文档库 最新最全的文档下载
当前位置:文档库 › 浅谈高浓度氨氮废水处理的可持续发展方向

浅谈高浓度氨氮废水处理的可持续发展方向

浅谈高浓度氨氮废水处理的可持续发展方向
浅谈高浓度氨氮废水处理的可持续发展方向

第31卷环境科学与技术

收稿日期:2007-03-10;修回2007-11-29

基金项目:广东省科技厅资助项目(2005B32401007、2006B36801001)

作者简介:钟金松(1953-),男,在读博士研究生,主要从事水处理技术的研究与开发;*通讯作者,(电话)(020)-85290309(电子信箱)minofc@gig.ac.cn。

浅谈高浓度氨氮废水处理的可持续发展方向

钟金松1,2,

闵育顺1*,

肖贤明1

(1.中国科学院广州地球化学研究所有机地球化学国家重点实验室,广东

广州

510640;2.中国科学院研究生院,北京100049)

要:基于可持续发展观念,简评了目前一些常用的和新研发的氨氮废水处理方法,认为既能高效脱氮又能充分回收氨的磷酸铵

镁(MAP)沉淀法和可节能减耗的生物脱氮新工艺,将是未来高浓度氨氮废水处理的优先选择和发展方向。

关键词:高浓度氨氮废水;处理方法;

环境经济效益;

可持续发展

中图分类号:X703

文献标识码:A

文章编号:1003-6504(2008)02-0092-04

AnOverviewonTreatmentofWastewaterwith

HighConcentrationofNH3-N

ZHONGJin-song1,2,

MINYu-shun1*,

XIAOXian-ming1

(1.StateKeyLabofOrganicGeochemistry,GuangzhouInstituteofGeochemistry,CAS,Guangzhou510640,China;

2.GraduateSchoolofCAS,Beijing100049,China)

Abstracts:Thispaperreviewsthemainammonia-containingwastewatertreatmenttechnologiesfromthepointofviewof

cost-effectivenessandsustainabledevelopment,focusingontheMAP(MgNH4PO4?6H2O)precipitationmethod,whichfeatures

recoveringnitrogenandphosphorusandremovingNH3-Nwithhighefficiency.

Keywords:ammonianitrogen;wastewatertreatment;environmentalandeconomicalbenefits;sustainabledevelopment

从环境经济效益和可持续发展观念出发,可以将这几种脱氮工艺分为三类:(1)把废水中的NH4+转化

成无害的N2逸入大气,虽然治理了氨氮污染,但也丢弃了有价值的氨资源,如生化法、折点氯化法。(2)将

EnvironmentalScience&Technology

第31卷第2期2008年2月

Vol.31NO.2

Feb.2008

表1

氨氮废水的主要处理方法比较

Table1

Comparisonofdifferenttreatmentmethodsofammonianitrogenwastewater

处理方法基本优点

主要缺点

适用范围

传统生化法工艺成熟,脱氮效果较好。

流程长,反应器大,占地多,常需外加碳源,

能耗大,成本高。

低浓度氨氮废水

氨吹脱法(汽提法)

工艺简单,效果稳定,适用性强,投资较低。能耗大,有二次污染,出水氨氮仍偏高。

各种浓度废水,多用于中、高浓度废水

离子交换法工艺简单,操作方便,投资较省。

树脂用量大、再生难,费用高,有二次污染。低浓度氨氮废水折点氯化法设备少,投资省,反应速度快,能高效脱氮。操作要求高,成本高,会产生有害气体。

各种浓度废水,多用于低浓度废水

磷酸铵镁沉淀

(MAP)法

工艺简单,操作简便,反应快,影响因素少,节能高效,能充分回收氨,实现废水资源化。

用药量大、成本较高;MAP用途有待开发。各种浓度废水、尤其高浓度氨氮废水

从20世纪60年代起,在全球范围出现了十分突出的水质富营养化问题。在20世纪80年代以后水体的氮磷污染更日益严重,特别是来源于焦化、化肥、石油化工、化学冶金、食品、养殖等行业以及垃圾渗滤液的高浓度氨氮废水,排放量大,成分复杂,毒性强,对环境危害大,处理难度又很大,使得氨氮废水的污染及其治理一直受到全世界环保领域的高度重视。基于可持续发展观念,在高浓度氨氮废水处理方面,不仅要追求高效脱氮的环境治理目标,还要追求节能省耗、避免二次污染、充分回收有价值的氨资源等更高层次的环境经济效益目标,才是治理高浓度氨氮废水

的比较理想的技术发展方向。

1氨氮废水的主要处理方法比较

近三十年来,在氨氮废水、特别是高浓度氨氮废

水的处理技术方面,取得了不断的进步。目前,常用的脱除氨氮方法主要有生化法、氨吹脱(空气吹脱与蒸汽汽提)法、折点氯化法、离子交换法和磷酸铵镁沉淀(MAP)法等。这些处理工艺各有特色,但也各有一定的局限性(表1)。就国内外高浓度氨氮废水处理现状来看,国内多采用生化法和氨吹脱法,国外则多采用生化法和磷酸铵镁沉淀法[1]。

第2期NH4+从废水中分离、

脱出,或排人大气,或进入后续处理工序,如氨吹脱法及离子交换法。这些方法会带来

NH4+的二次污染和NH4+资源的浪费。其中,氨吹脱法

脱氮效果虽好,但能耗也大,尤其是汽提法,处理1t废

水至少需要0.5t蒸汽[2]。

以氨氮浓度为3177mg/L的化肥厂氨氮废水为例,用汽提法若每天处理废水300m3、出水氨氮含量为42.3mg/L,则每天约浪费0.9t的氨;

若按我国目前生产合成氨的吨氨平均工艺综合能耗水平推算,则相当于每天浪费近1.8t标煤。

(3)将NH4+转化为可利用的物质,使废水资源化,如磷酸铵镁沉淀(MAP)法。

2节能减耗的生物脱氮新工艺

自20世纪70年代以后,传统的活性污泥硝化-

反硝化法(表1)以及在其基础上开发的一系列新的生物脱氨氮工艺及其改进型工艺,如缺氧/好氧(A/O)法、序批式活性污泥法(SBR)、吸附-生物降解(AB)法、氧化沟(OD)法、生物膜法等,在氨氮废水处理领域获得了广泛的应用,但主要适用于处理低浓度或中低浓度氨氮废水,并且都有一定的局限性。从可持续

发展目标来看,传统生物脱氮工艺的明显不足之处有二[3]:一是能耗大,氨氮的氧当量为4.57g,要供氧就要耗能,若设置内回流还要增加能耗;二是耗费资源,在反硝化过程中需以有机碳作为电子供体,若系统内碳源不足,则还需投加甲醇等外加碳源,这既是资源的耗费,也是另一种形式的能耗。

探寻经济高效的生物脱除氨氮技术,是近年来水污染控制工程领域的热点之一,并已取得了重要进展:一方面是在生物脱氮理论方面又有了重要的新发现,如厌氧氨氧化作用、好氧反硝化作用和异养硝化作用等微生物生化作用的发现;另一方面是与之相应的、一些新型生物脱氮工艺的问世,如“同时硝化/反硝化”(SND)新工艺[4]、“短程硝化-反硝化”新工艺[5-6]和“半硝化-厌氧氨氧化”(SHARON-ANAMMAOX)新工艺[3]等。与传统生物脱氮工艺相比(表2),这些新型工艺具有节能减耗、经济高效等优点,尤其是其中无需外加碳源的半硝化-厌氧氨氧化脱氮工艺,更适合于处理焦化、石化、化肥及垃圾渗滤液等低碳源的高氨氮废水,符合废水处理的可持续发展目标,为高浓度氨氮废水的高效生物脱氮提供了有着良好应用前景的可能途径。

