气装置区域。 1.0. 2.4使用强氧化剂以及不用外来点火源就能自行起火的物质的环境。

静电引起的火灾爆炸分析通用版

解决方案编号:YTO-FS-PD378 静电引起的火灾爆炸分析通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

静电引起的火灾爆炸分析通用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 在化工、炼油、橡胶、制药、印刷、金属粉末等行业的生产中,因静电事故所造成的损失是很大的,这不得不引起人们的重视。静电危害主要有三个方面,即静电放电引起火灾和爆炸,给人以电击和妨碍生产。其中静电放电引起火灾和爆炸是静电最严重的危害。为了掌握静电放电引起火灾和爆炸的机理,这里先分析一下静电的特点,有助于了解静电事故的成因。 一、静电特点 这里所说的静电特点是指与静电危害密切相关的特点,即静电电压的特点和静电泄漏的特点。 (一)电压特点 生产工艺过程中所产生静电的电量都很小,在局部范围内,静电电量一般都只有微库仑级到毫库仑级。但是,带电体的电容可能在很大范围内变化,有时变得很小,而电压u与电容C和电量Q之间有以下关系: u=Q/C 在电量保持不变的情况下,电压和电容保持反比关

火灾危险性分类

火灾危险性分类 3.0.1 可燃气体的火灾危险性应按表3.0.1分类。 表3.0.1 可燃气体的火灾危险性分类 3.0.2 液化烃、可燃液体的火灾危险性分类应按表3.0.2分类,并应符合下列规 定: 1. 操作温度超过其闪点的乙类液体应视为甲B类液体; 2. 操作温度超过其闪点的丙A类液体应视为乙A类液体; 3. 操作温度超过其闪点的丙B类液体应视为乙B类液体;操作温度超过其沸点 的丙B类液体应视为乙A类液体。液化烃、可燃液体的火灾危险性分类 3.0.3 固体的火灾危险性分类应按《建筑设计防火规范》(GB50016)的有关规定执行。 3.0.4 设备的火灾危险类别应按其处理、储存或输送介质的火灾危险性类别确定。 3.0.5 房间的火灾危险性类别应按房间内设备的火灾危险性类别确定。当同一房间内,布置有不同火灾危险性类别设备时,房间的火灾危险性类别应按其中火灾

危险性类别最高的设备确定。但当火灾危险类别最高的设备所占面积比例小于5%,且发生事故时,不足以蔓延到其他部位或采取防火措施能防止火灾蔓延时,可按火灾危险性类别较低的设备确定。 防爆等级划分可以按照爆炸和火灾危险环境电力装置设计规范 第二节爆炸和火灾危险场所的等级 第2.2.1条爆炸和火灾危险场所的等级,应根据发生事故的可能性和后果,按危险程度及物质状态的不同划分为三类八级,以便采取相应措施,防止由于电气设备和线路的火花、电弧或危险温度引起爆炸或火灾的事故。三类八级划分如下: 一、第一类气体或蒸汽爆炸性混合物的爆炸危险场所分为三级。 1、Q-1级场所正常情况下能形成爆炸性混合物的场所; 2、Q-2级场所正常情况下不能形成,但在不正常情况下能形成爆炸性混合物的场所; 3、Q-3级场所正常情况下不能形成,但在不正常情况下形成爆炸性混合物可能性较小的场所。如:该场所内爆炸危险物质的量较少,爆炸性危险物质的比重很小且难以积聚,爆炸下限较高并有强烈气味等。 二、第二类粉尘或纤维爆炸性混合物的爆炸危险场所分为二级: 1、G-1级场所正常情况下能形成爆炸性混合物的场所; 2、G-2级场所正常情况下不能形成,但在不正常情况下能形成爆炸性混合物的场所; 三、第三类火灾危险场所分为三级: l、H-1级场所在生产过程中产生、使用、加工、贮存或转运闪点高于场所环境温度的可燃液体,在数量和配置上。引起火灾危险的场所; 2、H-1级场所在生产过程中悬浮状、堆积状的可燃粉尘或可燃纤维不可能形成爆炸性混合物,而在数量和配置上能引起火灾危险的场所; 3、H-3级场所固体状可燃物在数量和配置上能引起火灾危险的场所。 注:①正常情况是指正常的开车、运转、停车等(如敞开装料、卸料等); ②不正常情况是指装置或设备的事故损坏、误操作、维护不当和拆卸、检修等。 第2.2.2条对某些场所的等级划分,除应遵守本规范第2.2.1条的规定外,尚应根据其具体情况遵守下列规定: 一、对于气流良好的开敞或局部开敞式建筑物和构筑物或露天装置区域,在考虑比重、闪点、爆炸极限等各种因素的具体情况后,可降低一级。 二、正常情况下只能在场所的局部地区形成气体或蒸汽爆炸性混合物,其