工艺名称同时硝化/反硝化

短程硝化-反硝化

半硝化-厌氧氨氧化

代号SND

SHORTND

SHARON-ANAMMAOX

氧供应量比传统活性污泥法曝气量减少比传统活性污泥法节省氧供应量25%比SHORTND工艺节省氧供应量50%碳源用量减少外加碳源用量

节省外加碳源40%无需外加碳源

工艺优点高效脱氮,无需调控pH,减少

投碱量,操作简单经济。脱氮率高,反应时间短,减小反应器容积,减少投碱量。

节能减耗,成本低、高效脱氮,尤其适用于低碳源的高氨氮废水处理。存在问题

影响因素多,过程控制难。

HNO2的积累难维持;会产生毒害副产物

尚不够成熟

表2

几种新型生物脱氮工艺的节能减耗比较

Table2

Comparisonofenergysavingparametersforsomebiologicaltreatmentsofammonianitrogenwastewater

3节能并实现废水资源化的磷酸铵镁沉淀(MAP)法磷酸铵镁沉淀法,又称化学沉淀法、MAP法,国

外于20世纪60年代开始研究,至20世纪90年代便作为一种新的废水脱氮工艺而迅速兴起,进入了一个崭新的应用阶段[7]

3.1

MAP法的技术优势

如表1所示,与生化法、氨吹脱法、折点氯化(氧

化)法、离子交换(吸附)法、膜处理法等工艺相比,

MAP法的技术优势非常明显:其工艺简单、操作简

便、节省能耗、沉淀反应迅速(反应时间只需几分钟至几十分钟)且不受温度和杂质等因素的限制与干扰;可以处理各种浓度、尤其是高浓度氨氮废水,更适合于处理因含毒害物质而不宜用生化法的各种工业高浓度氨氮废水;既能高效脱氮除磷(通常脱氮率>90%

~98%,除磷率>95%),又能将污染物氨氮反应生成有用的磷酸铵镁(MgNH4PO4?6H2O,简称MAP,俗称鸟

粪石),从而实现氨氮废水资源化的目标。其生成物

MAP可用作缓释性复合肥料,回收方便,回收率也较

高。李晓萍等[2]使用两步沉淀工艺处理化肥厂高浓度氨氮废水,氨氮去除率达99.1%,氨回收率为80.1%。若将MAP法与生化法联合,则曝气池工艺不需达到硝化阶段,可使该联合工艺的曝气池体积比常规生化法池体减少约1倍。

目前,MAP法的主要局限性在于:沉淀药剂用量较大,从而致使处理成本较高;沉淀产物MAP的用途有待进一步开发与推广。若能找到价廉高效的沉淀药剂、并广泛开拓MAP的用途,使回收的MAP不仅能补偿药剂费用还能产生一定的经济效益,则MAP法的技术优势将更加完美。

3.2MAP法的经济效益简析

MAP法的处理成本,主要在于沉淀药剂磷酸盐和镁盐的费用,其用药量比例如表4所示。据董春松等[8]报道,用MAP法处理垃圾渗滤液的费用为3.89 ̄7.10元/m3,显示处理成本较高。但据R.Schulze-

Rettmer[9]研究,药品费用约占MAP法处理费用

(包括固定投资)的70%,如果采用MAP法把废水的氨氮从50mg/L处理到20mg/L,总运行费用与硝化-反硝化

钟金松,等浅谈高浓度氨氮废水处理的可持续发展方向

93

第31卷

环境科学与技术

法相当;然而,MAP法能充分回收并利用N和P,将

MAP作为肥料出售,其实际成本还会减少。周娟贞[10]

关于MAP法的用药量、产物生成量及其可能获得的经济价值的研究也表明(表3),使用MAP法处理高

浓度氨氮废水是能够产生一定经济效益的。只是在处理低浓度氨氮废水时(如氨氮浓度<25mg/L),运转费才显得过高,但通过高温降解MAP可以使沉淀剂进行循环利用,产生的NH3还可用于烟道气脱硝。可见,

MAP法处理高浓度氨氮废水,不仅在技术上是可行

的,在环境经济效益方面也将会是比较合理的。

3.3磷酸铵镁(MAP)的应用前景

MAP法沉淀产物的主要物质成分为磷酸铵镁

[MgNH4PO4?6H2O],有时含少量磷酸镁[Mg2P2O7]和磷

酸氢铵[(NH4)2H22P2O5]。据其化学组成[10-11]

(表4)可知,MAP含有丰富的植物生长所必需的营养元素N、P和叶绿素所必需的营养物质Mg2+,具有无机复合肥

的性能。

关于MAP的研究[12-13]还显示,由于MAP在中性及弱碱性环境下不溶解,在水中溶解度很低,具有缓释肥的功效,其养分比其他可溶肥料释放速率慢,肥效期长而稳定,肥料利用率高,从而可使施肥次数和施用量大大减少,并且不会出现“烧苗”问题。另外,虽然工业氨氮废水中常含有重金属等有害杂质,但

MAP法的反应产物MAP几乎不吸收重金属等毒害

物质[1],因此将MAP用于农家肥,不会对庄稼和环境

产生污染和危害。

缓释、高效复合和环境友好是当今世界肥料发展的总趋势,使用全营养型、被称为“21世纪肥料”的缓/控释肥料是肥料科学研究的最终目标之一。我国政府已将研究开发缓/控释肥料列为2006 ̄2020年国家科技发展计划的优先主题之一。郑州大学研制成功的以磷酸铵镁等作为包裹材料的“肥包肥”型缓释肥,被公认为是一个低成本、全营养、施用后不会产生任何残留物污染的环境友好型控制释放复合肥料,已在国内外十多家企业生产,产品还出口美国、澳大利亚、新加坡、日本、韩国等国家。这一产品的成功开发、特别是国内外肥料发展的总趋势,将为MAP法的反应产物

磷酸铵镁的推广应用提供了很好的范例、带来了良好的机遇和美好的前景。

4结语

由于高浓度氨氮废水对环境危害大,处理难度

大,一直是国内外水污染控制研究的热点之一。从现有研究成果与实践来看,具有节能减耗的

“半硝化-厌氧氨氧化”(SHARON-ANAMMAOX)生物脱氮新工艺与既能高效脱氮除磷又能充分回收氨、实现废水资源化的磷酸铵镁(MAP)沉淀法,是当前比较符合可持续发展目标的两种处理方法,技术优势与环境经济效益明显,通过进一步完善与发展,可能是未来高浓度氨氮废水处理的发展方向和优先选择。

[参考文献]

[1]仝武刚,王继徽,刘大鹏.高浓度氨氮废水的处理现状与发

展[J].工业水处理,2002,22(9):9-12.

TongWu-gang,WangJi-hui,LiuDa-peng.Presentsitua-tionanddevelopmentofthetreatmentofhighlyconcentratedammonium-nitrogenwastewater[J].IndustrialWaterTreat-

ment,2002,22(9):9-12.

(inChinese)[2]李晓萍,刘小波,金向军,等.化肥厂高浓度氨氮废水的处理

和回用[J].吉林大学学报(理学版),2006,44(2):295-298.

LiXiao-ping,LiuXiao-bo,JinXiang-jun,etal.Treat-mentandrecoveryofhighconcentrationammonianitrogenwastewaterfromfertilizerplant[J].JournalofJilinUniversi-

ty(scienceedition),2006,44(2):295-298.

(inChinese)[3]李亚新,刘美霞.厌氧氨氧化

(ANAMMAOX)脱氮新工艺[J].环境科学与技术,2004,27(3):111-113.

LiYa-xin,LiuMei-xia.Newtechniquefornitrogenre-movalbyANAMMOXprocess[J].EnvironmentalScience&

Technology,2004,27(3):111-113.

(inChinese)[4]林燕,何义亮,李春杰,等.MBR同步硝化反硝化及异养硝

化试验研究[J].环境科学与技术,2006,29(1):7-9,27.

LinYan,HeYi-liang,LiChun-jie,etal.ExperimentalresearchonsimultaneousnitrificationanddenitrificationandheterotrophicnitrificationinMBR[J].EnvironmentalScience

&Technology,2006,29(1):7-9,27.

(inChinese)[5]张蔚萍,陈建中.低碳高浓度含氮废水的生物脱氮技术[J].

环境保护,2003,6:20-21.

ZhangWei-ping,ChenJian-zhong.Biologicaldenitrifica-tiontreatmenttechnologiesoflowcarbonandhighammoniacontentwastewater[J].EnvironmentalProtection,2003,6:20-

21.

(inChinese)[6]蔡军,安立超,黄荣富,等.曝气生物滤池处理焦化废水脱氮

的研究[J].环境污染治理技术与设备,2006,29(12):22-23,42.

CaiJun,AnLi-chao,HuangRong-fu,etal.Researchonre-movalofnitrogenincoke-plantwastewaterbyusingbiologicalaeratedfilter[J].TechniquesandEquipmentforEnvironmental

(下转第147页)

表3

MAP法每沉淀1kg氨氮的用药量及产物回收情况

Table3

Chemicalmaterialdemandandrecoveryproductforlkg

ammonianitrogendepositbyMAPmethod

(kg)注:*据文献[10]:国际上MAP的理论价格为198~330美元/t,依此推算。

[14]1.712.21

少量

17.53.5 ̄5.8

参考文献

药品用量

MAP沉淀产物镁

NaOH生成量价值*(美元)[13]

1.902.0少量--表4

MAP的化学组成

Table4

ChemicalcompositionsofMAPproducts

(%)

组成项目氮(N)磷(P2O5)镁(MgO)

含量范围

4.4~4.528.0~38.913.3~18.2

94

第2期

(上接第94页)

PollutionControl,2006,29(12):22-23,42.(inChinese)[7]方建章,黄少斌.化学沉淀法去除水中氨氮的试验研究[J].环境科学与技术,2002,25(5):34-35.

FangJian-zhang,HuangShao-bin.Experimentalresearchonremovingammonianitrogeninwastewaterbychemicalprecipitation[J].EnvironmentalScience&Technology,2002,25(5):34-35.(inChinese)

[8]董春松,樊耀波,李刚,等.我国垃圾渗滤液的特点和处理技术探讨[J].中国给水排水,2005,21(12):27-31.

DongChun-song,FanYao-bo,LiGang,etal.Character-isticsofdomesticrefuselandfillleachateanddiscussionontreatmenttechnology[J].ChinaWater&Wastewater,2005,21(12):27-31.(inChinese)

[9]Schulze-RettmerR.Thesimultaneouschemicalprecipitationofammoniumandphosphateintheformofmagnesium-ammonium-phosphate[J].WatSciTech,1991,23:659-667.[10]周娟贞.化学沉淀法治理高浓度氨氮废水的研究[J].净水技

术,1992,42(4):13-14.

ZhouJuan-zhen.Researchontreatinghighconcentrationofammoniumnitrogenwastewaterbychemicalprecipitation[J].WaterPurificationTechnology,1992,42(4):13-14.(inChinese)[11]刘小澜,王继徽,黄稳水,等.磷酸铵镁法处理焦化厂高浓度氨氮废水[J].环境污染治理技术与设备,2005,6(3):65-68.LiuXiao-lan,WangJi-hui,HuangWen-shui,etal.Ammo-nianitrogenremovalfromcokeplantwastewaterbyMAP[J].TechniquesandEquipmentforEnvironmentalPollutionControl,2005,6(3):65-68.(inChinese)

[12]GaterellMR,GayR,WilsonR,etal.AneconomicandenvironmentalevaluationoftheopportunitiesforsubstitutingphosphorusrecoveredfromwastewatertreatmentworksinexistingUKfertilizermarkets[J].EnvTechol,2000,21(9):1067-1084.

[13]ElisabethVM,KeithB.Controlledstruvitecrystallizationforremovingphosphorusfromanaerobicdigestersidestreams[J].WaterResearch,2001,35(1):151-159.

3.3流域生态补偿支付方式选择

流域生态补偿选择公共支付还是市场贸易支付,很大程度上受制于购买对象的特点和性质。在大尺度流域,生态环境服务受益者众多,且很难量化分割和交易,公共支付是理想的方式。在小尺度流域上下游,当环境服务受益方少且明确,提供方数量在可控制的范围内时,协商交易具有较大的可行性。如果环境服务能被标准化为可分割和交易的商品,如温室气体抵消单位CTO,且已建立起市场交易体系及规则,则开放式贸易效果好。当生态标记认证体系完善、可信度高时,生态环境服务可通过生态标记由普通市场的消费者来支付。

[参考文献]

[1]王金龙,马为民.关于流域生态补偿问题的研讨[J].水土保持学报,2002,(6):82-83.

WangJin-long,MaWei-min.Studyofvalleyecologycompensationquestion[J].JournalofSoilandWaterConser-vation,2002,(6):82-83.(inChinese)

[2]靳乐山,左停,李小云.支付流域生态环境服务:市场的作用[A].王金南,庄国泰主编.生态补偿机制与政策设计国际研讨会会议论文集[C].北京:中国环境科学出版社,2006:171-183.

JinLe-shan,ZuoTing,LiXiao-yun.ThePaymentforE-cologicalEnvironmentalServicesonWatershed:Market’sFunction[A].WangJin-nan,ZhuangGuo-tai,ProceedingsofInternationalWorkshoponEcologicalCompensationMechanismandItsPolicyDesign[C].Beijing:ChinaEnvi-ronmentalSciencePress,2006:171-183.(inChinese)[3]http://www.chinadaily.com.cn/hqgj/2007-07/03/content_909150[GB/OL].

[4]张惠远,刘桂环.我国流域生态补偿机制设计[J].环境保护,2006,(10):49-54.

ZhangHui-yuan,LiuGui-huan.ThedesignofmechanismonvalleyecologicalcompensationinChina[J].

EnvironmentalProtection,2006,(10):49-54.(inChinese)[5]张陆彪,郑海霞.流域生态服务市场的研究进展与形成机制[J].环境保护,2004,(12):38-43.

ZhangLu-biao,ZhengHai-xia.Researchtrendsandformingmechanismsofenvironmentalservicemarketinriverbains

[J].EnvironmentalProtection,2004,(12):38-43.(inChinese)[6]GamezL.TheDevelopmentofEnvironmentalServicesPaymentsinCostaRica[R].PresentedtoForestTrends-

ChinaWorkshopon“ForestsandEcosystemServicesin

China”,Beijing,China,2002.

[7]杨道波.流域生态补偿法律问题研究[J].环境科学与技术,2006,(9):57-59.

YangDao-bo.Somelegalproblemsregardingecologicalcompensationinriverbasins[J].EnvironmentalScience&Technology,2006,(9):57-59.(inChinese)

[8]洪尚群,马丕京,郭慧光.生态补偿制度的探索[J].环境科学与技术,2001,(5):40-43.