静电引发火灾事故的条件及对策措施(正式)

静电引发火灾事故的条件及 对策措施(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 静电有其特殊性,加强防范时,应正确认 识静电的“脾气”。静电引起火灾或爆炸有四个 条件: 一、空间有爆炸混合物存在; 二、有产生静电的工艺条件和操作过程; 三、静电积聚达到或超过相当程度,致使 介质间的局部电场被击穿; 四、静电放电火花能量达到爆炸混合物的

最小点能量。 引发火灾和爆炸,这四个条件缺一不可。因此要做到: 一、消除周围环境的爆炸危险。通常采用改善通风条件,以降低爆炸混合物的浓度,或者充填不活泼气体,以降低含氧量。同时应采用防爆措施,用不可燃介质代替可燃介质。这是间接性防范措施。 二、可适当选择材料,改革制造工艺设备和降低生产工具摩擦速度或相对运动的速度,消除杂质和附加静电等,遏制静电产生。这是防止静电引发火灾事故的直接措施。 三、通过泄漏和中和的方法限制静电积累。如接地、增湿、应用抗静电措施,采用静电消除器等。

为防止静电成灾,做到万无一失,除采取上述防范措施外,还必须建立严格的工艺流程规章制度,同步采用静电测量、监控等技术,真正对生产环境和生活场所静电致灾的危险性做到心中有数,达到防患于未然。 请在这里输入公司或组织的名字 Please enter the name of the company or organization here

爆炸和火灾危险环境电力装置设计规范GB50058

爆炸和火灾危险环境电力装置设计规范GB50058-92 第一章总则 第1.0.1条为了使爆炸和火灾危险环境电力装置设计贯彻预防为主的方针,保障人身和财产的安全,因地制宜地采取防范措施,做到技术先进,经济合理、安全适用,制定本规范。 第1.0.2条本规范适用于在生产、加工、处理、转运或贮存过程中出现或可能出现爆炸和火灾危险环境的新建、扩建和改建工程的电力设计。 本规范不适用于下列环境: 一、矿井井下; 二、制造、使用或贮存火药、炸药和起爆药等的环境; 三、利用电能进行生产并与生产工艺过程直接关联的电解、电镀等电气装置区域; 四、蓄电池室; 五、使用强氧化剂以及不用外来点火源就能自行起火的物质的环境; 六、水、陆、空交通运输工具及海上油井平台。 第1.0.3条爆炸和火灾危险环境的电力设计,除应符合本规范的规定外,尚应符合现行的有关国家标准和规范的规定。 第二章爆炸性气体环境 第一节一般规定 第2.1.1条对于生产、加工、处理、转运或贮存过程中出现或可能出现下列爆炸性气体混合物环境之一时,应进行爆炸性气体环境的电力设计: 一、在大气条件下、易燃气体、易燃液体的蒸气或薄雾等易燃物质与空气混合形成爆炸性气体混合物; 二、闪点低于或等于环境温度的可燃液体的蒸气或薄雾与空气混合形成爆炸性气体混合物; 三、在物料操作温度高于可燃液体闪点的情况下,可燃液体有可能泄漏时,其蒸气与空气混合形成爆炸性气体混合物。 第2.1.2条在爆炸性气体环境中产生爆炸必须同时存在下列条件: 一、存在易燃气体、易燃液体的蒸气或薄雾,其浓度在爆炸极限以内; 二、存在足以点燃爆炸性气体混合物的火花、电弧或高温。 第2.1.3条在爆炸性气体环境中应采取下列防止爆炸的措施: 一、首先应使产生爆炸的条件同时出现的可能性减到最小程度。 二、工艺设计中应采取消除或减少易燃物质的产生及积聚的措施: 1.工艺流程中宜采取较低的压力和温度,将易燃物质限制在密闭容器内; 2.工艺布置应限制和缩小爆炸危险区域的范围,并宜将不同等级的爆炸危险区,或爆炸危险区与非爆炸危险区分隔在各自的厂房或界区内; 3.在设备内可采用以氮气或其它惰性气体覆盖的措施; 4.宜采取安全联锁或事故时加入聚合反应阻聚剂等化学药品的措施。 三、防止爆炸性气体混合物的形成,或缩短爆炸性气体混合物滞留时间,宜采取下列措施: 1.工艺装置宜采取露天或开敞式布置; 2.设置机械通风装置; 3.在爆炸危险环境内设置正压室; 4.对区域内易形成和积聚爆炸性气体混合物的地点设置自动测量仪器装置,当气体或蒸气浓度接近爆炸下限值的50%时,应能可靠地发出信号或切断电源。