HongShang-qun,MaPi-jing,GuoHui-guang.Probinginecologicalcompensationmechanism[J].EnvironmentalSci-ence&Technology,2001,(5):40-43.(inChinese)

宋红丽,等流域生态补偿支付方式研究

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

147

高氨氮废水处理方法

高氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上ph在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,ph在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。 高氨氮废水如何处理,我们着重介绍一下其处理方法: 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法,一般认为吹脱与湿度、PH、气液比有关。1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 1.3 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。例如:气水分离膜脱除氨氮 氨氮在水中存在着离解平衡,随着PH升高,氨在水中NH3形态比

例升高,在一定温度和压力下,NH3的气态和液态两项达到平衡。根据化学平衡移动的原理即吕.查德里(A.L.LE Chatelier)原理。在自然界中一切平衡都是相对的和暂时的。化学平衡只是在一定条件下才能保持“假若改变平衡系统的条件之一,如浓度、压力或温度,平衡就向能减弱这个改变的方向移动。”遵从这一原理进行了如下设计理念在膜的一侧是高浓度氨氮废水,另一侧是酸性水溶液或水。当左侧温度T1>20℃,PH1>9,P1>P2保持一定的压力差,那么废水中的游离氨NH4+,就变为氨分子NH3,并经原料液侧介面扩散至膜表面,在膜表面分压差的作用下,穿越膜孔,进入吸收液,迅速与酸性溶液中的H+反应生成铵盐。 1.4MAP沉淀法 主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4 理论上讲以一定比例向含有高浓度氨氮的废水中投加磷盐和镁盐,当[Mg2 + ][NH4+][PO43 -]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。 1.5 化学氧化法 利用强氧化剂将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用,但是产生的余氯会对鱼类有影响,故必须附设除余氯设施。

氨氮废水常用处理方法

氨氮废水常用处理方法 来源:作者:发布时间:2007-11-14 过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。 王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。

王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L以内。 为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。 Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。 1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。

废水除氨氮工艺比较知识讲解

国内高浓度氨氮废水处理常见工艺 物化法 国内外处理高浓度氨氮废水的物理化学方法很多,主要有空气吹脱法、蒸 汽汽提法、折点加氯法、离子交换法、化学沉淀法、催化湿式氧化法和烟 道气治理法等,这些方法各有优缺点,可用于不同条件的废水处理。 1.2.1.1空气吹脱法 空气吹脱法是使废水作为不连续相与空气接触,利用废水中组分的实际浓 度与平衡浓度之间的差异,使氨氮由液相转移至气相而去除。废水中的氨 氮通常以离子铵(NH4+)和游离氨(NH3)的状态保持平衡而存在,将废水pH值调节至碱性时,NH4+转化为NH3,然后通入空气将NH3吹脱出来。 NH4++ OH-→ NH3+ H2O 在吹脱过程中,废水pH值、水温、水力负荷及气水比对吹脱效果有较大影响。一般来说,pH值要提高至10.8~11.5,水温一般不能低于20℃,水力 负荷为2.5~5 m3/(m2·h),气水比为2500~5000 m3/m3,此时氨氮去除率 在80%~95%。 空气吹脱法工艺流程简单,但NH3-N仅从溶解状态转化为游离态,并没有 彻底除去,需要相应的回收装置,否则易造成二次污染;当温度低时, NH3-N吹脱效率大大低,不适合在寒冷的冬季使用。 另外,在当前越来越严格的排放要求条件下,作为一种较为简单粗糙的氨 氮废水处理工艺,空气吹脱法由于无法达到排放要求(如15 mg?L-1以下),加上氨的回收利用上受到限制,因此采用它的改良方法。

1.2.1.2蒸汽汽提法 蒸汽汽提法是利用蒸汽将废水中的游离氨转变为氨气逸出,处理机理与吹脱法一样,即在高pH值时使废水与气体密切接触,从而降低废水中氨浓度的过程。其传质过程的推动力是气体中氨的分压与废水中氨的浓度相当的平衡分压之间的差值。延长汽水间的接触时间及接触紧密程度可提高NH3-N 的处理效率,用填料塔可以满足此要求。由于采用蒸汽作为工作介质,氨自废水进入蒸汽中,然后在塔顶蒸馏成浓氨水、浓氨气或者液氨回收,或是采用酸吸收成为相应的铵盐。 蒸汽汽提法适用于处理连续排放的高浓度氨氮废水(浓度在1000 mg?L-1以上),操作条件易于控制。对于浓度在1000~30000 mg?L-1,甚至更高浓度的氨氮废水,采用该法可以经一次处理后,氨氮浓度达到15 mg?L-1(国家一级排放标准)以下。 蒸汽汽提脱氨技术因为是以蒸汽为脱氨介质,由于蒸汽价格较高(约200元/吨),因此蒸汽消耗就成为了该技术关键指标。传统蒸汽汽提脱氨技术蒸汽消耗达到300kg/吨废水以上,因此传统蒸汽汽提脱氨技术成本很高。随着近些年来技术的进步,一些在传统蒸汽汽提脱氨技术上研究开发的新型蒸汽汽提脱氨技术已经大大降低了蒸汽单耗,达到了30kg/吨废水,因此新型蒸汽汽提脱氨技术正在高浓度工业氨氮废水处理领域得到广泛地推广应用,为我国氨氮污染物减排起到了强有力的技术支撑作用。 1.2.1.3折点加氯法 折点加氯法是将氯气通入水中,当投入量达到某一值(点)时,水中游离氯含量最低而氨的浓度降为零,当投入量超过该点时,水中的游离氯就会增多。因此,该点称为折点,该状态下的氯化称为折点氯化。折点氯化去除氨的的机理为氯气与氨反应生成无害的氮气,氮气逸入大气。

氨氮废水处理方法

高氨氮废水处理技术 介绍各类氨氮废水处理技术及其原理,包括各种方法的优缺点、适用范围、高浓度氨氮废水处理技术的研究进展。通过对比分析,明确不同类型高氨氮废水处理的选择方法,为治理高氨氮废水提供一条便捷的选择方法。 近年来,随着环境保护工作的日益加强,水体中有机物的代表指标-COD基本上得到有效控制,但是,含高氨氮废水达标排放没有得到有效控制,未经处理的含氮废水排放给环境造成了极大的危害,如易导致湖泊富营养化,海洋赤潮等。本文总结了国内外高氨氮废水处理技术及其优缺点、适用范围等。 1、废水中氨氮处理的主要技术应用与新进展 1.1吹脱法 吹脱法是将废水中的离子态铵(NH4+),通过调节pH值转化为分子态氨,随后被通入的空气或蒸汽吹出。影响吹脱效率的主要因素有:pH值、水温、布水负荷、气液比、足够的气液分离空间。 NH4++OH-→NH3+H2O 炼钢、石油化工、化肥、有机化工等行业的废水,常含有很高浓度的氨,因此常用蒸汽吹脱法处理,回收利用的氨部分抵消了产生蒸汽的高费用。石灰一般用来提高pH值。用蒸汽比用空气更易控制结垢现象,若用烧碱则可大大减轻结垢的程度。吹脱法一般采用填料吹脱塔,主要特征是在塔内装置一定高度的填料层,利用大表面积的填充塔来达到气水充分接触,以利于气水间的传质过程。常用的填料有拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。胡允良等人研究了某制药厂生产乙胺碘呋酮时产生的一部分高浓度氨氮废水的静态吹脱效果。结果表明:当pH=10~13,温度为30~50℃时,氨氮吹脱率为70.3%~99.3%。 氨吹脱法通常用于高浓度氨氮废水的预处理,该处理技术优点在于除氨效果稳定,操作简单,容易控制。但如何提高吹脱效率、避免二次污染及如何控制生产过程水垢的生成都是氨吹脱法需要考虑的问题。 1.2化学沉淀法(MAP法)

吹脱法处理高浓度氨氮废水

吹脱法处理高浓度氨氮废水 作者:周明罗陈建中刘志勇 简介:对垃圾渗滤液处理难点进行了分析,阐述了垃圾渗滤液国内外处理现状、处理工艺对比、以及存在弊端,概述OFR新型专利技术处理垃圾渗滤液的原理、使用范围、技术优势及其推广方向,提出OFR 技术在高浓度有机废水处理有特殊的效果,已成功使用于国内外多家企业,尤其在垃圾渗滤液前预处理和经膜技术处理后的浓液处理方面有广阔的使用前景。 关键字:垃圾渗滤液浓缩液氨氮 高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋场等均产生大量高浓度氨氮废水。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,而且将增加给水处理的难度和成本,甚至对人群及生物产生毒害作用[1]。氨氮废水对环境的影响已引起环保领域和全球范围的重视,近20 年来,国内外对氨氮废水处理方面开展了较多的研究。其研究范围涉及生物法、物化法的各种处理工艺,如生物方法有硝化及藻类养殖;物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电化学处理、催化裂解等。新的技术不断出现,在处理氨氮废水的使用方面展现出诱人的前景。本文侧重介绍吹脱法处理高浓度氨氮废水的技术特点及研究使用。 1 吹脱技术 吹脱法用于脱除水中氨氮,即将气体通入水中,使气液相互充分接触,使水中溶解的游离氨穿过气液界面,向气相转移,从而达到脱除氨氮的目的。常用空气作载体(若用水蒸气作载体则称汽提)。 水中的氨氮,大多以氨离子(NH4+)和游离氨(NH3)保持平衡的状态而存在。其平衡关系式如下: NH4++OH-NH3+H2O (1) 氨和氨离子之间的百分分配率可用下式进行计算: Ka=Kw /K b=(C NH3·C H+)/C NH4+(2) 式中:Ka———氨离子的电离常数;