燃气锅炉火灾爆炸危险性分析

燃气锅炉火灾爆炸危险性分析及其预防措施 随着社会经济的高速发展,锅炉作为生产热能和动力的工艺设备,在现代工业、电力及人民生活中普遍使用,而燃气锅炉以它优质、环保、清洁的特点满足了人们对环境、安全、自动化的要求,所以很多工程已经采用了燃气锅炉作为其加热设备。但由于各种原因,燃气锅炉爆炸事故的频频发生,它不仅在经济方面造成大量损失,严重的使人们在身心甚至生命都受到威胁。所以研究燃气锅炉爆炸危险性及其预防措施是十分必要的。 一、燃气锅炉及其应用 1.1燃气锅炉结构简介 燃气锅炉包括燃气燃烧设备和锅炉本体两个系统。燃气燃烧设备主要指炉膛和燃烧器,也包括其他与燃烧过程有关的设备,它的主要作用是将一定数量的可燃气体和空气通入燃烧设备中,通过可燃气体的燃烧将化学能转变为热能,给锅炉本体提供持续的热能。锅炉本体就是借助燃烧设备提供的热能将水转化为水蒸汽,使其成为一定数量和质量(压力和湿度)的蒸汽。整个锅炉生产过程就是将一定数量的可燃气体和相应数量的空气送入炉内燃烧,燃烧所发出的热量传递给水,使水在定压下汽化而形成一定压力和温度的水蒸汽。 1.2燃气锅炉的应用 燃气锅炉作为一种产生热能和动力的工艺设备,广泛地应用于电力、机械、化工、纺织造纸等工业部门及宾馆、居民区采暖供热等方面。我国北方城市由于需要采暖供热,在用锅炉数量更大。燃气锅炉已经逐步进入人们生活的周围。 2.燃气锅炉爆炸事故类型及其危害 燃气锅炉运行中出现的事故大致可分为三类: (1)特大事故:锅炉中的主要受压部件——锅筒、管板等发生破裂爆炸的事故,这种事故常导致设备、厂房破坏和人身伤亡,造成重大损失。 (2)重大事故:燃气锅炉无法维持正常运行而被迫停炉的事故,如缺水事故、炉膛爆炸事故等。这类事故虽不象特大事故严重,但也常常造成设备、厂房损坏和人身伤亡,并使燃气锅炉被迫停运,导致用汽部门局部或全部停工停产,造成严重经济损失。 (3)一般事故:在运行中可以排除的事故或经过短暂停炉即可排除的事故,其影响和损失较小。 燃气锅炉事故属于工业热灾害三种主要事故类型中造成损失最大的爆炸事故。主要可分为两种爆炸原因,一是炉膛爆炸,另一种是炉体爆炸。燃气锅炉发生爆炸事故频率较高。 3.燃气锅炉的火灾危险性分析 3.1燃气的危险特性 燃气锅炉的燃料是可燃气体,主要是天然气或煤气。天然气和煤气的主要成分都是甲烷,还搀杂一些简单的烷烃,这些组分都是高度易燃易爆的气体,天然气的爆炸下限为4%,煤气的爆炸下限为6.2%,极易发生爆炸事故。 3.2炉膛爆炸火灾危险性 炉膛爆炸是由于可燃气体漏入并与空气混合形成爆炸性混合物,这种混合物处在爆炸极限范围时一接触到适当的点火源就会发生爆炸事故。伴随着化学变化,炉