氨氮废水处理技术综述

第33卷第5期 2013年10月 山 西 化 工 SHANXI CHEMICAL INDUSTRY Vol.33 No.5 Oct.2013 环境保护 [3]随着工业的发展,产生的废弃物越来越多,大量未处理氨氮废水方面,吕锡武等用序批式反应器对氨氮废经处理或处理不完全的含氮污染物的任意排放,给环境水进行处理,实验中好氧阶段的总氮损失验证了好氧反造成了巨大的污染。由于氨氮的存在会消耗水体的溶解硝化的存在,并从生物化学和生物学角度阐释了好氧反氧,导致水体富营养化,进而影响水中生物生长,鱼类硝化的机理。实验结果表明,随着混合液溶解氧浓度的中毒、死亡,甚至会进一步导致食用了中毒鱼类的人类提高,好氧反硝化脱氮的能力逐渐降低,当溶解氧质量中毒,其危害不容小觑。在工业上,氨氮的存在会增加浓度为0.5mg/L时,总氮去除率可达到66.0%;张小玲等 [4] 循环水杀菌处理的过程及污水回收利用用氯量,且其对研究了在低溶解氧下,SBR反应器的短程硝化特征和控 铜等金属具有一定的腐蚀性,在污水回收利用时还会增制条件。实验结果表明,实现短程硝化的关键是保持大用氯量;同时能形成生物垢,堵塞管道和用水设备,高、低溶解氧交替的环境,一定条件下,用半连续碳源[5]影响换热效率。 投加方式可保证总同步脱氯效率达到80%;邹小玲采用相对于生活中的洗涤用水和农业灌溉废水,氨氮废SBBR工艺处理ADC发泡剂废水,以达到脱除氨氮的目水更广泛的来源是肥料生产、炼焦、煤气、合成橡胶、的。同时,考察了影响去除率的各个因素,确定了最佳染料、烧碱、电镀及石油开采等工业过程。工业过程中操作参数,保证了COD和氨氮的去除率分别为95.4%和氨氮废水排放量大、浓度高,危害也最大。 93.5%。并且,作者采用Monod模型对硝化反应阶段进行了动力学分析,得到了氨氮去除动力学模型。另外,叶[6][7]1 氨氮废水处理技术的国内外研究状况 建峰等、杨洋等研究了厌氧氨氧化工艺及其影响因素,确定了反应的最佳条件。在物理化学法处理氨氮废[9]1.1 国内研究状况 水方面,胡允良等用吹脱法处理高浓度制药氨氮废水,[10]国内在处理氨氮废水方面做了大量工作。在生物法 达到96%的吹脱效率。李可彬等对乳状液膜去除氨氮进行了研究,由合适的表面活性剂和膜增强剂等组成的液膜,在合适条件下的一级去除率可以达到97%。曲久 [11]辉等利用高铁酸盐对氨氮的氧化能力进行了研究,强化其氧化和絮凝的协同效果。实验结果表明,少量的三价铁在高铁氧化絮凝法去除氨氮过程中,具有一定的催 氨氮废水处理技术综述 李广慧 中北大学化工与环境学院,山西 太原 030051综述了氨氮废水处理技术的国内外研究现状,阐述了生物硝化反硝化法、反渗透法、氨吹脱法、化学沉淀法、离子交换法、电化学氧化法、折点氯化法去除氨氮的原理和影响因素,指出了各种方法的优、缺点及工艺技术的选择原则。 氨氮废水;研究状况;处理技术 X703.1 ---() [关键词] [摘要][中图分类号] [文献标识码] A [文章编号] 10047050(2013)05006669 收稿时间:20130921 作者介绍:李广慧,男,1983年出生,中北大学在读工程硕士。研究方向:化工废水处理。 --DOI:10.16525/https://www.wendangku.net/doc/d112477856.html,14-1109/tq.2013.05.021

氨氮废水处理技术现状及发展

氨氮废水处理技术现状及发展 /# 前言 近年来,随着城市人口的日益膨胀和工农业的不断发展,水环境污染事故屡屡发生,对人、畜构成严重危害。许多湖泊和水库因氮、磷的排放造成水体富营养化,严重威胁到人类的生产生活和生态平衡。氨氮是引起水体富营养化的主要因素之一,为满足公众对环境质量要求的不断提高,国家对氮制订了越来越严格的排放标准,研究开发经济、高效的除氮处理技术已成为水污染控制工程领域研究的重点和热点。本文系统地阐述了氨氮废水处理现状和发展。 ! 处理技术现状 氨氮存在于许多工业废水中,特别是钢铁、化肥、无机化工、铁合金、玻璃制造、肉类加工和饲料等生产过程,均排放氨氮废水,其浓度取决于原料性质、工艺流程、水的耗量及水的复用等。对一给定废 水,选择技术方案主要取决于:(#)水的性质;(!)处理效果;(,)经济效益。以及处理后出水的最后处置方法等。 虽然有许多方法都能有效地去除氨,如物理方法有反渗透、蒸馏、土壤灌溉;化学法有离子交换法、氨吹脱、化学沉淀法、折点氯化、电渗析、电化学处理、催化裂解;生物方法有硝化及藻类养殖,但其应用于工业废水的处理,必须具有应用方便、处理性能稳定、适应于废水水质及比较经济等优点,因此,目前氨氮处理实用性较好的技术为:(#)生物脱氮法;(!)氨吹脱、汽提法;(,)折点氯化法;(%)离子交换 法; # < , =。!$ # 生物脱氮法 生物脱氮通常包括生物硝化和生物反硝化。 生物硝化是在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐和硝酸盐的过程。如果反应完全,氨氧化成硝酸盐分两阶段完成:开始,在亚硝酸菌的作用下使氨氧化成亚硝酸盐,亚硝酸菌属于强好氧性自养细菌,利用氨作为其唯一能源,方程式(#)为这个反应关系式。第二阶段,在硝酸菌的作用下,使亚硝酸盐转化为硝酸盐,硝酸菌是以亚硝酸作为唯一能源的特种自养细菌,方程式(!)为这个反应的关系式。整个硝化反应可以用总方程式(,)来表示。从此关系式中可看到要达到完全硝化,#$ & >? >?@1/, 1 A B 9(以氮计)就需要%$ C >? B 9的溶解氧。 !虽然有些异养生物也能进行硝化,但硝化中最主要的生物是亚硝酸菌属和硝酸菌属。硝化最佳E/值为’$ %,当E/ 在+$ ’< ’$ " 范围时,为最佳速度的"&F。当温度从( G提高到,& G时,硝化速度也随之不断增加,而剩余溶解氧大于#$ & >? B 9 就足以维持这一反应。反硝化就是在缺氧条件下,由于反硝化菌的作用,将和 . 还原为的过程。其过程的电子供体是各种碳源,若以甲醇作碳源为例,其反应式为: 对于硝化反应,温度对其影响比其它生物处理过程要大些,一般温度应维持在为宜。 用生物法处理含氨氮废水时,有机碳的相对浓度是考虑的主要因素,维持最佳碳氮比也是生物处理法成功的关键之一。若废水性质不宜直接进行生物处理,则采用物化法或物化. 生物联合法达到排放要求较为经济。 生物脱氮可去除多种含氮化合物,其处理效果稳定,不产生二次污染,而且比较经济,但有占地面积大、低温时效率低、易受有毒物质影响且运行管理比较麻烦等缺点。 氨吹脱、汽提法 吹脱、汽提法用于脱除水中溶解气体和某些挥发性物质。即将气体通入水中,使气水相互充分接触,使水中溶解气体和挥发性溶质穿过气液界面,向气相转移,从而达到脱除污染物的目的。常用空气或水蒸气作载气,前者称为吹脱,后者称为汽提。氨吹脱、汽提是一个传质