爆炸和火灾危险环境装置电力设计规范GB50058-2014

爆炸危险环境电力装置设计规范(GB 50058-2014) Code for design of electrical installations in explosive atmospheres 主编部门:中国工程建设标准化协会化工分会 批准部门:中华人民共和国住房和城乡建设部 施行日期:2014年10月1日 中华人民共和国住房和城乡建设部公告 第319号 住房城乡建设部关于发布国家标准《爆炸危险环境电力装置设计规范》的公告 现批准《爆炸危险环境电力装置设计规范》为国家标准,编号为GB 50058-2014,自2014年10月1日起实施。其中,第5.2.2(1)、5.5.1条(款)为强制性条文,必须严格执行。原《爆炸和火灾危险环境电力装置设计规范》GB 50058-92同时废止。 本规范由我部标准定额研究所组织中国计划出版社出版发行。 中华人民共和国住房和城乡建设部 2014年1月29日 前言 本规范是根据原建设部《关于印发<2004年工程建设国家标准制订、修订计划>的通知》(建标[2004]67号)的要求,由中国寰球工程公司会同有关单位共同修订而成。 本规范修订的主要内容有:总则、爆炸性气体环境、爆炸性粉尘环境、危险区域的划分,设备的选择等。主要修订下列内容: 1.规范名称的修订,即将《爆炸和火灾危险环境电力装置设计规范》改为《爆炸危险环境电力装置设计规范》; 2.将“名词解释”改为“术语”,作了部分修订并放入正文; 3.将原第四章“火灾危险环境”删除; 4.将例图从原规范正文中删除,改为附录并增加了部分内容; 5.增加了增安型设备在1区中使用的规定; 6.爆炸性粉尘危险场所的划分由原来的两种区域“10区、11区”改为三种区域“20区、21区、22区”; 7.增加了爆炸性粉尘的分组:ⅢA、ⅢB和ⅢC组; 8.将原规范正文中“爆炸性气体环境的电力装置”和“爆炸性粉尘环境的电力装置”合并为第5章“爆炸性环境的电力装置设计”; 9.增加了设备保护级别(EPL)的概念; 10.增加了光辐射式设备和传输系统防爆结构类型。 在修订过程中,规范组进行了广泛的调查研究,认真总结了规范执行以来的经验,吸取了部分科研成果,借鉴了相关的国际标准及发达工业国家的相关标准,广泛征求了全国有关单位的意见,对其中主要问题进行了多次讨论、协调,最后经审查定稿。本规范删除了原规范中关于火灾危险环境的内容,对于火灾危险环境的电气设计,执行国家其他专门的设计规范。本规范共分5章和5个附录,主要内容包括总则,术语,爆炸性气体环境,爆炸性粉尘环境,爆炸性环境的电力装置设计等。 本规范以黑体字标志的条文为强制性条文,必须严格执行。 本规范由住房和城乡建设部负责管理和对强制性条文的解释,由中国工程建设标准化协会化工分会负责日常管理,由中国寰球工程公司负责具体技术内容的解释。本规范在执行过程中如发现需要修改或补充之处,请将意见、建议和有关资料寄送中国寰球工程公司(地址:北京市朝阳区樱花园东街7号,邮政编码:100029),以便今后修订时参考。

静电引起的火灾爆炸分析(标准版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 静电引起的火灾爆炸分析(标准 版)

静电引起的火灾爆炸分析(标准版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 在化工、炼油、橡胶、制药、印刷、金属粉末等行业的生产中,因静电事故所造成的损失是很大的,这不得不引起人们的重视。静电危害主要有三个方面,即静电放电引起火灾和爆炸,给人以电击和妨碍生产。其中静电放电引起火灾和爆炸是静电最严重的危害。为了掌握静电放电引起火灾和爆炸的机理,这里先分析一下静电的特点,有助于了解静电事故的成因。 一、静电特点 这里所说的静电特点是指与静电危害密切相关的特点,即静电电压的特点和静电泄漏的特点。 (一)电压特点 生产工艺过程中所产生静电的电量都很小,在局部范围内,静电电量一般都只有微库仑级到毫库仑级。但是,带电体的电容可能在很大范围内变化,有时变得很小,而电压u与电容C和电量Q之间有以下关系:

静电引起的火灾爆炸分析

静电引起的火灾爆炸分析 在化工、炼油、橡胶、制药、印刷、金属粉末等行业的生产中,因静电事故所造成的损失是很大的,这不得不引起人们的重视。静电危害主要有三个方面,即静电放电引起火灾和爆炸,给人以电击和妨碍生产。其中静电放电引起火灾和爆炸是静电最严重的危害。为了掌握静电放电引起火灾和爆炸的机理,这里先分析一下静电的特点,有助于了解静电事故的成因。 一、静电特点 这里所说的静电特点是指与静电危害密切相关的特点,即静电电压的特点和静电泄漏的特点。 (一)电压特点 生产工艺过程中所产生静电的电量都很小,在局部范围内,静电电量一般都只有微库仑级到毫库仑级。但是,带电体的电容可能在很大范围内变化,有时变得很小,而电压u与电容C和电量Q之间有以下关系: u =Q/ C 在电量保持不变的情况下,电压和电容保持反比关系。电容越大,电压越低;电容越小,则电压越高。如果产生静电的两种物体是平面接触的,则其间电容相当于平板对平板的电容,其大小为: C=8 / d 式中:S为平板面积,d为平板间距离 假设两种物体是密接触产生静电时,其间距离d1=25X 10-8cmli两物体

分离时,其间距离d2=0.1cm则前后电容之比为: C1/ C2=d^ di = 0.1/25*10-8 这就是说,两种物体分离后,电容减小为原来的四十万分之一,电压则增加为原来的四十万倍。因此,接触分离产生的静电高压是非常危险的。 例如:油品在输油管道内流动时,静电电压并不很高,但当注入油罐,特别是注入较大容积油罐时,由于电容逐渐逐渐减小,而电压大大升高。 一旦发生静电放电,将引起燃烧或爆炸。 二、静电放电引起火灾和爆炸 从国内外大量静电火灾和爆炸事故的分析中得出:发生静电放电引起火灾和爆炸,必须具备有可燃物、助燃物或是爆炸性混合物,这是着 火的必要条件;其次是必须具有能击穿电介质的静电电压,引起放电, 产生静电火花;第三是静电放电能量必须等于或大于物质的最小点火能量,成为物质的引火源。这三条是静电放电引起火灾和爆炸的最基本的条件,现分述如下:(一)可燃物或爆炸性混合物 可燃物是指凡能与空气中的氧或其它氧化剂起剧烈反应的物质。如木 材、纸张、汽油、乙焕等。凡能帮助和支持燃烧的物质称为助燃物,

爆炸和火灾危险区域的划分(正式版)

文件编号:TP-AR-L1144 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 爆炸和火灾危险区域的 划分(正式版)

爆炸和火灾危险区域的划分(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 爆炸危险场所,是指生产、使用、储存易燃易爆物质,并能形成爆炸性混合物,且有爆炸危险的场所。火灾危险场所,是指在生产过程中,产生、使用、加工、储存或转运闪点高于场所环境温度的可燃液体,或者有可燃粉尘、可燃纤维,或者有固体状可燃物质,并在可燃物质的数量上和配置上,能引起火灾危险的场所。 一、爆炸和火灾危险场所的分类和分级 (一)爆炸危险场所的分类和分级 1.爆炸危险场所的分类 爆炸危险场所按爆炸性物质的物态,分为气体爆

炸危险场所和粉尘爆炸危险场所。 2.爆炸危险场所的分级 爆炸危险场所的分级原则是按爆炸性物质出现的频度、持续时间和危险程度而划分为不同危险等级的区域。 (1)气体爆炸危险场所的区域等级 爆炸性气体、易燃或可燃液体的蒸汽与空气混合形成爆炸性气体混合物的场所,按其危险程度的大小分为三个区域等级。 ① 0级区域(简称0区),是指在正常情况下,爆炸性气体混合物,连续地、短时间频繁地出现或长时间存在的场所。 ② 1级区域(简称1区),是指在正常情况下,爆炸性气体混合物有可能出现的场所。 ③ 2级区域(简称2区),是指在正常情况下,

爆炸性气体环境危险的区域划分

爆炸和火灾危险环境电力装置设计规范 目录 第一章总则 第二章爆炸性气体环境 第一节一般规定 第二节爆炸性气体环境危险区域划分 第三节爆炸性气体环境危险区域的范围 第四节爆炸性气体混合物的分级、分组 第五节爆炸性气体环境的电气装置 第三章爆炸性粉尘环境 第一节一般规范 第二节爆炸性粉尘环境危险区域划分 第三节爆炸性粉尘环境危险区域的范围

第四节爆炸性粉尘环境的电气装置 第四章火灾危险环境 第一节一般要求 第二节火灾危险区域划分 第三节火灾危险环境的电气装置 附录一名词解释 附录二爆炸危险区域划分示例图及爆炸危险区域划分条件表附录三气体或蒸气爆炸性混合物分级分组举例 附录四爆炸性粉尘特性 第一章总则 第1.0.1条为了使爆炸和火灾危险环境 电力装置设计贯彻预防为主的方针,保障 人身和财产的安全,因地制宜地采取防范 措施,做到技术先进,经济合理、安全适 用,制定本规范。

第1.0.2条本规范适用于在生产、加工、处理、转运或贮存过程中出现或可能出现爆炸和火灾危险环境的新建、扩建和改建工程的电力设计。 本规范不适用于下列环境: 一、矿井井下; 二、制造、使用或贮存火药、炸药和起爆药等的环境; 三、利用电能进行生产并与生产工艺过程直接关联的电解、电镀等电气装置区域; 四、蓄电池室; 五、使用强氧化剂以及不用外来点火源就能自行起火的物质的环境; 六、水、陆、空交通运输工具及海上油井平台。