高浓度氨氮废水处理方法与工艺

高浓度氨氮废水处理 废水处理, 高浓度废水处理, 高浓度 过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。 王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。

王有乐等[2]采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L 以内。 为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。 Izzet等[3]在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。 1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。

氨氮废水处理

氨氮废水处理 2氨氮废水的危害 水环境中存在过量的氨氮会造成多方面的有害影响。 (1)由于NH4+-N的氧化,会造成水体中溶解氧浓度降低,导致水体发黑发臭,水质下降,对水生动植物的生存造成影响。在有利的环境条件下,废水中所含的有机氮将会转化成NH4+-N,NH4+-N是还原力最强的无机氮形态,会进一步转化成NO2--N和NO3--N。根据生化反应计量关系,1gNH4+-N氧化成NO2--N消耗氧气3.43g,氧化成NO3--N耗氧4.57g。 (2)水中氮素含量太多会导致水体富营养化,进而造成一系列的严重后果。由于氮的存在,致使光合微生物(大多数为藻类)的数量增加,即水体发生富营养化现象,结果造成:堵塞滤池,造成滤池运转周期缩短,从而增加了水处理的费用;妨碍水上运动;藻类代谢的最终产物可产生引起有色度和味道的化合物;由于蓝-绿藻类产生的毒素,家畜损伤,鱼类死亡;由于藻类的腐烂,使水体中出现氧亏现象。 (3)水中的NO2--N和NO3--N对人和水生生物有较大的危害作用。长期饮用NO3--N含量超过10mg/L的水,会发生高铁血红蛋白症,当血液中高铁血红蛋白含量达到70mg/L,即发生窒息。水中的NO2--N和胺作用会生成亚硝胺,而亚硝胺是“三致”物质。NH4+-N和氯反应会生成氯胺,氯胺的消毒作用比自由氯小,因此当有NH4+-N存在时,水处理厂将需要更大的加氯量,从而增加处理成本。近年来,含氨氮废水随意排放造成的人畜饮水困难甚至中毒事件时有发生,我国长江、淮河、钱塘江、四川沱江等流域都有过相关报道,相应地区曾出现过诸如蓝藻污染导致数百万居民生活饮水困难,以及相关水域受到了“牵连”等重大事件,因此去除废水中的氨氮已成为环境工作者研究的热点之一。 1氨氮废水的来源 含氮物质进入水环境的途径主要包括自然过程和人类活动两个方面。含氮物质进入水环境的自然来源和过程主要包括降水降尘、非市区径流和生物固氮等。人类的活动也是水环境中氮的重要来源,主要包括未处理或处理过的城市生活和工业废水、各种浸滤液和地表径流等。人工合成的化学肥料是水体中氮营养元素的主要来源,大量未被农作物利用的氮化合物绝大部分被农田排水和地表径流带入地下水和地表水中。随着石油、化工、食品和制药等工

去除氨氮的有效方法

根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。 故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术。目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。 1.折点氯化法去除氨氮 折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮污水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg 氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。 折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下: Cl2+H2O→HOCl+H++Cl- NH4++HOCl→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl- NHCl2+NaOH→N2+HOCl+H++Cl- 折点氯化法最突出的优点是可通过正确控制加氯量和对流量进行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。 2.选择性离子交换化去除氨氮 离子交换是指在固体颗粒和液体的界面上发生的离子交换过程。离子交换法选用对NH4+离子有很强选择性的沸石作为交换树脂,从而达到去除氨氮的目的。沸石具有对非离子氨的吸附作用和与离子氨的离子交换作用,它是一类硅质的阳离子交换剂,成本低,对NH4+有很强的选择性。 O.Lahav等用沸石作为离子交换材料,将沸石作为一种把氨氮从废水中分离出来的分离器以及硝化细菌的载体。该工艺在一个简单的反应器中分吸附阶段和生物再生阶段两个阶段进行。在吸附阶段,沸石柱作为典型的离子交换柱;而在生物再生阶段,附在沸石上的细菌把脱附的氨氮氧化成硝态氮。研究结果表明,该工艺具有较高的氨氮去除率和稳定性,能成功地去除原水和二级出水中的氨氮。 沸石离子交换与pH的选择有很大关系,pH在4~8的范围是沸石离子交换的最佳区域。当pH<4时,H+与NH4+发生竞争;当pH>8时,NH4+变为NH3而失去离子交换性能。用离子交换法处理含氨氮10~20mg/L的城市污水,出水浓度可达1mg/L以下。离子交换法具有工艺简单、投资省去除率高的特点,适用于中低浓度的氨氮废水(<500mg/L),对于高浓度的氨氮废水会因树脂再生频繁而造成操作困难。但再生液为高浓度氨氮废水,仍需进一