第1.0.3条爆炸和火灾危险环境的电力设计,除应符合本规范的规定外,尚应符合现行的有关国家标准和规范的规定。 第二章爆炸性气体环境 第一节一般规定 第2.1.1条关于生产、加工、处理、转运或贮存过程中出现或可能出现下列爆炸性气体混合物环境之一时,应进行爆炸性气体环境的电力设计: 一、在大气条件下、易燃气体、易燃液体的蒸气或薄雾等易燃物质与空气混合形成爆炸性气体混合物; 二、闪点低于或等于环境温度的可燃液体的蒸气或薄雾与空气混合形成爆炸性气体混合物;

静电引起的火灾爆炸分析详细版

文件编号:GD/FS-1755 (解决方案范本系列) 静电引起的火灾爆炸分析 详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

静电引起的火灾爆炸分析详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 在化工、炼油、橡胶、制药、印刷、金属粉末等行业的生产中,因静电事故所造成的损失是很大的,这不得不引起人们的重视。静电危害主要有三个方面,即静电放电引起火灾和爆炸,给人以电击和妨碍生产。其中静电放电引起火灾和爆炸是静电最严重的危害。为了掌握静电放电引起火灾和爆炸的机理,这里先分析一下静电的特点,有助于了解静电事故的成因。 一、静电特点 这里所说的静电特点是指与静电危害密切相关的特点,即静电电压的特点和静电泄漏的特点。 (一)电压特点

生产工艺过程中所产生静电的电量都很小,在局部范围内,静电电量一般都只有微库仑级到毫库仑级。但是,带电体的电容可能在很大范围内变化,有时变得很小,而电压u与电容C和电量Q之间有以下关系: u=Q/C 在电量保持不变的情况下,电压和电容保持反比关系。电容越大,电压越低;电容越小,则电压越高。如果产生静电的两种物体是平面接触的,则其间电容相当于平板对平板的电容,其大小为: C=εS/d 式中:S为平板面积,d为平板间距离。 假设两种物体是密接触产生静电时,其间距离d1=25×10-8cm,当两物体分离时,其间距离 d2=0.1cm,则前后电容之比为:

可燃粉尘爆炸危险性及预防(正式)

编订:__________________ 审核:__________________ 单位:__________________ 可燃粉尘爆炸危险性及预 防(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2555-68 可燃粉尘爆炸危险性及预防(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、可燃粉尘爆炸的危害性 提起爆炸,人们总是很自然地想到爆炸物或可燃气体与氧气(或空气)爆炸时震天动地的轰响。殊不知,悬浮在空气中的那些悠悠飘扬的粉尘也会引起威力巨大的爆炸。 粉尘爆炸事故在国内外屡见不鲜。昭和41年,日本横滨饲料厂的玉米粉尘爆炸,引起累积性连锁燃烧,使整个工厂遭到蔓延性重大“天灾”。1921年美国芝加哥一台大型谷类提升机发生粉尘爆炸,其爆炸力将40座每座约装30万吨粮食的仓室,从底座掀起,并移动了152.4毫米,结果6死1伤,经济损失达400万美元。1942年我国本溪煤矿曾发生世界上最大的煤尘爆炸,死亡1549人,重伤246人。1987年3月15日凌晨,我国哈尔滨亚麻纺织厂联合厂梳麻、前纺、