氨氮废水的几种处理技术

氨氮废水的几种处理技术 王昊 周康根 (中南大学冶金科学与工程学院 长沙410083) 摘 要 介绍了氨氮废水处理的各种方法及原理,综述了目前国内外氨氮废水处理的研究现状及进展,并提出今后氨氮废水处理应着重考虑的几个问题。 关键词 氨氮废水 处理 研究进展 The R esearch Development on the T reatment of Ammonia -nitrogen W astew ater W ANG Hao ZHOU K ang gen (School o f Metallurgical Science and Engineering ,Central South Univer sity Changsha 410083) Abstract The methods and principles of treating amm onia nitrogen wastewater are introduced ,the research status and developments at home and abroad are described and several problems in the treatment for amm onia -nitrogen wastewater considered in the future are put for 2 ward. K eyw ords amm onia nitrogen wastewater treatment research development 氨氮是水体污染因素中重要的污染物,主要来自城镇生活污水、各种工业废水及化学肥料和农家肥料等。水体中氮含量超标,不仅使水环境质量恶化,引起富营养化,还对人类以及动植物有严重危害。我国从20世纪80年代开始废水处理过程中脱氮的研究,但目前大多数污水处理厂仍未考虑脱氮的问题。因此对废水中氮的去除,特别是氨氮的去除需要引起高度的重视。本文介绍几种氨氮废水处理方法。 1 氨氮废水处理的主要方法1.1 吹脱法 氨吹脱工艺[1,2]是将水的pH 值提到10.5 11.5的范 围,在吹脱塔中反复形成水滴,通过塔内大量空气循环,气水接触,使氨气逸出。这种方法广泛用于处理中高浓度的氨氮废水,常需加石灰,经吹脱可以回收氨气。 夏素兰 [3] 从相平衡与气液传质速率两方面分析了氨氮 吹脱工艺的影响因素,认为调节pH 值是改变吹脱体系化学平衡的重要手段,喷淋密度和气液比都是重要影响因素。胡继峰等[4]认为去除率要达到90%以上,pH 值必须大于12且温度高于90℃。胡允良等 [5] 实验室研究确定氨氮质量浓度 为7.27.5g/L 废水的最佳吹脱条件为:pH 值为11,温度为 40℃,吹脱时间2h ,出水中氨氮的质量浓度为307.4mg/L 。 黄骏等[6]采用吹脱法处理三氧化二钒生产的高浓度氨氮废水,在实验室试验的基础上进行工业试验,出水达标排放。 吹脱法主要用于处理高浓度的氨氮废水,其优点是设备简单,可以回收氨,但也存在许多缺点,主要有:①环境温度影响大,低于0℃时,氨吹脱塔实际上无法工作;②吹脱效率有限,其出水需进一步处理;③吹脱前需要加碱把废水的pH 值调整到11以上,吹脱后又须加酸把pH 值调整到9以下,所以药剂消耗大;④工业上一般用石灰调整pH 值,很容易在水中形成碳酸钙垢而在填料上沉积,可使塔板完全堵塞;⑤吹脱时所需空气量较大,因此动力消耗大,运行成本高。 1.2 化学沉淀(M AP )法 在一定的pH 条件下,水中的Mg 2+、HPO 43-和NH 4+可以生成磷酸铵镁沉淀[7],而使铵离子从水中分离出来。 影响沉淀效果的因素有沉淀剂种类及配比、pH 值、废水中的初始氨的浓度、干扰组分等。 有研究表明沉淀法去除废水中氨氮的pH 值为10.0,物质的量之比Mg ∶N =1.2、P ∶N =1.02时沉淀效果最好,氨氮去除率达到90%[8]。赵庆良等[9]研究表明,MgCl 2?6H 2O 和 Na 2HPO 4?12H 2O 组合沉淀剂优于MgO 和H 3PO 4组合,垃圾渗 滤液中的氨氮质量浓度可由5618mg/L 降低到65mg/L 。李芙蓉等[10]采用氧化镁和磷酸作为沉淀剂去除煤气洗涤循环水中高浓度的氨氮,效果良好。李才辉等[11]对M AP 法处理氨氮废水的工艺进行优化,研究表明氨氮的去除率随着反应时间的增加而增加,随着Mg ∶N 比值的增加而增加。刘小澜[12]探讨了不同操作条件对氨氮去除率的影响,在pH 值为 8.59.5的条件下,投加的药剂Mg 2+∶NH 4+∶PO 43-(摩尔比) 为1.4∶1∶0.8时,废水氨氮的去除率达99%以上,出水氨氮的质量浓度由2g/L 降至15mg/L 。 国外对用化学沉淀法去除废水中的氨氮也有较多研究。 S tratful 等[13]详细研究了影响磷酸铵镁沉淀及晶体生长的因 素,得出4点结论:①过量的铵离子对形成磷酸铵镁沉淀有利;②镁离子可能是形成磷酸铵镁沉淀的限制因素;③如果要想从废水中回收磷酸铵镁,需要得到比较大的晶体颗粒,则至少需要3h 的结晶时间;④沉淀的pH 值应大于8.5。 Battistoni 等[14]进行了用化学沉淀法从废水厌氧消化后的上 清液中同时回收氮和磷的研究。废水厌氧消化过程中,有机物中的氮和磷被微生物分解为无机的磷酸盐和氨氮,添加 MgO 可以生成磷酸铵镁沉淀可回收磷和氮。Lind 等[15]则进 行了用磷酸铵镁沉淀法从人的尿液中回收营养物质的研究,可以回收65.0%80.0%的氮。 ? 7?2006年第32卷第11期N ovenmber 2006 工业安全与环保 Industrial Safety and Environmental Protection

工业废水去除氨氮的方法

工业废水去除氨氮的方法 根据废水中氨氮浓度的不同,可将废水分为3类:高浓度氨氮废水(NH3-N>500mg/l),中等浓度氨氮废水(NH3-N:50-500mg/l),低浓度氨氮废水(NH3-N<50mg/l)。然而高浓度的氨氮废水对微生物的活性有抑制作用,制约了生化法对其的处理应用和效果,同时会降低生化系统对有机污染物的降解效率,从而导致处理出水难以达到要求。 故本工程的关键之一在于氨氮的去除,去除氨氮的主要方法有:物理法、化学法、生物法。物理法含反渗透、蒸馏、土壤灌溉等处理技术;化学法含离子交换、氨吹脱、折点加氯、焚烧、化学沉淀、催化裂解、电渗析、电化学等处理技术;生物法含藻类养殖、生物硝化、固定化生物技术等处理技术。目前比较实用的方法有:折点加氯法、选择性离子交换法、氨吹脱法、生物法以及化学沉淀法。 1.折点氯化法去除氨氮 折点氯化法是将氯气或次氯酸钠通入废水中将废水中的NH3-N 氧化成N2的化学脱氮工艺。当氯气通入废水中达到某一点时水中游离氯含量最低,氨的浓度降为零。当氯气通入量超过该点时,水中的游离氯就会增多。因此该点称为折点,该状态下的氯化称为折点氯化。处理氨氮废水所需的实际氯气量取决于温度、pH值及氨氮浓度。氧化每克氨氮需要9~10mg氯气。pH值在6~7时为最佳反应区间,接触时间为0.5~2小时。

折点加氯法处理后的出水在排放前一般需要用活性碳或二氧化硫进行反氯化,以去除水中残留的氯。1mg残留氯大约需要0.9~1.0mg 的二氧化硫。在反氯化时会产生氢离子,但由此引起的pH值下降一般可以忽略,因此去除1mg残留氯只消耗2mg左右(以CaCO3计)。折点氯化法除氨机理如下: Cl2+H2O→HClO+H++Cl- NH4++HClO→NH2Cl+H++H2O NHCl2+H2O→NOH+2H++2Cl- NHCl2+NaOH→N2+HOCl+H++Cl- 折点氯化法最突出的优点是可通过正确控制加氯量和对流量进 行均化,使废水中全部氨氮降为零,同时使废水达到消毒的目的。对于氨氮浓度低(小于50mg/L)的废水来说,用这种方法较为经济。为了克服单独采用折点加氯法处理氨氮废水需要大量加氯的缺点,常将此法与生物硝化连用,先硝化再除微量残留氨氮。氯化法的处理率达90%~100%,处理效果稳定,不受水温影响,在寒冷地区此法特别有吸引力。投资较少,但运行费用高,副产物氯胺和氯化有机物会造成二次污染,氯化法只适用于处理低浓度氨氮废水。 2.选择性离子交换化去除氨氮 离子交换是指在固体颗粒和液体的界面上发生的离子交换过程。离子交换法选用对NH4+离子有很强选择性的沸石作为交换树脂,从而达到去除氨氮的目的。沸石具有对非离子氨的吸附作用和与离子

高氨氮废水处理——Bardenpho工艺

三种高氨氮废水处理工艺 【格林大讲堂】 一、Bardenpho工艺 该工艺是在A/O工艺基础上,增设了一个缺氧段和好氧段,各段反应池均独立运行,混合液自第一好氧池回流至第一缺氧池而第二好氧池无混合液回流(因而须注意,第二缺氧池和第二好氧池并非组成一级A/O工艺)所增设的缺氧段和好氧段起强化脱氨和提高处理出水水质的作用。 武汉格林环保有完善的服务体系和配套的专业环境工程团队,秉着崇高的环保责任和义务长期维护提供免费的污水处理解决方案,是湖北省工业废水运营管理行业中的品牌。18年来公司设计并施工了上百个交钥匙式的污水处理工程。 运行过程中,第一好氧池的内部回流混合液、原水中的有机基质及回流污泥进入第一厌氧池,进行反硝化脱氮。由于第一厌氧池进水中含有较多内碳源可利用因而具有较高的反硝化速率,但与其进水中的食料比有关。好氧一池的容积一般可按F./M为0.25考虑;在厌氧二池中,由于好氧二池出水中有机物浓度较低,同时也没有外加碳源因而反硝化菌主要通过内源呼吸作用,以细胞内碳源进行反硝化,因此反硝化效率较低,并与系统的污泥龄有关。但这种反硝化作用可有效地提高整个处理系统的反硝化程度,从而利于提高脱氮效率。 必要时,可将少部分进水引入厌氧二池以适当补充碳源,提高其反硝化速率。该工艺中好氧二池的主要作用是进一步降低废水中的有机物浓度,同时改善出水的表观性状

由于增设了厌氧二池和好氧二池强化处理作用,该工艺的脱氮效率可以高达90%~95%(城市污水)。 二、BABE工艺 在通常的废水生物处理工艺中,其污泥经浓缩的上层液或氧化处理后脱水滤液均需返回至主体工艺进行处理。由于污泥浓缩上层液或脱水滤液中富含氮,因而其向主体工艺的返回将增加主体工艺的处理负荷,从而影响处理出水中氮的指标。 BABE在运行过程中将以A/O方式运行的处理工艺主流程中回流污泥的一部分分流入BABE间歇曝气池,BABE所处理的对象为含有高浓度的TN的污泥浓缩上层液或污泥脱水滤液。通过BABE池的间歇曝气运行,不仅有效地延长了处理工艺的污泥龄,并可对其进液中的氮实现充分的硝化作用,同时由于BABE池的良好消化条件,即较低的有机负荷及良好的温度控制(一般将温度控制在30℃),有效地提高了污泥中硝化菌的数量。 BABE池经间歇曝气后富含硝化菌的混合液、内回流与进水一起进入A/O工艺主流程,可实现充分的反硝化脱氮,强化了系统对氮的去处作用。 三、超声吹脱处理氨氮 超声吹脱法去除氨氮是一种新型、高效的高浓度氨氮废水处理技术,它是在传统的

高氨氮废水处理技术及其发展趋势

高氨氮废水处理技术及其发展趋势 (能源与环境学院,环境工程072班,学号:200701144210) 摘要:经济有效地控制氨氮废水污染是当前面临的重大课题。本文简述了高浓度氨氮废水的危害, 介绍了对高浓度氨氮废水处理的处理方法, 并对这些方法工艺的优缺点做出了分析,对今后高氨氮废水的处理技术作出了展望。 关键词:脱氨氮废水处理技术发展 一、引言 随着人们生活水平的提高和对环境要求的加强、环境污染治理的加强和环保技术的发展,水体中有机物的代表指标——COD 基本上得到有效控制,但是,含高氨氮废水达标排放没有得到有效控制,未经处理的含氮废水排放给环境造成了极大的危害,如易导致湖泊富营养化,海洋赤潮等。 随着社会经济的发展,来源广泛的高氨氮废水处理越来越受到重视,像传统领域的化工、制革、屠宰等行业废水的预处理主要采用物化的吹脱工艺或投加氯系氧化剂的化学处理工艺,在市政污水处理方面,随着排放标准的提高,A /O或A /A /O的生化处理工艺得到了越来越广泛的应用。本文总结了高氨氮废水处理技术、现状及其发展趋势等。 二、技术简介 许多方法都能够有效的处理氨氮,如物理化学法有吹脱、气提、折点加氯、离子交换、混凝沉淀、反渗透、电渗析及各种高级氧化技术(AOTs)等多种方法;生物方法有硝化及水藻等水生植物养殖。但具有应用方便,处理效果稳定、适应废水水质及比较经济等优点,并且目前实用性较好、研究较多、具有良好发展用前景的有:氨吹脱、化学沉淀法、高效生物脱氮法和高级氧化技术。 1. 吹脱法 吹脱法是目前处理氨氮废水最普遍应用的方法之一。研究主要集中在:吹脱设备(吹脱池、吹脱塔)、吹脱形式(自然吹脱、鼓风吹脱)、填料形式(规整填料、拉西环、聚丙烯鲍尔环等)吹脱参数(pH 值、气水比、吹脱温度等)。 吹脱法是将废水中的离子态铵(NH4+),通过调节pH 值转化为分子态氨,随后被通入的空气或蒸汽吹出。影响吹脱效率的主要因素有:pH 值、水温、布水负荷、气液比、足够的气液分离空间。。研究结果表明:当pH=10~13,温度为30~50℃时,氨氮吹脱率为70.3%~99.3%。 炼钢、石油化工、化肥、有机化工等行业的废水,常含有很高浓度的氨,因此常用蒸汽吹脱法处理。 吹脱法通常用于高浓度氨氮废水的预处理,该处理技术优点在于除氨效果稳定,操作简单,容易控制。但如何提高吹脱效率、避免二次污染及如何控制生产过程水垢的生成都是氨吹脱法需要考虑的问题。 2.化学沉淀法(MAP 法) 化学沉淀法是在含有NH4+离子的废水中,投加Mg2+和PO43-,使之与NH4+生成难溶复盐磷酸氨镁MgNH4PO4·6H2O(简称MAP)结晶,通过沉淀,使MAP 从废水中分离出来。 化学沉淀法尤其适用于处理高浓度氨氮废水,且有90%以上的脱氮效率。在废水中无有毒有害物质时,磷酸氨镁是一种农作物所需的良好的缓释复合肥料。处理时,若pH 值过高,易造成部分NH3 挥发。建议缩短沉淀时间,适当降低

氨氮废水常用处理方法

氨氮废水常用处理方法 过量氨氮排入水体将导致水体富营养化,降低水体观赏价值,并且被氧化生成的硝酸盐和亚硝酸盐还会影响水生生物甚至人类的健康。因此,废水脱氮处理受到人们的广泛关注。目前,主要的脱氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。消化污泥脱水液、垃圾渗滤液、催化剂生产厂废水、肉类加工废水和合成氨化工废水等含有极高浓度的氨氮(500 mg/L以上,甚至达到几千mg/L),以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。高浓度氨氮废水的处理方法可以分为物化法、生化联合法和新型生物脱氮法。 1 物化法 1.1 吹脱法 在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。 王文斌等[1]对吹脱法去除垃圾渗滤液中的氨氮进行了研究,控制吹脱效率高低的关键因素是温度、气液比和pH。在水温大于25 ℃,气液比控制在3500左右,渗滤液pH控制在10.5左右,对于氨氮浓度高达2000~4000 mg/L的垃圾渗滤液,去除率可达到90%以上。吹脱法在低温时氨氮去除效率不高。 采用超声波吹脱技术对化肥厂高浓度氨氮废水(例如882 mg/L)进行了处理试验。最佳工艺条件为pH=11,超声吹脱时间为40 min,气水比为l000:1试验结果表明,废水采用超声波辐射以后,氨氮的吹脱效果明显增加,与传统吹脱技术相比,氨氮的去除率增加了17%~164%,在90%以上,吹脱后氨氮在100 mg/L以内。 为了以较低的代价将pH调节至碱性,需要向废水中投加一定量的氢氧化钙,但容易生水垢。同时,为了防止吹脱出的氨氮造成二次污染,需要在吹脱塔后设置氨氮吸收装置。在处理经UASB预处理的垃圾渗滤液(2240 mg/L)时发现在pH=11.5,反应时间为24 h,仅以120 r/min的速度梯度进行机械搅拌,氨氮去除率便可达95%。而在pH=12时通过曝气脱氨氮,在第17小时pH开始下降,氨氮去除率仅为85%。据此认为,吹脱法脱氮的主要机理应该是机械搅拌而不是空气扩散搅拌。 1.2 沸石脱氨法 利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。然而,蒋建国等[4]探讨了沸石吸附法去除垃圾渗滤液中氨氮的效果及可行性。小试研究结果表明,每克沸石具有吸附15.5 mg氨氮的极限潜力,当沸石粒径为30~16目时,氨氮去除率达到了78.5%,且在吸附时间、投加量及沸石粒径相同的情况下,进水氨氮浓度越大,吸附速率越大,沸石作为吸附剂去除渗滤液中的氨氮是可行的。 用沸石离子交换法处理经厌氧消化过的猪肥废水时发现Na-Zeo、Mg-Zeo、Ca-Zeo、k-Zeo 中Na-Zeo沸石效果最好,其次是Ca-Zeo。增加离子交换床的高度可以提高氨氮去除率,综合考虑经济原因和水力条件,床高18 cm(H/D=4),相对流量小于7.8BV/h是比较适合的尺寸。离子交换法受悬浮物浓度的影响较大。 应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。 1.3 膜分离技术 利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。蒋展鹏等[6]采用电渗析法和聚丙烯(PP)中空纤维膜法处理高浓度氨氮无机废水可

相关文档