爆炸危险环境电力装置设计规范1

《爆炸危险环境电力装置设计规范》GB50058授课内容 本规范修定的挔据: 《爆炸和火灾危险环境电力装置设计规范》GB50058—92 已实施二十多年,当时编制该规范主要依据国际电工委员会标准IEC79-10、美国石油学会API RP500A及美国国家防火协会NFPA497标准,并参考了日本防爆指南。近年来,国际标准IEC60079 和IEC61241,美国标准API RP505及NFPA497都已修订,并已发布施实,而且与国际标准IEC60079 和IEC61241等同的国家标准GB3836、GB12476已完成修订正在报批。 为了适应市场的迫切需要并同国际技术接轨,必须将本标准进行修订。根据最新版的国际标准IEC60079 和IEC61241,以及最新的国家标准《爆炸性环境第一部分设备通用要求》GB3836.1-2010 及《可燃性粉尘环境用电气设备》GB12476的相关规定,在此基础上对原规范《爆炸和火灾危险环境电力装置设计规范》GB50058—92 进行了增补和修订. 本规范与GB50058-92 相比,有以下改变: 1.规范名称的修订,即将《爆炸和火灾危险环境电力装置设计规范》改为《爆 炸危险环境电力装置设计规范》; 2.将《名词解释》改为《术语》,做了部分修订并放入正文; 3.将原第四章《火灾危险环境》删除; 4.将例图从原规范正文中删除,改为附录并增加了部分内容; 5.增加了增安型设备在1 区中使用的规定; 6.爆炸性粉尘危险场所的划分有由原来的两种区域“10 区、11 区”改为三 种区域“20 区、21 区、22 区”; 7.增加了爆炸性粉尘的分组:IIIA、IIIB 和IIIC 组; 8.将原规范正文中“爆炸性气体环境的电力装置”和“爆炸性粉尘环境的电 力装置”合并为第5 章“爆炸性环境的电力装置”; 9.增加了设备保护级别(EPL)的概念; 10.增加了光辐射式设备和传输系统防爆结构类型; 11.将原规范正文中易燃气体、易燃液体改为可燃气体、可燃液体;

静电引起的火灾爆炸分析实用版

YF-ED-J4515 可按资料类型定义编号 静电引起的火灾爆炸分析 实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

静电引起的火灾爆炸分析实用版 提示:该解决方案文档适合使用于从目的、要求、方式、方法、进度等都部署具体、周密,并有很强可操作性的计划,在进行中紧扣进度,实现最大程度完成与接近最初目标。下载后可以对文件进行定制修改,请根据实际需要调整使用。 在化工、炼油、橡胶、制药、印刷、金属粉末等行业的生产中,因静电事故所造成的损失是很大的,这不得不引起人们的重视。静电危害主要有三个方面,即静电放电引起火灾和爆炸,给人以电击和妨碍生产。其中静电放电引起火灾和爆炸是静电最严重的危害。为了掌握静电放电引起火灾和爆炸的机理,这里先分析一下静电的特点,有助于了解静电事故的成因。 一、静电特点 这里所说的静电特点是指与静电危害密切

相关的特点,即静电电压的特点和静电泄漏的特点。 (一)电压特点 生产工艺过程中所产生静电的电量都很小,在局部范围内,静电电量一般都只有微库仑级到毫库仑级。但是,带电体的电容可能在很大范围内变化,有时变得很小,而电压u与电容C和电量Q之间有以下关系: u=Q/C 在电量保持不变的情况下,电压和电容保持反比关系。电容越大,电压越低;电容越小,则电压越高。如果产生静电的两种物体是平面接触的,则其间电容相当于平板对平板的电容,其大小为: C=εS/d

火灾爆炸危险性与防护示范文本

火灾爆炸危险性与防护示 范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

火灾爆炸危险性与防护示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 国家安全生产监督管理总局在安监总管一字[2008]7号 文件《关于印发陆上石油天然气建设项目安全设施设计专 篇编写指导书的通知》中,明确规定了天然气处理厂建设 项目初步设计《安全设施设计专篇》的编写内容。其中, 包括危险有害因素分析、初步设计中采取的主要防护技术 措施、安全设施设计后的风险状况分析等。 天然气及其处理过程产品都是易燃、易爆物质,故主 要危险有害因素是火灾、爆炸事故,同时也存在毒性、噪 声、高温或低温、机械伤害和高空坠落等职业危害。本节 仅重点介绍生产过程火灾、爆炸和噪声等危险有害因素与 防护。 1.天然气火灾爆炸因素

天然气及其处理过程产品均为易燃、易爆物质,只要存在空气(或氧气)等助燃物及火源,就可燃烧甚至爆炸。 天然气处理过程一旦发生火灾爆炸事故,不仅直接损失巨大,而且对周围环境和公共安全构成严重威胁,危害程度极大。设计不合理、施工质量、外力破坏、违章作业、设备和设施质量、腐蚀等原因,都可能引起设备、机械、管线、阀门、仪器仪表等出现泄漏。泄漏的天然气及其凝液等遇雷击火、电气或静电火花、机动车排烟喷火、明火或其他散发火时,将会引发火灾事故。如果气体浓度达到爆炸极限,还将发生爆炸事故。 天然气处理过程中存在的导致火灾爆炸的因素主要如下; (1) 管线和压力容器破裂、泄漏引发火灾爆炸。 天然气处理过程中的管线和压力容器,在运行时可能因窜气、超压、腐蚀、选材不当和制造缺陷等导致破裂和

GB 50058-92 爆炸和火灾危险环境电力装置设计规范

10、爆炸和火灾危险环境电力装置设计规范GB 50058-92 第二章爆炸性气体环境 第一节一般规定 第2.1.1条对于生产、加工、处理、转运或贮存过程中出现或可能出现下列爆炸性气体混合物环境之一时,应进行爆炸性气体环境的电力设计; 一、在大气条件下、易燃气体、易燃液体的蒸气或薄雾等易燃物质与空气混合形成爆炸性气体混合物; 二、闪点低于或等于环境温度的可燃液体的蒸气或薄雾与空气混合形成爆炸性气体混合物; 三、在物料操作温度高于可燃液体闪点的情况下,可燃液体有可能泄漏时,其蒸气与空气混合形成爆炸性气体混合物。 第2.1.2条在爆炸性气体环境中产生爆炸必须同时存在下列条件: 一、存在易燃气体、易燃液体的蒸气或薄雾,其浓度在爆炸极限以内; 二、存在足以点燃爆炸性气体混合物的火花、电弧或高温。 第2.1.3条在爆炸性气体环境中应采取下列防止爆炸的措施: 一、首先应使产生爆炸的条件同时出现的可能性减到最小程度。 二、工艺设计中应采取消除或减少易燃物质的产生及积聚的措施: 1.工艺流程中宜采取较低的压力和温度,将易燃物质限制在密闭容器内; 2.工艺布置应限制和缩小爆炸危险区域的范围,并宜将不同等级的爆炸危险区,或爆炸危险区与非爆炸危险区分隔在各自的厂房或界区内; 3.在设备内可采用以氮气或其它惰性气体覆盖的措施; 4.宜采取安全联锁或事故时加入聚合反应阻聚剂等化学药品的措施。 三、防止爆炸性气体混合物的形成,或缩短爆炸性气体混合物滞留时间,宜采取下列措施: 1.工艺装置宜采取露天或开敞式布置; 2.设置机械通风装置; 3.在爆炸危险环境内设置正压室; 4.对区域内易形成和积聚爆炸性气体混合物的地点设置自动测量仪器装置,当气体或蒸气浓度接近爆炸下限值的50%时,应能可靠地发出信号或切断电源。 四、在区域内应采取消除或控制电气设备线路产生火花、电弧或高温的措施。 第二节爆炸性气体环境危险区域划分 第2.2.1条爆炸性气体环境应根据爆炸性气体混合物出现的频繁程度和持续时间,按下列规定进行分区: 一、0区:连续出现或长期出现爆炸性气体混合物的环境; 二、1区:在正常运行时可能出现爆炸性气体混合物的环境

静电引起的火灾爆炸分析(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 静电引起的火灾爆炸分析(通用 版) Safety management is an important part of production management. Safety and production are in the implementation process

静电引起的火灾爆炸分析(通用版) 在化工、炼油、橡胶、制药、印刷、金属粉末等行业的生产中,因静电事故所造成的损失是很大的,这不得不引起人们的重视。静电危害主要有三个方面,即静电放电引起火灾和爆炸,给人以电击和妨碍生产。其中静电放电引起火灾和爆炸是静电最严重的危害。为了掌握静电放电引起火灾和爆炸的机理,这里先分析一下静电的特点,有助于了解静电事故的成因。 一、静电特点 这里所说的静电特点是指与静电危害密切相关的特点,即静电电压的特点和静电泄漏的特点。 (一)电压特点 生产工艺过程中所产生静电的电量都很小,在局部范围内,静电电量一般都只有微库仑级到毫库仑级。但是,带电体的电容可能在很大范围内变化,有时变得很小,而电压u与电容C和电量Q之

间有以下关系: u=Q/C 在电量保持不变的情况下,电压和电容保持反比关系。电容越大,电压越低;电容越小,则电压越高。如果产生静电的两种物体是平面接触的,则其间电容相当于平板对平板的电容,其大小为:C=εS/d 式中:S为平板面积,d为平板间距离。 假设两种物体是密接触产生静电时,其间距离d1=25×10-8cm,当两物体分离时,其间距离d2=0.1cm,则前后电容之比为:C1/C2=d2/d1=0.1/25*10-8 这就是说,两种物体分离后,电容减小为原来的四十万分之一,电压则增加为原来的四十万倍。因此,接触分离产生的静电高压是非常危险的。 例如:油品在输油管道内流动时,静电电压并不很高,但当注入油罐,特别是注入较大容积油罐时,由于电容逐渐逐渐减小,而电压大大升高。一旦发生静电放电,将引起燃烧或爆炸。

相关文档
相关文档 最新文档